
NCC Group Whitepaper

Understanding and Hardening
Linux Containers
April 20, 2016 – Version 1.0

Prepared by
Aaron Grattafiori – Technical Director

Abstract
Operating System virtualization is an attractive feature for efficiency, speed andmod-

ern application deployment, amid questionable security. Recent advancements of

the Linux kernel have coalesced for simple yet powerful OS virtualization via Linux

Containers, as implemented by LXC, Docker, and CoreOS Rkt among others. Recent

container focused start-ups such as Docker have helped push containers into the

limelight. Linux containers offer nativeOS virtualization, segmentedby kernel names-

paces, limited through process cgroups and restricted through reduced root capa-

bilities, Mandatory Access Control and user namespaces. This paper discusses these

container features, as well as exploring various security mechanisms. Also included is

an examination of attack surfaces, threats, and related hardening features in order to

properly evaluate container security. Finally, this paper contrasts different container

defaults and enumerates strong security recommendations to counter deployment

weaknesses– helping support and explain methods for building high-security Linux

containers. Are Linux containers the future or merely a fad or fantasy? This paper

attempts to answer that question.

Table of Contents

1 Introduction . 5

1.1 Motivation . 6

1.2 Virtualization Background . 7

1.3 Benefits of An OS-Virtualization System . 10

1.4 Drawbacks of an OS-Virtualization system . 11

2 Linux Containers Overview . 13

2.1 A Brief History of OS Containers . 13

2.2 Linux Containers: where are they now? . 13

2.3 Prior Art: Linux Container Security, Auditing and Presentations . 15

2.4 TL;DR Linux Containers . 18

3 Namespaces . 20

3.1 Namespaces Background . 20

3.2 Namespaces Implementation . 20

3.3 Mount Namespace . 21

3.4 IPC Namespace . 21

3.5 UTS Namespace . 22

3.6 PID Namespace . 22

3.7 Network Namespace . 23

3.8 User Namespace . 26

4 Control Groups . 27

4.1 Cgroups Background . 27

4.2 Working with Vanilla cgroups . 27

4.3 Containers and cgroups . 29

4.4 Future of cgroups . 29

5 Capabilities . 30

5.1 Capabilities Background . 30

5.2 Additional Introductory Resources . 31

2 | Understanding and Hardening Linux Containers NCC Group

5.3 Understanding Capabilities . 31

5.4 Exploring Capabilities . 37

5.5 Capabilities and User Namespaces . 39

5.6 Capability Defaults In Modern Containers . 40

5.7 A World Without Root . 42

6 Configuration and Basic Use . 43

6.1 LXC . 43

6.2 Docker . 45

6.3 CoreOS Rocket . 46

7 Understanding Container Threats . 49

7.1 The Linux Kernel Itself . 49

7.2 Exploring Container Threats . 51

7.3 LXC Specific Threats . 61

7.4 Docker Specific Threats . 62

7.5 CoreOS Rkt Specific Threats . 63

7.6 Indirect or Unexpected Threats . 64

8 Recent Security Advancements . 66

8.1 The User Namespace . 66

8.2 Mandatory Access Control . 69

8.3 Syscall Filtering with Seccomp . 74

9 LXC, Docker and CoreOS Rocket . 81

9.1 LXC . 81

9.2 LXC Background . 81

9.3 LXC Components . 82

9.4 Brief LXC Security Analysis . 82

9.5 Docker . 84

9.6 Docker Background . 84

9.7 Docker Components . 85

3 | Understanding and Hardening Linux Containers NCC Group

9.8 Brief Docker Security Analysis . 86

9.9 CoreOS Rocket . 91

9.10 CoreOS and Rkt Background . 91

9.11 Rkt Components . 92

9.12 Rkt Security Analysis . 93

9.13 Container Defaults . 96

10 Security Recommendations . 97

10.1 Generation Container Recommendations . 97

10.2 LXC Specific Recommendations . 104

10.3 Docker Specific Recommendations . 105

10.4 CoreOS Rkt Specific Recommendations . 108

10.5 Relevant Kernel Hardening . 109

11 The Future . 112

11.1 Containers on the Desktop . 112

11.2 New Potential Namespaces . 113

11.3 Additional Lightweight Isolation and Sandbox Platforms . 113

11.4 The Open Container Initiative . 115

11.5 Containers In Other Platforms . 116

11.6 Container Specific Operating Systems . 116

11.7 Unikernels and Microhypervisors and Hybrid Models . 117

11.8 The Big Idea Of Microservices . 119

12 The End . 121

12.1 Conclusion . 121

12.2 Acknowledgements . 121

12.3 About The Author . 122

4 | Understanding and Hardening Linux Containers NCC Group

1 Introduction

``I am large, I contain multitudes'' – Walt Whitman

Linux containers have recently developed into a production-ready technology for OS level virtualization,1

yet very little security research or best practices have beenmade public, and concerns for deployment2 and

security3, 4 abound. This whitepaper seeks to expand on what little security information exists on what con-

tainer technologies are capable of and canultimately provide. This paper starts by examininghowcontainers

compare to hardware virtualization5 and what prior vulnerabilities have occurred in these systems. This

paper explores Linux container security underpinnings and discusses building and leveraging containers

to provide strong application isolation. The paper also explores future areas of potential vulnerability or

security research.

Much more than ``chroot on steroids'', Linux containers and the underlying features which power them offer

an entire ecosystemof software. Various pieces form the ability to build a operating system jail or application

sandbox, or to simply better package applications. This can all be done while offering extremely low re-

source overhead andmany features typically restricted to hardware virtualization such as snapshots, pausing

virtual machines (VMs) or live VM migration. Linux kernel namespaces, capabilities and resource limits via

cgroups offer excellent tools for building defense in depth, a strongly encouraged security paradigm for all

types of applications. Fromweb applications and network services to desktop applications and thick clients,

many of the container methods or software discussed within this paper also support different versions of

the Linux kernel on almost any supported hardware. This can offer much needed security improvements

in embedded or Internet of Things (IoT) devices. Finally, Mandatory Access Controls (MAC) and system

call (syscall) filtering, given new life by container deployments, offer additional and formidable protections

against application or container to host compromise.

Containers are quickly growing in popularity due to the ongoing shift in application or entire datacenter de-

ployments from once traditional three-tier architectures on baremetal to large, powerful computers running

a number of virtual machines. Deployments are now shifting from service oriented architectures (SOA) to

Platform as a Service (PaaS) or ``microservices'', distilling services down. Microservices and PaaS are, as part

of their core design, highly available, fault tolerant, easily scalable, service oriented and container driven. It is

hardly surprising, given this general movement from hardware to software, there is a surge in the popularity

of containers via LXC, Docker and CoreOS Rocket (rkt), which are helping push the use of Linux containers

out of data centers at Google and IBM and into servers and desktops everywhere. Over the past several

years, container focused companies such as Docker and IBM, along with a growing number of others, have

greatly raised the profile and ease-of-use for Linux containers.

This paper is intended for a wide technical audience, with sections benefiting everyone from security con-

sultants and researchers to enterprise blue teams, application developers, and devops teams. Readers may

be looking to either evaluate container implementations, security risks and challenges, or understand the

hardening features offered by modern container systems. Before proceeding, NCC Group warns against

taking statements, configuration options or other details within this paper as verbatim. Containers are a hot

topic and new developments are announced seemingly every week. In addition to the evolving container

offerings, OS virtualization is a quickly moving target. New potential threats will undoubtedly be uncovered,

hopefully kept in line by proactive security enhancements. Along with a general defense in depth design,

assumed protections should constantly be re-evaluated, explored, tested and improved upon.

1https://en.wikipedia.org/wiki/Operating-system-level_virtualization
2http://www.csoonline.com/article/2984543/vulnerabilities/as-containers-take-off-so-do-security-concerns.html
3http://www.infoworld.com/article/2923852/security/containers-have-arrived-and-no-one-knows-how-to-secure-them.html
4http://www.eweek.com/security/security-is-a-key-concern-for-container-users.html
5https://en.wikipedia.org/wiki/X86_virtualization

5 | Understanding and Hardening Linux Containers NCC Group

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
http://www.csoonline.com/article/2984543/vulnerabilities/as-containers-take-off-so-do-security-concerns.html
http://www.infoworld.com/article/2923852/security/containers-have-arrived-and-no-one-knows-how-to-secure-them.html
http://www.eweek.com/security/security-is-a-key-concern-for-container-users.html
https://en.wikipedia.org/wiki/X86_virtualization

Containers offer many overall advantages. From a security perspective, they create a method to reduce

attack surfaces and isolate applications to only the required components, interfaces, libraries and network

connections. In an age where complexity and the lines of code for applications such as Microsoft Office

in 2013 are greater than the entirety of Windows XP,6 application sandboxing should be the rule, not the

exception. Moving fully to memory safe native code languages such as Golang and Rust will likely take

many more years, and code fuzzing or qualified security review can only catch so many vulnerabilities.

Inner-application sandboxing and outer-application containers offer a method to cut losses and draw a line

in the virtual sand. When performance differences are negligible, is there a realistic reason to not isolate

applications? Apart from time and effort, the security due diligence is encouraged.

Before continuing, NCC Group also cautions readers that OS-level virtualization will always be fundamen-

tally less secure than hardware-level virtualization, which itself is less secure than physical server isolation.

However, such security absolutes should offer little discouragement. Containers chiefly offer a method

to decrease attack surface and improve isolation with a relatively small added complexity and hardware

resources when compared to ``traditional'' virtualization. Any security solution should be well hardened and

vetted, follow the principal of least privilege, the principal of least access and defense in depth.7 Finally,

it should also be noted that several components used by Linux containers and discussed in this document

are relatively new. This includes the User Namespace and unprivileged containers, as well as seccomp-bpf

filtering. As some of these features deal with complex, high-risk areas of the kernel, additional vulnerabilities

or weaknesses are likely to occur within these components.

1.1 Motivation

The motivation for using containers varies depending on the ultimate and intended use case. This may

consist of decreasing power or storage costs related to hardware virtualization inefficiency, allowing de-

velopers to more easily ship and test code or increasing security on a workstation platform through ap-

plication sandboxing (such as ChromeOS). It appears through industry observations and repeated security

engagements byNCCGroup, by far themost popularmotivation is essentially applicationpackaging, testing

and deploying entire stacks on a Platform-as-a-Service (PaaS). Motivations for using containers may involve

providing internal clouds or production infrastructure on top of bare metal or virtual machines. Docker,

Google, Amazon AWS, Rackspace, Heroku, CloudFoundry, Stackato, CoreOS, Flockport, Rancher among

others are an example of the use, and rising popularity of, minimal-overhead Linux OS virtualization.

Modern Linux use stretches from servers, desktops and laptops to mobile phones, routers, IoT and a vast

number of other embedded devices. From micro form-factor devices to supercomputers, Linux is every-

where. Security and application isolation, going beyond simple Discretionary Access Controls (DAC) or

standard Kernel hardening should be available to all, regardless of the hardware architecture of their in-

tended platform. Containers or the technologies that power them can be used to help achieve improved

security with little to no performance overhead.

Future use of the individual features powering containers (such as namespaces, capabilities and cgroups), or

Linux containers as awhole, may allow for increased security, application sandboxing and isolation anywhere

modern versions of the Linux kernel are supported. This allows for strong security and helps developers to

implement security ideals such as privilege separation, the principle of least access, isolated root capabil-

ities and resource limits. Many of these container security features have yet to be realized in Linux based

embedded devices in much need of security improvements. This ranges from consumer and commercial

grade routers, smart phones such as Google Android, as well as the general Internet of Things (IoT).

6http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
7https://en.wikipedia.org/wiki/Layered_security

6 | Understanding and Hardening Linux Containers NCC Group

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://en.wikipedia.org/wiki/Layered_security

Just as Mandatory Access Control can attempt to limit process capabilities, there exists little to no reason

why a modern web browser needs unfettered access to the users' computer. Slowly major operating sys-

tem vendors are implementing such limitations by default, along with other inner-application sandboxing,

requiring exploits to use privilege escalation or force attackers to use multi-vulnerability chaining. However,

these protections thus far are largely unimplemented outside of web browsers and document readers,8 in

addition to mainly being implemented by non-Linux operating systems.

Containers and their supporting features help support an overall model of defense in depth through layered

security9 for applications on a server or a desktop. In the age of Advanced or Persistent Threats and nation

state attackers, defense in depth as a principal is only possible method which may realistically prevent

successful attacks. It should be clear, containers alone do not offer a perfect solution, but they can and

should be used to quickly raise the bar and frustrate system compromises through application exploits,

primarily by adding isolation and reducing system attack surfaces.10

1.2 Virtualization Background

Before exploring Linux containers and their security, it is important to understand the fundamentals of what

the software or system is capable of providing, in addition to general security considerations. Largely bor-

rowing terminology from virtualization, the term host in this paper will be used to indicate the primary

Operating System (OS) or device on which the container exists (where LXC is setup, where the Docker

daemon or engine is running, etc). The term guest or container will refer to the collection of processes

or application container itself, running within the host. Finally, the term escape will correspond to a guest

interacting with, or otherwise compromising, the host in a manner not intended. Escaping will often take

the form of violating the core security principals of isolation, such as the guest breaking out of the container.

1.2.1 Full-Virtualization

Since roughly 2006 most commodity x86, x86-64 and ARMv7 microprocessors11 from Intel, ARM and AMD

offer a hardware-assisted virtualization through special CPU instructions. This provides essentially what is

complete isolationbetweenguest kernels and the host, and allows runningmanydifferent operating systems

within the same physical host.

VMware's ESX, the Xen HVM and KVM within Linux are examples of "Virtual Machine (VM)" technology or

``Hypervisors''. This hardware mode allows the host to support different guest operating systems (such as a

MicrosoftWindows or FreeBSDguest on a Linux KVMhost). While speed is often comparable to ``baremetal''

execution, full virtualization is still the slowest of the three types discussed within this paper. Although this

form of virtualization requires a number of virtualized hardware devices, the security is quite robust. In some

cases, data is passed throughdirectly to hardware devices, however the attack surface is typically quite small.

This security robustness is largely due to well vetted virtual hardware, often presenting a minimal hypervisor

attack surface when compared to other virtualizationmethods. When discussing the security and implemen-

tation of full virtualization, the attack surface may differ between so called ``Type one'' hypervisors on bare

metal (e.g. Citrix Xen, VMWare ESXi and KVM) vs ''Type two'' hypervisors, which are implemented on top of

a normal kernel (e.g. VirtualBox, VMware Workstation, and QEMU).

8Provided, this is the first logical step, as web browsers and document readers offer significant attack surfaces, are often reachable

by remote attackers and facilitate an ease of exploitation through heap massaging and other factors.
9https://en.wikipedia.org/wiki/Layered_security
10With the exception of the Linux kernel, although tools such as seccomp-bpf can help for most hardware platforms.
11The IBMPOWER, AS400, OS/2 and other CPU architectures were designed specifically for hardware virtualization. Thesemethods

and systems are out of scope for this paper, as they are often implemented within large organizations with specific requirements

(banks, universities, supercomputing labs and research centers).

7 | Understanding and Hardening Linux Containers NCC Group

https://en.wikipedia.org/wiki/Layered_security

Security considerations: In terms of security guarantees, OpenBSD's often gruff leader, when speaking on

hardware virtualization via hypervisors takes a particularly pessimistic stance:

``x86 virtualization is about basically placing another nearly full kernel, full of new bugs, on top of a nasty

x86 architecture which barely has correct page protection. Then running your operating system on the

other side of this brand new pile of shit. — You are absolutely deluded, if not stupid, if you think that

a worldwide collection of software engineers who can't write operating systems or applications without

security holes, can then turn around and suddenlywrite virtualization layers without security holes. You've

seen something on the shelf, and it has all sorts of pretty colours, and you've bought it. That's all x86

virtualization is.''

- An openbsd-misc email by Theo de Raddt

Theo's opinion aside, escaping from hardware virtual machines is considered quite difficult and rare,

although surely possible. Weakness have been discovered in several major platforms, typically in

the areas of virtualized device drivers. Most recently in QEMU (as used by Xen) a large number of

vulnerabilities have been discovered, causing regular cloud hosting providers to perform painful host

reboots.12, 13 For instance, the RTL8139 driver contained a heap overflow (CVE-2015-5165), and an

emulated block device contained a use after free issue (CVE-2015-5166). Issues were even discovered

within the floppy controller and the PCNET NIC driver (CVE-2015-3209)14 . Vulnerabilities have been

discovered within the QEMU/Xen IDE subsystem (CVE-2015-5154) and within the hvm_msr_read_-

intercept function (CVE-2014-7188). Each of the above issues risked guest escape, Denial of Service

(DoS) or allowed readingdata from thehypervisor, dependingon the configuration. Historically, within

VMware Workstation (which is a type two hypervisor15), a guest could escape and execute arbitrary

code on the host (CVE-2009-1244). Finally, Microsoft's Hyper-V has also contained at least one known

escape (MS15-068).

While the paper is now fairly dated, An Empirical Study into the Security Exposure to Hosts of Hostile

Virtualized Environments by Tavis Ormandy offers a strong security overview. Additionally an Analysis

of Hypervisor Breakouts by Insinuator found, somewhat unsurprisingly, that increase in attack surface

through drivers, graphics shaders, DMA and other features which travel from guest to hypervisor or

guest to hardware risks additional vulnerabilities, especially in type two hypervisors.16 Despite these

examples, the risk of escape is much lower and the difficulty of host or guest-to-guest exploitation

much higher than other forms of virtualization (excluding various network attacks). Apart from physi-

cally separate hardware, this method offers the strongest guest isolation.17

Deployment considerations: Full virtualization is typically less energy and storage efficient than other virtual-

izationmethods. Due to the special CPU instructions, this technology is also only supported on distinct

hardware (e.g. x86, x86_64, ARM), limiting the deployment scenarios. As such, this virtualization type

is also not subtable for low power devices and only recently supported onARM.18 Finally, full virtualiza-

tion often follows the model of virtualizing the entire operating system; adding additional security to

individual applications within the system is left up to traditional hardening best practices. This includes

12http://vmblog.com/archive/2014/09/29/rackspace-joins-amazon-in-cloud-reboot-over-xen-hypervisor-bug.aspx
13http://www.theregister.co.uk/2015/02/28/new_xen_vuln_causes_cloud_reboot/
14This arguably overhyped vulnerability was also marketed as ``VENOM'' by an adversarial ``threat'' focused security company.
15http://www.golinuxhub.com/2014/07/comparison-type-1-vs-type-2-hypervisor.html
16This type one vs type two issue is also easily illustrated by the number of VMware Workstation escapes when compared to

ESX/ESXi.
17Unrelated to x86 and x86-64 Hypervisors, the PS3 hack and VM escape was particularly impressive. See How the PS3 Hypervisor

was hacked by Nate Lawson for an excellent write-up.
18http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CHDCHAED.html

8 | Understanding and Hardening Linux Containers NCC Group

https://marc.info/?l=openbsd-misc&m=119318909016582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5165
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-5166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7188
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1244
https://support.microsoft.com/en-us/kb/3072000
http://taviso.decsystem.org/virtsec.pdf
http://taviso.decsystem.org/virtsec.pdf
http://www.insinuator.net/2013/05/analysis-of-hypervisor-breakouts/#more-2167
http://www.insinuator.net/2013/05/analysis-of-hypervisor-breakouts/#more-2167
http://vmblog.com/archive/2014/09/29/rackspace-joins-amazon-in-cloud-reboot-over-xen-hypervisor-bug.aspx
http://www.theregister.co.uk/2015/02/28/new_xen_vuln_causes_cloud_reboot/
http://www.golinuxhub.com/2014/07/comparison-type-1-vs-type-2-hypervisor.html
http://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
http://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CHDCHAED.html

using least or multi privilege models, using strong authentication, least privilege, controlling system

access and other security standards. Reboots of the host hardware for full virtualization, although

rarely required, are extremely painful (as each VM needs to boot up after the host). Reboots cannot

be performed gracefully unless live migration is supported or another high availability or fault tolerant

system is in place.

In use by: Amazon AWS via EC2 when selecting "private virtualization", powering the Google Compute

Engine (KVM), OpenStack deployments, VMware vCloud Air (ESX) hosting and a vast majority of large

number of private companies with internal server hosting, traditional or modern Platform as a Service

(PaaS), various internal datacenters or QA environments. Type two hypervisors, which use many of the

same hardware technologies, are common on development workstations, with IT personnel, security

researchers and modern power-user systems (this is especially the case given the wide CPU support

in modern workstations and laptops).

1.2.2 Paravirtualization

Paravirtualization (PV) requires a customOS kernel, with patches for the specific para-virtualization APIs, also

referred to as hypercalls. This also allows for different virtual hardware, at the expense of a modified kernel.

Xen was one of the first to implement paravirtualization, and is the long standing and primary hypervisor

platform for many cloud providers or high-security desktop operating systems.19

Xen offers a powerful production and battle tested paravirtualized environment, as well as support for non-

paravirtualized operating systems via the hardware virtual machine (HVM) mode, similar to the full virtual-

ization method as previously discussed. A large amount of device emulation code within the Xen HVM is

based on code from QEMU project.

Security considerations: This custom patch-set may lag behind the kernel with regard to security issues and

may be incompatible with some hardening protections such as grsecurity. Many updates and patches

will require a reboot of the host, similar to OS virtualization whichmay add pressure to avoid updating.

Escaping from PV guests may be easier than full virtualization, and has occured several times, notably

and quite recently in Xen, such as XSA 148. Finally, PV guests may introduce weaknesses if configured

alongside PVHVMs, such as a mixed Xen environment.20

Deployment considerations: Hardware support and kernel support may be lacking, or may require addi-

tional updates or modification before a guest can paravirtualized. Security for PV may place hosts

at the mercy of vendor updates, such as the case with Xen. Reboots may also be extremely difficult

depending on the infrastructure.

In use by: Amazon AWS/EC2, Rackspace, and many other hosting providers.

1.2.3 OS-Virtualization

This method provides the highest performance,21 fastest ``start-up'' time, and is widely considered the most

efficient virtualization method. It uses a shared kernel across both the host and guest. Without virtualization

of hardware devices, speed and efficiency are greatly increased, although due to this shared kernel, the

guest is limited to an identical OS as the host (such as Linux on Linux). This method is typically referred to as

``Containers'' on Linux, ` J̀ails'' on FreeBSD or ``Zones'' on Solaris.

19https://www.qubes-os.org/
20http://xenbits.xen.org/xsa/advisory-148.html
21http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

9 | Understanding and Hardening Linux Containers NCC Group

http://xenbits.xen.org/xsa/advisory-148.html
https://www.qubes-os.org/
http://xenbits.xen.org/xsa/advisory-148.html
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

Security considerations: The shared kernel, which permits the desired efficiency and speed, also gives way

to an increased risk of host compromise or guest escapes. This is due to the fundamentally shared

resources and significantly larger attack surface compared to paravirtualization or full virtualization.

With this shared kernel, syscalls, shared networking, direct device or disk access, information leaks and

the vast majority of kernel vulnerabilities are typically the source of OS virtualization security failures.

Deployment considerations: OS virtualization can be used anywhere a modern Linux kernel is supported.

This allows the capability to use containers equally from non-hardware virtualized big iron to small

embedded systems. Speed, boot time, storage efficiency and flexibility are key advantages. For

large amounts of I/O or network-bound processing, OS-virtualizationmay be comparable to hardware

virtualization, due to poorly optimized and default NAT or custom storage such as AUFS in Docker.22

In use by: Linux Containers (LXC), Docker, CoreOS Rkt, OpenVZ, Heroku Dynamos, RancherOS, FreeBSD

Jails, Solaris Zones, Illumos/SmartOS, the defunct OpenBSD Sysjail and a number of other systems

such as Mirage OS (a reimplementation of Solaris Zones).23

The following image24 helps illustrate OS virtualization, using a single kernel / ring0 vs hardware (full) virtu-

alization with multiple instances on top of a hypervisor:

1.3 Benefits of An OS-Virtualization System

Overall, the hardware vs software virtualization discussion can easily be easily understood in the context

of RAID (Redundant Array of Independent Disks) solutions, as both hardware and software RAID imple-

mentations exist and are in widespread use. The hardware version typically offers improved performance

and reliability but comes at a cost of yet another kernel driver, electronics cost, restricted disk types, lim-

ited motherboard layout and other form factor requirements. On the other hand, a software RAID offers

increased portability, flexibility, source code customization, almost zero hardware requirements, improved

block device support and reasonable performance across a number of hardware platforms.

Another more specific analogy comes from Docker's Jérôme Petazzoni, who likens this virtualization dif-

22http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/File/rc25482.pdf
23http://media.ccc.de/browse/congress/2014/31c3_-_6443_-_en_-_saal_2_-_201412271245_-_trustworthy_secure_modular_

operating_system_engineering_-_hannes_-_david_kaloper.html
24Image fromWikimedia Commons.

10 | Understanding and Hardening Linux Containers NCC Group

http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/File/rc25482.pdf
http://media.ccc.de/browse/congress/2014/31c3_-_6443_-_en_-_saal_2_-_201412271245_-_trustworthy_secure_modular_operating_system_engineering_-_hannes_-_david_kaloper.html
http://media.ccc.de/browse/congress/2014/31c3_-_6443_-_en_-_saal_2_-_201412271245_-_trustworthy_secure_modular_operating_system_engineering_-_hannes_-_david_kaloper.html

ference to brick walls (hard, slow to setup, messy to add or move) vs room dividers (fragile, deployed in

seconds, moved and added quickly). It also safe to say, even with a cumbersome configuration manage-

ment, hardware Virtual Machines (VMs) and other hypervisors will diverge in version, patch freshness, and

configuration which can often result in security gaps or vulnerabilities due to difficult upgrades. On the

other hand, minimal OS virtualization can be easier to keep organized, may offer no additional cost, and

DevOps or system administrators typically better understand the ''threat landscape'' of these environments

(as opposed to complex Hypervisors or other virtualization management solutions).

Speed: The shared kernel architecture offers almost non-existent startup speed, as starting containers is

little more than launching new processes. This can speed up testing or deployment, and reduces idle

OS time. These quick start-up times also allows for desktop application containers to be a realistic and

attainable goal with little end-user awareness.

Management: A number of tools already exist to monitor, explore, configure and troubleshoot containers.

While orchestration and service discovery is an ongoing development area (and potential security

pain-point for major container platforms or deployments), there are many emerging and successful

platforms.

Disk Footprint: Required storage is relatively small formost base images anddeltas can require an extremely

minimal additional footprint. Advanced filesystem options allow for only deltas to be saved and

multiple containers to share the vast majority of the root filesystem through Copy on Write (CoW)

filesystems and Union filesystems such as OverlayFS. OS virtualization can also reduce applications

to their required code, libraries, components and interfaces, a key differentiator from full hardware

virtual machines.

Implement anywhere: Containers and many (but not all) of the supporting kernel or security features work

anywhere Linux can run, compared to only x86, x86-64, and newer versions of ARM for HW virtualiza-

tion.

Ability to freeze and unfreeze containers: This can allow for quick power saving on a massive, data-center

wise scale or to save laptop battery power. By essentially sending a SIGSTOP to all of the processes

bound to a container (for a specific cgroup), these processes will halt or ``freeze'', providing easy parity

with hardware virtualization.

Containers can easily be moved easily: To any Linux host, from the cloud to local machines, spin-up will

work quickly compared to HW virtualization which may have incompatible image or file formats (re-

quiring moving a much larger image than an application container). Note that moving containers is

currently limited to non-running containers, although some recent developments by Docker and LXD

are attempting to solve this limitation.

1.4 Drawbacks of an OS-Virtualization system

Security: Discussions on the risks ofOS-Virtualization systemalmost always center on the relatively immature

implementation of Namespaces, the problem of root (capabilities) and the shared kernel, which is

a fundamental risk and unfortunately bountiful attack surface. In the words of noted hardware and

virtualization security researcher Joanna Rutkowska, of the Invisible Things Lab, when speaking on

process isolation of Operating Systems25:

25Joanna is also a core contributor and author of the high security Xen hypervisor desktop "CubesOS". See the article HowCubesOS

is different for more information.

11 | Understanding and Hardening Linux Containers NCC Group

http://blog.invisiblethings.org/2012/09/12/how-is-qubes-os-different-from.html
http://blog.invisiblethings.org/2012/09/12/how-is-qubes-os-different-from.html

``Sure, the inter-process isolation provided by a monolithic kernel such as Windows or Linux could never

be compared to the inter-VM isolation offered even by the most lousy hypervisors. This is simply because

the sizes of the interfaces exposed to untrusted entities (processes in case of a monolithic kernel; VMs in

case of a hypervisor) are just incomparable.''

- Shattering the myths of Windows security by Joanna Rutkowska

Software all the way down: The lack of CPU/hypervisor enforced isolation pushes security 100% into soft-

ware. While this makes the solution more flexible, it fundamentally increases the potential for attack,

especially if hardware must be exposed directly (such as the sound or video card interfaces) or the

kernel attack surface cannot be reduced (such as through system call filtering). This is essentially an

extension of ``all of the eggs in one software basket'', which can sometimes be a difficult concept to

accept.

Problems with legacy code: Several areas of the kernel still lack support or lack their own namespaces,

a key isolation mechanism for OS virtualization. For example in Linux, the procfs and sysfs pseudo-

filesystems are not namespace aware. This is easily illustrated by examining the required steps for

protecting from privileged containers (that is, containers without the User namespace), various infor-

mation leaks and other vulnerabilities. The problem of procfs is also readily apparent in sysstat related

programs26 which for instance will not report cgroup resource isolations, but instead reflect the ``free''

memory of the host OS.

Live Migration: The current inability to ``live migrate'', moving a running container from one host to an-

other, when compared to some hardware Virtual Machine (VM) platforms or OpenVZ. It should be

mentioned, developments are underway within Docker to support this27 and with LXD for LXC.28

A homogeneous environment: The inability to virtualize other Operating Systems, as the shared kernel must

remain the same for the userland processes, may be a blocker for some deployments. While a homo-

geneous environment has some security advantages such as less overall patching, more consistent

configuration management and less "edge cases", it risks mass exploitation or vulnerability.

Single point of failure: It goes without saying, a single kernel is a single point of failure, be that performance,

stability or security. If the host platform is disabled, crashes, needs to be rebooted or is compromised,

all of the guest containers are affected. In the case of a host or kernel compromise, the containers

must also be considered compromised. See Software compartmentalization vs. physical separation

for more information and examples by Joanna Rutkowska.

Complexity at scale: Orchestration frameworks (Rancher, MESOS/Aurora, Docker Swarm, LXD, OpenStack

Containers, Kubernetes/Borg, etc) are only recently catching up to the container craze, there are

too many competing models to list. Many have questionable or unaudited security or leave major

requirements out, such as secret management. While containers may be easy to get working within

a workstation or a few servers, scaling them up to production deployment is another challenge alto-

gether, even assuming your application stack can be properly ``containerized''.

For those interested in the comparison between these different virtualization approaches and want more

information, see all three parts of Hypervisors are Dead, Long Live the Hypervisor on osv.io for a good

overview of the problems and solutions.

26http://fabiokung.com/2014/03/13/memory-inside-linux-containers/
27http://www.slideshare.net/Docker/live-migrating-a-container-pros-cons-and-gotchas
28https://insights.ubuntu.com/2015/05/06/live-migration-in-lxd/

12 | Understanding and Hardening Linux Containers NCC Group

http://blog.invisiblethings.org/2014/01/15/shattering-myths-of-windows-security.html
http://invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://osv.io/blog/blog/2014/06/19/containers-hypervisors-part-1/
http://fabiokung.com/2014/03/13/memory-inside-linux-containers/
http://www.slideshare.net/Docker/live-migrating-a-container-pros-cons-and-gotchas
https://insights.ubuntu.com/2015/05/06/live-migration-in-lxd/

2 Linux Containers Overview

2.1 A Brief History of OS Containers

A review of past container methods starts with the infamous chroot written by Bill Joy. Included in version

7 Unix in 1979 and BSD in 1982 chroot, this can be thought of as the first "OS container". Due to the

weak implementation chroot security is quickly broken29 if an adversary or compromised process can gain

superuser or ``root'' access.30 Skipping forward in time includes FreeBSD Jails,31 Linux OpenVZ, User Mode

Linux (UML), Solaris Zones (in 2005), and AIX Workload Partitions (in 200732). While these are also shared-

kernel virtualization systems, this paper is focused on modern, native Linux solutions and will offer minimal

comparisons going forward.

Linux VServers, were introduced around 2001 and represented a leap forward in usability and speed when

paravirtualization was objectively more popular, and hardware support for hypervisors was still weakly sup-

ported or prohibitively expensive. Armed with a basic Linux kernel patchset and some userland tools,

VServers allowed for most, if not all, of what we think of as containers today. This solution broke out different

running applications implemented within instances of Linux distributions into different ``security contexts''.

Despite all the advancements of VServers, kernel namespaces, a topic that is further discussed in Section 3

on page 20, were weakly supported. Many namespaces were still undergoing active development or yet to

be implemented entirely. A lack of cgroups also resulted in difficult performance isolation across different

servers, where existing tools were inadequate to easily manage process groups. In general, security was

nowhere near as complete (or as incomplete, depending on your current perspective of container security).

Jump forward to 2016, where Linux kernel technologies such as namespaces, cgroups, and capabilities

separately and in concert support LXC, Docker, CoreOS Rocket/rkt, Heroku, Joyent, SubgraphOS, RacherOS

and countless other container solutions and PaaS systems. One only needs to view the list of companies

supporting the Open Container Initiative to witness the seriousness of containers. The current push to move

to Microservices as a platform also uses containers as a primary driver and key component. Finally, new and

intriguing efforts to create a hybrid of hardware and OS virtualization, such as Intel's Clear Containers offers

one possible future combining the best of both virtualization strategies.

2.2 Linux Containers: where are they now?

2.2.1 Servers

At a basic level, container-related systems and sandboxes are used in everyday software, even chroot is

still widely used simply due to its simplicity. Many common Open Source daemons contain out of the box

support for a ``chrooted'' environment, such as Apache or Postfix. Some network daemons are almost always

chrooted. If privilege separation is enabled inOpenSSH,which is the default, an unprivileged helper process

will be chrooted into an empty directory to handle pre-authentication network traffic for each client.33 The

newest versions of OpenSSH support a ``sandbox'' directive for UsePrivilegeSeparation, this offers ``ad-

ditional protections'' using three different methods for different platforms (systrace for OpenBSD, seatbelt

for OSX, seccomp for Linux and POSIX rlimits (as a fallback and for other platforms). While these solutions

are not ``containers'', many of the security features and goals are shared.

Moving to the containers we normally think of such as LXC, Docker, and CoreOS Rkt, many companies

are planning a massive increase in container use and deployment. These transitions are happening for a

number of reasons, including better economy for (PaaS) providers, enabling better development pipelines,

29This may partially be due to security not being a key design goal, but testing.
30By creating a directory, ``chrooting'' into it, then using a directory traversal sequence (e.g. ../) to escape the ``outer'' chroot.
31Which had their own serious vulnerabilities: CAN-2005-2218, CVE-2007-0166, CVE-2010-2022, and CVE-2014-3001.
32http://www.ibm.com/developerworks/aix/library/au-workload/
33http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/sshd_config.5?query=sshd_config

13 | Understanding and Hardening Linux Containers NCC Group

http://www.ibm.com/developerworks/aix/library/au-workload/
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/sshd_config.5?query=sshd_config

establishing better parity between dev/test environments, adding additional security layers, cutting energy

costs and other reasons. Cloud providers such as Rackspace and Amazon34 now officially support support

Docker containers.

Google, a major technology leader, has stated ``everything at Google runs in a container'', and Google is

no small operation (reportedly starting and turning over two billion containers each week35) as everything

from search to gmail is packaged and run inside unique containers.36 Although the exact details are sparse,

Google's containerization is likely powered at at least one layer by Linux KVM,37 cgroups and historically a

variant of LXC called ``lmctfy'' (Let Me Contain Than For You)38 are also assumed to be key components.

It should be noted that recent efforts have been applied to Docker's libcontainer (now part of the Open

Container Initiative), according to the lmctyf README. Recently, Google has also released ``Kubernetes''39

for managing containers, based off their Borg platform, as well as cAdvisor for container resource usage

and statistics. To further support containers in their provided cloud environment, the Google App Engine

supports Docker images in managed VMs.40

Traditional hardware virtualization companies, such as VMware, are also quickly ramping up support for

containers. VMware Photon / VMware Cloud supports several Linux Container formats through Photon41

and allows managing containers alongside existing hypervisors and virtual machines42 through ``Project

Bonneville''.43 Openstack has also added support for containers through their Nova Virt API.44, 45

In parallel to these big names, a number of companies are publicly developing and releasing container

tools, container focused operating systems, are offering hosting services and in some cases powering their

entire infrastructure via containers. This includes (in no particular order) Intel, Google, VMware, Docker,

CoreOS, Amazon, Rackspace Cloud, IBM, Engine Yard, Joyent, Cloud Foundry, Heroku, Sandstorm.io, Red-

Hat OpenShift, eBay, Cloud Foundry, HP (Stackato), StackEngine, OpenStack, DigitalOcean, ClusterHQ,

Spotify, and many more. Countless others which remain unnamed, unpublished or cannot be mentioned

here are deploying containers or using the features that power them in an ad-hoc fashion internally. Heroku,

one of the first major PaaS platforms, has built their business from a container model of minimally executing,

tightly controlled instances called ``Dynos''. According to the Heroku documentation:

``Dynos execute in complete isolation from one another, even when on the same physical

infrastructure. This provides protection from other application processes and system-level processes

consuming all available resources. The dyno manager uses a variety of technologies to enforce

this isolation, most notably LXC for subvirtualized resource and process table isolation, independent

filesystem namespaces, and the pivot_root syscall for filesystem isolation. These technologies

provide security and evenly allocate resources such as CPU and memory in Heroku's multi-tenant

environment.

- Heroku Dyno isolation and security

34Amazon EC2 offers their ECS system. See https://aws.amazon.com/containers/ for more information.
35https://speakerdeck.com/jbeda/containers-at-scale
36http://googlecloudplatform.blogspot.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
37Andrew Honig of the cloud security team at Google has stated in presentations ``KVM it is the killer feature''.
38https://github.com/google/lmctfy
39http://blog.kubernetes.io/2015/04/borg-predecessor-to-kubernetes.html
40https://cloud.google.com/compute/docs/containers
41https://vmware.github.io/photon/
42https://blogs.vmware.com/cto/vmware-containers-containers-without-compromise/
43http://venturebeat.com/2015/06/22/vmware-previews-project-bonneville-a-docker-runtime-that-works-with-vsphere/
44http://docs.openstack.org/liberty/config-reference/content/lxc.html
45https://wiki.openstack.org/wiki/Docker

14 | Understanding and Hardening Linux Containers NCC Group

https://devcenter.heroku.com/articles/dynos#isolation-and-security
https://aws.amazon.com/containers/
https://speakerdeck.com/jbeda/containers-at-scale
http://googlecloudplatform.blogspot.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1239/original/lmctfy%20(1).pdf
https://github.com/google/lmctfy
http://blog.kubernetes.io/2015/04/borg-predecessor-to-kubernetes.html
https://cloud.google.com/compute/docs/containers
https://vmware.github.io/photon/
https://blogs.vmware.com/cto/vmware-containers-containers-without-compromise/
http://venturebeat.com/2015/06/22/vmware-previews-project-bonneville-a-docker-runtime-that-works-with-vsphere/
http://docs.openstack.org/liberty/config-reference/content/lxc.html
https://wiki.openstack.org/wiki/Docker

2.2.2 Clients

Although containers in data centers and servers are where almost all of the focus is (largely due to the ease

with which containers allow `shipping'' software), servers should not be the only focus. As many security

professionals have known for years, attackers have long since switched to targeting clients and workstations.

Advancing the state of Linux sandboxing through application containers, dropping privileges, reducing or

eliminating suid binaries and other isolation mechanisms employed by containers can help improve Linux

application security. Application containers can also easily limit CPU, Disk and Memory for everything from

resource hungry (and highly exploited) web browsers to anonymous liberation technology systems which

can be critical to secure from indirect information leaks.

Unsurprisingly, Google is also a major player for client-side container technologies, although they don't use

actual containers. Both the Chrome OS distribution46 and the Chromium/Google Chrome web browser

heavily utilize the protections mechanisms powering containers, such as kernel Namespaces (Network and

PID), Seccomp-bpf, SUID sandboxing, or in newer versions full user namespaces.47 Unfortunately for secu-

rity, and somewhat paradoxically, Google Android, one of the most widely deployed Linux distributions (if

you can call it a distribution) is surprisingly missing many of the modern container features provided by the

kernel, apart from the mount Namespace and Mandatory Access Control via SELinux.48 Android still chiefly

relies on Discretionary Access Controls (DAC) aka UNIX permissions and other enforcement via a normal

UID and process isolation based security model.

The recently released high-security Linux distribution SubgraphOS, (currently Alpha) offers application con-

tainers/sandboxing via Oz49 for a number of security sensitive applications. This is the default system along

with a grsecurity patched kernel, Tor based routing, X11 isolation via Xpra, gated outbound connections

via custom firewalls and a host of other features. Additional solutions for Linux containers as well as simple

application sandboxes using a subset of container technologies (namespaces, seccomp-BPF, piviot_root,

capabilities, unshare, etc) are explored and further discussed within Section 11.1 on page 112.

2.3 Prior Art: Linux Container Security, Auditing and Presentations

While Linux Container systems (LXC, Docker, CoreOS Rocket, etc) have undergone fast deployment and de-

velopment, security knowledge has lagged behind.50 The number of people focused on container security,

and within those who publish security research for containers seems disproportionately small, given their

advantages, ongoing deployment and demand for security knowledge among companies large and small.

That said, a number of presentations, articles, and papers touch on or explore the various security subjects,

although often at a high level or for a specific container platform.

Included below is a list of compiled resources, almost solely focused on container security. Some in which,

despite their age, served as inspiration for this paper and yet other articles and presentations offer a good

overview of Container security strengths, weaknesses and adoption. If you are looking to brush up before

continuing with this paper, I suggest many of the following resources. However, as with any technology

publication, readers should keep inmind the resources included belowmay not contain themost up-to-date

information, such as User namespace support in Docker v1.10, using seccomp within LXC or exploring new

security features.

46https://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
47https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md#User_namespaces_sandbox.md
48This may be due to the somewhat unicast nature of Intents multicast of broadcasts for IPC.
49https://github.com/subgraph/oz
50http://www.infoworld.com/article/2923852/security/containers-have-arrived-and-no-one-knows-how-to-secure-them.html

15 | Understanding and Hardening Linux Containers NCC Group

https://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md#User_namespaces_sandbox.md
https://github.com/subgraph/oz
http://www.infoworld.com/article/2923852/security/containers-have-arrived-and-no-one-knows-how-to-secure-them.html

2.3.1 Multi-Container

Linux Containers: Future or Fantasy? by Aaron Grattafiori, the author of this paper, was presented at DEF

CON 23. This talk explores the background of containers, how the different elements are secured, some

common flaws in common container systems (LXC, Docker, Rkt), what they provide, general container rec-

ommendations and formed the basis for expanding on much of it within this whitepaper.

Linux Containers (LXC), Docker, and Security by Jérôme Petazzoni, a Docker staff member, offers a basic

overview of some of the challenges faced by containers and a look into some security mechanisms and

potential architectures. Jérôme also has a great overview of Implementing a ``separation of concerns'' with

Docker containers.

Thoughts on interoperable containers by Fabio Kung of Heroku explores the security aspects, among other

features of Linux containers, specifically Docker and interactions with developers.

Linux Container Security by Matthew Garrett brings up some good points on Hypervisors vs containers. A

related discussion on LWN offers additional commentary, including a discussion of Sandstorm.io strategy.

Doger.io by Jay Coles contains an excellent and conscience overview of Linux Containers with a number of

links to other good resources. This site can be a good starting point.

Seven problems of Linux Containers by Kirill Kolyshkin of Parallels, Inc. explores how OpenVZ solved and

explored container problems in the Kernel.

2.3.2 LXC Specific

LXC Security Analysis by Roman Fiedler, Austrian Institute of Technology, offers a recent evaluation of LXC

security which explores several vulnerabilities and underlying risks with LXC, some which apply to Linux

containers in general.

Hard Containers - LXC and GrSecurity by Diego Elio Pettenò explores running LXC with grsecurity patches

enabled.

Secure Linux containers cookbook by IBM offers an overview of security mechanisms and examples for LXC

with SELinux and SMACK Mandatory Access Controls (MAC).

Security of Linux containers in the cloud by Dobrica Pavlinušić of University of Zagreb offers an overview of

LXC security mechanisms and how these can be combined with MAC systems.

2.3.3 Docker Specific

Docker & Security by Florian Barth andMatthias Luft, is a recent presentation that explores the security basics

and past vulnerabilities of Docker. The slides also include some discussion on Microservices, devops vs

security and provides and overview of other Docker services.

Green font, Black background: Docker Security by Example by Diogo Mónica of Docker at Dockercon EU in

2015 explores Docker security in depth and by-example and with many embedded demos.

A Docker Image Walks in to a Notary by Diogo Mónica of Docker at ContainerCamp 2015 covers Docker

Notary and Docker image security.

Vulnerability Exploitation InDocker Container Environments by Anthony Bettini of Flawcheck, was presented

at Blackhat Europe 201551 explores the insecurity and common issues around Docker container images.

51https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.

pdf

16 | Understanding and Hardening Linux Containers NCC Group

https://www.youtube.com/watch?v=iN6QbszB1R8
http://www.slideshare.net/jpetazzo/docker-linux-containers-lxc-and-security
http://www.slideshare.net/jpetazzo/implementing-separation-of-concerns-with-docker-and-containers
http://www.slideshare.net/jpetazzo/implementing-separation-of-concerns-with-docker-and-containers
http://fabiokung.com/2014/06/11/my-dockercon-2014-talk/
https://mjg59.dreamwidth.org/33170.html
https://lwn.net/Articles/617842/
http://doger.io/
http://www.slideshare.net/kolyshkin/seven-problems-of-linux-containers
http://www.openwall.com/lists/oss-security/2015/07/23/2
https://blog.flameeyes.eu/2012/04/hard-containers
http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html
http://www.slideshare.net/dpavlin/security-of-linux-containers-in-the-cloud
https://www.ernw.de/download/ERNW_Stocard_Docker-Devops-Security_fbarth-mluft.pdf
https://www.youtube.com/watch?v=blNIreAq6hc
https://www.youtube.com/watch?v=JvjdfQC8jxM
https://www.youtube.com/watch?v=77-jaeUKH7c
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

Docker, Docker Give Me The News: I Got A Bad Case Of Securing You was presented at DEF CON 23

by David Mortman of Dell and explores and touches on the security costs and potential risks of deploying

Docker and other container systems.

Are Docker containers really secure? by DanWalsh, of RHEL and SELinux fame, is semi-involved with Docker

development, and can often found strongly and consistently advocating for SELinux.52

Docker Security: Who can we trust, what should we verify? by Nils Magnus at goto; conference explores the

basics of Docker security, attack surfaces and offers some good basic recommendations.

Least-privilege Microservices by Diogo Mònica and Nathan McCauley, both Docker security leads, provides

a basic overview of how how Docker Containers can support least-privilege Microservices.

Introduction to Container Security by an unknown author is a short Docker whitepaper, released in May of

2015 that includes discusses the available security features for Docker and discusses some general risks and

best practices when using it.

Security Properties of Containers Managed by Docker is a non-free Gartner research paper by Joerg Fritsch.

This paper primarily asks the question, can your Docker containers actually contain..53 Apparently Docker

faired decently enough, according to The Register and InformationWeek although many of the security

complaints revolve around security maturity and administration, not fundamental risks of OS virtualization

and attack surface analysis.

Analysis of Docker Security by Thanh Bui of the Aalto University School of Science, this document from late

2014 covers a concise overview of Docker isolation mechanisms, security features of an unknown but older

Docker version.

Docker, DevOps, Security by Chris Swan of cohesiveFT explores how security, containers and DevOpsmeet.

CIS Docker 1.6 Benchmark v1.0.0 by Pravin Goyal of VMware, Inc. with contributions from various container

companies, including Docker itself. This includes a comprehensive, if extremely dry, best practices security

document. Some of the best practices can also be explored and tested via the ``Docker Bench'' tool,54

created by Docker's Diogo Mónica.

Docker and SELinux by Daniel Walsh is a basic overview of Docker security issues and recommendations,

although his opinions may not be widely shared. (Takes half of the talk to explain SELinux basics)

Docker Security by Nathan McCauley and Diogo Mónica of Docker is a gentle overview video relating to

security by the lead Docker security team members.

Docker Security: Are Your Containers Tightly Secured To The Ship? and Docker Security: Secure container

deployment on Linux by Michael Boelen, CISOfy, covers some basic risks, mechanisms and recommenda-

tions for Docker security.

Container security: Kernel internals by an unknown author offers a kernel viewpoint of Container security,

exploring from the hardware ``up''. This presentation has some good information and overall perspective.

Creating Containers by Michael Crosby of Docker is an excellent and in-depth exploration of Linux Contain-

ers, while there isn't a focus on security, this blog post (and the others on his website) are worth reviewing.

52https://lwn.net/Articles/515034/
53http://blogs.gartner.com/joerg-fritsch/can-you-make-your-containers-contain/
54https://github.com/docker/docker-bench-security

17 | Understanding and Hardening Linux Containers NCC Group

https://www.youtube.com/watch?v=7ouzigqFUWU
https://opensource.com/business/14/7/docker-security-selinux
http://gotocon.com/dl/goto-berlin-2015/slides/NilsMagnus_InsightsInContainerSecurity.pdf
http://www.slideshare.net/Docker/docker-security-for-slide
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://www.gartner.com/doc/2956826/security-properties-containers-managed-docker
http://www.theregister.co.uk/2015/01/12/docker_security_immature_but_not_scary_says_gartner/
http://www.informationweek.com/cloud/infrastructure-as-a-service/gartner-gives-thumbs-up-to-docker-security/d/d-id/1318612
http://arxiv.org/pdf/1501.02967.pdf
http://www.slideshare.net/CohesiveNetworks/cohesive-ft-dockermeetupchicago20140717security
https://benchmarks.cisecurity.org/downloads/show-single/index.cfm?file=docker16.100
https://www.youtube.com/watch?v=zWGFqMuEHdw
https://www.youtube.com/watch?v=8mUm0x1uy7c
http://www.slideshare.net/MichaelBoelen/docker-security-are-your-containers-tightly-secured-to-the-ship
http://www.slideshare.net/MichaelBoelen/docker-security-secure-container-deployment-on-linux
http://www.slideshare.net/MichaelBoelen/docker-security-secure-container-deployment-on-linux
http://www.slideshare.net/smart_bit/docker-and-kernel-security?
http://crosbymichael.com/creating-containers-part-1.html
https://lwn.net/Articles/515034/
http://blogs.gartner.com/joerg-fritsch/can-you-make-your-containers-contain/
https://github.com/docker/docker-bench-security

On the Security of Containers by Eric Windisch formerly of Docker offers a good overview behind why

lightweight application containers offer additional security and how Virtual Machines can augment where

trust is weak or the risk is high. ``Containers are not contradictory to other, existing best-practices''.

2.4 TL;DR Linux Containers

As we will explore within this paper, Linux containers (LXC, Docker, Rkt, etc) are typically comprised of five

major components:

1. Kernel namespaces are the major building block of Linux containers, which isolate the applications

within different ``userspaces'' such as network, processes, users themselves and the file system. Further

information, examples and exploration is included within Section 3 on page 20.

2. Control Groups also known as cgroups are essentially ulimit on steroids, which limit various host hard-

ware resources. This currently includes CPU count and usage, disk performance, memory, and other

process limits. Further information can be found within Section 4.1 on page 27.

3. Root Capabilities help enforce namespaces in so-called ``privileged'' containers by reducing the power

of root, in some cases to nopower at all. Further information, such as thebackground, implementation,

use and defaults for major container platforms are included within Section 5.1 on page 30.

4. Pivot_root is a syscall to ``pivot'' into the new container environment, by changing the root file system.

Although the use and implementation of pivot_root(2) and related initialization steps of the con-

tainer's init is not explicitly discussedwithin this paper, ``pivoting'' correctly can be crucial for security.55

5. Manditory Access Controls (MAC) such as AppArmor and SELinux are not required for creating contain-

ers, but are often a key element to their security. MAChelps enforce the security controls implemented

by other container features, adding defense in depth and general platform security for any permission

level within the container, privileged user or otherwise. Further information can be found within 8.1.6

on page 69.

Container security threats, largely aimed at escaping confinement can originate frommany sources. Attacks

could originate from a compromised container, a maliciously uploaded container, the applications within a

container or attacks against the local network from within the container. The various threats to containers is

included and explored in Section 7 on page 49.

To counter the identified threats, several recent Linux security advancements (not solely limited to contain-

ers), such as the User namespace and Seccomp are discussed in Section 8.1 on page 66 and Section 8.3

on page 74 respectively. Not to be left out, the historically under-configured, and I would argue under-

appreciated, Mandatory Access Controls (MAC) systems are also covered 8.1.6 on page 69. These features

offer a great reduction in attack surface and defense in depth within supported container platforms.

After understanding the new security features, the historical and current threats, potential risks (and available

security features) I have included a brief overview of each of the major container platforms explored in this

paper (LXC, Docker, Rkt). This may help understand and evaluate themotivations, project priorities, security

threats (past and present) and available security options. This overview, background and security analysis of

each platform starts in Section 9 on page 81. To further support this information, a table of secure defaults

and support options can be found in Section 9.13 on page 96.

The cursory exploration of the current security strengths and weaknesses in Section 9 referenced above, is

largely to set the stage for this paper's recommendations section. Hardening your container deployment

55File descriptors must be closed, ptrace(2)must be limited, and confused deputy attacks understood.

18 | Understanding and Hardening Linux Containers NCC Group

https://medium.com/@ewindisch/on-the-security-of-containers-2c60ffe25a9e
https://en.wikipedia.org/wiki/Confused_deputy_problem

and configuration against many of the earlier identified threats is discussed in Section 10 on page 97. The

recommendations are grouped this section first as general Linux and container platform agnostic terms as

well as specific recommendations section for each of the three platforms covered within this paper: LXC

in Section 10.2 on page 104, Docker in Section 10.3 on page 105 and finally CoreOS Rkt in Section 10.4 on

page 108.

Looking forward, an overview of potential future container platforms, other minimal sandboxing techniques,

unikernels, microservices is included in Section 11 on page 112 and finally, the paper's overall conclusion

can be found in Section 12.1 on page 121.

19 | Understanding and Hardening Linux Containers NCC Group

3 Namespaces

3.1 Namespaces Background

Linux kernel namespaces are the fundamental building block of containers on Linux. The idea of names-

paces as a logical construct to deal with scope or segmentation is a common idea in computer science.56 For

Operating Systems, Plan 9 introduced57 in 1992 the idea of namespaces, among other interesting concepts

such as network or union filesystems and many other computing advancements outside containers. In

Linux, kernel namespaces form a foundational isolation layer that allows for the implementation of Linux

containers by creating different userland views. The Namespaces in Operation series on LinuxWeekly News

by Michael Kerrisk offers a great overview and explores each namespace. The Resource Management:

Linux kernel namespaces and cgroups presentation by Rami Rosen offers a long and in-depth exploration of

namespaces and cgroups. Readers interested in additional background and information should start with

these resources.

Largely instrumented via the CLONE_NEW flags during process creation, namespaces split the traditional ker-

nel global resource identifier tables and other structures into their own instances. This partitions processes,

users, network stacks and other components into separate analogous pieces in order to provide processes a

unique view. The distinct namespaces can then be bundled together in any frequency or collection to create

a filter across resources for how a process, or collection thereof, views the system as a whole. Methods to

help enforce namespace isolation are crucial, as each kernel resource exposed by a namespace must be

wrapped with enough knowledge and direction to determine and help implement the appropriate access

control. The implementation of these controls still proves difficult, as illustrated throughout this paper.

3.2 Namespaces Implementation

Apart from the clone(2)58 syscall (similar to fork(2)) with accompanied CLONE_NEW flags during pro-

cess creation, two additional syscalls were added. setns(2)59, 60 and unshare(2) syscalls were added

to facilitate namespace creation, as well as processing joining or leaving namespaces. From a security

standpoint, essentially only two new syscalls were added in order to interact with or create the various kernel

namespaces, which is great for keeping syscall bloat to a minimum.

Each namespace below is listed in order of introduction date within the released Linux kernel. When ex-

ploring this area of containers, it is important to keep in mind that namespaces are still a work in progress,

and some key areas of the kernel still do not have their own namespace (such as devices, time,61 syslog,62

security keys, and the proc and sys psuedo-filesystems themselves). Additionally, as the kernel was not

designed with namespaces in mind, the development is ongoing, and continues to improve. As we know

from security engineering, this ``bolting on'' process is much more difficult and error prone process than

having ``security by design''. Finally, the lack of completeness has also created a number weak security

areas and been the source of a myriad of vulnerabilities both during and after the primary ``development

window''.63 Readers who want to drive right in should jump to Section 7 on page 49, which provides an

overview of prior weaknesses relating to namespaces and various container threats.

With the exception of user namespaces, all namespaces require either root or the CAP_SYS_ADMIN capability

(which is essentially root) to create them. Unprivileged containers, which are created by non-root users may

56https://en.wikipedia.org/wiki/Namespace
57http://www.cs.bell-labs.com/sys/doc/names.html
58http://man7.org/linux/man-pages/man2/clone.2.html
59http://man7.org/linux/man-pages/man2/setns.2.html
60 The setns(2) syscall can be used along with the inode entries of /proc/<pid>/ns.
61Although at least one attempt was made: https://lwn.net/Articles/179825/
62https://lwn.net/Articles/527342/
63The time in which the vast majority of development and introduction take place for a specific component.

20 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/531114/
http://www.haifux.org/lectures/299/netLec7.pdf
http://www.haifux.org/lectures/299/netLec7.pdf
https://en.wikipedia.org/wiki/Namespace
http://www.cs.bell-labs.com/sys/doc/names.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/setns.2.html
https://lwn.net/Articles/179825/
https://lwn.net/Articles/527342/

seem to be an exception to this requirement, but they are not. The kernel allocates this new user namespace

first, wherein the user can then create new namespaces using this new pseudo-privileged mode.64

The various kernel namespaces are often used in concert to create what we know of as ``Linux Containers'',

but they can also be used separately in order to gain additional isolation and security for specific application

or security needs (for which a full container is unnecessary). This additional utility outside containers can be

provided in several ways. For example, themount namespace can also be used by Linux PAM to provide per-

user or per-group filesystem views upon login. The network namespace can be used to isolate application

traffic and implement complex routing scenarios. The unshare(2) system call also allows a running process

to ``disassociate'' parts of its kernel execution context that are currently, and implicitly, being shared with

other processes without first creating a new process.

Listed below is a section covering the basics around each namespace and, when appropriate, a short ex-

ploration of using the namespace outside of containers. Within the code sections below, many of the

namespace examples use utilities which can be found in the util-linux package. This is often installed by

default in many Linux distributions and the latest version of the source on any kernel mirror.65

3.3 Mount Namespace

Introduced in 2.4.19, the mount namespace via CLONE_NEWNS is the oldest and only namespace introduced

in the 2.4 kernel.66 The mount namespace provides a process, or group thereof treated as container, with

a specific view of the system's mounted filesystems. This view can range from mount paths, physical or

network drives, or advanced features such as union filesystems, bind mounts, or overlay filesystems (where

some section of the host filesystem is directly accessible, yet other reads or writes stop at container bound-

aries.) Themount namespace can also indirectly secure other namespaces by restricting access to the hosts'

mounted instance of /proc, which would violate the PID namespace constraints. Additional articles, reading,

and resources are included below.

• Private mount points with unshare by Jon Jensen

• Introduction to Linux namespaces - Part 4: NS (FS) by Jean-Tiare Le Bigot

• Applying mount namespaces by IBM

3.4 IPC Namespace

System V IPC objects and POSIXmessage queues can utilize their own namespace starting in 2.6.19. As with

other namespaces, CLONE_NEWIPC provides a method for creating objects in an IPC namespace which are

visible to all other processes that are members of that namespace, but are not visible to processes in other

IPC namespaces. This is typically used for shared memory segments. This isolation helps from some IPC

related attacks67 and Denial of Service scenarios. Additional articles, reading, and resources are included

below.

• Introduction to Linux namespaces - Part 2: IPC by Jean-Tiare Le Bigot

64See Resource management: Linux kernel namespaces and cgroups Rami Rosen for more information on this area.
65https://www.kernel.org/pub/linux/utils/util-linux/
66This is also evident from the ``NEWNS'' part of the clone flag, which simply stands for "NewNamespace" as there is no description

of intent similar to the other namespaces. A good example of how namespaces were an ``add on''.
67http://labs.portcullis.co.uk/whitepapers/memory-squatting-attacks-on-system-v-shared-memory/

21 | Understanding and Hardening Linux Containers NCC Group

http://blog.endpoint.com/2012/01/linux-unshare-m-for-per-process-private.html
https://blog.jtlebi.fr/2014/01/12/introduction-to-linux-namespaces-part-4-ns-fs/
http://www.ibm.com/developerworks/linux/library/l-mount-namespaces/index.html
https://blog.jtlebi.fr/2013/12/28/introduction-to-linux-namespaces-part-2-ipc/
http://www.haifux.org/lectures/299/netLec7.pdf
https://www.kernel.org/pub/linux/utils/util-linux/
http://labs.portcullis.co.uk/whitepapers/memory-squatting-attacks-on-system-v-shared-memory/

3.5 UTS Namespace

Around 2006, Linux 2.6.19 added support for separate host and domain ``UTS'' names via CLONE_NEWUTS.

The kernel patch for this namespace was introduced by the now LXC developer Serge E. Hallyn, offers a

very simple, yet necessary, namespace function. Different hostname and domain name values are crucial

for many applications, identification, web services, logging and other features. Additional articles, reading,

and resources are included below.

• Namespaces in operation, part 2: the namespaces API by Michael Kerrisk

• https://blog.jtlebi.fr/2013/12/22/introduction-to-linux-namespaces-part-1-uts/ by Jean-Tiare Le Bigot

3.6 PID Namespace

The Process identifier (PID) namespace groups processes and helps create containers by protecting from

cross-application attacks, information leaks, malicious use of ptrace and other such potential weaknesses.

The PID namespace can also be nested, and is easily the most commonly demonstrated Linux namespace

in examples and presentations. Linux 2.6.2468 introduced the CLONE_NEWPID flag around 2008 and devel-

opment was largely supported by IBM and OpenVZ through a remount or separation (but not namespace)

of procfs. All PID namespaces start at PID 1, the traditional ``init''. Subsequent calls to fork(2), vfork(2), or

clone(2)will produce processes with PIDs that are unique within the namespace. While other namespaces

can be created using the unshare() system call, new PID namespaces, in kernels prior to 3.8, can only be

created using clone(2).

It is also important to consider the security of cgroupswhendiscussing the PIDnamespace. Because cgroups

can be accessed via containers, and cgroups provide an abstraction of process groups, it can allow con-

tainers, in specific vulnerability scenarios, to control PID resources outside of its own PID namespace. For

example, malicious use of the Freezer cgroup to ``freeze'' (SIGSTOP) host processes and creates a Denial of

Service condition. Finally, related to the PID namespace, the recently added PID cgroup69 can be used to

limit the maximum number of tasks, which should help prevent specific types of Denial of Service attacks

and provide a fall-back for application-specific ``max number of processes'' configuration options.

3.6.1 PID Namespace Explorations

Using the unshare command, we can easily run a new shell within its own PID, Network and User namespace.

The unshare command is also wrapped within an strace to illustrate the system calls made:

$ sudo strace -e unshare,clone unshare -f -p -U --mount-proc ps auxww

unshare(CLONE_NEWNS|CLONE_NEWUSER|CLONE_NEWPID) = 0

clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x7f77ddfe19d0) = 2703

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

nobody 1 0.0 0.1 10016 2252 pts/1 R+ 19:25 0:00 ps auxww

--- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=2703, si_status=0, si_utime

=0, si_stime=0} ---

+++ exited with 0 +++

In another example, we can start a Docker Busybox container then sleep for 1337 seconds.

sudo docker run busybox sleep 1337

68https://lwn.net/Articles/259217/
69https://www.kernel.org/doc/Documentation/cgroup-v1/pids.txt

22 | Understanding and Hardening Linux Containers NCC Group

http://lwn.net/Articles/531381/
https://blog.jtlebi.fr/2013/12/22/introduction-to-linux-namespaces-part-1-uts/
https://lwn.net/Articles/259217/
https://www.kernel.org/doc/Documentation/cgroup-v1/pids.txt

Now we can use the nsenter command to join a Docker PID namespace, assuming only a single sleep

process is running on our system.

$ sudo nsenter -t `pgrep sleep` -m -p

root@ubuntu:/# ps auxww

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.1 18180 3280 ? Ss 02:18 0:00 /bin/bash

root 145 0.0 0.0 4348 672 ? S+ 02:19 0:00 sleep 1337

root 147 0.0 0.1 18184 3364 ? S 02:20 0:00 -bash

root 150 0.0 0.1 15572 2204 ? R+ 02:20 0:00 ps auxww

Additional articles, reading, and resources for the PID namespace:

• PID namespaces by Michael Kerrisk

• More on PID namespaces by Michael Kerrisk

• Intro to Linux namespaces: Part 3 PID by Jean-Tiare Le Bigot

3.7 Network Namespace

The network namespace, through CLONE_NEWNET is considered to be quite complex and required one of

the longest development times.70 Starting back in 2.6.24, various namespace features have provided the

ability for different IPv4 or IPv6 stacks and everything that relates or supports these features including de-

vices, addresses, routing, firewall rules, procfs directories, and sockets among other requirements. Modern

container solutions can either create a bridged network with the host and other containers, support a fully

disabled network lacking any network namespace, can combine existing network namespaces or simply

share a non-isolated network interface with the host OS (which is considered risky).

Depending on the deployment situation, containers may not require a network at all. However many, if not

all, container solutions default to a bridge-style virtual network interface, using Network Address Translation

(NAT) for layer three connectivity. Network attacks or threats against attack surfaces present a risk for any

container host. Either a container on the samebridgedevice as the host, locally with other containers or even

locally networked systems. These connected systemsmay or may not, support, interconnect, or manage the

container or group of containers in question.

3.7.1 Network Namespace Example

Network namespaces can easily be manipulated with the ip netns family of commands which includes

displaying namespaces (as referencedwithin /var/run/netns, not just any network namespace), adding or

removing them, executing commandswithin namespaces, reporting processes within a network namespace

and other operations. First, we'll create a new network namespace called ``torns'' and bring up the loopback

interface (the only interface in the namespace so far):

$ sudo ip netns add torns

$ sudo ip netns exec torns ip link set lo up

$ sudo ip netns exec torns ifconfig -a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

70For an example of the complexity, when when network namespaces were first developed, they were actually incompatible with

sysfs. See Sysfs and namespaces on LWN for more information.

23 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/532271/
http://lwn.net/Articles/531419/
https://blog.jtlebi.fr/2014/01/05/introduction-to-linux-namespaces-part-3-pid/
https://lwn.net/Articles/295587/

Next, we'll create a peered virtual interface (veth0), assigning one to the new network namespace (veth1),

and setup a static IP address on the interface:

$ sudo ip link add veth0 type veth peer name veth1

$ sudo ip link set veth1 netns torns

$ sudo ip netns exec torns ip addr add 172.16.1.2/24 dev veth1

$ sudo ip netns exec torns ip link set dev veth1 up

$ sudo ip netns exec torns ifconfig -a

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

veth1 Link encap:Ethernet HWaddr 72:5a:06:85:a9:23

inet addr:172.16.1.2 Bcast:0.0.0.0 Mask:255.255.255.0

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

After the namespace is setup, we'll finish setting up the other interface in the global network namespace:

$ sudo ip addr add 172.16.1.1/24 dev veth0

$ sudo ip link set dev veth0 up

We can now ping the peer interface within the root network namespace. Using strace we can see the setns

system call, used to ``enter'' this network namespace:

$ sudo strace -f -e setns ip netns exec torns ping -c 2 172.16.1.1

setns(4, 1073741824)

PING 172.16.1.1 (172.16.1.1) 56(84) bytes of data.

64 bytes from 172.16.1.1: icmp_seq=1 ttl=64 time=0.115 ms

64 bytes from 172.16.1.1: icmp_seq=2 ttl=64 time=0.141 ms

If we want to gain additional connectivity, such as to the Internet or another network, we'll setup a default

gateway and then either need to establish a bridge with a physical interface, or directly setup Network

Address Translation (NAT), such as using iptables in the example below:

$ sudo ip netns exec torns route add default gw 172.16.1.1

$ iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE

Now executing a command within our new namespace, we can reach the Internet and serve an isolated Tor

hidden service, for instance. Note that additional namespaces and not running Tor as root would be the

next step in a more hardened system. This is purely serving as a limited example for network namespaces

outside containers:

24 | Understanding and Hardening Linux Containers NCC Group

$ sudo ip netns exec torns tor

Feb 23 21:08:12.310 [notice] Tor v0.2.6.10 (git-71459b2fe953a1c0) running on Linux

with Libevent 2.0.21-stable, OpenSSL 1.0.2d and Zlib 1.2.8.

Feb 23 21:08:12.311 [notice] Tor can't help you if you use it wrong! Learn how to be

safe at https://www.torproject.org/download/download#warning

Feb 23 21:08:12.311 [notice] Read configuration file "/etc/tor/torrc".

Feb 23 21:08:12.314 [notice] Opening Socks listener on 127.0.0.1:9050

Feb 23 21:08:12.000 [notice] Parsing GEOIP IPv4 file /usr/share/tor/geoip.

Feb 23 21:08:12.000 [notice] Parsing GEOIP IPv6 file /usr/share/tor/geoip6.

Feb 23 21:08:12.000 [warn] You are running Tor as root. You don't need to, and you

probably shouldn't.

Feb 23 21:08:12.000 [notice] Bootstrapped 0%: Starting

Feb 23 21:08:13.000 [notice] Bootstrapped 5%: Connecting to directory server

Feb 23 21:08:13.000 [notice] Bootstrapped 10%: Finishing handshake with directory

server

Feb 23 21:08:13.000 [notice] Bootstrapped 15%: Establishing an encrypted directory

connection

.... SNIP SNIP

Feb 23 21:08:52.000 [notice] Tor has successfully opened a circuit. Looks like client

functionality is working.

Feb 23 21:08:52.000 [notice] Bootstrapped 100%: Done

Again it should be noted, in a real deployment we would want to perform additional hardening, useManda-

tory Access Controls (MAC) and isolate other global namespaces from the process, rather than just the net-

work namespace. This overall illustration of network namespaces can be used as a simple way to gain some

network isolation for applications, to easily prevent a process from using the network or force a particular

network route (such as over a VPN connection or Tor circuit). Full containers, such as using one of the systems

discussed within this paper offer an easier to use solution that packages in many other security features.

The unshare command can also be used to create a new network namespace:

$ sudo strace -e unshare unshare -n /sbin/ip link

unshare(CLONE_NEWNET) = 0

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Listing 1: Using unshare to create a new network namespace. The strace command is used to illustrate the

unshare() syscall in action.

Additional articles, reading, and resources for the network namespace:

• Introduction to Linux namespaces – Part 5: NET by Jean-Tiare Le Bigot

• Namespaces in operation, part 7: Network namespaces by Michael Kerrisk

• Introducing Linux Network Namespaces by Scott Lowe

25 | Understanding and Hardening Linux Containers NCC Group

https://blog.jtlebi.fr/2014/01/19/introduction-to-linux-namespaces-part-5-net/
http://lwn.net/Articles/580893/
http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

3.8 User Namespace

Development of user namespaces or ``the user namespace'' started in 2.6.23 and finally finished in 3.8. This

namespace is the most recent to be implemented and provides a crucial security barrier for containers

by preventing many potential attacks through essentially shifting or sliding UIDs. Until user namespaces,

the ``root'' user, even when restricted using Linux capabilities, was still uid 0 as far as the kernel was con-

cerned. User namespaces offer the ability for processes to believe they are operating as root when inside

the namespace, but outside, the process IDs belong to a non-root low-rights user. By using existing kernel

or permissions based protections against privileged operations, the system has fundamentally removes or

frustrates a large number of potential attacks. It also significantly reduces the attack surface from the system,

and due to these advantages, it is considered by many to be critical for securing containers.

User namespaces also paved the way for fully-unprivileged containers. Normal, non-root and unprivileged

users can create and manage their own user namespace based containers. Unfortunately, as with any new

code dealing with a complex and highly sensitive area of the kernel, a number of high severity vulnerabilities

have been unsurprisingly discovered, typically exploiting user namespaces outside the context of contain-

ers. See Section 8.1 on page 66 for more information on this namespace and 7.2.5 on page 58 for threats.

Additional articles, reading and resources are included below.

• Namespaces in operation, part 5: User namespaces by Michael Kerrisk

• Namespaces in operation, part 6: more on user namespaces by Michael Kerrisk

• What's Next for Containers? User Namespaces by Scott McCarty

• Rooting out Root: User namespaces in Docker by Phil Estes

3.8.1 User Namespace Example

If LXC is installed, a simple utility, lxc-usernsexec, can be used to enter and explore (via /bin/sh) a user

namespace as an unprivileged user. The same can also be done via the unshare command, but we'll just

use the LXC tool below:

host $ id

uid=1000(aaron) gid=1000(aaron) groups=1000(aaron)

host $ lxc-usernsexec

While ``root'' in the new user namespace (but same mount, pid and other namespace as the host), we can

attempt two privileged operations, both of which are denied, even it seems as if we're UID 0:

guest $ id

uid=0(root) gid=0(root) groups=0(root)

guest $ cat /etc/shadow

cat: /etc/shadow: Permission denied

guest $ strace -f -e delete_module rmmod btusb

...

delete_module("btusb", O_RDONLY|O_NONBLOCK) = -1 EPERM (Operation not permitted)

Back within the host system, in another shell we can look for instances of /bin/sh, and witness one running

as UID 100000 (the default slide for LXC):

host>$ ps auxw | grep /bin/sh

100000 23871 0.0 0.0 4440 652 pts/26 S+ 23:12 0:00 /bin/sh

26 | Understanding and Hardening Linux Containers NCC Group

http://lwn.net/Articles/532593/
https://lwn.net/Articles/540087/
http://rhelblog.redhat.com/2015/07/07/whats-next-for-containers-user-namespaces/
http://events.linuxfoundation.org/sites/events/files/slides/User%20Namespaces%20-%20ContainerCon%202015%20-%2016-9-final_0.pdf

4 Control Groups

4.1 Cgroups Background

Control Groups (cgroups) are a mechanism for applying hardware resource limits and access controls to a

process or collection of processes. The cgroupmechanism and the related subsystems provide a tree-based

hierarchical, inheritable and optionally nested mechanism of resource control. To put it simply, cgroups

isolate and limit a given resource over a collection of processes to control performance or security. Cgroups

can generally be thought of as implementing traditional ulimits/rlimits, but now operating across groups of

tasks or users. A new, more powerful andmore easily-configured alternative to ulimits/rlimits. To silence the

naysayers and doubt over code bloat or added complexity, the documentation clearly states:

``The kernel cgroup patch provides the minimum essential kernel mechanisms required to efficiently

implement such groups. It has minimal impact on the system fast paths, and provides hooks for specific

subsystems such as cpusets to provide additional behavior as desired.''

- Kernel documentation - cgroups.txt by Paul Menage

The analysis and configuration of cgroups is performed bymounting a special cgroup virtual filesystem. This

filesystem can be used by other tools to control and view the state of namespaces and controls, although it

also can be a method of container escape if it is not restricted when mounted within a guest.

In the world of containers, cgroups obviously manifest themselves as instruments to control access to re-

sources, such as preventing runaway containers, denial of service attacks (forkbombs71 or Out of Memory

triggers) and to limit access to devices via a device whitelist (as the kernel ``dev'' system is not namespace-

aware). Following the UNIX everything-is-a-file model, the cgroups system is implemented as a typical

Linux pseudo-fileystem, similar to /proc or /sys. With this pseudo-filesystem comes typical attacks, such as

unmounting or mounting-over in order to attempt to defeat various cgroup limitations.

Control Groups first appeared in Linux 2.6.24 around 2006 as a simple method for controlling tasks, first

named ``Process Containers'' by the Google engineers who introduced it. The feature slowly expanded to

allow per-cgroup statistics, task freezing via SIGSTOP, various I/O throttling, and Mandatory Access Con-

trol (MAC) systems. Most recently, support for PID limits was added to control the maximum number of

processes as well as advanced network controls such as buffer limits and traffic priority levels enforced by

iptables.

When reviewing cgroups, it can be easy to imagine them as a method to fill the gaps of kernel namespaces.

However, it is important to remember that cgroups are not namespaces, nor are they really intended or

invented for containers; cgroups are simply one property of processes. Linux systems without containers

still can and will use cgroups for their different security and performance needs. Different cgroup ``weights''

are typically used as the metric for limiting a process or set thereof for a given hardware resource. See the

list of kernel documentation72 for more information on the weights and explore each cgroup subsystem. For

more examples and reading, the excellent Control Groups Series from Niel Brown on Linux weekly news,

the ResourceManagement Guide from RedHat, and Use cases of cgroups fromOracle offer great additional

information. Finally, the Resource Management: Linux kernel Namespaces and cgroups presentation by

Rami Rosen offers a in-depth exploration and the sysadmin webcast Introduction to Control Groups contains

some great exercises for learning cgroups along with charts and other information.

4.2 Working with Vanilla cgroups

Typically, cgroups will be transparent when using containers, with the configuration or management per-

formed by container management, tools or template configurations. However, as with other container sys-

71https://devlearnings.wordpress.com/2014/08/22/limiting-fork-bomb-in-docker/
72https://www.kernel.org/doc/Documentation/cgroups/

27 | Understanding and Hardening Linux Containers NCC Group

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://lwn.net/Articles/604609/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
http://docs.oracle.com/cd/E37670_01/E37355/html/ol_use_cases_cgroups.html
http://www.haifux.org/lectures/299/netLec7.pdf
https://sysadmincasts.com/episodes/14-introduction-to-linux-control-groups-cgroups
https://devlearnings.wordpress.com/2014/08/22/limiting-fork-bomb-in-docker/
https://www.kernel.org/doc/Documentation/cgroups/

tems, these Linux features can be used separately or in concert to aid in security isolation or resource limits of

typical applications. Many of the command line tools simply work bymodifying the default /sys/fs/cgroup

directory within the sysfs mount point, creating, removing or changing flat files within these directories.

For many system libraries and applications, the /etc/cgrules.conf and /etc/cgconfig.conf configura-

tion files can help establish and configure system wide cgroups. For example, this could be used to set

process limits on a given user upon login via PAM or on a user group known for hogging resources. This

also can be used to limit a set of server processes which accept images or other compressed files to help

limit decompression bomb or other resource attacks.

Ifmanually interactingwith thepesudo-filesystem is too tedious, several tools are available in libcgroup/libcg.

The cgcreate command creates a cgroup, cgexec places a task under that cgroup and cgclassify will

move an existing task or set of tasks to a pre-existing cgroup. CGManager73 can also be used to help reduce

the burden of management if the container solution not abstract it away. CGManager can also be used if

specific customizations are required that the container framework (LXC, Docker, etc) does not support, or

if a simple cgroups container is the only goal. An important take-away is that cgroups can be dynamically

created, added to or removed, and are not restricted to process creation, that is to say: the rules can change

at any time.

Listed below is a short description of each major cgroup subsystem, for which resources are controlled.

Other minor subgroups (Hugetlb and perf_event) are not discussed within this paper.

CPU (cpu, cpuset, cpuacct): This CPU system is often used to restrict a set of processes to a specific number

of CPUs or amount of ``CPU time''. Further details can also be found within RedHat's CPU shares

documentation.

Memory: The memory subsystem controls memory allocation and limits for a group of processes. Limits

can be hard, soft and have ``pressure'' applied (which can then dynamically change the limit strategy)

among other expected features.

BLKIO: The BLKIO controls disk read or write speeds, operations per second, queue controls, wait times

and other operations on an associatedmajor andminor numbered block device. This subsystem does

need to be explicitly enabled, but offers significant control over I/O when compared to other more

traditional methods or filesystem specific controls. Support for this BLKIO subsystem is unfortunately

weak within many container platforms, largely due to filesystem implementations.

Devices: The devices cgroup subsystem is typically a whitelist, formatted for devices based on type (char

vs block) and device major and minor numbers. A special 'all' type applies to all device types, major

and minor numbers and is typically used as a default deny before whitelisting explicit devices. Most

containers will have access to commonly-used devices such as /dev/null and /dev/urandom.

Network: The recently-added Network classifier cgroup can provide a method to tag network packets with

a ``classid'' value. This can be applied or acted upon by iptables for packet filtering and quality of

service (QoS).74

Freezer: This subsystem allows a cgroup of tasks to be ``frozen'' by essentially sending a SIGSTOP signal

and later ``unfrozen'' or ``thawed'' by sending a corresponding SIGCONT signal. This can be useful to

pause a systemor entire set of applications when there is no expected or intended use.75 Applications

73https://s3hh.wordpress.com/2014/03/25/introducing-cgmanager/
74https://www.kernel.org/doc/Documentation/cgroups/net_prio.txt
75This can play a strong role in desktop container systems to limit battery use of background applications.

28 | Understanding and Hardening Linux Containers NCC Group

https://www.kernel.org/doc/Documentation/cgroups/cpuacct.txt
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-cpu.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-cpu.html
https://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroups/devices.txt
https://www.kernel.org/doc/Documentation/cgroups/net_cls.txt
https://www.kernel.org/doc/Documentation/cgroups/freezer-subsystem.txt
https://s3hh.wordpress.com/2014/03/25/introducing-cgmanager/
https://www.kernel.org/doc/Documentation/cgroups/net_prio.txt

which cannot catch a SIGSTOPmay not behave normally when thawed.

PIDs: In 2015, the recently-released PID cgroup76 allows for limiting the maximum number of tasks. This

helps prevent accidental or intentional fork-bombs and help avoid hitting system-wide task limits. This

canbeunderstoodas anextensionofRLIMIT_NPROC andwas recently addedwith commit 49b7...865c.

4.3 Containers and cgroups

As part of a container system, cgroup management is typically abstracted away, with the exception of LXC

(which largely requires it as part of the standard template). In Docker and CoreOS Rkt, modifications can

be made at container runtime, although documentation or examples are fairly weak. Fortunately, the sim-

ple UNIX-like implementation of cgroups allows for modification outside of container frameworks, should

these not meet the resource or security goals of the platform in question. Working with cgroups outside

of containers, for modern resource limits and device access control for everyday applications, can also be

advantageous, although this is outside of the scope of this paper.

4.4 Future of cgroups

Systemd offers strong support for cgroup controls, for both labeling processes and supporting resource re-

strictions. We can expect to see further documented support or applications offering simple limits enforced

by cgroups and managed via systemd in the near future. For further information on systemd and cgroups,

the article How to get started with CGroups by CertDepot offers a good overview and examples, as well as

a large number of other resources.

76https://lkml.org/lkml/2015/2/22/204

29 | Understanding and Hardening Linux Containers NCC Group

https://www.kernel.org/doc/Documentation/cgroup-v1/pids.txt
https://github.com/torvalds/linux/commit/49b786ea146f69c371df18e81ce0a2d5839f865c
https://www.certdepot.net/rhel7-get-started-cgroups/
https://lkml.org/lkml/2015/2/22/204

5 Capabilities

5.1 Capabilities Background

On Linux and other UNIX-like operating systems77 , the uid 0 (zero) user aka ``root'' has complete control

over the system (one account to rule them all). This is also the case for any setuid-root binary, which if it

contains a serious vulnerability such as memory corruption (leading to a code-path hijacking), root level

access can be reached by a lower rights user. Over the history of Linux and related platforms, privilege

escalation vulnerabilities to root have proved a recurring problem, either due to suid or simply violating the

principle of least privilege by running as root in the first place. Linux capabilities were introduced in Linux

2.278 as a way to split this ``absolute'' access control model by partitioning root access. A capability privilege

bitmap for each process is created, and then enforced by the kernel.

In a simple example, the common yet simple setuid root binary /bin/ping, risks privilege escalation for what

should be a minimal privilege requirement – raw sockets. While the attack surface for privilege escalation

to root is not limited to only suid binaries, it is important to note that the attack surface of ping is not

only exposed when and if the raw sockets are being used, but also through any network parsing code,

command line arguments or other potential areas of vulnerability within the suid binary.79 Any exploitable

condition within a root process or accessible suid binary allows the attacker to then act as the full root user.

This attack surface for root privilege escalation is extended across all applications running as root, all suid

binaries among other less obvious locations and all of the loaded libraries and directories they interact with.

Obviously this is a serious and historical risk to system security as clearly illustrated by Neil Brown:

``The problem with this design is that programs which are running setuid exist in two realms at once

and must attempt to be both a privileged service provider, and a tool available to users - much like the

confused deputy.''

- Ghosts of Unix past by Neil Brown

Switching to using a capabilities model, the ping command now has access to only what it needs the

privileges for, via a raw sockets capability called CAP_NET_RAW. This fits the original intent of the application's

requirements and practices the principal of least privilege to the letter. Further examples could be a web

server outside of a container, which only needs root access in order to bind to a privileged port (< 1024),

can simply use the CAP_NET_BIND_SERVICE capability or an NTP daemon, which can use the CAP_SYS_TIME

capability to restrict privileged access to only time-setting, again as intended and required.

Capabilities do their work as a trait of each Linux threador process, and are inherited from theparent through

the use of clone(2) and fork(2). The __user_cap_data_struct{} defines the different effective,

permitted, and inheritable bitmasks. To fit with other privilege models, once a set of capabilities is

configured, they can only be restricted further, not increased. Since the capabilities model can effectively

split some root-level operations, it can make audits, traditional file permissions and security actually more

complex if not within a sandbox or container environment. For example, if an application had two roles,

admin and user, it would be easy to tell which operations could gain admin access. If the application has

user roles in-between admin and user (such as, a network only admin) it is not immediately clear which

executables would provide which escalated privileges. Great care must be taken to audit and understand

permission customization and the newly developed privilege model within your system.

77FreeBSD is notably missing from this root versus user split to a capabilities model, as the project was a major reason why

the Capabilities model was not standardized as part of POSIX.1e. The FreeBSD project considered the implementation poorly

reviewed and the 32 or 64 bit mask too restrictive. See http://www.trustedbsd.org/privileges.html for more information. It should

be noted FreeBSD does have a capabilities model called Capsicum (https://www.cl.cam.ac.uk/research/security/capsicum/freebsd.

html which also has attempted a Linux port (https://github.com/google/capsicum-linux).
78Capabilities remain an optional component, enabled using the CONFIG_SECURITY_CAPABILITIES kernel configuration
79Does anyone else remember suid cdrecord exploits?

30 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/416494/
http://www.trustedbsd.org/privileges.html
https://www.freebsd.org/cgi/man.cgi?query=capsicum&sektion=4
https://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html
https://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html
https://github.com/google/capsicum-linux

While the above sounds good and seems attainable, the capabilities model is unfortunately (many years

later) still under development, and many ``umbrella'' or somewhat mixed capabilities exist. This is explored

in detail within a post by infamous Linux security researcher and developer Brad Spengler of Grsecurity,

False Boundaries and Arbitrary Code Execution. This article provides a brief security investigation across a

large number of Linux capabilities and how they can be used to gain additional capabilities or full root. This

particular article should be studied for anyone attempting to claim the capabilities system is not complex,

half-baked or that a particular Linux capability can be used safely. This post by Brad likely spurred several

mailing list discussions, and led Michael Kerrisk to write the LWN article CAP_SYS_ADMIN: the new root,

which explores the various problems and options (including even renaming the CAP_SYS_ADMIN capability

to CAP_GOOD_AS_ROOT). Finally, due the complex and high risk nature of privileged context switching and

privileged access in general, implementation vulnerabilities have been discovered in several different capa-

bility implementations, CAP_NET_ADMIN historically being the worst security offender.

5.2 Additional Introductory Resources

Linux Capabilities: making them work a paper published in 2008 by Serge E. Hallyn and Andrew G. Morgan

is the canonical resource for capability use and examples, alongside How Linux Capabilities Work (in 2.6.25)

byWenliang (Kevin) Du. Additional security specific info can be found in Security In-Depth for Linux Software

by Julien Tinnes and Chris Evans.

5.3 Understanding Capabilities

Capabilities are enforced by the kernel for all ``privileged operations'' and are always a subset of a given

capabilities combination. This consists of a processes' existing inheritable or permitted capabilities, with the

exception of a thread possessing the CAP_SETPCAP capability. They can also be set and applied to either

process threads or binary files using extended filesystem attributes.80

Process or thread properties are established by several different syscalls: capset(2) to set capabilities,

capget(2)) to retrieve them, and cap_get_proc(3)/cap_set_proc(3) to control them. The three main

sets are as follows:

• Effective: The combined set of capabilities utilized by the kernel to evaluate permission checks.

• Permitted: Limiting superset of the effective capabilities the thread and it's children can assume. This also

controls what may be used by such a thread given the CAP_SETPCAP capability (which allows adding or

removing capabilities to other processes). This transitive trust model allows for a reduced set of adminis-

trative functions.

• Inheritable: The set of capabilities preserved across an execve.

Capabilities for files (typically ELF binaries) are set using setcap(8), cap_set_file(3), cap_set_fd(3) on

filesystems which support extended attributes (xattrs) :

• Effective: A single bit, which during execve the permitted capabilities become the effective set.

• Permitted: Automatically permitted to the thread regardless of the threads inheritable capabilities.

• Inheritable: Joined with the threads eventual inherited capability set.

Although capabilities should follow a default deny or principal of least access model, several capabilities

80https://atrey.karlin.mff.cuni.cz/~pavel/elfcap.html

31 | Understanding and Hardening Linux Containers NCC Group

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522#p10271
https://lwn.net/Articles/486306/
https://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/33528.pdf
http://www.cis.syr.edu/~wedu/seed/Documentation/Linux/How_Linux_Capability_Works.pdf
http://www.cis.syr.edu/~wedu/seed/Documentation/Linux/How_Linux_Capability_Works.pdf
https://www.cr0.org/paper/jt-ce-sid_linux.pdf
https://atrey.karlin.mff.cuni.cz/~pavel/elfcap.html

are obviously more dangerous than others. An attempted overview for each capability is provided below.81

The list is in order of compromise risk for a container system (not a host in itself), so CAP_SYS_ADMIN and

CAP_NET_ADMIN are near the top, whereas CAP_WAKE_ALARM has a low risk of exploitation impact. For each

capability describedbelow, the contents are largely paraphrasedorwording is taken verbatim from the Linux

capabilities man page.82 However, additional details or descriptions have been added inmany cases, with a

focus on security and potential capability abuse. Additional information included below is also sourced from

Brad Spenglers' excellent False Boundaries and Arbitrary Code Execution post referenced earlier. Finally,

yet other information was obtained from the Grsecurity Appendix on Capabilities Names and Descriptions.

The comments below for the various capabilities should not be considered exhaustive, and as an entire

whitepaper just exploring the use, implementation, vulnerability, and exploitation of Linux capabilities could

easily be created.

When using file capabilities, it can be important to understand that the binaries themselves are treated

similarly to setuid. In this case, the loader rejects environment variables such as LD_PRELOAD and even if

ptrace(2) is permitted, users are prevented from attaching to their setcap'd processes. In addition to this,

also similar to setuid, and dissimilar to sudo, setcap binaries do not drop all of their environment variables.

CAP_SYS_MODULE: Allows the process to load and unload arbitrary kernel modules. This could lead to trivial

privilege escalation and ring-0 compromise. The kernel can be modified at will, subverting all system

security, Linux Security Modules, and container systems.

CAP_SYS_ADMIN: Largely a catchall capability, it can easily lead to additional capabilities or full root (typically

access to all capabilities). A wide range of some 35 different operations,83 including access to NVRAM,

setting the hostname, setting the domainname, administration of the ``random device'', controlling

serial ports, sending arbitrary SCSI commands, performing filesystem mounting or umounting, mod-

ifying shared memory, calling TTY ioctls, creating new namespaces, and bypassing UNIX socket cre-

dentials. CAP_SYS_ADMIN is required to perform a range of administrative operations, which is difficult

to drop from containers if privileged operations are performed within the container. Retaining this

capability is often necessary for containers which mimic entire systems versus individual application

containers which can be more restrictive.

CAP_NET_ADMIN: Allows the capability holder tomodify the exposed network namespaces' firewall, routing

tables, socket permissions, network interface configuration and other related settings on exposed net-

work interfaces. This also provides the ability to enable promiscuous mode for the attached network

interfaces and potentially sniff across namespaces. It should be noted several privilege escalation

vulnerabilities and other historical weaknesses have resulted from the ability to leverage this capa-

bility. This includes CVE-2011-1019 which effectively granted the CAP_SYS_MODULE capability to load

arbitrary modules and was exploited trivially using ifconfig84 CVE-2010-4655 which resulted in a

sensitive heap memory disclosure and CVE-2013-4514 resulting in Denial of Service and possibly

arbitrary code execution. These issues are largely due to the significant attack surface and implicit

module loading for special interfaces or socket types.

CAP_SYS_CHROOT: Permits the use of the chroot(2) system call. This may allow escaping of any chroot(2)

environment, using known weaknesses and escapes.

81The author did not fully investigate the code paths of each capabilities and warns unknown vulnerabilities likely remain.
82This may provide incomplete information, and the author did not have time to fully explore the potential implications of each

capability.
83See the comment within the definition here: http://lxr.free-electrons.com/source/include/uapi/linux/capability.h#L224
84See this LKML message for more information https://lkml.org/lkml/2011/2/24/203 and an example.

32 | Understanding and Hardening Linux Containers NCC Group

https://en.wikibooks.org/wiki/Grsecurity/Appendix/Capability_Names_and_Descriptions
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1019
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4655
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4514
http://lxr.free-electrons.com/source/include/uapi/linux/capability.h#L224
https://lkml.org/lkml/2011/2/24/203

CAP_SETUID: A process can manipulate process UID values via the following syscalls: (setuid(2), se-

treuid(2), setresuid(2), and setfsuid(2)). The process can also pass arbitrary UID values when

passing socket credentials (SCM_CREDENTIALS), similar to the CAP_SETGID capability. This may be

useful to allow privileged containers to effectively become other lower-rights users within a container.

If seteuid is used, it will allow a process to regain root after privileges after dropping them. See the

credentials man page for more information on process identifiers and use or risk to authenticated

UNIX sockets. Overall, this capability may allow various privilege escalation attacks through editing

root-owned files.

CAP_SETGID: A process can manipulate process group IDs (GID) and forge GID values when using socket

credentials (SCM_CREDENTIALS) for UNIX domain sockets. This may be useful to allow privileged

containers to effectively become lower-rights users within a container. See the credentials man page

for more information on process identifiers and use or risk to authenticated UNIX sockets. Overall

security concerns are similar to CAP_SETUID.

CAP_SYS_PTRACE: The ability to use ptrace(2) and recently introduced ``cross memory attach'' syscalls

such as process_vm_readv(2) and process_vm_writev(2). If this capability is granted and the

ptrace(2) syscall itself is not blockedby a seccomp filter (as discussedmore in Section8.3 onpage74),

this will allow an attacker to bypass other seccomp restrictions.

CAP_SYS_RAWIO: This provides a number of sensitive operations including access to /dev/mem, /dev/k-

mem, /proc/kcore access (disclosing kernel/host memory), modify mmap_min_addr, and access iop-

erm(2)/iopl(2) syscalls and various disk commands. The FIBMAP ioctl(2) is also enabled via this

capability, which has caused issues in the past,85 As per the man page, this also allows the holder to

descriptively ``perform a range of device-specific operations on other devices.'' Finally, /dev/mem and

/dev/kmem read andwrite access is permittedwith this capability, although, if these are not disabledby

the Linux distribution,86 cgroups should prevent access andMandatory Access Control (MAC) systems

may further add defense in depth to procfs entries (which mirror these devices). Overall CAP_SYS_-

RAWIO should be considered a dangerous capability. If malicious access to /dev/mem, /dev/kmem or

related procfs entries is granted, it allows old and well understood attacks.87

CAP_MAC_ADMIN: Allows the process to override the Mandatory Access Control (MAC) system. This capa-

bility was implemented for the SMACK Linux Security Module (LSM), and obviously can disable or

weaken a crucial security protection if used by a malicious entity.

CAP_MAC_OVERRIDE: Allows the process to perform variousMandatory Access Control (MAC) configuration

or state changes, similar to CAP_MAC_ADMIN, this was implemented for the SMACK Linux Security

Module (LSM) and carries with it the same risks.

CAP_FOWNER: This capability allows a process to bypass permission checks on operations which normally

require the filesystem process UID to match the target file in question (such as when using chmod).

This capability also allows setting extended attributes on arbitrary files, set POSIX ACLs on arbitrary

files and other minor related operations. It also should be noted this potential security bypass will not

be permitted for operations covered by the CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH, which

allow bypassing all normal Discretionary Access Controls (DAC) such as file read, write and execute

85http://lkml.iu.edu/hypermail/linux/kernel/9907.0/0132.html
86Either by removing kmem, which is done by modern Kernels or configuring CONFIG_STRICT_DEVMEM which restricts reads and

writes to a small chunk of kernel memory.
87https://www.blackhat.com/presentations/bh-europe-09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-

mem-slides.pdf

33 | Understanding and Hardening Linux Containers NCC Group

http://lkml.iu.edu/hypermail/linux/kernel/9907.0/0132.html
https://www.blackhat.com/presentations/bh-europe-09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-mem-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-mem-slides.pdf

permission checks for files and directories. While the mount namespace should restrict attacks using

this capability to files/devices within a container, processes retaining CAP_FOWNERmay permit attacks

within a container if multiple users exist, or against filesystem permissions on shared mounts or vol-

umes.

CAP_CHOWN: A process possessing this capability can make arbitrary changes to file UID or GID values.

This can be understood as a similar capability to CAP_FOWNER. Both capabilities can allow for privilege

escalation to UID 0 by editing specific, and highly sensitive files, such as /etc/passwd.

CAP_NET_RAW: The process will have the ability to create RAW and PACKET socket types for the available

network namespaces. This will allows arbitrary packet generation and transmission through the ex-

posed network interfaces. In many cases this interface will be a virtual Ethernet device which may

allow for amalicious or compromised container to spoof packets at various network layers. Amalicious

process or compromised container with this capabilitymay inject into upstreambridge, exploit routing

between containers, bypass network access controls, and otherwise tamper with host networking if a

firewall is not in place to limit the packet types and contents.88 Finally, this capability will allow the

process to bind to any address within the available namespaces. This capability is often retained by

privileged containers to allow ping to function by using RAW sockets to create ICMP requests from a

container.

CAP_DAC_OVERRIDE: A process with this capability may bypass file read, write, and execute discretionary

permission checks. A properly configured and appliedMandatory Access Control (MAC) system could

still protect from a compromised or malicious process.

CAP_DAC_READ_SEARCH: This capability allows a process to bypass file read, and directory read and execute

permissions. While this was designed to be used for searching or reading files, it also grants the pro-

cess permission to invoke open_by_handle_at(2). This syscall allows a process to view the contents

of any file using the inode value, bypassing namespace restrictions. This capability was includedwithin

Docker and LXC by default and later abused by Sebastian Krahmer's shocker exploit89 to break out of

Docker version 0.11 and prior in addition to privileged LXC containers.

CAP_SYS_BOOT: The capability to use the reboot(2) syscall that allows a process to reboot, halt, power off

and disable Ctrl-Alt-Delete for the system). It also allows for executing an arbitrary reboot command

via LINUX_REBOOT_CMD_RESTART2, implemented for some specific hardware platforms. This capabil-

ity also permits use of the kexec_load(2) system call, which loads a new ``crash kernel'' and as of

Linux 3.17, the kexec_file_load(2) which also will load signed kernels.

CAP_SETPCAP: This capability grants or removes capabilities from the caller's permitted set against any other

accessible process. This is similar to CAP_SETFCAP described below, although it deals with processes

rather than files. File capabilities use extended attributes determine the capability set of a thread after

an execve.

CAP_SETFCAP: Allows a process to use security.capability fields via setxattr. File capabilities, in-

troduced within the 2.6.24 kernel are stored in extended filesystem attributes and determine the

capability set of a thread after an execve. This is similar to CAP_SETPCAP described above, which

operates on processes.

CAP_FSETID: This allows a process to add a set-user-id (suid) bit for a file that does not match the gid of

the calling process. Additionally, when a file is modified under this capability, set-user-ID (suid) and

88Both a layer 3 (iptables) and layer 2 firewall (ebtables) are required.
89No CVE was apparently assigned for this issue.

34 | Understanding and Hardening Linux Containers NCC Group

http://stealth.openwall.net/xSports/shocker.c

set-group-id (sgid) bits will not be cleared.

CAP_MKNOD: Allows a process to create special files (typically for block or character devices, but named

pipes, domain sockets, and normal files are also permitted) using the mknod(2) system call, although

this cannot be used to create directories — a little known feature on some platforms..Created devices

may conflict or bepermitted via control groups (cgroups) or even theMandatoryAccessControl (MAC)

enforcement; attempted exploits may also be blocked by default deny cgroup rules or default MAC

rules. Creation of devices within a container should not typically be required, so this capability should

be dropped.

CAP_KILL: A process can send any signal to any reachable process using the kill(2) syscall and the use of

the ioctl(2) KSIGACCEPT operation. In a container setup, a compromised process with this capability

should not be able to kill processes outside of its PID namespace without leveraging an additional

vulnerability.

CAP_IPC_OWNER: With this capability, a process is allowed to bypass permission checks for operations on

System V IPC objects. If shared host networking is used within a container setup, this capability may

allow a lower-rights container to communicate with privileged IPC endpoints.

CAP_SYS_NICE: A process with this capability can use the nice(2) and setpriority(2) syscalls to change

the ``nice'' value90 for arbitrary processes within the PID namespace. Several other syscalls related to

performance control and memory page locations are also permitted via this capability. While this

capability is unlikely to lead to direct vulnerabilities in itself, it may allow for influence over potential

race conditions.

CAP_NET_BIND_SERVICE: This allows a process to bind sockets to ``Internet domain privileged ports'' (ports

less then 1024). This sole privilege requirement is typically is whymany exposed network services start

with and retain (without reason) elevated privileges or full root. In many cases, this capability may not

actually be required, as upstream load balancers, container wrappers, or iptables redirection rules can

offload this low port binding requirement (by redirecting connections to a higher port).

CAP_LEASE: This capability allows a process to establish ``leases'' on arbitrary files. Using the fcntl(2)

syscall with F_SETLEASE or F_GETLEASE flags, the calling process can establish or list the current lease

for a given file descriptor. This allows a process to effectively attach a signal handler to specific file

operations, which will be blocked by the kernel until handled given a specific lease flag, such as

F_RDLCK. This is often used for synchronization, although it creates potential Denial of Service (DoS)

conditions (within a given mount namespace).

CAP_LINUX_IMMUTABLE: A process with this capability can set or clear filesystem attributes FS_APPEND_FL

(append-only file) and FS_IMMUTABLE_FL (immutable file) using the chattr command within a given

mount namespace.

CAP_SYS_RESOURCE: Allows a process to override and set resource, quota or reserved space limits. Other

ext2 and ext3 ioctl(2) journaling operations are also possible. This capability is generally required

for modification of process and resource limits.

CAP_SYS_PACCT: The process can use the acct(2) system call to enable or disable process accounting.

CAP_IPC_LOCK: Allows the process to ``lock'' parts or the entirety of the virtual memory space into RAM, pre-

90This ``niceness'' value controls the CPU priority within the Kernel scheduler, where lower the value, the higher the priority (until

-20)

35 | Understanding and Hardening Linux Containers NCC Group

venting it from being swapped, using the mlock(2), mlockall(2), mmap(2), and shmctl(2) syscalls.

This is typically used for memory with higher than normal security requirements, where swapping to

disk is undesirable, such as when performing cryptographic operations. Note that the munlock(2)

and munlockall(2) syscalls are not permitted, but memory can be unlocked using shmctl(2) with

the SHM_UNLOCK value.

CAP_SYS_TTY_CONFIG: Aprocesswith this capability canuse thevhangup(2) syscall (simulating a ``hangup''

of the terminal) and employ other privileged ioctl(2)operations91 to configure virtual terminals (VT),

such as modifying VT size and font settings, keyboard settings, tick rate, mode settings.

CAP_SYS_TIME: Allows the process to set the system hardware clock via settimeofday(2), stime(2),

and adjtimex(2) syscalls. Malicious actions by a process with this capability may create problems

with accurate logging for incident response or create problems with time sensitive cryptographic

operations. This could occur within the host or container and target protocols such as Kerberos or

TLS, or other artifacts such as signatures or session tickets that can expire.

CAP_AUDIT_CONTROL: Allows a process to enable, disable, change filter rules, and view the status of ``kernel

auditing'' via a unicast netlink socket.

CAP_AUDIT_WRITE: A process can write records to the auditing log via a unicast netlink socket. This may

allow for injecting malformed audit logs.

CAP_BLOCK_SUSPEND: Starting in Linux 3.5, this new capability allows a process to use features largely

designed for mobile devices such as ``wake locking'', which can prevent the system from suspending.

This is typically exposed through procfs via /proc/sys/wake_lock.

CAP_SYSLOG: This capability was finally ``forked'' in Linux 2.6.37 from the dreaded CAP_SYS_ADMIN catchall,

this capability allows the process to use the syslog(2) system call. This also allows the process to

view kernel addresses exposed via /proc and ``other interfaces'' when /proc/sys/kernel/kptr_-

restrict is set to 1. The kptr_restrict sysctl setting was introduced in 2.6.38, and determines if

kernel addresses are exposed. This defaults to zero (exposing kernel addresses) since 2.6.39 within

the vanilla kernel, although many distributions correctly set the value to 1 (hide from everyone accept

uid 0) or 2 (always hide). In addition, this capability also allows the process to view dmesg output, if

the dmesg_restrict setting is 1. Finally, the CAP_SYS_ADMIN capability is still permitted to perform

syslog operations itself for ``historical reasons''.

CAP_WAKE_ALARM: Starting in Linux 3.0, this allows a process to trigger a wake up of the system, in addition

to setting the CLOCK_REALTIME_ALARM and CLOCK_BOOTTIME_ALARM timers. See CAP_BLOCK_SYSPEND

and the Linux Weekly News article ``Waking systems from suspend''92 for more information.

CAP_NET_BROADCAST: This capability is currently marked as ``unused'', and is not referenced outside of the

capability kernel header file. If used, this would allow a process to generate socket broadcasts or listen

to multicasts.

91See drivers/tty/vt/vt_ioctl.c for more information.
92https://lwn.net/Articles/429925/

36 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/429925/

5.4 Exploring Capabilities

The capset(2) and capget(2) Linux syscalls can set or get thread capabilities through defined structures

on specific process IDs. The capget(2) syscall can probe the capabilities of any process within the PID

namespace (this can alsomanually be parsed by decoding values from the status entry of any PID in /proc).

To avoid directly using these system calls, the libcap-ng library by Steve Grubb is ``intended to make

programming with POSIX capabilities much easier than the traditional libcap library93''. This library includes

the filecap utility to analyze all the currently running applications and print all retained capabilities. This

library also includes other helpful utilities for printing capabilities for running processes (pscap), testing

capabilities (captest) and a network related processes using capabilities (netcap).

The libcap library offers a simple interface for, and example utilities, for launching processes with specific

capabilities (such as capsh –drop, illustrated above). Automatically inheriting or controlling capabilities can

be performed in several ways. Either through systemd via the CapabilityBoundingSet directive, or via

PAM (Pluggable Authentication Modules), this can be used by system administrators to limit access. As part

of the libcap library ``pam_cap'', can grant capabilities to a users' inherited set.94

A simple capabilities example can be demonstrated through the /bin/ping command, a classic and ever-

present setuid-root binary. This helps illustrate exactlywhy capabilities are agood securitymodel, as/bin/ping

should only need the network capabilities required to function, namely, RAW sockets.95

Our example starts by dropping the setuid root permission, easily done by simply copying the ping binary

to a new location as a low-rights user:

$ ls -l /bin/ping

-rwsr-xr-x 1 root root 44168 Nov 7 2015 /bin/ping

$ cp /bin/ping /tmp/

$ ls -l /tmp/ping

-rwxr-xr-x 1 aaron aaron 44168 Nov 25 13:58 /tmp/ping

Attempting to ping the localhost address using the newly placed binary will result in a permission denied

error for socket() with SOCK_RAW, as illustrated by strace:

$ strace -e socket /tmp/ping 127.0.0.1

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = -1 EPERM (Operation not permitted)

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

ping: icmp open socket: Operation not permitted

...

Now, with sudo access (or if granted CAP_SETFCAP) and the setcap command, we can use extended filesys-

tem attributes to add the CAP_NET_RAW capability to the new non-suid root /bin/ping binary. Using the

getcap command to list the files capabilities, we can see this was successful:

$ sudo setcap cap_net_raw=p /tmp/ping

$ getcap /tmp/ping

/tmp/ping = cap_net_raw+p

93https://people.redhat.com/sgrubb/libcap-ng/
94https://kernel.googlesource.com/pub/scm/linux/kernel/git/morgan/libcap/+/libcap-2.24/pam_cap/capability.conf
95If you're wondering why SOCK_RAW is required for ICMP echo requests, see this write-up from 1996: http://www.tldp.org/LDP/

khg/HyperNews/get/khg/18/1.html.

37 | Understanding and Hardening Linux Containers NCC Group

https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git
https://people.redhat.com/sgrubb/libcap-ng/
https://kernel.googlesource.com/pub/scm/linux/kernel/git/morgan/libcap/+/libcap-2.24/pam_cap/capability.conf
http://www.tldp.org/LDP/khg/HyperNews/get/khg/18/1.html
http://www.tldp.org/LDP/khg/HyperNews/get/khg/18/1.html

Using the new ping binary now works as a low rights user, without suid, and given any vulnerability within

the ping binary itself, even complete arbitrary code execution, will only result in the capabilities provided

by CAP_NET_RAW (opposed to the entire set of root permissions):

$ /tmp/ping -c1 localhost

PING localhost (127.0.0.1) 56(84) bytes of data

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.047 ms

In a slightlymore complex example, we can grant the tcpdump command the ability to sniff packets96 without

requiring any root access:

$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

$ /usr/sbin/tcpdump -i lo

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

...

Using the proc filesystem, processes can easily list other processes' capabilities (within the same PID names-

pace or procfs mount) using the /status file within any /proc/<pid> directory. The example below lists

the capabilities of the grep process itself, then using capsh, decodes the bitmask fields within the status file

to a more human readable format.

$ grep ^Cap /proc/self/status

CapInh: 0000000000000000

CapPrm: 0000000000000000

CapEff: 0000000000000000

CapBnd: 0000001fffffffff

$ capsh --decode=0000001fffffffff

0x0000001fffffffff=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,

cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable

,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,

cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,

cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,

cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit

_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,35,36

By using the getpcaps command from libcap2, we can easily inspect the capabilities of a process or set of

processes within the system, such as dhclient:

$ ps ax | grep dhclient

2223 ? Ss 0:04 dhclient -v eth1

$ getpcaps 2223

Capabilities for `2223': =

cap_dac_override,cap_net_bind_service,cap_net_admin,cap_net_raw,cap_sys_module+ep

The capsh utility provided by libcap2 includes a simple feature for launching applications and dropping

capabilities appropriately. In the example below, all capabilities are dropped before executing /bin/sh.

A ping command illustrates how supposedly even root/uid 0 cannot use RAW sockets unless it retains the

96Note that tcpdump can also execute arbitrary commands via the -z flag.

38 | Understanding and Hardening Linux Containers NCC Group

capability. Inspecting our permitted, inherited, and effective sets lists no permissions at all. Although all root

capabilities are dropped, root-owned files and directories can still be accessed (such as /etc/shadow).

sudo capsh --drop=all --secbits=1 --

$ id

uid=0(root) gid=0(root) groups=0(root)

$ ping -c1 localhost

ping: icmp open socket: Operation not permitted

$ grep ^Cap /proc/self/status

CapInh: 0000000000000000

CapPrm: 0000000000000000

CapEff: 0000000000000000

CapBnd: 0000000000000000

$ cat /etc/shadow

root:6fRJmXGaQ$gd6N9vv....:16409:0:99999:7::

...

If we use capsh to grant the correct limited capability of CAP_NET_RAW, now the ping command works.

$ sudo capsh --inh="cap_net_raw=+ep" --drop=all --

$ id

uid=0(root) gid=0(root) groups=0(root),127(pkcs11)

$ ping -c1 localhost

PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.074 ms

...

5.5 Capabilities and User Namespaces

Before reviewing the default capabilities below, some readers may first be wondering about the intersection

of Linux capabilities and user namespaces, which allow for a pseudo-root inside of the container (discussed

further in Section 8.1 on page 66). If all capabilities are granted to root users, and for many purposes a user

appears to be ``root'' within a user namespace, can this be leveraged to escape the container or used to

impact other namespaces? Fortunately, these somewhat conflicting security models hold up. Executing a

setuid-root program within a user namespace still gives a process all capabilities, but it's limited within such

a namespace (at least, that is the security design).

``The child process created by clone(2) with the CLONE_NEWUSER flag starts out with a complete set of

capabilities in the new user namespace. Likewise, a process that creates a new user namespace using

unshare(2) or joins an existing user namespace using setns(2) gains a full set of capabilities in that

namespace. On the other hand, that process has no capabilities in the parent (in the case of clone(2))

or previous (in the case of unshare(2) and setns(2)) user namespace, even if the new namespace is

created or joined by the root user (i.e., a process with user ID 0 in the root namespace)."

- The user_namespaces(7) man page

This is also the case, according to the manual page documentation, for any operation that may affect other

namespaces or otherwise allow namespace reassociation. As user namespaces have their own full set of

capabilities, and those capabilities can interact within their namespace, affecting or joining other names-

paces (at least via capabilities) is only permitted if the process in question retains the CAP_SYS_ADMIN in

the target namespace. While capabilities are indeed an important area of modern containers (in addition

39 | Understanding and Hardening Linux Containers NCC Group

http://man7.org/linux/man-pages/man7/user_namespaces.7.html

to more general Linux hardening opportunities), user namespaces as discussed earlier create a very unique

situation. However, while it is intended that the user namespacewill be restricted to other namespaceswithin

a container, vulnerabilities may be uncovered in this semi-conflicting security model.97 Jump to Section 8.1

on page 66 for more information on user namespaces and Section 10 on page 97 for recommendations

which cover capabilities for privileged containers and use of user namespaces.

5.6 Capability Defaults In Modern Containers

When examining the defaults table on the following page, it is important to keep in mind the goals of

each container platform. LXC is understood to commonly run entire virtual operating systems, and expects

the administrator to tune the templates appropriately — not only for security. For Docker, developers are

expected to follow the newly established convention of running single applications, also referred to as "App

VMs" andDocker itselfmust appeal to thedevelopermasses by allowing the largest default set of capabilities

that does not put the system at a risk. What should be allowed for usability, and what should be restricted

for security obviously has been discussed some, back98 and forth99 in addition to vulnerabilities.100 CoreOS

Rkt remains under active development and must deal with systemd limitations (or advantages, depending

on your perspective) for default or inherited capabilities.

Within LXC, capability defaults largely depend on the template used. For example, Ubuntu retains CAP_-

SYS_RAWIO while the CentOS template101 drops it. For the table included below, LXC defaults are sourced

from the Ubuntu template, assumed to be the most common Linux distribution. This Ubuntu template

includes the base template,102 from which all LXC templates source their defaults. While LXC retains a

large number of capabilities by default, the AppArmor profiles (enabled by default in Ubuntu) largely work

as a fallback safety net against attacks leveraging powerful capabilities such as CAP_SYS_ADMIN. This again

speaks to the core difference in philosophy of application verses OS containers103 which can make harden-

ing significantly more difficult.

Docker defaults were recorded from the daemon's default Linux template104 and although not explicitly

covered within this section, the Open Containers specification (runc), is identical to the Docker capabilities

list according to the most recent version of the specification.105 CoreOS Rkt defaults are actually from the

systemd-nspawn defaults,106 as Rkt is almost always deployed with systemd. Additionally, the retained

capabilities by Rkt may be different when using LKVM as part of stage 1, but it is not exactly clear at this

time, and with the added hardware isolation, they may not be relevant. Finally, with respect to the list

on the following page, no attempt has been made within this paper to capture potential capabilities that

effectively permit access to yet other capabilities or operations, such as those permitted by CAP_SYS_ADMIN

or CAP_NET_ADMIN. The list below is merely a list of defaults, and not a complete vulnerability assessment of

these permitted capabilities.

97This is likely an area not fully explored, examined or tested. Intersecting securitymodels such as capabilities and user namespaces,

could have unforeseen consequences, especially in areas of the kernel not fully namespace aware, or which have vulnerable

namespace isolation (such as using the user namespace to gain CAP_NET_ADMIN, according to Andy Lutomirski). Other issues

may occur when any container namespace is shared with the host system, such as the network namespace.
98https://github.com/docker/docker/issues/5661
99https://github.com/docker/docker/issues/5887
100http://stealth.openwall.net/xSports/shocker.c
101https://github.com/lxc/lxc/blob/master/config/templates/centos.common.conf.in
102https://github.com/lxc/lxc/blob/master/config/templates/common.conf.in
103While LXC defaults assume a container is a full operating system, they are no less capable that Docker when establishing a secure

single-application container.
104https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template_linux.go
105https://github.com/opencontainers/runc/blob/master/libcontainer/SPEC.md
106http://cgit.freedesktop.org/systemd/systemd/tree/src/nspawn/nspawn.c?id=v219#n146

40 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/673613/
https://github.com/docker/docker/issues/5661
https://github.com/docker/docker/issues/5887
http://stealth.openwall.net/xSports/shocker.c
https://github.com/lxc/lxc/blob/master/config/templates/centos.common.conf.in
https://github.com/lxc/lxc/blob/master/config/templates/common.conf.in
https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template_linux.go
https://github.com/opencontainers/runc/blob/master/libcontainer/SPEC.md
http://cgit.freedesktop.org/systemd/systemd/tree/src/nspawn/nspawn.c?id=v219#n146

Default Capabilities (red for known high-risk capabilities)

Linux Capability LXC Docker CoreOS Rkt

CAP_AUDIT_CONTROL True False True

CAP_AUDIT_WRITE True True True

CAP_BLOCK_SUSPEND True False False

CAP_CHOWN True True True

CAP_DAC_OVERRIDE True True True

CAP_FSETID True True True

CAP_FOWNER True True True

CAP_IPC_OWNER True False True

CAP_IPC_LOCK True False False

CAP_KILL True True True

CAP_LEASE True False True

CAP_LINUX_IMMUTABLE True False True

CAP_MAC_OVERRIDE False False False

CAP_MAC_ADMIN False False False

CAP_DAC_READ_SEARCH True False True

CAP_MKNOD True True True

CAP_NET_ADMIN True False False

CAP_NET_RAW True True True

CAP_NET_BIND_SERVICE True True True

CAP_NET_BROADCAST True False True

CAP_SETUID True True True

CAP_SETGID True True True

CAP_SYS_ADMIN True False True

CAP_SETPCAP True True True

CAP_SETFCAP True True True

CAP_SYSLOG True False False

CAP_SYS_BOOT True False True

CAP_SYS_CHROOT True True True

CAP_SYS_NICE True False True

CAP_SYS_RESOURCE True False True

CAP_SYS_RAWIO True False False

CAP_SYS_PACCT True False False

CAP_SYS_MODULE False False False

CAP_SYS_PTRACE True False True

CAP_SYS_TIME False False False

CAP_SYS_TTY_CONFIG True False True

CAP_WAKE_ALARM True False False

5.6.1 Modifying Container Defaults

LXC default capabilities are controlled through the appropriate template configuration, using the lxc.cap

.keep and lxc.cap.drop directives. It is recommended to keep the smallest set of capabilities required by

the application via the whitelist approach lxc.cap.keep which specifies the capabilities to be retained in

the container, and all others are dropped (see the lxc.container.confmanapge formore information). Docker

capabilities can be kept and dropped via command line options --cap-add and --cap-drop respectively

when launching containers. CoreOS Rkt capabilities can be dropped using the Isolator settings. See the

rkt_caps_test.go testing code for example info on setting and using the capabilities-retain-set. Finally,

more information and recommendations can be found within the security recommendations in Section 10

on page 97.

41 | Understanding and Hardening Linux Containers NCC Group

https://linuxcontainers.org/lxc/manpages/man5/lxc.container.conf.5.html
https://github.com/coreos/rkt/blob/master/tests/rkt_caps_test.go

5.7 A World Without Root

Since the start of capabilities support for processes and executables, Linux has added a set of per-thread

securebits flags which can be used to disable special handling of capabilities provided to root/UID 0

user. While this can be configured for various levels, the SECBIT_NOROOT effectively removes the automatic

capabilities provided to root and any suid root owned executables. This creates an environment completely

controlled by granted capabilities and in theory, has removed all of the typical power from root,107 only

those capabilities set are granted. Like almost all flags, these are preserved across forks and in the case of

securebits, the set properties can be ``locked''. Discretionary Access Controls (DAC) and any configured

Mandatory Access Control (MAC) are nowmore important when using SECBIT_NOROOT, and care should be

taken not to allow lower rights users to execute privileged executables. For example, stripping tcpdump of

the root requirement is good to avoid remote attack surfaces and local privilege escalation attacks, but it

could allow non-root users to sniff traffic (if they can execute the binary).

In addition to SECBIT_NOROOT flags, using PR_SET_NO_NEW_PRIVSwith prctl(2)108 is a great way to further

strengthen the principal of least privilege, as also discussed by Kees Cook in his blog post Keeping your

process unprivileged. This further and concisely illustrates the benefits and potential to limit programs who

need "no new privileges" (NNP), even beyond an execv(2) of a setuid binary. Docker in 1.11 has added in

support for ``no new privileges'' via security option flags.

Further ``no new privileges'' information and a detailed description can be found within the Linux kernel

documentation:

``Any task can set no_new_privs. Once the bit is set, it is inherited across fork, clone, and execve and

cannot be unset. With no_new_privs set, execve promises not to grant the privilege to do anything that

could not have been done without the execve call. For example, the setuid and setgid bits will no longer

change the uid or gid; file capabilities will not add to the permitted set, and LSMswill not relax constraints

after execve.''

- Linux kernel Documentation/prctl/no_new_privs.txt by Kees Cook

Overall, Linux capabilities are no silver bullet; special attention should be paid to which capabilities are

granted, and unfortunately how those capabilities are implemented or how they allow formultiple privileged

operations. It is not trivial to understand or explore which capabilities allow for subsequent privilege or

capability escalation. This complexity has lead to container escapes, and other capability vulnerabilities.

Despite these risks, capabilities can greatly reduce the potential privilege escalation, help restrict attack

surfaces, and limit the impact of successful privileged process exploitation.

107Some areas of the kernel may be unaware of SECBIT features, which may introduce privilege-escalation vulnerabilities.
108https://lwn.net/Articles/478062/

42 | Understanding and Hardening Linux Containers NCC Group

https://outflux.net/blog/archives/2012/03/26/keeping-your-process-unprivileged/
https://outflux.net/blog/archives/2012/03/26/keeping-your-process-unprivileged/
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://lwn.net/Articles/478062/

6 Configuration and Basic Use

The following sections explore the basic use and configuration of the three container platforms covered

within this paper: LXC, Docker and CoreOS Rkt. As this paper is focused primarily around the security of

containers, this section is not intended to explain how to configure and run each system. As such, users

should always refer to the specific project's documentation and guidelines, which are also guaranteed to be

more up-to-date.

As with many large deployments the configuration, security aspects, threats and recommendations for con-

tainer management and deployment across a large infrastructure is out of scope. These ``orchestration''

frameworks (systems such asOpenstack and Kubernetes), which helpmanage software defined data centers

are complex and can bemisconfigured, insecure or incomplete for containers. Newly released orchestration

systems typically involve a complex system that allows for service discovery built using specific tools. This

includes offerings such as Docker Swarm, CoreOS Fleet or CoreOS etcd and other systems such as Mesos,

Aurora and Apache ZooKeeper. This whitepaper does not explore the security or configuration of container

management or orchestration frameworks.

6.1 LXC

LXC is typically configured by hand, if the possibly insecure defaults are to be modified, through editing of

the specific container template. Both Libvirt109 and OpenStack contain support110 for LXC management

which, in addition to other options such as the up and coming LXD ``container hypervisor'', may offer easier

configuration and management. Before starting out, in order to check the system's configuration and sup-

port for various kernel and container features, the lxc-checkconfig utility can be very helpful. This initial

bash script (which examines the kernel's configuration via /proc/config.gz), is typically installed as part of the

distributions LXC installation.

6.1.1 The LXC template

The template configuration files control the aspects of an LXC runtime, apart fromany command line options.

Following typical ``UNIXisms'', a local (/.config/lxc/) and global (/etc/lxc/) configuration file is used for both

privileged and unprivileged containers, often containing the default base template options for networking

or uid maps.

Per the lxc.conf manpage: ``a basic configuration is generated at container creation time with the default's

recommended for the chosen template''. These defaults are typically not the most secure configuration

for a given container, and often skewed towards treating the container as an entire running system (with

various daemons, gettys, users, etc). While the default AppArmor profile and some default protections add

some security barriers, additional configuration efforts are strongly encouraged. The section below, along

with Section 10.2 on page 104 contains additional security recommendations.

As the security relevant configuration items are listed below, special consideration outside of the listed items,

should be performed for any hosting company or any other consumer of third party or user-controlled LXC

templates. Documenting and enumerating potential attacks from untrusted LXC profiles is left as an exercise

for the reader and is not in scope for this paper. See lxc.container.conf(5) for more information on any

of the following:

lxc.network.type: The type of network virtualization used. This defaults to a bridge mode, allowing inner-

container and container to host networking. Using none will cause the container to share the host's

network namespace. This should be avoided if at all possible for a number of reasons, including

risks of data snooping, packet crafting, attacks against host traffic or local network. By using veth, a

109https://libvirt.org/drvlxc.html
110http://docs.openstack.org/liberty/config-reference/content/lxc.html

43 | Understanding and Hardening Linux Containers NCC Group

https://libvirt.org/drvlxc.html
http://docs.openstack.org/liberty/config-reference/content/lxc.html

network bridge is created and attached to a host network device. This bridge is established on the

host system prior to the container running. While this allows for trivial container network monitoring,

the risk of arbitrary container to host and container to container network communication is critical.

Serious cross-container and potentially container to host attacks are possible if a firewall is not applied

both at layer 2 (using ebtables, protecting from ARP spoofing attacks) and layer 3 (using iptables, for

general networking). If the ebtables layer 2 firewall configuration is cumbersome, consider simply

using a separate bridge for each container.

lxc.cgroup.devices.deny: Specifies which devices to deny access to via cgroups. This is typically all devices

by using the value a, then explicitly allowing devices using the type, major and minor numbers within

lxc.cgroup.devices.allow. This whitelist, ``default deny'' model is strongly recommended and

embraces a common security best practice.

lxc.cgroup.devices.allow: Each entry within an LXC template permits the creation of device instances and

allows access based on type, major and minor numbers. This typically includes devices such as /de-

v/null, and /dev/zero. Note that while exposing /dev/random allows for strong random numbers

to be generated by the container, it does risk exposing the host's entropy state and pool (allowing for

potentially misbehaving or compromised containers to drain the pool, or influence other applications

which have blocked read calls). When granting access to devices, keep in mind each device is a path

to the kernel, exposes potential vulnerable ioctls(2) and if it involves any devices outside of the

standard set, should be reviewed extremely carefully.

lxc.mount.auto: This directive specifies kernel filesystems (/proc, /sys) which are automatically mounted

within the container. While the complexity is out of scope for this paper, key concerns involve read-only

vs read-write. If read-only specifiers cannot be used, mixed (which is partially read and partially write)

is strongly preferred over full read-write access.

lxc.cap.drop: This specifies the list of capabilities which are removed during container start-up. As this

directive is a blacklist not a whitelist, it is not recommended, see lxc.cap.keep below. In many Ubuntu

templates, thismerely consists of dropping the following capabilities: sys_module, mac_admin, mac_-

override, and sys_time. For Fedora/CentOS, the template drops mac_admin, mac_overrid, set-

fcap, sys_module, sys_nice, sys_pacct, sys_rawio and sys_time. Obviously a number of capa-

bilities remain for privileged containers in either case. For more information on capabilities see Sec-

tion 5.1 on page 30.

lxc.cap.keep: Specifies the list of capabilities to remain for the container, and all other capabilities will be

dropped. This option is strongly preferred over the older lxc.cap.dropwhich is a blacklist-style specifier

for dropping explicit capabilities such as CAP_SYS_MODULE. This approach is not used by any default

Ubuntu provided LXC templates. For more information on capabilities see Section 5.1 on page 30.

lxc.aa_profile: Controls the AppArmor profile which is loaded upon starting the container. It is strongly rec-

ommended to use a distribution and kernel which support AppArmor, and use a strong a default LXC

profile or consider developing a custom per-container profile. The Ubuntu profile, which is applied

by default, can be found within:

/etc/apparmor.d/abstractions/lxc/container-base.

lxc.se_context: This directive sets the SELinux context in which all processes within a container will be

restricted to. This is typically generated by hand or using a tool such as refpolicy.

lxc.seccomp: This option specifies a seccomp configuration (starting in version 1.0). Both version one (a

whiltelist) and version two (a whitelist or blacklist) are supported. On Ubuntu, the example seccomp

44 | Understanding and Hardening Linux Containers NCC Group

profile is a blacklist which blocks kexec_load, open_by_handle_at, init_module, finit_module

and delete_module. See Section 8.3 on page 74 for more information on seccomp.

lxc.id_map Allows the container to take advantage of the user namespace. This directive specifies a map-

ping to ``shift'' all UID values up, typically by tens of thousands. This has an effect of limiting uid 0

within the container, to an arbitrary (typically unprivileged) UID outside in the host. See Section 8.1 on

page 66 for more information on the user namespace.

OnUbuntu, unprivileged container rootfs images are often downloaded fromhttp://images.linuxcontainers.

org which is actually hosted and run by Stéphane Graber, a core LXC developer.111 This makes for fast

deployment, and testing although with limited transparency or trust (prior to inspecting the rootfs image).

If the LXC command-line tools are invoked by a low-rights user, unprivileged containers will be used by

default. Such LXC tools are typically command line executables which operate on an abstract per-container

UNIX socket and arguments or operations almost always require a container name. Example tools include

lxc-start, lxc-stop, and lxc-ls among others.

6.2 Docker

Docker, which encompasses a system daemon running as root, which executes and manages containers on

behalf of theDocker Engine that itself is controlled through aDocker client (CLI or REST interface). This trio of

software is typically used to download and run different Docker images or create and run images built from

Dockerfiles. ADockerfile is a set of commands anddirectiveswhichwill be interpretedby theDocker Engine.

A complete exploration of non-security related Docker options, configuration directives, Dockerfile details,

tuning and performance considerations and other advanced configuration directives such as non-default

networking or custom volume mounts is outside the scope of this paper. However, more information and a

brief security analysis of Docker can be found in Section 9.5 on page 84.

6.2.1 The Dockerfile

A simple plaintext file, with a number of different configuration directives each instrumenting the build

process to generate an image and the resulting container itself. For more information see Dockerfile best

practices and the Dockerfile reference by Docker. An example Dockerfile is included below, this pulls from

the latest ubuntu base image, updates the container and installs the Nginx webserver, then creates a base

file and sets the Nginx binary to run when the container starts, exposing port 80 to the host:

FROM ubuntu

MAINTAINER Dade Murphy <dade@cyberdelia.net>

RUN apt-get update && apt-get install nginx

RUN bash -c 'echo "<html>hi</html>" >> /var/www/html/index.html'

CMD ["nginx", "-extra", "-arguments", "-here"]

EXPOSE 80

This Dockerfile can then be built into a Docker image with the docker build command, which will parse

and run the various Dockerfile directives:

$ docker build -t my-nginx-test

111This may or may not be acceptable security risk for some users.

45 | Understanding and Hardening Linux Containers NCC Group

http://images.linuxcontainers.org
http://images.linuxcontainers.org
https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/engine/reference/builder/

Once the image is built and the commands within the Dockerfile are run within the container, we can launch

as many instances of the image (my-nginx-test) as desired, with each one listening on different TCP ports:

$ sudo docker run -p 80:80 --name n-one my-nginx-test

$ sudo docker run -p 8080:80 --name n-two my-nginx-test

By using the docker ps command, we can see a list of the running containers and then execute commands

within them with docker exec (provided an environment exists to do so). To easily gain access to the

container image, the --volumes-from directive can be used (along with the container name) in order to

easily browse, modify and read from the image using yet another small container (such as a Busybox shell).

While this is appropriate for first users, it is not the recommended practice for editing container contents.

Finally, using the docker exec command, along with the appropriate arguments for a chosen container, will

launch an interactive shell or command inside the Docker container.

6.2.2 Docker Hub

TheDockerHub, amajor area of typical Docker use, is similar to github in nature and allowsdownloading and

hostingDockerfiles, building and testing of images, workingwithin a repository, and collaboratingwith other

Docker users. Docker Hub, often paired with a registry server, is typically operated by Docker themselves

hosting the main official base or container images. However, internal company ``on premise'' solutions

or internal registries do exist and are widely used. Internal registries allow cloud and highly risk-averse

enterprises or users the benefits of Docker Hub while maintaining specific control over the infrastructure,

Docker image hosting and included base images.

The hub can be searched online at https://hub.docker.com or via the command line docker search com-

mand, as in the following example for ``tor'':

$ sudo docker search tor

NAME STARS OFFICIAL AUTOMATED DESCRIPTION

nagev/tor 20 [OK] \

Download and compile Tor software. Starts ...

jess/tor-browser 11 [OK]

rbubhas/tor-privoxy-alpine 7 [OK] \

The smallest (15 MB) docker image with Tor ..

jess/tor 5 [OK]

...

Docker hub is almost always ``behind the scenes'' of manyDocker examples or images, such as downloading

an existing OS image and executing it as a container in the example below:

$ sudo docker run -it ubuntu bash

6.3 CoreOS Rocket

As Rocket (Rkt) has simplicity as a key design goal, the use of Rkt is typically via command-line options and

subcommands to the rkt command itself (there is no long-running daemon as with Docker). Rkt itself is an

implementation of the CoreOS App Container Specification which is in many ways a competitive standard

to key Docker initiatives such as the Dockerfiles and Docker images, in addition to competing with the

newly formed Open Container Initiative of which CoreOS is also a member. As with the LXC and Docker

sections, a complete exploration of non-security related Rkt options, configuration, implementation details,

performance considerations, or LKVM use is outside the scope of this paper.

46 | Understanding and Hardening Linux Containers NCC Group

https://hub.docker.com
https://github.com/appc/spec
https://www.opencontainers.org/

Rkt supports two configuration files for twomajor directories, /etc/rkt, the local directory and/usr/lib/rkt,

confusingly referred to as the ``system'' directory.

6.3.1 Rkt example

After downloading and installing Rkt, it can quickly be used to download and launch an image provided by

CoreOS. The example below downloads and executes the etcd app container, used as a distributed key-

value store for service discovery (similar to Apache ZooKeeper and a number of recent options for resilient

service discovery). With the exception of rkt fetch, all subcommands must be run as root. The example

below (borrowed from coreos.com) adds trust for the etcd image from CoreOS:

$ sudo rkt trust --prefix coreos.com/etcd

prefix: "coreos.com/etcd"

key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"

gpg key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190

CoreOS ACI Builder <release@coreos.com>

Trusting "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" for prefix "coreos.com/

etcd" without fingerprint review.

Added key for prefix "coreos.com/etcd" at "/etc/rkt/trustedkeys/prefix.d/coreos.com/

etcd/8b86de38890ddb7291867b025210bd8888182190"

After adding trust, we can download the etcd image, verifies it against the trusted certificate and launch it:

$ sudo rkt run coreos.com/etcd:v2.0.9

rkt: searching for app image coreos.com/etcd:v2.0.9

prefix: "coreos.com/etcd"

key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"

gpg key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190

CoreOS ACI Builder <release@coreos.com>

Key "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" already in the keystore

Downloading signature from https://github.com/coreos/etcd/releases/download/v2.0.9/

etcd-v2.0.9-linux-amd64.aci.asc

Downloading signature: [=======================================] 819 B/819 B

Downloading ACI: [===] 3.79 MB/3.79 MB

rkt: signature verified:

CoreOS ACI Builder <release@coreos.com>

2015/08/18 16:10:03 Preparing stage1

2015/08/18 16:10:07 Loading image sha512-91

e98d7f1679a097c878203c9659f2a26ae394656b3147963324c61fa3832f15

2015/08/18 16:10:08 Writing pod manifest

2015/08/18 16:10:08 Setting up stage1

2015/08/18 16:10:08 Writing image manifest

2015/08/18 16:10:08 Wrote filesystem to /var/lib/rkt/pods/run/6b85a91a-73b9-4f1b-96c2

-009ae9dc45e1

2015/08/18 16:10:08 Writing image manifest

2015/08/18 16:10:08 Pivoting to filesystem /var/lib/rkt/pods/run/6b85a91a-73b9-4f1b

-96c2-009ae9dc45e1

2015/08/18 16:10:08 Execing /init

[188748.162493] etcd[4]: 2015/08/18 14:10:08 etcd: no data-dir provided, using

default data-dir ./default.etcd

[188748.163213] etcd[4]: 2015/08/18 14:10:08 etcd: listening for peers on http://

localhost:2380

.... snip

47 | Understanding and Hardening Linux Containers NCC Group

Note that the ``signature verified'' line above will only be displayed if the image signer is previously marked

as trusted using the rkt trust command. This may create a security issue if this initial step is bypassed, as

the image will still be downloaded and can be run, although the UI will provide negative warnings.

Rkt also has experimental support for the Linux Kernel Virtual Machine (LKVM) within ``stage1'', a term for the

Rkt bootstrapping portion. This can be used in place for Linux Namespaces and cgroups for isolation.112

This full virtualization offers strong security controls, launching a minimal Linux kernel under KVM which

then uses systemd and chroot to start the container within the Virtual Machine. Using the --stage1-image

flag, Rkt can dynamically load different container images using either LKVM or standard OS virtualization,

separately or in parallel. See Getting started with Ubuntu Vivid for more information and examples for using

Rkt.

6.3.2 Rkt images

Similar to Docker Images, Rkt uses an ``App Container Image''113 which is downloaded if it does not exist

within the local cache. The images are, by default, authenticated using GPG-signed image manifests, which

can be trusted by CoreOS signing keys.

Chaining trust in Rkt is mainly established via App Container Image manifest signing (detached GPG signa-

tures). The Signing and Verification of images in Rkt reference within the Rkt github repository explores how

to trust new image producers, trusting custom images and generally provides information about the signing

and verification options. As CoreOS still supports docker, and Rkt users may want to use Docker images,

these can be downloaded directly and are automatically converted to an ACI via docker2aci.114 However,

it should be explicitly noted, when using Rkt to run and download a Docker image, historically both HTTPS

TLS certificate verification and Docker image verification were disabled, although very recently only image

verification is disabled.115 To this day within Rkt ``Docker images do not support signature verification'',116

and the author is not aware of an out of band verificationmethod apart from checking hash valuesmanually.

112https://coreos.com/rkt/docs/latest/running-lkvm-stage1.html
113https://github.com/appc/spec/blob/master/spec/aci.md
114https://github.com/appc/docker2aci
115https://github.com/coreos/rkt/issues/912
116https://coreos.com/rkt/docs/latest/running-docker-images.html

48 | Understanding and Hardening Linux Containers NCC Group

https://coreos.com/rkt/docs/latest/getting-started-ubuntu-vivid.html
https://github.com/coreos/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://coreos.com/rkt/docs/latest/running-lkvm-stage1.html
https://github.com/appc/spec/blob/master/spec/aci.md
https://github.com/appc/docker2aci
https://github.com/coreos/rkt/issues/912
https://coreos.com/rkt/docs/latest/running-docker-images.html

7 Understanding Container Threats

Container security concerns are almost always at the top of the list for enterprises, those implementing

Platforms as a Service (PaaS) or those deploying containers. This is to be expected given their relatively small

numbers of production deployment and relative immaturity of some implementations when compared to

hardware virtualization. Most importantly, the fundamental risks of a shared kernel and lack of complete

kernel namespaces cannot be ignored and deserves real security skepticism. As we will see in the following

sections, containers and container deployments face amyriad of different threats, historical weaknesses and

other vulnerabilities which must be considered and defended against.

As with other sections of this paper, the risks and potential attacks against container-related components

within a deployment are out of scope. This includes management systems, user administration, service

discovery, advanced networking and other related items. Each particular container deployment requires

specific configuration, security review and consideration with respect to general security principals such

as a layered defense, least access and least privilege as well as reviewing authentication, authorization,

encryption and trust isolation. These guidelines help secure the deployment of any such system container or

otherwise. For recommended solutions, compensating access controls andother security recommendations

which help defend against the threats below, see Section 10 on page 97.

7.1 The Linux Kernel Itself

``The last few years have not been particularly bad, only particularly public''.

-Brad Spengler, grsecurity lead developer

Increased attention on finding and discovering kernel vulnerabilities, in addition to a general increase in

security awareness and exploitation techniques continues to lead to a regular streamof public vulnerabilities

which likely affect containers asa form of OS virtualization. Beyond typical attacker behavior, exploitation of

vulnerabilities in the Linux kernel is now commonly used by both security researchers and every-day users

for ``jailbreaking'' a myriad of smart phones, TVs, routers and other embedded devices which leverage Linux

to various degrees. These devices often ship Linux in a ``locked-down'' form, oftenwithout root access, which

encourages researchers with varying motivations to discover local kernel vulnerabilities.117 The majority of

this jailbreaking research specifically focuses on arbitrary code execution and privilege escalation, which are

direct threats to the security in other platforms as well.

Kernel vulnerabilities can take various forms, from information leaks and Denial of Service (DoS) risks to

privilege escalation and arbitrary code execution. Of the roughly 400 Linux system calls, a number have

contained privilege escalation vulnerabilities, as recently as of 2016 with keyctl(2). Over the years this

included, but is not limited to: futex(2), vmsplice(2), mremap(2), unmap(2), do_brk(2), splice(2),

modify_ldt(2), perf_event_open(2). In addition to system calls, old or obscure networking code in-

cluding but not limited to SCTP, IPX, ATM, AppleTalk, X.25, DECNet, CANBUS, Econet and NETLINK has

contributed to a great number of privilege escalation vulnerabilities through various use cases or socket

options. Finally, the ``perf'' subsystem, used for performancemonitoring, has historically contained anumber

of issues, such as perf_swevent_init(2) (CVE-2013-2094).

As recently as two years ago, loading arbitrary kernel modules via the crypto API118 was possible, bypass-

ing many security features and allowing for potentially low-rights users to subvert all security. Also, the

recent CVE-2014-9322 aka BatIRET119 vulnerability was particularly bad, as it is a key kernel feature. Kernel

117The legality and ethics behind jailbreaking research and related motivations in general, the author would personally argue, are

almost always in good faith. However manufacturers, who have various (and sometimes valid) reasons for locking systems down

may freely disagree.
118https://lkml.org/lkml/2013/3/4/70
119http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

49 | Understanding and Hardening Linux Containers NCC Group

https://bugzilla.redhat.com/show_bug.cgi?id=962792#c16
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-9322
https://lkml.org/lkml/2013/3/4/70
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

vulnerabilities, often (with enough effort) resulting in privilege escalation (or at minimum DoS) have also

been discovered in filesystem implementations (reiserfs, cifs, binfmt) and different device-specific drivers.

While exploitation of the vanilla Linux kernel is slowly becoming more difficult through distribution specific

hardening, additional security patches such as grsecurity, or even CPU features (SMEP, SMAP) developers

are always adding new complexity and new attack surfaces. When hardening containers, the goal should be

to reduce the kernel attack surface however possible; as the kernel should be strongly configured a ``known

unknown''.120

As listed above, several privilege escalation vulnerabilities in the kernel have resulted from trivial loading of

very old, unmaintained or uncommon packet and socket types (such as Econet, SCTP, ATM, and CAN bus).

These network stacks can by dynamically loaded and culminate to a large attack surface, resulting in several

high profile and publicly released exploits. Fortunately, versions of Ubuntu Linux starting several years ago

have added protections from users loading ancient or uncommon socket/packet types,121 building on ideas

from grsecurity's MODHARDEN patch. For more information on kernel hardening, see Section 10.5 on

page 109.

One core threat to kernel security is unfortunately the development team itself, as the Linux kernel develop-

ment team does not have a great reputation for security prioritization.122 The kernel team was a winner of

the 2009 Pwnie Award123 for ``lamest vendor response'',124 after numerous vulnerabilities were discounted

as purely being ``Denial of Service'' issues. Linus Torvalds, the original creator of the Linux kernel and contin-

ued lead developer has opinions sometimes at odds with well understood security principals, believing

security researchers are crazy,125 and security bugs are less important than normal bugs, in addition to

numerous commits containing shadow patches or downplayed vulnerabilities126, 127, 128, 129 going back as

far as 2008.130

Jon Oberhide's SOURCE Boston presentation Linux Kernel Exploitation: Earning Its Pwnie a Vuln at a Time

from 2010 offers a great overview of kernel security, while some of the vulnerability trends and other infor-

mation is now dated, this presentation is a good kernel security resource. All of that said, the principals of

open source still apply, hopefullymore vulnerabilities simplymeansmore issues being fixed (hopefully faster

than or outpacing new vulnerabilities being introduced). Configuration can help minimize attack surfaces

and patches are at least extremely quick when needed. A newly announced effort is fortunately underway to

merge long-standing grsecurity exploit mitigation techniques or protections with the vanilla kernel131 and

was covered in the recent Washington Post article The kernel of the argument and Linux Weekly News in

Kernel security: beyond bug fixing.

120https://en.wikipedia.org/wiki/There_are_known_knowns
121Via the "Blacklist Rare Protocols" modprobe blacklist: https://wiki.ubuntu.com/Security/Features#blacklist-rare-net
122https://lwn.net/Articles/313765/
123https://en.wikipedia.org/wiki/Pwnie_Awards
124http://www.networkworld.com/article/2261206/network-security/twitter--linux--red-hat--microsoft--honored--with-pwnie-

awards.html
125http://www.networkworld.com/article/2274866/lan-wan/torvalds--fed-up-with-the--security-circus-.html
126https://lwn.net/Articles/476947/
127http://arstechnica.com/security/2013/05/critical-linux-vulnerability-imperils-users-even-after-silent-fix/
128https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=320b2b8de12698082609ebbc1a17165727f4c893
129http://tk-blog.blogspot.com/2008/09/linux-kernel-and-silent-fixes.html
130http://seclists.org/fulldisclosure/2008/Jul/276
131http://www.openwall.com/lists/kernel-hardening/2015/11/05/1

50 | Understanding and Hardening Linux Containers NCC Group

https://jon.oberheide.org/files/source10-linuxkernel-jonoberheide.pdf
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/
http://lwn.net/Articles/662219/
https://en.wikipedia.org/wiki/There_are_known_knowns
https://wiki.ubuntu.com/Security/Features#blacklist-rare-net
https://lwn.net/Articles/313765/
https://en.wikipedia.org/wiki/Pwnie_Awards
http://www.networkworld.com/article/2261206/network-security/twitter--linux--red-hat--microsoft--honored--with-pwnie-awards.html
http://www.networkworld.com/article/2261206/network-security/twitter--linux--red-hat--microsoft--honored--with-pwnie-awards.html
http://www.networkworld.com/article/2274866/lan-wan/torvalds--fed-up-with-the--security-circus-.html
https://lwn.net/Articles/476947/
http://arstechnica.com/security/2013/05/critical-linux-vulnerability-imperils-users-even-after-silent-fix/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=320b2b8de12698082609ebbc1a17165727f4c893
http://tk-blog.blogspot.com/2008/09/linux-kernel-and-silent-fixes.html
http://seclists.org/fulldisclosure/2008/Jul/276
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1

7.2 Exploring Container Threats

As illustrated earlier in this paper, both the namespaces and capabilities systems are still under development

or can be considered incomplete. Many kernel features are still not namespace-aware and may present a

risk of attack or information exposure. This includes but is not limited to devfs, procfs, system time, kernel

ring buffer (dmesg) and LSMs among other minor features such as per UID RLIMITs, pending signals and the

max number of processes. New kernel features and requirements for namespaces and containers also risk

introducing new vulnerabilities or creating new exploit paths for prior issues. Risks are especially acute with

any particularly complex system dealing with namespace isolation, such as the user or network namespaces.

In order to explore how containers can be vulnerable despite consistent efforts, it is first key to understand

that, with the exception of using the user namespace, root within a container is the same as root within the

host. Privileged users within a privileged container represent the greatest risk to the security assumptions of

the container system.132 The following sections cover a generic overview of prior Linux container escapes

or threats to often overlooked cross-container attacks. The sections also explore specific threats to LXC,

Docker, CoreOS Rkt and finally cover some indirect threats such as new attack surfaces, and/or malicious

images.

7.2.1 Escaping

Escaping the container or, borrowing terms from hardware virtual machines, escaping from the guest into

the host, is typically the worst case scenario frommany security perspectives. The following section focuses

on understanding and enumerating the root causes used for prior container escapes, as this is one method

to help enumerate which container and kernel attack surfaces should be restricted or hardened, and those

likely to contain additional yet undiscovered vulnerabilities. The following general list is not ordered in any

way, as each threat should be reviewed individually and the specifics of different weaknesses to container

escapes may change depending on the deployment or use cases.133

• Lack of user namespaces or privileged with capabilities: A primary method of escape is simply allowing

privileged operations, such as those provided by dangerous capabilities or the single CAP_SYS_ADMIN

capability. This can also be seen as general lack of user namespaces which (depending on the capabilities

list) can effectively undo the vast majority of container hardening, namespaces and protections (and is

often, at least within LXC, only contained by careful MAC configuration). For instance, the guest may

be able to remount specific system directories critical to security enforcement (cgroups, procfs, sysfs) or

the host's devpts can be exposed, allowing the guest to remount it and control it. Capabilities outside

of CAP_SYS_ADMIN may allow escape onto the local network, raw disks (in order to mount the host disk

or boot image) or allow modification of various host settings depending on the granted rights. Finally,

user namespaces, as discussed later within this paper reduces or entirely eliminates many of the threats

included below (particularly those effecting procfs and sysfs) although it still should always be paired with

a MAC solution for improved security.

• Insecure defaults or a weak configuration: A container solution which is weakly or insecurely configured by

an administrator, or a container which uses insecure defaults, will undoubtedly enable attacks and expose

vulnerabilities which can allow for guest escape. This ranges from enabling additional root capabilities

and having weak host firewalls or poor cgroup restrictions to simply exposing container host information

such as the kernel ring buffer via dmesg (which can assist in kernel exploitation or information leaks). For

instance, weak cgroup restrictions could allow for local disk access, even within user namespaces and

mount restricted namespaces via raw disk, device and mknod(2) access.

132This fact holds true for any system which is basically intended for least privilege, yet is flexible to handle almost any use-case.
133Threats may also shift given different or ever-changing container defaults, and the list included in this paper should be used as a

reference for attack surfaces and prior escapes, not as a complete list of all possible threats.

51 | Understanding and Hardening Linux Containers NCC Group

• Not removing or ``dropping'' all possible capabilities: While avoiding a full or normal root user is strongly

suggested, not dropping the correct capabilities can easily allow for escape. One example is CAP_NET_-

RAW which can be used to perform network attacks. This capability remains enabled by default in all

container platforms, although it it is largely required for ping to function. Likewise, CAP_READ_DAC_SEARCH

was also a prior source of escape in Docker, also remained enabled by default due to the assumed lack of

threat. CoreOS Rkt and LXC retain several security sensitive capabilities, as illustrated in Section 9.13 on

page 96.

• Weak network defaults: Another source of potential escape comes from default networking, typically

allowing unfettered access from the container to host and between containers. This threat oftenmanifests

itself via different services which are bound to ``all interfaces'' (0.0.0.0), which will of course include the

bridge interface which is connected to the containers own virtual Ethernet device. This inadvertently

exposes different network daemons, such as OpenSSH or unauthenticated Web servers to potentially

compromisedormalicious containers. This can also allow for cross-container ARP spoofing attacks, further

discussed in 7.2.2 on page 55.

• Unsafe exposure of procfs: Due to the lack of namespace support, the exposure of /proc/ offers a source

of significant attack surface and information disclosure. Numerous files within the procfs offer a risk for

container escape, host modification or basic information disclosure which could facilitate other attacks.

Several examples are included below, although it should be noted the following list is not exhaustive, and

mainly focuses on the largest risks rather than driver specific mistakes:134

– /proc/sys/ typically allows access to modify kernel variables, often controlled through sysctl(2).

This also contains other sensitive settings, including but not limited to:

◦ /proc/sys/kernel/core_pattern: This defines a program which is executed on core-file genera-

tion (typically a program crash) and is passed the core file as standard input if the first character of this

file is a pipe symbol. This program is run by the root user and will allow up to 128 bytes of command

line arguments. This would allow trivial code execution within the container host given any crash and

core file generation (which can be simply discarded during a myriad of malicious actions)..135

◦ /proc/sys/kernel/modprobe: Controls the path to the ``kernel module loader'', which is called

when loading a kernel module such as via the modprobe command, and may lead to trivial privilege

escalation and/or escape from the container.

◦ /proc/sys/vm/panic_on_oom: Will instantly trigger a kernel panic when encountering an Out of

Memory (OOM) condition. This is more of a Denial of Service (DoS) attack than container escape, but

it no less exposes an ability which should only be available to the host.

– /proc/config.gz depending on CONFIG_IKCONFIG_PROC settings, this exposes a compressed version

of the kernel configuration options for the running kernel. This may allow a compromised or malicious

container to easily discover and target vulnerable areas enabled in the kernel.

– /proc/sysrq-trigger: Sysrq is an old mechanism which can be invoked via a special ``SysRq'' key-

board combination. This can allow an immediate reboot of the system, issue of sync(2), remounting

all filesystems as read-only, invoking kernel debuggers, and other operations. If the guest is not prop-

erly isolated, it can trigger the sysrq commands by writing characters to this file, such as: echo "b"

>/proc/sys/kernel/sysrq to reboot the host.

134http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=8040835760adf0ef66876c063d47f79f015fb55d
135http://seclists.org/oss-sec/2011/q4/158

52 | Understanding and Hardening Linux Containers NCC Group

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=8040835760adf0ef66876c063d47f79f015fb55d
http://seclists.org/oss-sec/2011/q4/158

– /proc/kmsg: The kmsg file can expose kernel ring buffer messages typically accessed via dmesg. Ex-

posure of this information can aid in kernel exploits, trigger kernel address leaks (which could be used

to help defeat the kernel Address Space Layout Randomization (KASLR)), and be a source of general

information disclosure about the kernel, hardware, blocked packets and other system details.

– /proc/kallsyms: This contains a list of kernel exported symbols and their address locations for dynamic

and loadablemodules. This also includes the location of the kernel's image in physical memory, which is

helpful for kernel exploit development. From these locations, thebase address or offset of the kernel can

be located, which can be used to overcome kernel Address Space Layout Randomization (KASLR). For

systems with kptr_restrict set to ``1'' or ``2'', this file will exist but not provide any address information

(although the order in which the symbols are listed is identical to the order in memory).

– /proc/<pid>/mem: This interface exposes interfaces to the kernel memory device (/dev/mem). While

the PIDNamespacemayprotect from someattacks via this procfs vector, this area of has been historically

vulnerable, then thought safe136, 137 and again found to be vulnerable138 for privilege escalation.

– /proc/kcore: This special file represents the physical memory of the system and is in an ELF core

format (typically found in core dump files). The large reported file size represents the maximum amount

of physically addressable memory for the architecture, and can cause problems when reading it (or

crashes depending on the fragility of the software). The ability to read this file (restricted to privileged

users) can leak memory contents from the host system and other containers.

– /proc/kmem and /proc/mem: Both pseudo-files are typically restricted interfaces for modifying kernel

memory, often also inaccessible via /dev/kmem and /proc/mem respectively. Either via DAC permission

restrictions or MAC protections.

– /proc/sched_debug: This special file returns process scheduling information for the entire system. This

information includes process names and process IDs from all namespaces in addition to process cgroup

identifiers. This effectively bypasses the PID namespace protections and is other/world readable, so it

can be exploited in unprivileged containers as well. This issue was discovered by NCC Group's own

Jesse Hertz and responsibly disclosed, and resolved.139

With the exception of some /proc/sys/ entries and /proc/sched_debug, all of the above files are only

readable or writable by the root user. Privileged Docker containers protect from many of these issues by

using read-only bind mounts for sensitive procfs files and directories. Other container solutions will use a

read-only or mixed permission procfs, specific read-only bind mounts or use the bundled MAC system to

prevent unintended reads or writes to sensitive files, in addition to preventing remounting or mounting a

new procfs.

Some readers may be thinking ``if procfs isn't namespace aware, the user namespace allowing root within

in a container could allow access to these sensitive files'', however user namespaces provides only a fake

UID zero user. Access controls will still be enforced, illustrating the defense-in-depth user namespaces

can provide, even if there is a failure in other features, such as bind-mounts or the implemented MAC

policy. See Section 8.1 on page 66 for more information and an example.

• General information disclosure: May enable further exploitation of related systems, allowprobing of firewall

rules, disclose information on running processes and other details which support probing of the host. This

136https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=198214a7
137https://lwn.net/Articles/433326/
138http://blog.zx2c4.com/749
139https://github.com/docker/docker/pull/21263

53 | Understanding and Hardening Linux Containers NCC Group

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=198214a7
https://lwn.net/Articles/433326/
http://blog.zx2c4.com/749
https://github.com/docker/docker/pull/21263

can come from several sources:

– As illustrated within the procfs threats section above (7.2.1 on page 52), various files within the procfs,

expose information that can be used to perform yet other attacks or learn information about the system.

This includes discovering the location of the container rootfs or image (such as /proc/<pid>/mountinfo),

exposing kernel memory or the kernel configuration, listing running processes across all namespaces,

and other informational issues which may facilitate exploitation or escape.

– Kernel ring buffer exposure, via dmesg exposure. Additionally, if not restricted using capability dropping

(CAP_SYSLOG and CAP_SYS_ADMIN), it may also allow clearing of the host kernel buffer.140

– Access and exposure of kernel keyrings141 is a known Kernel Namespaceweakness for Linux Containers

which is to be documented for Docker.142 This may leak or allow tampering with the key material for

disk encryption or network authentication such as Kerberos. Syscalls such as add_key, request_key,

and keyctl(2) can also be blocked in order to prevent access from userspace applications.

– Exposure of sysfs, including /sys/kernel and /proc/sys/kernel/ exposes a vast array of host infor-

mation, many files are readable by all users, allowing unprivileged users to gain knowledge of network

interfaces, hardware devices and a wide array of system state information.

– Debugfs mounted on /sys/kernel/debug can allow for tracing of some kernel details, risks potential

attack surfaces and exposes various user-space information. Kernel developers can expose an unknown

amount of information within the various traces. See An updated guide to debugfs by LWN for more

information.

• Exposure or lack of protections for sysfs: Similar to the procfs (essentially the same as /proc/sys/), the sysfs

interface can leak information about the host kernel, hardware within the system and the attack surface

can be used for various attacks against the host. Access to the following files should be considered a risk:

– The uevent_helper trivially allows a given binary within the Guest on the Host. Exploitation may be

easier on LXC, given the known path to the container rootfs (either through disclosure or looking in

/proc/pid/mountinfo) and trivial or predictable filesystem layout. The path to the executable is placed

in ``uevent_helper'', similar to the example below which will invoke evil-helper.sh within the host:

echo /var/lib/lxc/test/rootfs/tmp/evil-helper > /sys/kernel/uevent_helper

echo change > /sys/class/mem/null/uevent

– /sys/class/thermal: Access to ACPI and various hardware settings for temperature control, typically

found in laptops or gaming motherboards. This may allow for DoS attacks against the container host,

which may even lead to physical damage.

– /sys/kernel/vmcoreinfo: This file can leak kernel addresses which could be used to defeat KASLR.

– /proc/sys/security: The securityfs area of sysfs, this primarily controls the configuration and use of

various Linux SecurityModules (LSMs) such as AppArmor or SELinux. Mount-over attacks typically target

this area of sysfs, and vulnerabilities with successful exploits have occurred in past LXC and Docker

versions.

– /sys/firmware/efi/vars: Exposes interfaces for interacting with EFI variables in NVRAM.While this is

140As Docker discovered in 2014: https://github.com/docker/docker/issues/5491.
141https://lwn.net/Articles/639523/
142https://github.com/docker/docker/issues/10939

54 | Understanding and Hardening Linux Containers NCC Group

http://lwn.net/Articles/334546/
https://github.com/docker/docker/issues/5491
https://lwn.net/Articles/639523/
https://github.com/docker/docker/issues/10939

not typically relevant for most servers, EFI is becomingmore andmore popular. Permission weaknesses

have even lead to some ``bricked'' laptops.143

– /proc/sys/fs/binfmt_misc: Allows executing ``miscellaneous binary formats'', which typically means

various interpreters can be registered for non-native binary formats (such as Java) based on their magic

number. While this path is typically writable by AppArmor rules, NCC is not aware of any exploits,

although it is not likely required for most container applications.

• Networking exposure due to shared host network namespaces: While this is a documented weakness144

shared networking can be desirable for many deployment scenarios (such as having a container add net-

work routes or modify routing information) there are risks to localhost-bound services (assuming trusted

callers) and non-TCP or UDP connections, such as abstract namespaces. As discussed elsewhere within

this paper, skipping a single namespace within a container deployment can have serious security side-

effects and can subvert the security of other namespaces.

7.2.2 Cross-container Attacks

While threats to the host may present the largest risk for lateral movement or additional compromise in

deployed systems, cross-container attacks may be equally significant. Attacks between containers on the

same host or same local network may enable more direct vulnerabilities or not require weaknesses within

the container implementation itself. For example, compromising the database container on the same host

due to a weak password, or using ARP spoofing to capture credentials from a neighboring container may

achieve an attackers goals without using a container escape. The following section explores potential attacks

between two or more containers on the same host or network (typically the same broadcast domain).

Without user namespaces or running each container within a different user id (uid/gid), containers separated

by a PID namespace may still conflict with resource limits (such as the global user struct) and potentially

other more security-sensitive areas of the kernel not yet namespace aware. However these issues are often

restricted to DoS attacks, in the same way filling a shared disk or volume mount, using all task resources via

a forkbomb degrade the host system.

As discussed earlier, cross-container attacks may largely be enabled through weak network defaults. This is

due to the common and typically default ``bridge'' configuration, allowing the host system to act as a switch

for arbitrary cross-container and container to host networking. Both Docker,145 LXC and Rkt allow for cross-

container communication without it being explicitly enabled. Linux bridges are susceptible to ARP spoofing,

just like most real-world switches. This is especially the case when the CAP_NET_RAW capability is retained by

a container, the default for all containers or when user namespaces are in use, which re-grants all capabilities

(clearly the intent to only interact within their own namespaces can be violated). This is considered a ``known

issue'' for LXC,146 and has been referenced in some prior presentations.147

Resource limits, beyond required storage space limits, are typically not a default configuration item for any

container system. DoS attacksmay happen indirectly via connected systems, or are a result of framework vul-

nerabilities, such as the ``billion laughs'' attack in XML. DoS can also be a result of misbehaving applications

or innocuous application misconfiguration. These risks are further explored in 7.2.4 on page 57. Beyond

shared resources, if any mount point or even underlying partitions are shared between containers, it may

allow a compromised or malicious container to influence other systems.

143http://linux.slashdot.org/story/16/02/01/1357237/running-rm--rf--is-now-bricking-linux-systems
144https://github.com/docker/docker/issues/14767
145https://docs.docker.com/articles/networking/#between-containers
146https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1548497
147http://events.linuxfoundation.org/sites/events/files/slides/secure-lxc-networking.pdf

55 | Understanding and Hardening Linux Containers NCC Group

http://linux.slashdot.org/story/16/02/01/1357237/running-rm--rf--is-now-bricking-linux-systems
https://github.com/docker/docker/issues/14767
https://docs.docker.com/articles/networking/#between-containers
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1548497
http://events.linuxfoundation.org/sites/events/files/slides/secure-lxc-networking.pdf

Local network access also may expose container management systems, which may indirectly then trigger

cross-container attacks by targeting known information, such as a hostname or IP address of target contain-

ers. Unfortunately enumerating the different systems and threats are outside of the scope of this whitepaper.

When performing an assessment of these systems, consider how different attacks may be enabled if direct

access to any service discovery, orchestration and management systems is gained (either through a host

escape or local network attacks). The majority of these systems offer poor or missing authentication, autho-

rization or do not use transport layer security such as TLS.

7.2.3 Inner-container Attacks

Before a compromised or malicious container can attempt to access the host or target different cross con-

tainer vulnerabilities, an attacker may be required to first gain unauthorized access to the container itself.

This will typically manifest itself via non-container related flaws, such as plain web application vulnerabilities,

weak administration controls, command injection, arbitrary file writes, and evenmemory corruption or other

vulnerabilities. The following inner-container attacks section enumerates attacks within the container itself,

with the explicit goal of either gaining additional privilege, violating the security assumptions of the provided

application or platform, andobtaining a system foothold or reverse shell. This foothold canprovide access or

other information supporting yet other attacks, such as those focusedon the local shared kernel. Exploitation

of these vulnerabilities may or may not be required for cross-container attacks or escaping to the host,

depending on the application and container configuration.

• Out of date software: One of the primary methods for container compromise may be due to simply not

keeping the container up to date or not deploying new containers when vulnerabilities are discovered.

This may risk known and pre-packaged exploits being easily used by attackers in drive-by attacks or

advanced attackers targeting complex but known vulnerabilities for a high value target.

• Exposing the container to insecure or untrusted networks: Exposure risks attacks against other container

systems given a single ``bad apple''. This occurs from not isolating containers by trust via their attack

surfaces or hardening. Not limiting access to unique network zones or accessibility as well as limiting

container security basedon application content (such as PII or Payment related). All of these architecture or

design risks can subvert a strong security model and otherwise exacerbate the impact of any compromise.

• Useof largebase images: The tendency or default to use largebase images allows for a number of potential

attacks. This greatly increases the ``tools'' available for compromise indication (that is, letting the attacker

know their exploit was successful), or remote access. The inclusion of interpretive languages (Python,

Ruby, Perl, PHP, etc) can also be a source of almost unlimited exploit tooling and development. Finally,

large base images may require more patching, which on production critical systems, if a system is not

place for ephemeral images, many vulnerabilities may be found within a single long-running container.

This issue is exacerbated by thinking of containers as ``sealed systems'' when that is only one part of the

security problem.

• Weak application security: The application within the container may contain any number of vulnerabilities

which allow an attacker to gain a foot-hold into the container or expose the very information without

performing any container attacks (such as exposing sensitive system log files which contain leaked cloud

authentication tokens, such as AWS access keys).

• Lack of user namespaces or use of the actual root user: This may allow a single vulnerable application in

a container or such an application within a container OS to be more easily exploited to gain a foothold

onto the system, network or tamper with files to remain persistent within the container. Privileged attacks

can then be explored and attempted against the other processes within a container, the host or other

containers.

56 | Understanding and Hardening Linux Containers NCC Group

7.2.4 Denial of Service and Resource Consumption

Apart from specific security attacks against the host, other guest containers or the container itself, Denial

of Service attacks against the system can be surprisingly powerful and effectively have the similar business

or downtime impacts to exploitation when successful. While other attacks receive the majority of security

focus, DoS attacks are extremely effective, and often employed by threat actors. These attacks are often

used either as a direct means of attack, with the sole purpose of disruption, or as a cover for additional more

serious exploit targets. DoS attacks in a container environment may include, but not be limited to attacks

such as:

• Infinitely replicating or duplicating functions: Classic forkbombs are a trivial attack given any ability to write

code (either interpreted, native or otherwise) in order to quickly consume hardware resources (typically

CPU and Memory). A great bash example, which should always be tested carefully, is the following

recursive function: (:(){ :|:& };:)

• Direct exposure of hardware resources: Any hardware devices which are directly exposed to the container

present an opportunity for DoS attack, assuming the container has such access legitimately. This includes

unbound CPU, memory, network or disk access.

• Indirect exposure of hardware resources: This could include network mapped drives, container manage-

ment, service discovery solutions or other systems connected on the same network. If an attacker can

generate a large amount of requests, even for innocuous requests or files, it may amplify logging infor-

mation or local network traffic to specific systems, and indirectly create a DoS.

• Random devices: Exposing the strong cryptography PRNG /dev/random to malicious or compromised

containers can lower or deplete the kernel's entropy pool.148 While the need for strong randomness

during key generation is desirable, a compromised container with access to /dev/random can disrupt,

slow down or possibly entirely halt future cryptographic operations (due to blocking behavior) within the

same container host by issuing a large number of read calls to the device.

7.2.5 The General Problem of New Code

As with any software, introducing new code risks new and undiscovered mistakes or bugs, where undoubt-

edly some will manifest themselves as security vulnerabilities. Vulnerabilities can either be from incorrect

design, implementation errors, or unexpected interactions with existing code. While the likelihood of bugs

is a known constant by security professionals, the risk is increased when the code modifications deal with

sensitive areas of a codebase such as privilege or access control. In order to illustrate this point, a short list of

public CVE vulnerabilities stemming fromnew security features (with goals such as reduced root capabilities)

is included below.

• Vulnerabilities involving privileged capabilities include but are not limited to:

– CVE-2014-7975: The do_umount function in fs/namespace.c in the Linux kernel through 3.17 does not

require the CAP_SYS_ADMIN capability for do_remount_sb() calls that change the root filesystem to

read-only, which allows local users to cause a denial of service (loss of writability) by making certain

unshare system calls, clearing the MNT_LOCKED flag, and making an MNT_FORCE umount(2) system

call.

– CVE-2013-4588: Multiple stack-based buffer overflows in net/netfilter/ipvs/ip_vs_ctl.c in the Linux ker-

nel before 2.6.33, when CONFIG_IP_VS is used, allow local users to gain privileges by leveraging the

148See /proc/sys/kernel/random/entropy_avail for the current pool size. Grsecurity contains patches which increase this ``pool

size'' several times over.

57 | Understanding and Hardening Linux Containers NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7975
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4588

CAP_NET_ADMIN capability for (1) a getsockopt(2) system call, related to the do_ip_vs_get_ctl()

function, or a setsockopt(2) system call, related to the do_ip_vs_set_ctl() function.

– CVE-2013-6383: The aac_compat_ioctl() function in drivers/scsi/aacraid/linit.c in the Linux kernel be-

fore 3.11.8 does not require the CAP_SYS_RAWIO capability, which allows local users to bypass intended

access restrictions via a crafted ioctl(2) call.

– CVE-2011-2517: Multiple buffer overflows in net/wireless/nl80211.c in the Linux kernel before 2.6.39.2

allow local users to gain privileges by leveraging the CAP_NET_ADMIN capability during scan operations

with a long SSID value.

– CVE-2011-1019: The dev_load() function in net/core/dev.c in the Linux kernel before 2.6.38 allows

local users to bypass an intended CAP_SYS_MODULE capability requirement and load arbitrary modules

by leveraging the CAP_NET_ADMIN capability.

• Vulnerabilities within namespaces themselves: It is important to keep in mind, several of the issues below

likely derive from namespaces and capabilities being ``added-on'' later within the kernel as opposed to

building them in from the ground up (obviously other more important things were on Linus' mind back

in 1991). The vast majority of issues included below are related to user namespaces themselves. With

the somewhat recent addition (stable in 3.8) of user namespaces, a number of vulnerabilities have been

discovered. It is an unfortunate reality to see a component intended to add security for containers through

reduced privileges turned around, in order to gain unauthorized privilege. Exploits may come from local

attackers in the host or compromised applications. These threats against namespaces, and specifically

attacks using user namespaces, often originate from malicious actions on systems without any containers

or with only a partial implementation thereof. This largely impacts or affects administrators without the

knowledgeof user namespaces being enabledorwithout the intent to use containers or user namespaces.

See Anatomy of a user namespaces vulnerability for one in-depth exploration by Linux Weekly News

(LWN).

``We're looking back on three years of vulnerabilities around CLONE_NEWUSER with no end in sight, and

we have an obligation to help the end users that don't want to be exposed to this any more.''

- kernel-hardening post by Kees Cook

As user namespace vulnerabilities often present themselves outside the context of containers, or on sys-

temswhereother namespaces are not applied, distributions have taken to adding customsysctl patches149

in order to allow for user namespaces to be disabled (without having a custom kernel be applied150).

Aware of these developments and distribution tweaks kernel security developers, such as Kees Cook,

have proposed an official patch to allow privileged users to disable user namespaces for non-container

systems.151 Significant dissent followed152, 153 which was well summarized in the Controlling access to

user namespaces article by LWN. Finally, there are alsopotential patches for adding anewuser namespace

specific capability (CAP_SYS_USER_NS154) which also may help resolve this problem, although it is likely

problematic as well.155

– CVE-2013-1956: The create_user_ns() function in kernel/user_namespace.c in the Linux kernel be-

149Such as adding a kernel.unprivileged_userns_clone patch
150http://www.openwall.com/lists/kernel-hardening/2016/01/23/8
151http://www.openwall.com/lists/kernel-hardening/2016/01/22/21
152http://www.openwall.com/lists/kernel-hardening/2016/01/24/10
153http://www.openwall.com/lists/kernel-hardening/2016/01/25/11
154https://lkml.org/lkml/2015/10/17/94
155http://www.openwall.com/lists/kernel-hardening/2016/01/25/16

58 | Understanding and Hardening Linux Containers NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6383
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2517
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1019
https://lwn.net/Articles/543273/
http://www.openwall.com/lists/kernel-hardening/2016/01/24/10
https://lwn.net/Articles/673597/
https://lwn.net/Articles/673597/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1956
http://www.openwall.com/lists/kernel-hardening/2016/01/23/8
http://www.openwall.com/lists/kernel-hardening/2016/01/22/21
http://www.openwall.com/lists/kernel-hardening/2016/01/24/10
http://www.openwall.com/lists/kernel-hardening/2016/01/25/11
https://lkml.org/lkml/2015/10/17/94
http://www.openwall.com/lists/kernel-hardening/2016/01/25/16

fore 3.8.6 does not check whether a chroot directory exists that differs from the namespace root di-

rectory, which allows local users to bypass intended filesystem restrictions via a crafted clone system

call.

– CVE-2013-1957: The clone_mnt() function in fs/namespace.c in the Linux kernel before 3.8.6 does not

properly restrict changes to the MNT_READONLY flag, which allows local users to bypass an intended

read-only property of a filesystem by leveraging a separate mount namespace.

– CVE-2013-1959: kernel/user_namespace.c in the Linux kernel before 3.8.9 does not have appropriate

capability requirements for the uid_map and gid_map files, which allows local users to gain privileges

by opening a file within an unprivileged process and thenmodifying the file within a privileged process.

At least one public exploit is easily found156 or could be created.

– CVE-2013-1858: The clone system-call implementation in the Linux kernel before 3.8.3 does not prop-

erly handle a combination of the CLONE_NEWUSER and CLONE_FS flags, which allows local users to gain

privileges by calling chroot and leveraging the sharing of the / directory between a parent process and

a child process.

– CVE-2014-4014: The capabilities implementation in the Linux kernel before 3.14.8 does not prop-

erly consider that namespaces are inapplicable to inodes, which allows local users to bypass intended

chmod restrictions by first creating a user namespace, as demonstrated by setting the setgid bit on a

file with group ownership of root.

– CVE-2014-5206: The do_remount function in fs/namespace.c in the Linux kernel through 3.16.1 does

not maintain the MNT_LOCK_READONLY bit across a remount of a bind mount, which allows local users

to bypass an intended read-only restriction and defeat certain sandbox protection mechanisms via a

"mount -o remount" command within a user namespace.

– CVE-2014-5207: fs/namespace.c in the Linux kernel through 3.16.1 does not properly restrict clearing

MNT_NODEV, MNT_NOSUID, and MNT_NOEXEC and changing MNT_ATIME_MASK during a remount of a bind

mount, which allows local users to gain privileges, interfere with backups and auditing on systems that

had atime enabled, or cause a DoS (excessive filesystem updating) on systems that had atime disabled

via a "mount -o remount" command within a user namespace.157

– CVE-2014-7970: The pivot_root implementation in fs/namespace.c in the Linux kernel through 3.17

does not properly interact with certain locations of a chroot directory, which allows local users to cause

a denial of service (mount-tree loop) via . (dot) values in both arguments to the pivot_root system call.

– CVE-2015-2925: Was an interesting and some may argue unexpected vulnerability that effected both

Linux containers via bind mounts and OpenVZ, which allowed escaping from bind mounts by using a

similar method to a double-chroot attack.158

– CVE-2015-4176, CVE-2015-4177, and CVE-2015-4178: As well explained by Kernel developer Eric W.

Biederman: ``An unprivileged user could call umount(MNT_DETACH) and in the right circumstances

gain access to every file on essentially any filesystem in the mount namespace. So in a kernel with user

namespaces enabled and you are running a sandbox like Docker that has a real root user inside. That

root user could with a little work remove every ro bindmount on top of proc. Such as /proc/sys/. Allowing

a user that simply has uid 0 and no caps access to do all kinds of interesting things.''

156http://pastebin.com/8vQnNtfZ
157Testing code: http://www.openwall.com/lists/oss-security/2014/08/13/9
158http://www.openwall.com/lists/oss-security/2015/04/03/7

59 | Understanding and Hardening Linux Containers NCC Group

http://www.cvedetails.com/cve/CVE-2013-1957/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1959
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1858
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-4014
http://www.cvedetails.com/cve/CVE-2014-5206/
http://www.cvedetails.com/cve/CVE-2014-5207/
http://www.cvedetails.com/cve/CVE-2014-7970/
https://bugzilla.redhat.com/show_bug.cgi?id=1209367
http://www.openwall.com/lists/oss-security/2015/05/29/5
http://pastebin.com/8vQnNtfZ
http://www.openwall.com/lists/oss-security/2014/08/13/9
http://www.openwall.com/lists/oss-security/2015/04/03/7

– CVE-2015-1328: Discovered by Philip Pettersson, where a privilege escalation vulnerability when using

overlayfs mounts inside of user namespaces. A local user could exploit this flaw to gain administrative

privileges on the system. Exploits can be found for many versions of Ubuntu Linux.159

– CVE-2014-8989: The Linux kernel through 3.17.4 does not properly restrict dropping of supplemental

group memberships in certain namespace scenarios, which allows local users to bypass intended file

permissions by leveraging a POSIX ACL containing an entry for the group category that is more restric-

tive than the entry for the other category, aka a "negative groups" issue, related to kernel/groups.c,

kernel/uid16.c, and kernel/user_namespace.c. The LWN article User namespaces and setgroups() has

more information, in addition to a post on OSS-Security.160

7.2.6 Attacks Against The Host Container Management

While exploring all threats or attacks against container management (such as the LXC configuration suite,

command line utilities, installation tools, the Docker daemon, REST API and other related software) is largely

out of scope for this paper, it is important to understand prior vulnerabilities. This may help when deploying

containers to consider trust for container images, Dockerfile parsing or building and general configuration

hardening. In some cases, exploitation may take the model of a confused deputy attack. For example,

the host container software mistakenly trusts the containers own rootfs data (such as supplying an empty

AppArmor ruleset), which can be seen as the basic risk of untrusted input and requirement of data validation.

Docker in particular has contained a number of vulnerabilities related to image processing or verification.

As a meta-container management issue, for container hosts in cloud environments, restricting access from

the container to upstream metadata endpoints (such as 169.254.169.254 for AWS) should be added to any

host firewall rules or other access restrictions. These systems can leak sensitive information which is typically

used for host management itself.

The following section briefly examines the configuration, use, or trust of host container platforms to poten-

tially compromised container images. Weaknesses within this section often revolve around vulnerabilities

within the hardening and security configuration of various containers. As with similar sectionswithin this con-

tainer threats exploration, the following list should not be considered exhaustive, but is intended to provide

an idea of the types of prior vulnerabilities and risks of handling untrusted image contents or performing

operations on potentially untrusted containers. Finally, it should be noted while LXC and Docker are the

only examples listed below, a lack of Rkt vulnerabilities or CVEs should not indicate a lack of vulnerabilities,

only a reduced attack surface and likely a lack of security research.

• Weaknesses from a procfs unmount, overwrite or overmount in Docker and LXC: These simple attacks have

proven effective against SELinux, AppArmor, Docker and LXC (among other software) on several occa-

sions. For example CVE-2015-1334 allows for a fake procfs to bypass SELinux domain transitions: ``A

malicious container can create a fake proc filesystem, possibly by mounting tmpfs on top of the container's

/proc, and wait for a lxc-attach to be ran from the host environment. lxc-attach incorrectly trusts the con-

tainer's /proc/PID/attr/current,exec files to set up the SELinux domain transitions, which may result in no

confinement being used.'' In CVE-2015-3661 Tõnis Tiigi and Eric Windisch discovered the Docker Engine

before 1.6.1 allowed local users to set arbitrary Linux Security Modules (LSM) and docker_t policies via an

image that allows volumes to override files in /proc.

• Symlink and Hardlink attacks in Docker: For CVE-2014-6407 and CVE-2014-6408 discovered by Florian

Weimer of Red Hat Product Security and an independent researcher, Tõnis Tiigi. Docker prior to 1.3.2

was vulnerable to extracting files to arbitrary paths on the host during ``docker pull'' and ``docker load''

159https://www.exploit-db.com/exploits/37292/
160http://www.openwall.com/lists/oss-security/2014/11/17/19

60 | Understanding and Hardening Linux Containers NCC Group

http://people.canonical.com/~ubuntu-security/cve/2015/CVE-2015-1328.html
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-8989
https://lwn.net/Articles/626665/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1334
http://www.cvedetails.com/cve/CVE-2015-3631/
http://www.openwall.com/lists/oss-security/2014/11/24/5
https://www.exploit-db.com/exploits/37292/
http://www.openwall.com/lists/oss-security/2014/11/17/19

operations. This was caused by symlink and hardlink traversals present in Docker's image extraction. This

vulnerability could be leveraged to perform remote code execution and privilege escalation. Docker also

allowed security options to be applied to images, allowing images to modify the default run profile of

containers executing these images. This vulnerability could allow a malicious image creator to loosen the

restrictions applied to a container processes, potentially facilitating a break-out.

• Chroot strikes back: For CVE-2014-9357 Tõnis Tiigi found the introduction of chroot for archive extraction

in Docker 1.3.2 had introduced a privilege escalation vulnerability. Malicious images or builds from ma-

licious Dockerfiles could escalate privileges and execute arbitrary code as a privileged root user on the

host.

• Symlinks strikeDocker again: ForCVE-2014-9356Tõnis Tiigi discoveredpath traversal attackswithinDocker

before 1.3.3 were possible in the processing of absolute symlinks. In checking symlinks for traversals, only

relative links were considered. This allowed path traversals to exist where they should have otherwise

been prevented. This was exploitable via both archive extraction when building Dockerfiles and through

volume mounts.

• Directory traversal in rootfs: For CVE-2015-1331 and CVE-2015-1334 discovered by Roman Fiedler. LXC

included a directory traversal flaw that allows arbitrary file creation as the root user as a local attacker

(non-guest). LXC also allowed a malicious container to create a fake proc filesystem (possibly by mount-

ing tmpfs on top of the container's existing /proc), and wait for a lxc-attach to be executed in the host

environment. This will then bypass the expected SELinux or AppArmor enforcement, facilitating other

attacks depending on the container configuration.

• Symlink attacks on LXC: CVE-2015-1335 allows a malicious container to escape AppArmor confinement

via a symlink attack on a (1) mount target or (2) bind mount source. See Roman Fiedler's original report

for an example exploit161 and the summary by Tyler Hicks162 for a good summary.

• Symlink attacks strike three for Docker: In CVE-2015-3627 Tõnis Tiigi found libcontainer andDocker Engine

before 1.6.1 opened the file-descriptor passed to the pid-1 process before performing the chroot, which

allowed local users to gain privileges via a symlink attack in an image.

• Sensitive files writable in Docker: For CVE-2015-3630 Eric Windisch of Docker Security discovered several

paths underneath /proc were writable from containers before Docker 1.6.1, allowing global system ma-

nipulation and configuration. These paths included /proc/asound, /proc/timer_stats, /proc/latency_stats,

and /proc/fs.

7.3 LXC Specific Threats

While LXC retains themost flexibly and configuration choices for amajor container platform, it can be under-

minedby insecuredefaults (such as overly-permissive root-capability sets) or default bridgenetworking. This

fundamental or defaults issue may be due to a core philosophy of treating containers as minimal operation

systems as opposed to encompassing a single application container, as with Docker and less so CoreOS Rkt,

which is a bit of amiddle-ground due to the use of systemd, and other ``helper'' executables. This philosophy

does not support an idea of least privilege or least access, andmakes security configuration, through specific

AppArmor or Seccomp profiles difficult.

Fortunately for most users, if a non-root user creates containers, the user namespace will be used by default

which adds a great degree of defense in depth from container escapes, however the default security issue

161https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1476662
162http://www.openwall.com/lists/oss-security/2015/09/29/4

61 | Understanding and Hardening Linux Containers NCC Group

http://www.cvedetails.com/cve/CVE-2014-9357/
http://www.cvedetails.com/cve/CVE-2014-9356
http://seclists.org/oss-sec/2015/q3/165
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-1335
http://www.cvedetails.com/cve/CVE-2015-3627/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3630
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1476662
http://www.openwall.com/lists/oss-security/2015/09/29/4

and core philosophy of OS containers vs App containers remains. In addition to weak defaults, LXC tools

(such as lxc-start and lxc-attach) were recently found to contain a number of critical security flaws,

as illustrated by the LXC security analysis performed by Roman Fiedler163 and posted to OSS-Security by

infamous researcher Solar Designer. For additional details on the strengths, weaknesses and risks for LXC,

see Section 9.4.

7.4 Docker Specific Threats

While Docker likely has the largest and most diverse user-base of any container system, the default security

settings are quite good, especially starting in Docker Engine 1.10 which has support for user namespaces

and seccomp-bpf. However, user namespaces and seccomp are not enabled by default, this base seccomp

support is also implemented as ablacklist not awhitelist. This is likely due to the task of balancinggeneral use

cases, historical root-user assumptions for various Docker subsystems, overall security, and strong defaults.

Before exploring other threats, we should first mention using --privileged is considered extremely dan-

gerous. Although it can enable some cool tricks164 which could be used to add defense in depth, this option

essentially disables all security:

``Docker will enable access to all devices on the host as well as set some configuration in AppArmor

or SELinux to allow the container nearly all the same access to the host as processes running outside

containers on the host.''

- Docker command documentation by Docker

A large base image size, implemented in many Dockerfile examples, abstracted through other FROM calls or

simply through lack of user knowledge can be an overall risk. Large base images not only risks including a

large additional attack surface within the underlying system, but risks having the container inherit security

vulnerabilities, for which then must be patched. For example, due to default and aggressive dependency

requirements for common Ubuntu packages, a high risk but unused application is included within container

images. Due to security requirements to stay up to date, the container images must now be upgraded when

in all likelihood, the application or library is not required for the application in the first place.

As the Docker daemon runs as the root user, and performs various privileged namespace operations, it

is required to execute Docker commands via sudo, directly as the root user or be placed into the ``docker''

group. This long-running root processmay allow for privilege escalation given any number of vulnerabilities,

although root access itself is typically required for Docker access (outside of using any confused deputy

attacks). As simply using the root account or having all users within ``docker'' group is not recommended

for a number of security reasons, but mostly because it allows any compromised user or process in that

group to gain root access.165 Unfortunately, due to real world demands for development team access,

application debugging, testing or other reasons, users which are not intended to have root-level access

(or docker group access, which can be equated with root access) are granted such access. This may also risk

an attacker targeting development employees due to their ability to have near-instant root access on any

host where such access to the ``docker'' group is granted. Other attacks may take the form of compromising

an application (such as CI software or other devops tools) which is also within the docker group.

Due to the need to be ``one size fits all'' nature of Docker, a number of default capabilities remain enabled,

and user namespaces remains disabled due to some features not working correctly. In addition to these

163https://service.ait.ac.at/security/2015/LxcSecurityAnalysis.txt
164https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
165Mostly through known attacks, such as bind-mounting the rootfs into a new container image, then entering that image to edit

specific system files or create a new suid root shell on the host

62 | Understanding and Hardening Linux Containers NCC Group

http://www.openwall.com/lists/oss-security/2015/07/23/2
https://docs.docker.com/engine/reference/run/
https://service.ait.ac.at/security/2015/LxcSecurityAnalysis.txt
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/

issues, Docker users often perform somewhat risky practices, such as placing potentially sensitive values

within environment variables, which can be auto exposed through container links or inherited by all pro-

cesses. This threat may be a side effect of the core product being focused on applications and developers

or devops.

Finally, in order for some deployments to allow for container introspection, the Docker daemon REST in-

terface can sometimes be reachable. This high risk activity is sometimes performed to help with container

management and inner-application debugging or in order to support monitoring, or intelligent load bal-

ancing. Access can be intentionally or unintentionally granted through the connected or exposed network

interfaces or in some cases, the host Docker daemon socket (/var/run/docker.sock) is directly mounted

inside the container. Almost any access to the Docker daemon should be considered as a full container

escape, in addition to likely privilege escalation (as access to the Docker daemon is equal to root access

on the host). For additional details on the strengths and weaknesses or risks of Docker, see Section 9.8 on

page 87.

7.5 CoreOS Rkt Specific Threats

It is safe to say that CoreOS Rocket (Rkt) is still under very active development and may not be ready for

production, even if the February 2016 release of 1.0 is marked as production ready. The overall platform,

documentation, security defaults are still very immature when compared to LXC and Docker. Rkt configura-

tion can be compared to LXC, where a number of security options should be tweaked, improved or added

in order to obtain better base security (especially for privileged containers). The system also currently lacks

strong MAC support, uses an extremely weak seccomp-bpf blacklist, and does not (or can not) drop many

dangerous capabilities as it is heavily linked with systemd defaults. Threats to Rkt when configured with a

stage1 LKVM are considered out of scope for this security consideration, however the full virtualization offers

a number of security improvements over kernel namespaces.

While Rkt does not use a long-running root privilege daemon in the same way Docker does, it does require

root to use almost all rkt commands. This contains the same risk as running as root, and enables the same

potential threats. As with Docker, work is ongoing to break apart privileged operations from non-privileged

operations. At the time of this writing, only the rkt fetch command can be run without root. Although

CoreOS does attempt to prevent from procfs and sysfs exposures or attacks through read-only mounts,

these protections can be easily revered by exploiting CAP_SYS_ADMIN to remount them as writable.

Within Rkt, Docker image verification is missing, and until very recently, TLS certificate validation was also

required to be disabled when using Docker images. As discussed within this paper, the --insecure-skip-

verify flag, required when installing Docker images, historically skipped prompting the user to trust a key,

allowed HTTPS to HTTP downgrades, and chiefly disabled all verification even for TLS certificates on the

upstream server connection. While the Rkt team was aware of the issue, and warnings were then added,

it took roughly nine months to fix this issue, breaking apart --insecure-skip-verify into two separate

options.

The rkt fetch command, used to download potentially signed images, risks potential image spoofing, tam-

pering or modification via upstream attackers if image creators are not trusted explicitly, or are trusted prior

to downloading an image. The current UI defaults poorly indicate the trust level of an image for images

``downloaded but not verified'', or when keys can be trusted automatically (such as if the connection is

performed over TLS when using the metadata service). For images downloaded from a private repository,

docker:// and https:// protocols are supported, although for Docker, only HTTP Basic authentication is

63 | Understanding and Hardening Linux Containers NCC Group

https://github.com/coreos/rkt/issues/912
https://github.com/coreos/rkt/pull/914
https://coreos.com/rkt/docs/latest/subcommands/fetch.html

supported which risks exposing credentials within configuration files.166 See Section 9.12 on page 93 for

more information on Rkt security risks.

7.6 Indirect or Unexpected Threats

The sections below explore attacks which are related to containers but may not involve the container, host

or other containers directly. These threats involve setting up the container in the first place, or must be

accepted risks of the cloud storage platform.

7.6.1 Github All The Way down

The risks of using fully Github backed projects such as Docker and CoreOS is an underlying consideration of

any Github user or project. This risk or potential threat may come from malicious developer contributions,

compromised developer accounts. Attackers may attempt maliciously covert commits, hiding bugs which

can be later exploited. Even Github itself could be compromised, which has occurred several times in the

past. Finally, attacks or exposure of SSH keys used for major accounts167 is a reoccurring vulnerability, as is

attacking locations with shared OAuth tokens or SSH keys for connected CI infrastructure. Docker manages

several core libraries through Github and accepts various commits from upstream GitHub vendors, which

themselves accept commits from yet other, potentially weakly authenticated or semi-anonymous GitHub

users with levels of verification or commit review likely ranging from none to several users. While this is

generally a risk we must fundamentally accept, it is no doubt something to consider.

7.6.2 Denial of Service

Malicious or compromised containers can leverage any available resource to perform various DoS attacks.

If cgroups and other limits are not in place, attackers could fill the entire disk space, trigger file descriptor

limits, hit max process limits, open the max number of open file descriptors and a number of related attacks

on global kernel resources (regardless of namespaces). While many of these DoS attacks require command

or code execution within a container, they often require little to no privileges and will likely impact the host

as well, which can make remediation and even performing any action on the host difficult as well.

7.6.3 The Problem Of Patching

The software, supporting libraries and various binaries within containers almost always need to be regularly

upgraded, or newly built containers need to replace old ones. As new vulnerabilities are found all the time,

the larger amount of software running within a container leads to a greater risk of a vulnerability being

discovered within said container. Vulnerabilities may not only affect the containerized application, but may

also risk exploitation in a basic form or, in the worst case, allow for a foothold into the container itself. While

defense in depth may mitigate some issues, or the vulnerable code path may not be reachable, a clear plan

for upgrading containers is required, even apart from security bugs. As upgrading containers ``in place'' isn't

a recognized or recommended practice (that is to say, running a command such as apt-get update), and

the alternative of immutable, data-only and app-only containers can be challenging, there is no particularly

simple solution for this. Moving to an immutable architecture is also particularly difficult if the overall stack

is not Highly Available (HA) and or otherwise Load Balanced. See 9.8.2 on page 90 and Section 10.3 on

page 105 for more information and recommendations.

7.6.4 Advanced Hardware Attacks

Exposing devices directly via cgroups may invite attacks against specific kernel modules, non-standard

device drivers or even system hardware itself. In cases where special devices are exposed through a device,

and such a device is allowed to be accessed via a container, this may allow for specific DoS or other attacks

166The configuration also supports OAuth Bearer Tokens for registries which support it.
167https://blog.benjojo.co.uk/post/auditing-github-users-keys

64 | Understanding and Hardening Linux Containers NCC Group

https://blog.benjojo.co.uk/post/auditing-github-users-keys

where none would have existed previously. Other ``fringe'' areas of attack may target TCP segmentation

offloading, system non-ECC memory via Rowhammer168 or even advanced CPU instructions169 and CPU

L3 cache timing attacks.170 Such risks are generally increased when using so called "bare metal" containers,

but many of the normal security threats and recommendations remain involving the principal of least access,

even for device hardware.

7.6.5 Image Attacks Via A Poisoned Apple

When downloading images from LXC rootfs download repositories, Docker Hub, third party repositories or

CoreOS repositories, the image or rootfs is rarely inspected (as long as the resulting behavior and output

is as expected). Although some container platforms such as Docker have a curating process171 the threat

remains. Theremay come a time wheremalicious images are inadvertently produced and/or hosted by con-

tainer companies and developers, discovered by unknown actors, implemented by questionable security

researchers, or merely for testing172 and mistakenly used by end-users. When will we see ``backdoored''

container images and do they exist now? It's hard to know for sure, but it is a threat to be considered

during deployment. Amazon AMIs with malicious backdoors have been discovered in the past173, 174 and

backdoors are extremely difficult to spot175 and in some cases, more-or-less impossible176 depending on

the technique.

Making potential backdoors more difficult to spot, is the ``large base image problem'' which occurs mostly

in LXC177 and Docker.178 A number of risks exist for inheriting unknown vulnerabilities or high risk libraries

within the required package dependencies. While the Docker philosophy is a single ``app container'', it is

rarely actually the case. Common examples of image ``bloat'' include pulling in base Ubuntu Linux images

of several hundred megabytes, or using another FROM command which pulls yet another unknown base

image. While only one application may be running as part of the CMD or ENTRYPOINT flag, numerous others

often exist, including full interpreters such as Perl or Python which allow for attacks and potential container

escapes. See Section 10.1 on page 98 and Section 10.3 on page 106 for security recommendations on base

or rootfs images.

7.6.6 Going Forward

Vulnerabilities are more likely to be discovered going forward in disparate areas, such as those of the Linux

kernel or supporting systems which were not written with capabilities or namespaces as part of the design.

The dac_read_search(2) inode access issue and the exposure of process names via the world readable

/proc/sched_debug information leak are good examples of this key problem.

168http://www.halfdog.net/Security/2015/SafeRowhammerPrivilegeEscalation/
169https://www.pagerduty.com/blog/the-discovery-of-apache-zookeepers-poison-packet/
170https://www.kb.cert.org/vuls/id/976534
171See more information within https://github.com/docker-library.
172https://twitter.com/mubix/status/576592666294628353
173https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/BNPSS11.pdf
174http://www.forbes.com/sites/andygreenberg/2011/11/08/researchers-find-amazon-cloud-servers-teeming-with-backdoors-

and-other-peoples-data/
175http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
176https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
177With LXC, this is mostly intentional due to the expected use case of supporting multiple applications within a single container.
178Docker is increasingly switching to Alpine Linux to sidestep this large base image problem.

65 | Understanding and Hardening Linux Containers NCC Group

http://www.halfdog.net/Security/2015/SafeRowhammerPrivilegeEscalation/
https://www.pagerduty.com/blog/the-discovery-of-apache-zookeepers-poison-packet/
https://www.kb.cert.org/vuls/id/976534
https://github.com/docker-library
https://twitter.com/mubix/status/576592666294628353
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/BNPSS11.pdf
http://www.forbes.com/sites/andygreenberg/2011/11/08/researchers-find-amazon-cloud-servers-teeming-with-backdoors-and-other-peoples-data/
http://www.forbes.com/sites/andygreenberg/2011/11/08/researchers-find-amazon-cloud-servers-teeming-with-backdoors-and-other-peoples-data/
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

8 Recent Security Advancements

8.1 The User Namespace

With the release of the user namespace in Linux 3.8179, ,180 root (uid/gid 0) within a container is no longer

considered by the kernel as root outside of that user namespace (e.g. root in the container is no longer

root on the host). This obviously is a great security advancement, and removed a long existing weakness

of Linux containers by allowing for ``privileged'' operations within a container, yet limited (non-root) access

in the case of an access control breakdown or container escape. The kernel and related procfs/sysfs attack

surfaces are less of a concern with the user namespace, as root now lacks elevated privileges to perform

typically sensitive operations. The user namespace is built by using a one to one mapping of userspace UID

values to kernel 'kuids'. This is fundamentally different than suid, because it takes place transparently for the

root user as well as the normal 'struct user' being a different kernel structure.

User namespaces are also great for resource control and to help isolate containers on the same host from

each-other. While this isolation could previously be achieved through using a different uid/gid per con-

tainer instance, the user namespace offers a more consistent map. User namespaces also offer defense in

depth against a privilege escalation vulnerability within a multi-process or multi-user container. This new

user namespace also allows the creation of fully unprivileged containers by unprivileged users. While this

allows for great security benefits that fully embraces the principle of least privilege, and helps support the

development and security of desktop application containers, this obviously opens up the door for potential

security risks. Vulnerabilities may occur within the user namespace implementation or the at the intersection

with other system components, as the case has been a number of times, see 7.2.5 on page 58 for more

information.

8.1.1 Unprivileged containers

Fully unprivileged containers, added alongside user namespace support, allow for unprivileged users to

create and run OS and application containers. This obviously expands the opportunities for non-server

application containers and allows for transparent sandboxing of applications via unprivileged containers or

individual container features if full containers are too cumbersome. On Ubuntu, unprivileged containers are

the default if LXC commands are invoked using an unprivileged user. Rootfs images are pulled in by using

the ``download'' template..181 Docker in version 1.10 added support for the user namespace, although it is

not enabled by default, and the Docker daemon still requires root in order to create containers. CoreOS

Rkt has experimental support for user namespaces183 and will likely require root interaction as well. For

unprivileged containers without using a container framework, the unshare, runuser and lxc-usernsexec

commands among others can be used directly (or at an even lower level, directly using the system calls

is also an option). Finally, Unprivileged containers in Go by Alexander Morozov of Docker is also a great

resource for those implementing User namespaces directly in Golang.

8.1.2 Exploring User Namespaces

User Namespaces are basically achieved by using a "uid/gid shift", such that all UID values, including UID

0, are remapped for each instance of the user namespace. If not controlled by the container framework of

choice, this will be setup through global configuration files /etc/subuid and /etc/subgid. For any process

within a user namespace, the /proc/<pid>/uid_map file can be used to examine the respective offset, which

also can confirm the presence of a user namespace. For instance, inside the user namespace, the file will

179https://lwn.net/Articles/491310/
180http://kernelnewbies.org/Linux_3.8#head-fc2604c967c200a26f336942caee2440a2a4099c
181 It may be prudent to note, the ``download template''182 uses Stéphane Graber's own server for a build environment

(images.linuxcontainers.org RDNS: rproxy.stgraber.org). The security of image delivery (assuming trust of Stéphane Graber) should

beGPG signed and verified and the download performedover HTTPS, although the script will fail openwith awarning in both cases.
183https://coreos.com/rkt/docs/latest/devel/user-namespaces.html

66 | Understanding and Hardening Linux Containers NCC Group

http://lk4d4.darth.io/posts/unpriv1/
http://kernelnewbies.org/Linux_3.8#head-fc2604c967c200a26f336942caee2440a2a4099c
https://coreos.com/rkt/docs/latest/devel/user-namespaces.html

read 0 100000 65536 while outside of the user namespace, the file will contain 0 0 4294967295. Due the

relatively new feature and various distribution implementations or support, if the new UID values are not

automatically allocated, the usermod tool can be used to add them. For further information on the imple-

mentation and some use outside of containers, see Namespaces in operation, part 5: User namespaces by

Michael Kerrisk.

8.1.3 User Namespaces in LXC

For LXC, starting in v1.0, user namespaces are enabled for any container by specifying the lxc.id_map

directive within the respective LXC configuration file.184 On Ubuntu, this can be illustrated by using unpriv-

ileged containers to issue a command inside the container as ``root'', and inspect the process from outside

the container within the host. Note the following example assumes the basic subuid map is already setup:

Creating and starting a busybox container, using the Ubuntu template download to quickly obtain the rootfs

method) named ``foo'':

user$ lxc-create -n foo -t busybox

user$ lxc-start -n foo

udhcpc (v1.21.1) started

Sending discover...

Sending select for 192.168.32.126...

Lease of 192.168.32.126 obtained, lease time 3600

Please press Enter to activate this console. <enter>

Within the unprivileged container, we execute id command to show we are ``root'', then sleep for 9999

seconds and disconnect the console:

BusyBox v1.21.1 (Ubuntu 1:1.21.0-1ubuntu1) built-in shell (ash)

Enter 'help' for a list of built-in commands.

/ # id

uid=0(root) gid=0(root)

/ # sleep 9999 &

/ # ^D

Outside of the container, we'll list the processes belonging to the user with UID 100000 (the start of the

uid shift) and see the sleep command running as non-root. We can also see the UID map for this particular

process:

user$ ps --User 100000 -u

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

100000 7199 0.0 0.0 2184 512 ? Ss 22:51 0:00 init

100000 7246 0.0 0.0 2188 256 pts/15 Ss+ 22:51 0:00 /bin/getty -L tty1

115200 vt100

100000 7247 0.0 0.0 2188 500 pts/23 Ss 22:51 0:00 /bin/sh

100000 7248 0.0 0.0 2184 260 pts/23 S+ 22:51 0:00 sleep 9999

user$ cat /proc/7248/uid_map

0 100000 65536

184https://linuxcontainers.org/lxc/manpages/man5/lxc.container.conf.5.html#lbBA

67 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/532593/
https://linuxcontainers.org/lxc/manpages/man5/lxc.container.conf.5.html#lbBA

8.1.4 User Namespaces in Docker

User namespace support has been a long-time security desire for many Docker adopters and users. Early-

on, within the initial Docker releases (after LXC released version 1.0) user namespaces could be achieved

by using the LXC engine, although this was short lived, due to Docker switching to their in-house written

and Golang powered libcontainer.185 Docker was then prevented from implementing user namespaces

within libcontainer due to actual limitations within Golang itself.186 After this limitation was resolved, Docker

seemed to have focused on different or business efforts while continuing to slowly work with the community

of a user namespace implementation, however implementing user namespaces in Docker was no small task

due to the large number of Docker use cases and the previous core architectural decisions made by the

Docker daemon, Dockerfiles, various metadata, and other details.

AsDocker deployment exploded inpopularity, a large focuswasplacedon security in thepast 12-18months.

Progresswas eventuallymadeand theuser namespace supportmoved fromexperimental187 to stable188, 189

in Docker 1.10, released in February of 2016. This was largely by an effort of IBM's Phil Estes190 (although

he debates that effort191) to bring together several different approaches for the implementation in Docker.

This implementation, which essentially uses a single user namespace rather than a per-container user names-

pace, is currently considered as ``phase 1'' which also only remaps the root user.192 Future support in ``phase

2'' will allow for full per-container UID remapping.

User namespaces in Docker are not enabled by default, but will be used whenever the --userns-remap

daemon flag is present. Some limitations do exist193 related to read-only containers, namespace sharing

(which should also be considered high risk), and external drivers. Hopefully as these limitations are resolved,

user namespaces will become the default. It should also be noted that while user namespaces are presently

supported, it still requires a privileged user to interact with the Docker engine, or the unprivileged user

must be within the docker group (which is effectively allowing full root to that user, given any compromise

or malicious actions).

8.1.5 User Namespaces in Rkt

CoreOS Rkt added experimental support for user namespaces in version v0.8.0. This is likely due to existing

or added user namespace support in systemd (via systemd-nspawn), which Rktmakes heavy use of. The user

namespace can be enabled by using --private-users and --no-overlay (as OverlayFS is not compatible

with user namespaces in Rkt) on the command line.

8.1.6 Here Be Dragons

Despite the large upsides the user namespace provides in terms of security, due to the sensitive nature of

the user namespace, somewhat conflicting security models and large amount of new code, several serious

vulnerabilities have been discovered and new vulnerabilities have unfortunately continued to be discovered.

These deal with both the implementation of user namespaces itself or allow the illegitimate or unintended

use of the user namespace to perform a privilege escalation. Often these issues present themselves on

systems where containers are not being used, and where the kernel version is recent enough to support

185https://github.com/opencontainers/runc/tree/master/libcontainer
186https://github.com/golang/go/issues/8447
187http://integratedcode.us/2015/10/13/user-namespaces-have-arrived-in-docker/
188https://blog.docker.com/2016/02/docker-engine-1-10-security/
189https://github.com/docker/docker/pull/19187
190https://github.com/docker/docker/pull/12648
191http://integratedcode.us/2015/10/16/its-the-community-stupid/
192https://events.linuxfoundation.org/sites/events/files/slides/User%20Namespaces%20-%20ContainerCon%202015%20-%2016-

9-final_0.pdf
193https://docs.docker.com/engine/reference/commandline/daemon/#user-namespace-known-restrictions

68 | Understanding and Hardening Linux Containers NCC Group

https://github.com/opencontainers/runc/tree/master/libcontainer
http://integratedcode.us/2015/10/13/user-namespaces-have-arrived-in-docker/
https://blog.docker.com/2016/02/docker-engine-1-10-security/
https://github.com/docker/docker/pull/19187
https://github.com/docker/docker/pull/12648
http://integratedcode.us/2015/10/16/its-the-community-stupid/
https://events.linuxfoundation.org/sites/events/files/slides/User%20Namespaces%20-%20ContainerCon%202015%20-%2016-9-final_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/User%20Namespaces%20-%20ContainerCon%202015%20-%2016-9-final_0.pdf
https://docs.docker.com/engine/reference/commandline/daemon/#user-namespace-known-restrictions

user namespaces.

User namespaces also allows for ``interesting'' intersections of security models, whereas full root capabilities

are granted to new namespace. This can allow CLONE_NEWUSER to effectively use CAP_NET_ADMIN194 over

other network namespaces as they are exposed, and if containers are not in use. Additionally, as we have

seen many times, processes with CAP_NET_ADMIN have a large attack surface and have resulted in a number

of different kernel vulnerabilities. This may allow an unprivileged user namespace to target a large attack

surface (the kernel networking subsystem) whereas a privileged container with reduced capabilities would

not have such permissions. See Section 5.5 on page 39 for a more in-depth discussion on this topic.

For these reasons, among other risks, the grsecurity patches default to disabling the user namespace. Linux

distributions have shipped custommodifications to disable it and kernel developers have discussed patches

to disable it's capabilities for server administrators who want an easy method to disable it, without having

to recompile their kernel. See sysctl: allow CLONE_NEWUSER to be disabled for a lengthy and contentious

kernel-hardening mailing list thread and the container threats in section 7.2.5 on page 58 for more informa-

tion and examples of prior vulnerabilities. Finally, subgraphOS, a high-security Linux distribution also ships

with a disabled user namespace for security reasons.195

If we understand that kernel namespaces are incomplete (and more of a logical attempt at isolation rather

than a designed security barrier), and that Linux capabilities must be dropped or are also incomplete, then

we need yet something else for security. Enter Mandatory Access Control – keeping root, and everyone else

in check.

8.2 Mandatory Access Control

While Mandatory Access Controls (MAC) are not a recent security advancement they are finding a new utility

and rate of adoption along with the popularity of Linux containers. In 1977, the US Air Force commissioned

an unclassified paper by the MITRE corporation titled ``Integrity Considerations for Secure Computing Sys-

tems''196 by Kenneth J. Biba. This paper (also released a few years earlier by UC Davis in 1975197) outlined

different so-called ``water marks'' for secure enforcement of information access; the paper also discusses the

idea of policies, domains, subjects and objects which focused on the ``integrity'' of secure data within the

system. Almost ten years later in 1998, the National Security Agency (NSA) published an infamous paper ti-

tled ``The Inevitability of Failure: The FlawedAssumption of Security inModern Computing Environments''.198

This paper gave Mandatory Access Control a major (or at least public) start within Operating System circles.

Within Linux this was kickstarted by the NSA via SELinux, a set of Open Source patches released directly by

the NSA which added a Multi Level Security (MLS) type enforcement system.199

194https://lwn.net/Articles/673613/
195https://github.com/subgraph/oz/issues/11#issuecomment-163396758
196http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
197http://seclab.cs.ucdavis.edu/projects/history/papers/biba75.pdf
198http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf
199While outside the scope of this paper, it should be noted the earlier MITRE solution from Kenneth J. Biba is called the Biba model

and the later NSA solution the so-called ``inverse'' Bell LaPadula model which is implemented within the MLS portion of SELinux.

Wikipedia puts the differences between the models as: ``The Bell–LaPadula model focuses on data confidentiality and controlled

access to classified information, in contrast to the Biba Integrity Model which describes rules for the protection of data integrity.''

69 | Understanding and Hardening Linux Containers NCC Group

http://www.openwall.com/lists/kernel-hardening/2016/01/22/19
https://lwn.net/Articles/673613/
https://github.com/subgraph/oz/issues/11#issuecomment-163396758
http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/biba75.pdf
http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf
https://en.wikipedia.org/wiki/Biba_Model
https://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model

A particular Phrack article offers a concise overview of what MAC provides:

``Type Enforcement is a simple concept: Mandatory Access Control takes precedence over aDiscretionary

Access Control (DAC) to contain subjects (processes, users) from accessing or manipulating objects (files,

sockets, directories), based on the decision made by the security system upon a policy and subject's

attached security context. A subject can undergo a transition from one security context to another (for

example, due to role change) if it's explicitly allowed by the policy. This design allows fine-grained, albeit

complex, decision making. Essentially, MACmeans that everything is forbidden unless explicitly allowed

by a policy. Moreover, the MAC framework is fully integrated into the system internals in order to catch

every possible data access situation and store state information.''

- Linux Kernel Heap Tampering Detection by Larry H. in Phrack 66

The use within Linux containers is immediately clear. Prior to the user namespace, the capabilities model

and other kernel namespaces were the only mechanism (aside fromMAC) for limiting privileged containers

and preventing escape. This can be found in mailing list postings200 and security articles.201, 202While MAC

systems can be cumbersome to configure, they offer strong additional security assurances and defense

in depth,203 provided kernel hardening is also applied. While there are several native methods of MAC

enforcement for Linux, only two will be discussed within this section, as they are the arguably the most

popular and most commonly supported within container environments.

8.2.1 Security-Enhanced Linux (SELinux)

SELinux is a generalized system to establish fine-grained policy and type enforcement, isolated in separate

components or labels. SELinux essentially employs the Bell-LaPaula Model (BLP), commonly used for access

control in government and military applications where such restriction is more easily enforced204 or where

type enforcement must follow data classification levels such as only increasing in classification. Configura-

tion of SELinux primarily involves applying this type enforcement across different labels, and appropriately

labeling both processes and data.

The extremely complex205, 206 policy language is one of the reasons SELinux is not widely accepted, even

among many security-conscious system administrators. In order for SELinux type enforcement to be ``cor-

rect'', the correct Multi Level Security (MLS) labels must be applied and fine-grained. Due to this complexity,

lack of up-to-date policies and general lack of understanding, SELinux suffers from what the author per-

sonally refers to the ``setenforce 0 principal''.207 Disabling SELinux is such a common trend, it even has a

website created to stopping the practice, stopdisablingselinux.comwith an associated ``setenforce 1'' t-shirt,

put together by infamous SELinux advocate and Red Hat employee Dan Walsh.

SELinux is well supported within Linux distributions, including being enabled by default in modern versions

of Google Android and RedHat/CentOS Linux. When a Linux kernel has CONFIG_SECURITY_SELINUX en-

abled, and SELinux has well configured policies, it can achieve a MAC solution. For containers, support is

also fairly widespread, with implementations in LXC, Docker and CoreOS Rkt. Within LXC container tem-

200http://www.mail-archive.com/lxc-users@lists.sourceforge.net/msg00992.html
201http://www.ibm.com/developerworks/linux/library/l-lxc-security/
202https://blog.docker.com/2013/08/containers-docker-how-secure-are-they/
203This is especially the case if paired with the user namespace and other kernel hardening or attack surface reductions.
204Large budgets allow for creation of complex policies, although we've seen how effective they can be against even a single well

motivated adversary or system administrator.
205https://www.rsbac.org/_media/documentation/rsbac_handbook/architecture_implementation/functional_diagram_gfac_rsbac2

.png
206http://cecs.wright.edu/~pmateti/Courses/7900/Lectures/Security/NSA-SE-Android/Figs/selinux%20architecture.png
207``The likelihood of SELinux being completely disabled, set to not enforce loaded policies or not have an adequate policy quickly

approaches 100% within various NCC Group pentests (and likely in general).''

70 | Understanding and Hardening Linux Containers NCC Group

https://en.wikipedia.org/wiki/Phrack
http://phrack.org/issues/66/15.html
http://stopdisablingselinux.com/
http://www.mail-archive.com/lxc-users@lists.sourceforge.net/msg00992.html
http://www.ibm.com/developerworks/linux/library/l-lxc-security/
https://blog.docker.com/2013/08/containers-docker-how-secure-are-they/
https://www.rsbac.org/_media/documentation/rsbac_handbook/architecture_implementation/functional_diagram_gfac_rsbac2.png
https://www.rsbac.org/_media/documentation/rsbac_handbook/architecture_implementation/functional_diagram_gfac_rsbac2.png
http://cecs.wright.edu/~pmateti/Courses/7900/Lectures/Security/NSA-SE-Android/Figs/selinux%20architecture.png

plates, the lxc.se_context directive specifies the specific context to run the container under. If not set, the

default in SELinux supported and enabled systems is the unconfined_t context, which is to say no SELinux

confinement is performed. To aid with specific policy development, a simple SELinux example policy and

additional information can often be found in /usr/share/lxc/selinux/lxc.te. For Docker, see RedHat's Project

Atomic documentation formore information and theDocker SELinux security policy, also by RedHat for an in-

depth discussion. CoreOS adds support for SELinux primarily through SVirt, in order to provide independent

SELinux contexts.208 Documentation or examples for SELinux within LXC, Docker and Rkt is fairly sparse.

Vulnerabilities and weaknesses within SELinux, apart from it being disabled or not enforcing a policy, are

typically found within the policy file itself or inappropriately applied labels. However as at least one prior

exploit by Brad Spender209 CVE-2015-1815 illustrates, even security software such as SELinux can introduce

weaknesses or even could lead to a system compromise.210 A lack of restrictions for system calls or other

kernel edge-cases, as with any MAC system, also contributes to significant vulnerabilities, which either sub-

vert the security system and in some cases disable it entirely within the first steps of an exploit. See 8.2.4 on

page 73 for more information.

8.2.2 AppArmor

AppArmor offers a pathname based access control (as opposed to filesystem inodes within SElinux), which

typically focuses on processes and is often data-centric. AppArmor, originally called ``subDomain'', was

essentially released with Immunix Linux in 2001 and was created211 as an easy solution to the complex

setup required for SELinux. The SUSE AppArmor Quickstart documentation offers a good overview of how

it works. AppArmor policies are based on a default deny and it can be used in a non-enforcing mode

(similar to SELinux) in order to develop an application or process specific profile. In Linux kernels with

CONFIG_SECURITY_APPARMOR configured one can confirm AppArmor is actually enabled by using the aa-

status command or look for a ``Y'' within /sys/module/apparmor/parameters/enabled.212

AppArmor is typically found, and used by default, within a number of Linux distributions such as Debian

and Ubuntu, as well as high-security distributions such as SubgraphOS (currently alpha) in order to protect

various applications and network deamons.213 Ubuntu has continued to add default profiles for a number of

widely deployed packages fromCUPS and tcpdump to Apache2 and even Firefox.214 For container systems,

AppArmor provides a MAC system that focuses on augmentation or defense in depth of normal container

systems (namespaces, capabilities, and cgroups). Take a look at the default base profile for LXC containers

(/etc/apparmor.d/abstractions/lxc/container-base 215) for a well-tuned example.

Although profile generation is much easier compared to SELinux, it is not a trivial task, requiring an under-

standing of an application's requirements and ``exercising'' the application appropriately. A profile generator

written by AppArmor developers, aa-genprof, can be used to develop a profile for a specific application

or process. For Docker containers, bane216 by Jess Frazelle can also be used to develop application and

container-specific Docker AppArmor profiles. In all cases, profile generation is unfortunately not an oper-

208https://coreos.com/blog/container-security-selinux-coreos.html
209https://grsecurity.net/~spender/exploits/exploit2.txt
210In this case the vulnerability allowed for arbitrary commandexecution, possibly even exploitable remotely, via shellmetacharacters

within a file name (http://seclists.org/oss-sec/2015/q1/1011).
211http://wiki.apparmor.net/index.php/AppArmor_History
212As astute readers may guess, some exploitation methods have used the referenced /proc/sys/ entries to disable or allow for

unconfined access via ``overmounting'' and other attacks.
213Interestingly, AppArmor contains a "severity" database of various files and Linux capabilities. See http://apt-browse.org/browse/

debian/wheezy/main/i386/apparmor-utils/2.7.103-4/file/etc/apparmor/severity.db for an example
214https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
215https://github.com/lxc/lxc/blob/master/config/apparmor/abstractions/container-base
216https://github.com/jfrazelle/bane

71 | Understanding and Hardening Linux Containers NCC Group

http://www.projectatomic.io/docs/docker-and-selinux/
http://www.projectatomic.io/docs/docker-and-selinux/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/container-security-guide/chapter-6-docker-selinux-security-policy
http://www.cvedetails.com/cve/CVE-2015-1815/
https://www.suse.com/documentation/sles11/singlehtml/apparmor_quickstart/apparmor_quickstart.html
https://coreos.com/blog/container-security-selinux-coreos.html
https://grsecurity.net/~spender/exploits/exploit2.txt
http://seclists.org/oss-sec/2015/q1/1011
http://wiki.apparmor.net/index.php/AppArmor_History
http://apt-browse.org/browse/debian/wheezy/main/i386/apparmor-utils/2.7.103-4/file/etc/apparmor/severity.db
http://apt-browse.org/browse/debian/wheezy/main/i386/apparmor-utils/2.7.103-4/file/etc/apparmor/severity.db
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
https://github.com/lxc/lxc/blob/master/config/apparmor/abstractions/container-base
https://github.com/jfrazelle/bane

ation that can be performed through static-analysis of either the binary application or source code – the

application must be exercised appropriately to generate a complete profile.217 Information on container

specific AppArmor profiles for LXC and Docker can be found within Section 10.2 on page 104. See AppAr-

mor Documentation and the Core Policy Reference for information on building profiles, different AppArmor

commands, and various tutorials not specifically related to containers.

While AppArmor has received significant support and is widely used within most popular Linux distributions

and container solutions (Docker and LXC), it does contain some underlying risks or vulnerabilities. AppAr-

mor can be subverted in several ways, including but not limited to:

• Path modification: Using filesystem hardlinks, overmounting on top of existing folders, or remounting

filesystems in different folders can support bypassing path-based rules. In a contrived example, mounting

a new procfs in a new location will bypass any procfs AppArmor rules.

• Inappropriate trust: If the policy configuration details are sourced from the container's own filesystem or

procfs mount, an attacker can rewrite the policy.

• Profile weaknesses; For an application of any complex size, or in the case of LXC usingOS-style containers,

the profile can be complex and therefore likely contain flaws. See Poking Holes in AppArmor Profiles by

Azimuth Security.

• Issues outside of MAC control: AppArmor is also not designed to address some weaknesses, such as direct

execution of system calls.218

Attacks leveraging the trust of the container's rootfs have also resulted in AppArmor bypasses for both LXC

and Docker, as illustrated by the following description by Tyler Hicks for CVE-2015-1334 found by Roman

Fiedler: ``A malicious container can create a fake proc filesystem, possibly by mounting tmpfs on top of the

container's /proc, andwait for a lxc-attach to be ran from the host environment. lxc-attach incorrectly trusts the

container's /proc/PID/attr/current,exec files to set up the AppArmor profile and SELinux domain transitions

which may result in no confinement being applied.''

8.2.3 Other Mandatory Access Control Implementations

While AppArmor and SELinux are the most widely used Linux Security Modules (LSMs), several other Linux

MAC implementations exist and offer different capabilities and configuration.219 While these are out of

scope of this paper due to their niche implementations or lack of support in most container frameworks, two

such implementations deserve special mention:

• Simplified Mandatory Access Control Kernel or SMACK: The SMACK project can be seen as the antithesis

of SELinux, focusing on being uncomplicated and easy to use. Existing, and possibly outdated, docu-

mentation by IBM within the Secure Linux containers cookbook explores SMACK as used in LXC. Outside

of containers, the ``SMACK MAC'' is used today in everything from mobile Operating Systems such as

Samsung Tizen to Phillips Smart TVs.

• Grsecurity's Role Based Access Control or RBAC:Grsecurity's RBAC offers an excellent framework for a MAC

system, and one that is not implemented as a LSM, so it can work alongside others. Similar to AppArmor

and SELinux, the RBAC system can be used in a training mode, developing a policy automatically based

on exercised application features and ``learned'' functionality. Grsecurity's policy rules are based on three

main distinctions: subjects, roles and objects. The policy is path based (similar to AppArmor) but it also

217Areas which are not desired to be operational could be avoided, and will be blocked within the application, although this may

trigger unstable application behavior depending on the level of error handling.
218http://comments.gmane.org/gmane.comp.security.apparmor/5184
219It is also worth noting, LSMs may become ``stackable'' in the future, although that remains a hot debate. See https://lwn.net/

Articles/393008/ and https://lwn.net/Articles/518345/.

72 | Understanding and Hardening Linux Containers NCC Group

http://wiki.apparmor.net/index.php/Documentation
http://wiki.apparmor.net/index.php/Documentation
http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference
http://blog.azimuthsecurity.com/2012/09/poking-holes-in-apparmor-profiles.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1334
http://www.ibm.com/developerworks/library/l-lxc-security/
http://comments.gmane.org/gmane.comp.security.apparmor/5184
https://lwn.net/Articles/393008/
https://lwn.net/Articles/393008/
https://lwn.net/Articles/518345/

contains simple rules for specific socket operations (which can limit specific network behavior against

target hosts), resource restrictions, kernel capability controls, and many other options.220 The training or

``learning'' support221 within gradm offers a quick method to develop what are often complex policies,

even on complex applications or applications for which no source code is available. While the learned

or trained policy file may not be a perfect model of ``correct'' application behavior, it offers an excellent

starting point for manual review of the specific operations or accesses an application, user group, or entire

container performs according to the generated policy.

Unfortunately RBAC does not work well with containers, as the RBAC system is not namespace-aware and

breaks on pathname based enforcement.222 While fixing this was at one time on Brad Spengler's TODO

list, a forum reply for requested support was in 2011 and has received no updates.223 While little work

has been done for containers and grsec RBAC and learning-based operations, it could be an effective

MAC method for container solutions. Hopefully those with more time and funding can help develop this

solution.

8.2.4 The ``Flawed Assumption'' of Mandatory Access Control Systems

While Mandatory access control systems seem like an excellent and highly secure solution for enforcing

security, a single weakness in the MAC policy, or the policy coverage itself can open up a significant attack

surface and undermine the entire system. Generally, all MAC systems which are implemented in the kernel

will be defeated by a kernel vulnerability, often exploited via exposed attack surfaces. This is a fundamental

limitation whichmust be understood and kept in mind when exploring the effectiveness of any MAC system,

in addition to exploring the potential attack surfaces and weaknesses of a given MAC policy or rule-set.

Making a parody of Dan Walsh's 2007 post on the SELinux implementation within RHEL 5, Brad Spengler of

grsecurity created224 the following image, which comically illustrates the underlying flawed assumption of

MAC:

220https://en.wikipedia.org/wiki/Grsecurity#Role-based_access_control
221https://en.wikibooks.org/wiki/Grsecurity/The_Administration_Utility#Learning_Mode
222https://forums.grsecurity.net/viewtopic.php?f=3&t=2527&p=10296&hilit=lxc#p10300
223https://forums.grsecurity.net/viewtopic.php?f=5&t=2971
224https://lwn.net/Articles/357907/

73 | Understanding and Hardening Linux Containers NCC Group

http://magazine.redhat.com/2007/05/04/whats-new-in-selinux-for-red-hat-enterprise-linux-5/
https://en.wikipedia.org/wiki/Grsecurity#Role-based_access_control
https://en.wikibooks.org/wiki/Grsecurity/The_Administration_Utility#Learning_Mode
https://forums.grsecurity.net/viewtopic.php?f=3&t=2527&p=10296&hilit=lxc#p10300
https://forums.grsecurity.net/viewtopic.php?f=5&t=2971
https://lwn.net/Articles/357907/

This fundamental limitation of MAC systems is problematic, as the large kernel attack surface remains an

Achilles' heel, proving that MAC systems alone cannot be the sole protection against system compromise.

Historic vulnerabilities in syscalls, pipes, procfs and even implementation flaws in filesystems225 have al-

lowed for exploits to easily disableMAC systems, allowing for trivial further system exploitation. An example

can be found in Phrack 66 referenced above, ``Linux Kernel Heap Tampering Detection''.

This basic weakness, along with other general hardening recommendations when considering the shared

attack kernel surfaces of containers strongly encourages yet another layer of security: hardening the kernel

itself. This includes but is not limited to keeping up-to-date on patches or using recent versions, removing

the myriad of features which are not often required, and applying a hardening patchset such as grsecurity

and PaX if at all possible. See kernel hardening recommendations in Section 10.5 on page 109 for more

information.

8.3 Syscall Filtering with Seccomp

Seccomp or ``SECure COMPuting'' offers a method to reduce the number of system calls available for an

application to interface with the kernel. While this may seem a recent advancement, this idea is not new. As

early as 1996, Janus226 was created by several researchers at UC Berkeley to limit system calls and provide

a ``restricted execution environment''.

However, seccomp solved a core problem which plagued many prior implementations. These older imple-

mentations of syscall filtering often employed syscall ``wrapping'' or ``tracing'' such as BSD's deprecated

systrace, and were repeatedly found to be vulnerable to concurrency issues such as TOCTOU (Time of

Check - Time of Use)227 and even several privilege escalations.228, 229 Other ptrace-based syscall filters,

such as those historically attempted by vsftp, and systrace are not ideal for the reasons mentioned above,

not to mention they are very complex to implement. It should be noted systrace has now been replaced

in OpenBSD by tame(),230 a new and quite rational approach to filtering and reducing the syscall attack

surface. See Domesticating applications, OpenBSD style for more information on a competing approach to

Seccomp.

A limited seccomp was implemented in Linux as early as 2.6.12231 and was enabled by writing directly

to procfs. This was initially intended to provide for CPU sharing of fully untrusted applications, but that

never fully developed. This ``basic'' seccomp was chiefly used within the Google Chrome browser232 and

limited syscalls to just read(2), write(2), sigreturn(2), and _exit(2), with a SIGKILL signal sent to the

process when attempting other syscalls. This highly restricted set of calls is now referred to as SECCOMP_-

MODE_STRICT. Limitations in flexibility, complications in the implementation of disparate microprocesses,

heavy IPC requirements, and risks of using those syscalls for special pseudo file systems (procfs) lead to

further seccompdevelopment efforts. After a number of failed trials and tribulations233 the Linux community

accepted a patch for seccomp-BPF. This introduced a means of configuring which syscalls are available to a

process via a Berkeley Packet Filter (BPF)234 and was written by Will Drewry of Google.

225Issues with reiserfs: https://www.exploit-db.com/exploits/12130/.
226http://www.cs.berkeley.edu/~daw/janus/
227http://www.watson.org/~robert/2007woot/2007usenixwoot-exploitingconcurrency.pdf
228https://www.provos.org/index.php?/categories/2-Systrace&/archives/33-Local-Privilege-Escalation.html
229http://undeadly.org/cgi?action=article&sid=20070809201304
230https://lwn.net/Articles/651701/
231https://lwn.net/Articles/346902/
232See https://lwn.net/Articles/347547/ and https://code.google.com/p/seccompsandbox/wiki/overview
233See https://lwn.net/Articles/332974/ and https://lwn.net/Articles/450291/
234https://lwn.net/Articles/475043/

74 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/651700/
https://www.exploit-db.com/exploits/12130/
http://www.cs.berkeley.edu/~daw/janus/
http://www.watson.org/~robert/2007woot/2007usenixwoot-exploitingconcurrency.pdf
https://www.provos.org/index.php?/categories/2-Systrace&/archives/33-Local-Privilege-Escalation.html
http://undeadly.org/cgi?action=article&sid=20070809201304
https://lwn.net/Articles/651701/
https://lwn.net/Articles/346902/
https://lwn.net/Articles/347547/
https://code.google.com/p/seccompsandbox/wiki/overview
https://lwn.net/Articles/332974/
https://lwn.net/Articles/450291/
https://lwn.net/Articles/475043/

8.3.1 SeccompWith Berkeley Packet Filters

For the first version of seccomp (SECCOMP_MODE_STRICT), the limit of system calls is often overly restrictive

for non-trivial applications, or too restrictive for those who do not want to develop millions of broker pro-

cesses and IPC calls. Seccomp BPF uses a Berkeley Packet Filter (BPF) to filter calls made by the restricted

program.235 The BPF pseudo-language was designed for high-speed, in-kernel bytecode236 evaluation in

a simple and safe language.237 By using BPF to evaluate system call IDs and their arguments, instead of the

fields of IP packets, seccomp-bpf is able to reuse this mechanism for purposes other than firewalling. With

the creation of a seccomp-bpf syscall filter-set, in either a whitelist or blacklist, syscalls (and in some cases

their arguments) can be restricted.

As best stated by the original patch author for seccomp-BPF:

``The goal of the patchset is straightforward: To provide a means of reducing the kernel attack surface. In

practice, this is done at the primary kernel ABI: system calls.''

- dynamic seccomp policies (using BPF filters) by Will Drewry

Beware of trying to use seccomp-bpf as a general security mechanism or as the core of a sandbox imple-

mentation, as this is not its intended use. The documentation clearly states it should be used for defense in

depth via attack surface reduction:

``System call filtering isn't a sandbox. It provides a clearly defined mechanism for minimizing the

exposed kernel surface. It is meant to be a tool for sandbox developers to use. Beyond that, policy for

logical behavior and information flow should be managed with a combination of other system hardening

techniques and, potentially, an LSM of your choosing.''

- Linux kernel Documentation/prctl/seccomp_filter.txt by Will Drewry

Seccomp-bpf also avoids problems typical with traditional system call interposition frameworks such as

TOCTOU referenced above:

``BPFmakes it impossible for users of seccomp to fall prey to time-of-check-time-of-use (TOCTOU) attacks

that are common in system call interposition frameworks. BPF programs may not dereference pointers

which constrains all filters to solely evaluating the system call arguments directly.''

- Linux kernel Documentation/prctl/seccomp_filter.txt by Will Drewry

However, a currently understood limitation of seccomp relates to the ptrace(2) syscall. The official docu-

mentation238 clearly states: ``seccomp-based sandboxes MUST NOT allow use of ptrace, even of other sand-

boxedprocesses, without extreme care; ptracers can use thismechanism to escape''. If ptrace(2) is allowed,

the tracer can modify the process' system call in order to bypass the filter and then call blocked or restricted

system calls (further examples are provided in seccomp documentation). See seccomp_ptrace_escape.c on

github for a proof-of-concept.

Seccomp-BPF has two different operating modes, enabled via prctl(2) or seccomp(2) syscalls. In either

case, the BPF program is passed as a pointer which is then installed in the kernel and called on each and

every system call (for threads which are using seccomp-bpf). Once the filter is setup, it cannot be removed

(similar to root capabilities) and filters can only become more strict. This allows for filtered applications to

further remove syscalls from their own permitted sets, allowing for a true least privilege model.

235http://www.tcpdump.org/papers/bpf-usenix93.pdf
236https://blog.cloudflare.com/bpf-the-forgotten-bytecode/
237BPF programs are directed acyclic graphs, all instructions are the same size and can be confirmed to exit.
238See SECCOMP_RET_TRACE within https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.

75 | Understanding and Hardening Linux Containers NCC Group

http://article.gmane.org/gmane.linux.file-systems/60255
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://gist.github.com/thejh/8346f47e359adecd1d53
http://www.tcpdump.org/papers/bpf-usenix93.pdf
https://blog.cloudflare.com/bpf-the-forgotten-bytecode/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

SECCOMP_MODE_STRICT: The first version of seccomp, also called ``mode one'', enables the most basic

seccomp implementation. This only allows processes to call read(2), write(2), _exit(2), and

sigreturn(2). As stated in the documentation, this can be useful for minimal ``number-crunching

applications'' or very small processes such as renderers in Google Chrome. This mode should be

applied if at all possible, although for containers this will rarely be appropriate. Attempting to access

syscalls outside of the set above results in a SIGKILL.

SECCOMP_MODE_FILTER: Also called ``mode two'', this version was added by Will Drewry in Linux 3.5. A

pointer to a Berkeley Packet Filter (BPF) which defines allowed or blocked system calls is passed as

an argument when using prctl(2). As seccomp itself is preserved across an execve(2), clone(2)

or a fork(2), syscall filtering can effectively follow a least privilege model, continuing to create new

levels of restrictions ``down'' a sandbox or container path as long as prctl(2) is in the allow list at the

highest level. To avoid unhandled behavior and weak error checking by applications denied access

to system calls, filters can raise specific signals upon violation,239 opposed to the forced SIGKILL in

mode one.

8.3.2 Invoking Seccomp-BPF

It may be helpful to understand system calls240 and how they are implemented241 within the Linux Kernel

before further implementing your own seccomp policy. After deciding to use ether the FILTER or STRICT

mode, seccomp is triggered using seccomp(2) and prctl(2) syscalls. An example syscall in C is included

below, where prog is a pointer to the BPF:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, prog);

If the kernel has CONFIG_FTRACE_SYSCALLS enabled, syscall arguments can be filtered within the seccomp

policy. This argument filtering is carefully limited to non-pointer, often numerical arguments, due to potential

TOCTOU attacks.242 For more information on implementing and exploring seccomp-bpf, Kees Cook has

created an excellent seccomp teaching and tutorial page.

To see these options in action, consider reviewing some some sample programs and reading additional

in depth information and examples. The libseccomp library also has great documentation, interfaces, man

pages and examples. Finally, the go-seccomp package from the excellent Subgraph team offers the ability

to parse Chromium BPF policy files for review or implementation, and supports Golang.

8.3.3 The Problems and Setbacks of Seccomp BPF

Generating the correct and minimal syscall filter set is difficult. This is a complex problem, if not the core

problem, of seccomp-bpf use. As discussed by Chromium OS authors: ``Determining policy for seccomp

filter can be time consuming. System calls are often named in arch-specific, or legacy tainted, ways (e.g.,

geteuid(2) versus geteuid32(2)).''

While using strace (via ptrace(2)) basedmeasurements can allow for building rulesets may work for simple

programs, more complex issues may arise due to timing, threading or the inability to trace an entire con-

tainer. Fortunately, advanced in-kernel tools such as Systemtap or Sysdig can be used to monitor an entire

user (for which the container or collection of processes can run as) or to allow for non-ptrace based syscall

measurements. For example, to trace all the syscalls from the ``nobody'' user, you can use the following

239There may also be a reason to use SIGKILL vs SIGTRAP depending on the threat model and logging intentions.
240https://sysdig.com/fascinating-world-linux-system-calls/
241https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html
242See the minijail documentation for more information

76 | Understanding and Hardening Linux Containers NCC Group

https://outflux.net/teach-seccomp/
http://man7.org/tlpi/code/online/dist/seccomp/seccomp_perf.c.html
http://www.insanitybit.com/2014/09/08/3719/
https://blog.jtlebi.fr/2014/05/29/introduction-to-seccomp-bpf-linux-syscall-filter/
https://github.com/seccomp/libseccomp
https://github.com/subgraph/go-seccomp
https://sysdig.com/fascinating-world-linux-system-calls/
https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html

sysdig: sysdig -p"%evt.type" user.name=nobody. The other main kernel auditing tool, Systemtap, can

also be used for system call and resource access monitoring; it supports the development of MAC policies

as well. Generating filter sets for LXC and Docker can also be aided by using the genSeccomp.sh243 and

mkseccomp scripts provided by the Docker project.244

Advanced seccomp filter generation can also be explored by defining a whitelist of no system calls then

raising a specific signal that allows logging to be created, as seccomp mode 2 allows control over the

triggered signal. A more advanced version is also discussed by Mozilla within their wiki page advanced use

cases. This page discusses a ``warn-only'' mode, created by always allowing syscalls from a specific address,

and using SIGSYS to log the system call. The using simple seccomp filters post by Kees Cook also offers a

good solution and example code for syscall reporting by using a similar catch and logmethod. Finally when

developing a seccomp policy, the Docker seccomp documentation245 lists a number of potentially high risk

system calls which should be excluded in any filter policy.

Missing support for CPU architectures other than x86 and x86_64may prevent adoption on some platforms. Ad-

ditional kernel hardware support for seccomponother platforms is slowgoing. However, due towidespread

Linux support, the nature of open source software, and the large development community around contain-

ers, it is only a matter of time for other architectures. ARM seccomp-bpf support is already technically in the

kernel.246 Note that lack of CPU support may introduce security vulnerabilities due to syscall numbers being

different, and other soft failures such as a lack of kernel support being silently ignored. Seccomp-bpf code

should always be written with this in mind and offer warnings if it cannot be activated.

Thedifficultly of awhitelist vs blacklistmodel. For seccomp-bpf, aswithmost access control systems, awhitelist

is typically preferred. The list of syscalls a container should be allowed to make may be easy to generate,

depending on application, deployment situation and container size. However in the case of syscalls, this

may quickly break down or be very difficult to generate. A blacklist approach may be appropriate due to

difficulties with static profiling, exercising program features, dynamic testing and complex applications. This

list of high risk, possibly vulnerable, known dangerous or explicitly disallowed syscalls may be easier to

establish. This may include syscalls which allow for loading kernel modules, rebooting, triggering mount

operations and other administrative calls.

A good example of why a whitelist should be preferred is a recent local privilege escalation vulnerability

was found within keyctl(2), a system call that is unlikely to be blacklisted.247 This relatively under-utilized

and under-explored kernel key management facility contained an exploitable use-after-free vulnerability

(CVE-2016-0728). An excellent write-up for exploiting this vulnerability can be found on the Perception

Point article: Analysis and Exploitation of a Linux Kernel Vulnerability. If a blacklist will suffice, it should ideally

be a temporary solution until a whitelist policy can be carefully generated. In another example, a seccomp

blacklist could temporally mitigate a kernel vulnerability until patches are available, such as CVE-2015-3290.

This vulnerability can bemitigated by filtering the modify_ldt(2) or perf_event_open(2) syscalls. Finally,

performance may be a factor, and unfortunately in some environments, force a small blacklist as opposed

to a larger whitelist.

Required system callsmay include their own vulnerabilities. Whilemany applications can be reduced to a small

number of the available system calls, greatly reducing the kernel's attack surface, vulnerabilitiesmay still exist

243https://github.com/konstruktoid/Docker/blob/master/Scripts/genSeccomp.sh
244See https://github.com/docker/docker/blob/master/contrib/mkseccomp.pl and https://github.com/docker/docker/blob/

master/contrib/mkseccomp.sample.
245https://github.com/docker/docker/blob/master/docs/security/seccomp.md
246https://lkml.org/lkml/2012/11/1/512
247This syscall was not in the newly released Docker seccomp default whitelist, making Docker invulnerable to CVE­2016­0728.

77 | Understanding and Hardening Linux Containers NCC Group

https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://outflux.net/teach-seccomp/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0728
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3290
https://github.com/konstruktoid/Docker/blob/master/Scripts/genSeccomp.sh
https://github.com/docker/docker/blob/master/contrib/mkseccomp.pl
https://github.com/docker/docker/blob/master/contrib/mkseccomp.sample
https://github.com/docker/docker/blob/master/contrib/mkseccomp.sample
https://github.com/docker/docker/blob/master/docs/security/seccomp.md
https://lkml.org/lkml/2012/11/1/512
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE�2016�0728

within the allowed calls, and complexity of argument filtering may prove cumbersome or impossible. This

may also differ depending on if a container solution is using an ``app container'' approach as in Docker,

with a single containerized application vs an entire OS container, as LXC is often used. Seccomp filter

sets apply to the entire container, so it is advantageous to keep the container as minimal as possible. The

somewhat recentfutex(2) requeue kernel privilegeescalation vulnerablywasparticularly bad, asfutex(2)

is often thought to be safe and is otherwise a hard requirement within sandboxes, containers, and likely any

application of moderate complexity, particularly those with multiple threads. The vulnerability, captured by

CVE-2014-3153, was discovered by Pinkie Pie aka Comex248 which worked as a Google Chrome Sandbox

bypass249, 250, 251 and was utilized by the infamous Geohot TowelRoot exploit.252 See Exploiting the Futex

Bug and uncovering Towelroot by Yohanes Nugroho for a complete walkthrough.

Seccomp-bpf contains problematic and non-trivial performance tradeoffs which may not be ignored in some

deployments. However fast BPF is, a lot of system calls are required to be extremely performant or may be

called inadvertently in tight loops. As researched by Michael Kerrisk and discussed by Jake Edge of Linux

Weekly News:

``The performance cost for the filters is not insubstantial. (Michael Kerrisk) tested his simple "deny open"

example, which is six BPF instructions, in a program that continually called getppid()—one of the cheapest

system calls. That resulted in 25% more execution time than running it without the filter.''

- A seccomp overview by Jake Edge

Figure 1: Image from the Tizen Project wiki which contains other performance information.

The order of filter operations and optimizations of BPF bytecode are also non-trivial, especially for applica-

tions which themselves install additionally increased filters via further prctl(2) calls. Performance on ARM

248https://hackerone.com/reports/13388
249https://groups.google.com/a/chromium.org/forum/#!topic/chromium-os-reviews/TP2YQBfL0ns
250https://codereview.chromium.org/314903002/
251https://code.google.com/p/chromium/issues/detail?id=377392
252http://blog.nativeflow.com/the-futex-vulnerability

78 | Understanding and Hardening Linux Containers NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
http://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot/
http://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot/
https://lwn.net/Articles/656307/
https://wiki.tizen.org/wiki/Security:Seccomp
https://hackerone.com/reports/13388
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-os-reviews/TP2YQBfL0ns
https://codereview.chromium.org/314903002/
https://code.google.com/p/chromium/issues/detail?id=377392
http://blog.nativeflow.com/the-futex-vulnerability

is especially problematic, including a 20% overhead for a single seccomp-bpf rule.253 Performance also

drops with the number of rules linearly, using a default allow policy, even without argument comparisons as

illustrated by the following graph:

To offset this performance hit, the filter should be ordered with the most-utilized syscalls last, as all filters are

unintuitively executed in reverse order. In addition, deployments should likely enable the Kernel's build-in

JIT compiler for BPF. This JIT compiler can apparently achieve a 2-3x performance increases. To enable it a

runtime, set /proc/sys/net/core/bpf_jit_enable equal to 1. See the Using seccomp to limit the kernel

attack surface by Michael Kerrisk for more excellent information. Note: As with any attack surface, enabling

this BPF JIT may create additional vulnerabilities or Kernel address leaks. See Attacking hardened Linux

systems with kernel JIT spraying by Keegan McAllister for an attack against Intel SMEP or PaX's KERNEXEC

which cleverly leverages the Linux BPF JIT for a JIT spraying attack.

8.3.4 Seccomp within Linux Containers

As the kernel syscall interface is a significant attack surface for containers, it makes perfect sense to use

seccomp to attempt and further isolate containers. Before continuing, it should be noted that, as of the time

of this writing, Docker appears to by the only container platform to support filtering of syscall arguments.

In LXC, starting with version 1.0, seccomp-bpf can be enabled using the lxc.seccomp declaration within

the respective container configuration file.254 This should point to a specific file which, depending on the

version specified, is either a whitelist of allowed syscalls (with a default deny) or a blacklist of disallowed

syscalls (and default permit). A few defaults are also included as a blacklist,255 and typically packaged with

the Linux distribution upon install.

Within Docker, seccomp-bpf support is now provided by default, within libcontainer as of Docker Engine

v1.10 released in February of 2016, with initial support merged into experimental builds during the sum-

mer of 2015.256 The development of seccomp overall within Docker is an interesting one. Docker started

working on a default blacklist with optional whitelist, but hit licensing and library problems.257 The develop-

ment team then moved to a pure Golang implementation of a BPF ruleset generator258 which was recently

merged/added.259 Prior to Docker version 1.10, in order to gain seccomp-bpf support within Docker, the

lxc-backend must be used, and docker must be configured correctly. This older backend is no longer

maintained, and many Docker features may not work with the LXC driver.

The seccomp-bpf support within Docker, implemented as a large whitelist, is now included and enabled

by default.260 The syscall whitelist contains 310 system calls in order to be generic across a great range of

applications and to allow a low barrier for basic adoption. More information and examples can be found

within the Docker Github project documentation security/seccomp.md and the full whitelist, 310 syscalls in

all (roughly allowing 3 in 4 syscalls) can be foundwithin default.json. Related to Docker is the ``runC'' project,

poweredbyDocker's libcontainer. As of thiswriting, seccomp is supported as anoptional build tag, although

thismay soonbecomedefault given theDocker Engine 1.10 release. Unfortunately documentation on use or

examples is quite scarce andwill likely be added once theOpenContainer Foundation (OCF) specification is

253https://wiki.tizen.org/wiki/Security:Seccomp
254https://linuxcontainers.org/lxc/manpages/man5/lxc.container.conf.5.html#lbAZ
255https://github.com/lxc/lxc/blob/master/config/templates/common.seccomp
256https://github.com/docker/libcontainer/pull/613
257https://github.com/docker/libcontainer/pull/384
258https://github.com/docker/libcontainer/pull/529
259https://github.com/docker/libcontainer/pull/613
260This is enabled on supported Linux kernels and when seccomp 2.2.1 is present. Older distribution versions, such as Ubuntu Trusty

will not enable seccomp, even if there is kernel support.

79 | Understanding and Hardening Linux Containers NCC Group

http://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
http://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://github.com/docker/docker/blob/master/docs/security/seccomp.md
https://raw.githubusercontent.com/docker/docker/master/profiles/seccomp/default.json
https://wiki.tizen.org/wiki/Security:Seccomp
https://linuxcontainers.org/lxc/manpages/man5/lxc.container.conf.5.html#lbAZ
https://github.com/lxc/lxc/blob/master/config/templates/common.seccomp
https://github.com/docker/libcontainer/pull/613
https://github.com/docker/libcontainer/pull/384
https://github.com/docker/libcontainer/pull/529
https://github.com/docker/libcontainer/pull/613

finished. CoreOS Rkt unfortunately does not directly support seccomp or seccomp-bpf, although the issue

has been raised.261 Support is currently implemented as part of systemd-nspawn, however the configured

blacklist is extremely weak, blocking only ten syscalls and leaving many other dangerous and potentially

high risk syscalls available.262

8.3.5 Beyond Containers: Other Implementations

Apart from containers, the advantages of seccomp-bpf for high-risk software such as web browsers and

high-security software such as OpenSSH, vsftpd and anonymity systems such as Tor is clear. Many of these

software packages have implemented syscall filtering and No New Privileges (NNP). Just as container hosts

want defense in depth against unknown weaknesses within system calls or other kernel features powered

by system calls, individual applications can equally take advantage of this least privilege solution. While

some attacks are seemingly from the future (such as Rowhammer) the ability to reduce the attack surface

will always make such exploitation more difficult.263 Included below is a short, non-exhaustive list of open

source applications currently using seccomp (either in STRICT or FILTERmodes):

vsftpd: First implemented seccomp in version 3.0.0 in 2012. The implementation within vsftp carefully

allows for different states of "trust" by limiting system calls as a function of application state (mainly

tied to the authentication process). This expands privilege as required, which is an excellent strategy

which follows the principle of least privilege.

OpenSSH: First implemented seccomp within version 6.0 in 2013. This uses a default deny filter and only

permits a set of roughly 25 system calls.264 Note that mode is off by default, but can be enabled by

adding: UsePrivilegeSeparation sandbox to the configuration file.

Google Chrome OS: The core design and security model265 makes heavy use of seccomp-bpf for GPU

sandboxing, the Google Chrome renderer, services which access ``external'' devices (such as USB),

and within minijail (the built-in application sandbox).

Google Chrome browser: Uses seccomp-bpf for Flash and minimal rendering processes. See A safer play-

ground for Linux and Chrome's next generation sandbox for more information.

Mozilla Firefox: Makes use of seccomp-bpf for some plugins although it is still missing for the core browser

engine and renderer.

Tor (The Onion Router): Has enabled support for seccomp-bpf266 although it defaults to disabled (in the

future, this will likely be enabled by default as supported Kernel versions are more widespread due

to Tor project's security focus). A list of permitted syscalls (for x86_64) is available to review267 and

illustrates the unfortunate complexity involved.

MBOX Sandbox: Makes use of seccomp-bpf268 to do syscall interpositioning for application sandboxing.

This system uses ptrace handler to then hook only the necessary system calls. MBOX has mitigated

TOCTOU risks introduced via this method of syscall interpositioning and seccomp shimming.

261https://github.com/coreos/rkt/issues/1614
262https://github.com/systemd/systemd/blob/09541e49ebd17b41482e447dd8194942f39788c0/src/nspawn/nspawn.c#L1564
263https://twitter.com/chrisrohlf/status/575059136955740160
264brk(2), clock_gettime(2), close(2), exit(2), exit_group(2), getpgid(2), getpid(2), getrandom(2), gettimeofday(2), madvise(2),

mmap(2), mmap2(2), mremap(2), munmap(2), _newselect(2), poll(2), pselect6(2), read(2), rt_sigprocmask(2), select(2), shut-

down(2), sigprocmask(2), time(2), and write(2) as of OpenSSH 7.1
265http://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
266See https://trac.torproject.org/projects/tor/ticket/5756 and https://www.torproject.org/docs/tor-manual.html.en#Sandbox
267https://trac.torproject.org/projects/tor/attachment/ticket/10943/tor-messenger-seccomp-amd64.policy.sorted
268https://taesoo.gtisc.gatech.edu/pubs/2013/mbox/mbox.pdf

80 | Understanding and Hardening Linux Containers NCC Group

https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
http://blog.cr0.org/2012/09/introducing-chromes-next-generation.html
https://github.com/coreos/rkt/issues/1614
https://github.com/systemd/systemd/blob/09541e49ebd17b41482e447dd8194942f39788c0/src/nspawn/nspawn.c#L1564
https://twitter.com/chrisrohlf/status/575059136955740160
http://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
https://trac.torproject.org/projects/tor/ticket/5756
https://www.torproject.org/docs/tor-manual.html.en#Sandbox
https://trac.torproject.org/projects/tor/attachment/ticket/10943/tor-messenger-seccomp-amd64.policy.sorted
https://taesoo.gtisc.gatech.edu/pubs/2013/mbox/mbox.pdf

9 LXC, Docker and CoreOS Rocket

9.1 LXC

``Containers which offer an environment as close to possible as the one you'd get from a VM but without

the overhead that comes with running a separate kernel and simulating all the hardware.''

– LXC Documentation

9.2 LXC Background

The main idea of Linux containers (LXC) really started during Linux VServers, an early implementation of

namespaces andplacing entire systemswithin different ``security contexts''. As namespaces advancedwithin

the kernel, and the precursor to cgroups was added,269 developers from IBM started the Linux Containers

Project around 2008 Adding a number of userspace tools and documentation270 further advanced the

development of LXC, including some of the initial security recommendations for using SELinux and Smack

Mandatory Access Control systems271 in parallel to user namespace developments. The Ubuntu Linux dis-

tribution by Canonical has largely led the recent development and advancement of strong defaults for LXC

deployments.272 However, apart from AppArmor and user namespaces, many hardening options remain

disabled in most templates for ease of use or to remain generic.

LXC is also one of several different yet closely related projects:

LXC:Theprimary LinuxContainer userspace tools, security patches, standarddefaults and templates. Found

on the Linux container website273 and Github.274 Notably, LXC 1.0 will receive 5 years of security

updates and bug fixes (2019 at the time of this writing).

LXD: A form of container hypervisor which is under very active initial development, offering integration

with OpenStack, managed containers through REST APIs and other options. LXD can be seen as

a sort of ``docker for LXC'', with similar command line flags, image repositories and other container

management features. Future versions may support advanced CPU features in order to benefit from

increased security.

LXCFS: A FUSE (Filesystem in Userspace) module for addressing the shortcomings of proc, cgroupfs and

sysfs for container support. This is performed through custom overlay files for cpuinfo, meminfo, stat

and uptime.

CGManager: Manages cgroups through aDbusAPI, supports nested and unprivileged containers. CGMan-

ager is provided by default in Ubuntu and used in recent versions of LXC for cgroup management. It

can also be used independently of LXC.

269https://lkml.org/lkml/2006/10/20/251
270http://www.ibm.com/developerworks/library/l-lxc-containers/
271http://www.ibm.com/developerworks/library/l-lxc-security/
272https://wiki.ubuntu.com/LxcSecurity
273https://linuxcontainers.org/
274https://github.com/lxc/lxc

81 | Understanding and Hardening Linux Containers NCC Group

https://lkml.org/lkml/2006/10/20/251
http://www.ibm.com/developerworks/library/l-lxc-containers/
http://www.ibm.com/developerworks/library/l-lxc-security/
https://wiki.ubuntu.com/LxcSecurity
https://linuxcontainers.org/
https://github.com/lxc/lxc

9.3 LXC Components

LXC is primarily configured via configuration templates and command line utilities. Containers can be auto-

started via integrations with system boot utilities (typically systemd). Support for advanced LXC features,

such as unprivileged containers, LXC support and different cgroup management can vary across Linux

distributions,275 with Ubuntu Linux being the most well-supported platform. See Section 6.1 on page 43

for more information, example use.

9.4 Brief LXC Security Analysis

The following brief assessment of security should not be considered in-depth, but is intended to provide the

reader with an idea of positive security controls, hardening and design. Also included is many prior issues,

outstanding risks or vulnerabilities, knownweaknesses in deployment and additional items for consideration

which can aid in understanding security.

9.4.1 LXC Strengths

AppArmor for Mandatory Access Control (MAC) by default. If you're using Ubuntu, and likely some other

Debian-based distributions, you'll have an AppArmor-isolated container by default. The default rules offer

a number of defense in depth protections for various areas of the system not namespace aware, such as

procfs and sysfs. Unprivileged containers, used by default if LXC is started by an unprivileged user, further

enhance any default MAC rules.

Support for Seccomp-BPF, enabled by default with a minimal blacklist and with added support for different

filter strategies. Seccomp support has been a long supported option within LXC. An allow or ``white'' list

is permitted in addition to a simple deny or ``black'' list. Examples for each can be found in the example LXC

documentation, in addition to the base blacklist.276, 277

Historical and continued user namespace support is available by default. Introduced within LXC 1.0, user

namespace support on modern kernels offer a strong security barrier and additional defense in depth

against malicious or compromised containers. LXC was the first major container management solution to

offer stable support for user namespaces.

Strong configuration and control, straightforward templates. LXC offers a well documented and well under-

stood method for configuration and setup of containers, with the vast majority of options coming from

a standard configuration file rather than a mix of command line parameters. The templates for creating

containers are simple shell or python scripts, which build or download root filesystems. These filesystems

typically start out as tarballs or flat files.

Explicitly enabled container external network exposure. Apart from networking within a host or between

containers via the default bridge, access to or exposure of listening services within a container must be

explicitly granted via manual iptables forwarding. This default security control can help containers isolate

applications from even weak or missing host firewall hardening.

Significant user base and community support offers indirect security benefits. The large number of LXC users in-

directly contributes to success as anOpen Source project, speed of patches (security or otherwise) and early

feature support. Docker enjoys similar successes and deployment numbers, although some development

efforts may be less transparent due to company governance or priority.278

275https://www.flockport.com/lxc-and-lxd-support-across-distributions/
276https://github.com/lxc/lxc/blob/master/doc/examples/seccomp-v1.conf
277https://github.com/lxc/lxc/blob/master/doc/examples/seccomp-v2-blacklist.conf
278The governance issue is also the case for runC and libcontainer, although this may be less so due to Open Container Initiative.

82 | Understanding and Hardening Linux Containers NCC Group

https://www.flockport.com/lxc-and-lxd-support-across-distributions/
https://github.com/lxc/lxc/blob/master/doc/examples/seccomp-v1.conf
https://github.com/lxc/lxc/blob/master/doc/examples/seccomp-v2-blacklist.conf

9.4.2 LXC Weaknesses

See Section 10.2 on page 104 for LXC specific security recommendations to help counter some of the

following risks.

Philosophy of ``system containers'' is counter to security fundamentals of least access, least privilege and reduced

complexity. The idea of using virtual systems over single app containers may provide some comfort for

system administrators or other devops teams familiar with traditional virtualization and administration tasks.

However, this philosophy comes with increased security risk, software bloat, and difficulty with hardening.

For example, in order to permit administrative tasks within a container, increased privilegesmust be retained

from the host system. This also increases the likelihood of a vulnerability being discovered within the large

base images required to support an entire system. Finally, application-specific AppArmor profiles cannot

be applied, unless a nested AppArmor configuration is used.

High risk capability defaults, encouraged by the ``whole system'' philosophy. For privileged containers not

using the user namespace, LXC retains the vast majority of potentially dangerous capabilities, including

CAP_SYS_ADMIN. Mitigating the risks of this large capability set is left toMandatory Access Controls (MAC) via

AppArmor, however repeated gaps in this configuration have been discovered. See Section 5.6 on page 40

for more information and a comparison table against other container platforms.

Default bridged networking. Default networking uses a bridge mode, this allows container to host and

container to container traffic by default. Due to Linux bridges being virtual switches, layer two attacks such

as ARP spoofing also work. This allows a singlemalicious or compromised container to hijack traffic for other

containers within the same host, due to the often singular bridge interface. See 7.2.1 on page 52 for more

information.

Outstanding seccomp-bpf issues and the CAP_SYS_PTRACE capability remaining enabled presents a risk to en-

abled security features. While seccomp-bpf is enabled by default, the blacklist is extremely minimal. Com-

pared to the roughly 60 known dangerous calls the base Docker seccomp-bpf profile restricts, LXC only

blocks five syscalls: kexec_load(2), open_by_handle_at(2), init_module(2), finit_module(2) and

delete_module(2). Github issue 571 also undermines security due to the mixed CPU architecture support.

Additionally, while not specific to LXC, CAP_SYS_PTRACE (granted to privileged containers) can be used to

undermine seccomp-bpf, as the ptrace(2) system call is not within the filter list. This could allow for a

privileged or unprivileged container escape in most scenarios despite seccomp-bpf and AppArmor.

Weak support for LXC via libvirt or svirt. While these can be used to launch and manage containers on

supporting distributions, support for libvirt may be missing, currently deprecated279 or incomplete280 in

some Linux distributions.

A history of issues within container management command-line software. Many different CVEs have been

released for the various LXC utilities and init processes. If privileged containers are used, this may allow

for container to host attacks by targeting LXC itself, as opposed to the kernel isolation features. See Security

Issues in LXC and CVE-2015-1335 for further details.

279https://access.redhat.com/articles/1365153
280https://www.flockport.com/lxc-and-lxd-support-across-distributions/

83 | Understanding and Hardening Linux Containers NCC Group

https://github.com/lxc/lxc/issues/571
http://www.openwall.com/lists/oss-security/2015/07/23/2
http://www.openwall.com/lists/oss-security/2015/07/23/2
http://www.cvedetails.com/cve/CVE-2015-1335/
https://access.redhat.com/articles/1365153
https://www.flockport.com/lxc-and-lxd-support-across-distributions/

9.5 Docker

``At the core of the Docker platform is Docker Engine, a lightweight runtime and robust tooling that builds

and runs your Docker containers. Docker Engine runs on Linux to create the operating environment

for your distributed applications. The in-host daemon communicates with the Docker client to execute

commands to build, ship and run containers.''

– Docker Documentation

9.6 Docker Background

Docker is undoubtedly a very hot topic in the container world. A large amount of Linux container support,

efforts, development and overall ``buzz''281, 282 can be attributed to Dockers popularity. As the Platform as

a Service (PaaS) offerings grew with the advent of hardware virtualization, bringing costs down significantly,

the popularity of ``the cloud'' greatly increased between 2008 and 2010. A company called dotCloud was

building, shipping software and using systems powered by Linux containers internally. This systemwas later

released in 2013 as anOpen Source project calledDocker, which today is a rapidly expanding companywith

a number of different container related products andOpen Source projects. What started with the release of

a container solution has now expanded to Docker Hub, Registry, Swarm, Compose and different supporting

software such as Docker Notary for trusted content and Docker Machine for provisioning containers.

A key difference Docker instituted, starting from the very beginning283 from existing container philosophies

was the focus on packing/shipping individual software through building container images. This major phi-

losophy continues to be a focus of Docker today, as the founders intended to change the face of ``shipping

software'' via containers, hense the name. This philosophy strongly encourages a single application per

container, more easily allows containers without root or elevated privilege and increases the ease of use

for application developers by removing typical system administration or ``devops'' work; while at the same

time, providingmore control and reliability. This overallmovement is sometimes referred to as a ``application

containers'' or ``app VMs'', rather than full OS virtualization. Docker is also not just limited to servers284 as

the desktop can easily benefit, although deployment and development has lagged behind the server focus

significantly.

In the spring of 2014, Docker made a key change to the platform. They switched from using LXC to libcon-

tainer written in Golang. This was designed from the ground up explicitly for containers and Docker as the

new default ``execution engine''. This library directly makes the syscalls and performs other work on behalf

of the Docker client, in order to create the required kernel namespaces, cgroups, manage capabilities and

other required functions. While 64-bit Linux is the only ``officially'' supported platform, FreeBSD and even

Microsoft Windows are adding support for Docker, as well as many cloud providers or virtualization software

manufacturers, illustrating the general user demand for such systems.

281http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
282http://iops.io/blog/docker-hype/
283https://www.youtube.com/watch?v=wW9CAH9nSLs
284https://blog.jessfraz.com/post/docker-containers-on-the-desktop/

84 | Understanding and Hardening Linux Containers NCC Group

https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://iops.io/blog/docker-hype/
https://www.youtube.com/watch?v=wW9CAH9nSLs
https://blog.jessfraz.com/post/docker-containers-on-the-desktop/

9.7 Docker Components

Docker has moved from a single container interface to an entire software ecosystem, changes rapidly pro-

gressing in the last two years as the company quickly expanded. This includes the Docker image hosting

and distribution platform and other subscription-only or supported products such as the Docker Trusted

Registry, which supports securely distributing signed Docker images. Many of these additional features are

not in scope for this paper, which focuses purely Linux containers and related security. When discussing

Docker, it should be clear there are several main components:

Docker Client: This client interacts with the Docker daemon, typically via the CLI ``docker'' command. This

command actually interacts the Docker daemon's REST API, using a UNIX socket285 by default (or

optionally a TCP socket)286 to communicate with the Docker Daemon. As the Docker daemon runs

as root, access to the CLI (or the dockerd socket directly) effectively requires root privileges, or to be

within the ``docker'' group. Untrusted users should never be in the docker group, or be allowed to

communicate with the REST API unless they are intended to have root permissions on the host.287

Docker Daemon: Accepts Docker client connections from the REST interface or UNIX socket and exposes

Docker Engine functionality. The Docker daemon also deals with monitoring, running and generally

exposing Docker containers, acting essentially as the ``init'' for all running containers. The default

listener is the UNIX socket, and it is encouraged for various security reasons288 to be the only form of

connection unless the API is required to be exposed outside of the host.

Docker Engine: The heavy-lifting behind the Docker daemon, the Docker Engine is written in Golang im-

plemented via libcontainer now under the runc project289 which implements the Open Container

Specification v1.290 This creates the required kernel namespaces, cgroups, handles capabilities and

filesystem access controls.

Docker containers are composed primarily of Docker container ``images''. These images often start as a

Dockerfile which can be thought of as a Makefile for the container image. These Dockerfiles are then

compiled and built to different layers to provide several optimizations, which then results in an image. Each

state-changing command within a Dockerfile typically creates a new image layer, which can be visualized by

the imagelayers.io project. Images are often directly downloaded from a Docker registry or hub (also called

Docker hub, which works similar to GitHub). Docker ``official repositories''291 contain a select set of base OS

images which are analogous to ``ISOs'' when installing a new virtual machine or AMI's when deploying on

Amazon EC2. This saves time rather than building all of the image layers or other included software from

scratch (similar to Debian/GNU Linux packages for a distribution as opposed to using Gentoo Linux). It is

also worth pointing out, all official Docker images are signed.

Running Docker containers are managed and exist within the host they were first started on as a collection

of namespaced processes, similar to LXC and CoreOS Rkt. While Docker does not currently support check-

pointing, restoring or live migrating running containers between hosts (think vMotion), this may be coming

285https://docs.docker.com/articles/basics/#bind-docker-to-another-hostport-or-a-unix-socket
286http://blog.trifork.com/2013/12/24/docker-from-a-distance-the-remote-api/
287Many public examples can be found to illustrate how to gain root access via Docker. This is also cautioned in the Docker security

documentation: ``only trusted users should be allowed to control your Docker daemon''. See the article Docker security for more

information on access control or design assumptions.
288This includes Server Side Request Forgery (SSRF) protections, weaknesses in the TCP API defaults, required firewalls and

authentication as well as binding to the correct interfaces.
289https://github.com/opencontainers/runc/blob/master/libcontainer/
290https://github.com/opencontainers/runc/blob/master/libcontainer/SPEC.md
291https://docs.docker.com/docker-hub/official_repos/

85 | Understanding and Hardening Linux Containers NCC Group

https://imagelayers.io/
https://docs.docker.com/articles/basics/#bind-docker-to-another-hostport-or-a-unix-socket
http://blog.trifork.com/2013/12/24/docker-from-a-distance-the-remote-api/
https://docs.docker.com/engine/security/security/
https://github.com/opencontainers/runc/blob/master/libcontainer/
https://github.com/opencontainers/runc/blob/master/libcontainer/SPEC.md
https://docs.docker.com/docker-hub/official_repos/

in the future.292 Similar efforts are also in the works for LXC via new LXD features.293

At the disk level, Docker uses a Copy-on-Write (CoW) filesystem called AUFS, often by default (although

Ubuntu may now default to DeviceMapper). Similar to the use of CoW within Virtual Machines and ex-

pensive external storage, CoW filesystems have an excellent advantage of disk space savings and quick

creation time. While AUFS is not included within the Linux kernel by default, many modern distributions

have chosen to include it (such as Debian and Ubuntu). The Overlay filesystem, overlayfs, is also becoming

popular with Docker (and LXC) which is a fast294 and efficient295 ``union'' filesystem (another idea borrowed

from Plan9296). This allows mixed ``over'' and ``under'' for the CoW, which can be nested in other overlay

filesystems.

By using a filesystembuilt on layers, quickmodifications can be performed in seconds, such asmodifications

or updates to a Dockerfile. This also allows for images to be inspected at each layer-based modification.297

9.8 Brief Docker Security Analysis

The following assessment of security should not be considered in-depth, but is intended to provide the

reader with an idea of positive security controls, hardening and design in addition to prior significant issues,

outstanding risks, known weaknesses in deployment and additional items for consideration.

Docker adds a number of features that set it apart from vanilla Linux containers or LXC, but the core phi-

losophy can set it apart. Docker revolves around being application developer centric, with strong con-

tainer versioning, image repositories, Dockerfile sharing, and other ``fire and forget'' features. The upside

of application-specific containers is simplicity, least access, least privilege and other core benefits. The

downsides of this easeof use involvepressures to reducedeveloper friction, keepgeneric options asdefaults

and make sure developers, not system administrators, can still easily ``ship'' containers and their software.

This core trade-off between the ease of use and detailed configuration (which is strongly recommended,

although not required for LXC) plays a key role in the current security settings, options and platform defaults.

In January of 2015, a Gartner report Security Properties of Containers Managed by Docker by Joerg Fritsch,

which is not publicly available and was not read the author, includes a large amount of information, although

the discussion can be reduced to, according to The Register:

``Linux containers are mature enough to be used as private and public PaaS but disappoint when it

comes to secure administration andmanagement, and to support for common controls for confidentiality,

integrity and availability.''

- Docker Security Immature but not Scary by The Register/Gartner

In February of 2016, Docker Engine 1.10 introduced two long awaited key security features298 for defense

in depth: User namespaces299 and seccomp filtering300 via a generic syscall whitelist. Both of these key

security features are supported in 1.10, assuming the features are present in the Linux kernel.

292http://blog.kubernetes.io/2015/07/how-did-quake-demo-from-dockercon-work.html
293https://events.linuxfoundation.org/sites/events/files/slides/Live%20Migration%20of%20Linux%20Containers.pdf
294https://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
295https://twitter.com/burkelibbey/status/566314803225186304
296http://doc.cat-v.org/plan_9/4th_edition/papers/names
297This also can help support or encourage the development of host basedmonitors or security-related container watchdogs, which

are becoming more popular.
298https://blog.docker.com/2016/02/docker-engine-1-10-security/
299https://github.com/docker/docker/issues/15187
300https://github.com/docker/docker/issues/17142

86 | Understanding and Hardening Linux Containers NCC Group

https://www.gartner.com/doc/2956826/security-properties-containers-managed-docker
http://www.theregister.co.uk/2015/01/12/docker_security_immature_but_not_scary_says_gartner/
http://blog.kubernetes.io/2015/07/how-did-quake-demo-from-dockercon-work.html
https://events.linuxfoundation.org/sites/events/files/slides/Live%20Migration%20of%20Linux%20Containers.pdf
https://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
https://twitter.com/burkelibbey/status/566314803225186304
http://doc.cat-v.org/plan_9/4th_edition/papers/names
https://blog.docker.com/2016/02/docker-engine-1-10-security/
https://github.com/docker/docker/issues/15187
https://github.com/docker/docker/issues/17142

9.8.1 Docker Strengths

Strong container security defaults. Despite a large degree of use cases, Docker offers strong defaults for com-

mon applications, especially when this is compared to Linux capabilities of LXC and several default weak-

nesses of CoreOS Rkt. The strongmomentum, large community, and somewhat recent security team,301 and

key security addicted developers302 help drive key issues. These strong defaults help not only with respect

to security, but support and tie-ins for other container platforms, containers on the desktop, defense in depth

and generally support the security of software-focused data centers.

A base philosophy which supports security principals. Docker's ``single application'' philosophy, as discussed

earlier, encourages simplicity, least privilege and least access. This simplicity attempts to package only what

an application needs, limit potential attacks and reduce the inherited potential for various types of vulner-

abilities. Another advantage of Dockers ``modernity'' is the use of Golang for many Docker components.

Use of this programming language can avoidmany traditional native code vulnerabilities related tomemory

corruption303 and it directly supports kernel namespace functionality among other features required by the

Docker Engine.

Built-in support for different Mandatory Access Control (MAC) systems: MAC systems are robustly supported

by Docker. AppArmor support is well documented304 and is used by default for defense in depth, with

many borrowed rules from the LXC AppArmor base. Per-container AppArmor profiles are also supported

via --security-opt="apparmor:<profile>. Recently, Docker also added an AppArmor policy for the

Docker engine itself305 and amid growing dissatisfaction with the always-root Docker daemon [note: runC.

i think docker is starting to push to have runC be the default execution agent and do away with dockerd],

have begun transition to break-out privileged functionality, although this is a long term goal and a large

effort is required. SElinux support306 is built in, in addition to being supported by RedHat as part of Project

Atomic.307

Imageand filesystembehavior supports auditing and specific security controls. Thedefault copy-on-write filesys-

tem isolates changes made by one container to another instance of the same container image, containers

can also bemade immutable which provides audit trails for incident response andmakes restoring to known

good possible (assuming the integrity of the root filesystem can be trusted). Apart from these features,

storage drivers are more a concern of performance308 or auditing, and apart from volume exposure via

poor configuration, have little impact on the security of Docker apart from the occasional bug,309 and some

hardening issues310

With Docker 1.10 seccomp filtering is enabled using a default base profile. Within Docker, seccomp-bpf sup-

port is now provided within libcontainer as of Docker Engine v1.10 released in February of 2016. The filter

301http://blog.docker.com/2015/03/secured-at-docker-diogo-monica-and-nathan-mccauley/
302https://github.com/jfrazelle
303This includes automatic bounds checking and other features, such as banning pointer math: https://golang.org/doc/faq#no_

pointer_arithmetic
304https://docs.docker.com/engine/security/apparmor/
305https://github.com/docker/docker/commit/39dae54a3f40035b1b7e5ca86c53d05dec832ed2
306http://opensource.com/business/14/7/docker-security-selinux
307http://www.projectatomic.io/docs/docker-and-selinux/
308http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
309https://github.com/docker/docker/issues/10216
310AUFS also has had prior compatibility issues with Grsecurity patched kernels, although some patches have resolved these,

switching to the devicemapper storage driver (which may be the default, depending on the Linux distribution) is a simple solution

to avoid this conflict. Additionally, btrfs is not compatible with SELinux, which should be kept in mind if SELinux will be used for

MAC.

87 | Understanding and Hardening Linux Containers NCC Group

http://blog.docker.com/2015/03/secured-at-docker-diogo-monica-and-nathan-mccauley/
https://github.com/jfrazelle
https://golang.org/doc/faq#no_pointer_arithmetic
https://golang.org/doc/faq#no_pointer_arithmetic
https://docs.docker.com/engine/security/apparmor/
https://github.com/docker/docker/commit/39dae54a3f40035b1b7e5ca86c53d05dec832ed2
http://opensource.com/business/14/7/docker-security-selinux
http://www.projectatomic.io/docs/docker-and-selinux/
http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/
https://github.com/docker/docker/issues/10216

functionality is implemented as a whitelist of 310 different system calls311 (in order to remain quite generic),

and blocks roughly 100 other known-dangerous or high-risk syscalls.312 Prior to v1.10, syscall filtering via

seccomp was in the contrib directory of the Docker Engine (libcontainer), marked as experimental. Prior to

that inclusion mid 2015, seccomp-bpf was not supported within Docker's libcontainer. It could be used by

using the LXC driver, however this often broke other Docker functionality expecting libcontainer and was

not recommended as it is unmaintained.

Security profile developments for per-container security. It appears the Docker development and security

team's intent is to eventually create the idea of a security profile (Github issue #17142) which includes an

application/container specific seccomp filterset and possibly a specific AppArmor profile for each Docker

container. This could bepart of the official image for specific applications and allow for highly secure defaults

with almost no developer or administrator interaction (assuming a fairly basic configuration). Unfortunately

this strategy could be problematic going forward. Getting it ``right'' the first time is likely why it's taking the

Docker team so long, as deployment complications grow, legacy requirements are in place, or Docker pri-

orities shift, the solution could prove problematic. The age old Blacklist vs Whitelist for seccomp debate313

continues to evolve, performance concerns thus far appear to be taking a back seat to security.

Explicitly enabled container external network exposure. Apart from networking within a host or between

containers via the default bridge, access to or exposure of listening services within a container must be

explicitly granted or ``exposed''. This default security control can help containers isolate applications from

even weak or missing host firewall hardening.

Container image trust and integrity are ongoing priorities. A major feature of Docker (and CoreOS Rkt) is

container image security itself. Although signed docker images were initially quite weak314, 315, 316 recent

advancements have created a robust solution (thanks to the hard work of the Docker security team and

developers). A related improvement started as libtrust which was moved, merged and improved to later

become Docker Notary (a system which also helps distribute data in general securely, not just containers).

Significant user base and community support offers indirect security benefits. The large number of Docker

users, developers and individual contributors indirectly contributes to success as an Open Source project,

speed of patches (security or otherwise) and support for various add-ons such as custom networking layers

or storage back-ends. Some development efforts may be less transparent due to company governance,

priorities or be released as subscription-only or non-open source projects.

9.8.2 Docker Weaknesses

See Section 10.3 on page 105 for Docker specific security recommendations to help counter some of the

following risks.

Prior to Docker v1.10, a lack of the user namespace is a key weakness. As 1.10 was recently released, many

prior deployed versions of Docker lack this support, however many other base security features offer good

base security. The user namespace, when used in conjunction with other namespaces for containers, offers

strong defense in depth against both known and unknown attack surfaces. This is currently implemented via

an OS-wide or global UID remapping as part of ``Phase One''.317 It is also worth noting the UID remapping

311https://raw.githubusercontent.com/docker/docker/master/profiles/seccomp/default.json
312https://github.com/docker/docker/blob/master/docs/security/seccomp.md
313https://github.com/docker/libcontainer/pull/263
314https://news.ycombinator.com/item?id=9419470
315https://titanous.com/posts/docker-insecurity
316https://lwn.net/Articles/628343/
317https://github.com/docker/docker/pull/12648

88 | Understanding and Hardening Linux Containers NCC Group

https://github.com/docker/docker/issues/17142
https://github.com/docker/libtrust
https://github.com/docker/notary
https://raw.githubusercontent.com/docker/docker/master/profiles/seccomp/default.json
https://github.com/docker/docker/blob/master/docs/security/seccomp.md
https://github.com/docker/libcontainer/pull/263
https://news.ycombinator.com/item?id=9419470
https://titanous.com/posts/docker-insecurity
https://lwn.net/Articles/628343/
https://github.com/docker/docker/pull/12648

is performed once per daemon/Docker engine instance, a compromise due to shared image layer caching.

The user namespace is not used by default. While Docker has an excellent default set of security, including

as of 1.10 seccomp support as well, it does not use newly released user namespaces unless the daemon

is started with the --userns-remap flag. As the user namespace disables some Docker features (due to

current incompatibilities), it is likely not enabled by default. Hopefully as these limitations are resolved in

the future, user namespaces will be enabled by default.

The REST API has a number of security problems. Weak defaults, missing security roles, historical vulner-

abilities,318 all access is read/write and the refactor is taking some time.319, .320 The primary issue is the

RESTful API is unauthenticated by default .321 If the API is enabled by mistake, exposed outside of a trusted

environment or exposed to all interfaces on the Docker host, it will allow unauthenticated attackers to fully

compromise the server.322 Thismay dangerously include attacks from compromised ormalicious containers

themselves, depending on the network configuration and hardening.

Default capabilities may present a security risk, especially with older Docker versions. While Docker does have

the strongest default capability set (or put another way, the least number of retained capabilities) of the three

major platforms examined, this is only a recent change. In order to make Docker work easily for the vast

majority of use cases, the bounding capability set must include a mixed list of capabilities. The historical

Docker guest escape via CAP_DAC_READ_SEARCH323 was an unfortunately required wake-up call to further

restrict the default capabilities,324 and update the AppArmor policy.325 While a number of capabilities were

retained in earlier versions, recently the bounding set is described as only ``those needed'', and the rest

are dropped by default. However, there are still a large number of capabilities enabled by default which

may commonly not be required. In presentations by Docker, it is discussed Docker retains ``less than half

the normal capabilities'', the system still retains a number of root capabilities which are not required for

typical applications. Docker still retains 14 different root capabilities, including some potentially dangerous

capabilities such as CAP_NET_RAW, CAP_MKNOD and CAP_FOWNER.

For these retained capabilities, CAP_NET_RAW which allows ping to work from a container (likely a major

reason why it remains enabled), also unfortunately allows any RAW socket types, in addition to allowing

the container to bind to any address within the exposed network namespaces. This capability could create

vulnerabilities on the local network or within the host depending on the implementation details and risks

of other adjacent network systems, which may include container management or orchestration software.

The CAP_MKNOD capability, not likely to be required after an image has been setup, has some additional

restrictions. The default AppArmor policy and a lack of other capabilities (such as CAP_SYS_RAWIO or CAP_-

SYS_ADMIN) may limit the potential risks for this retained capability, but both should be dropped if possible.

Finally, it should be noted the capabilities restrictions and related discussion is only relevant to containers

not using the user namespace, although some issues may remain regardless.

Network ports will bind to all interfaces by default. When networking ports for a Docker container are explicitly

enabled, via -p or -P when running containers, the ports will be bound by the Docker daemon to all host

network interfaces by default. This risks exposure of the ports to unintended network interfaces or hosts.

318https://github.com/docker/docker/issues/9413
319https://github.com/docker/docker/issues/7358
320https://github.com/docker/docker/issues/5893
321http://blog.james-carr.org/2013/10/30/securing-dockers-remote-api/
322As of 1.10, a new authorization framework is in place to limit and control access to specific areas.
323In June of 2014, Sebastian ``stealth'' Krahmer, a prolific security researcher and member of the SuSE Security team announced a

Docker guest escape by using the DAC_CAP_READ_SEARCH capability.
324https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
325https://github.com/docker/libcontainer/pull/256

89 | Understanding and Hardening Linux Containers NCC Group

https://github.com/docker/docker/issues/9413
https://github.com/docker/docker/issues/7358
https://github.com/docker/docker/issues/5893
http://blog.james-carr.org/2013/10/30/securing-dockers-remote-api/
http://seclists.org/oss-sec/2014/q2/565
http://seclists.org/oss-sec/2014/q2/565
https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
https://github.com/docker/libcontainer/pull/256

See the Docker documentation on exposing incoming ports for more information.

Risks of Dockerfile complexity and Docker image handling. Dockerfiles, the building blocks of almost all

Docker images, have allowed for several vulnerabilities,326 most notably CVE-2014-9357 which allowed

arbitrary code execution. Dockerfiles themselves are fairly restrictive from the Docker host perspective,

potential risks of Server Side Request Forgery (SSRF) could present themselves via malicious ADD or COPY

directives. Docker image verification and integrity was only recently implemented properly (in Docker 1.8),

with the integration of The Update Framework or TUF.327 See Docker Content Trust for more information.

The seccomp filterset is extremely broad. While the seccomp filter has an enabled by default base profile,

and does block roughly 50 high risk or dangerous system calls, it is effectively implemented as a blacklist of

``known and potentially bad but unused''. Even if the whitelist of roughly 300 calls is actually the technical im-

plementation, the average application container likely requires a much smaller subset. Over time, revisions

and improvements will likely take place for this policy or for ``security profiles'' during development.

As currently implemented, the Docker daemon must run as root. In order to perform the namespace requests

or modifications against the kernel as well as filesystem controls, the Docker daemon and therefore client

runs as root. While efforts are slowly underway to remove this root requirement, and the user namespace

introduction within 1.10 helps this effort along, a large amount of code must be modified, and it must be

performed in a secure fashion. Typical Docker installs will also create a ``docker'' group. This privileged

docker group is often used for docker administration or integration by various users or applications. This

often and unknowingly provides what is effectively root access to any user within the docker group (despite

warnings in Docker's documentation). Any user who can execute the docker CLI command, or any user who

can connect to the REST interface, can compromise the system and any container within it.328 Finally, future

efforts by Docker and the runC project may remove this root restriction, although this is still in the planning

stage.

The default Docker networking within the host allows containers to communicate between each-other, due to

shared network bridge. The --icc configuration option which creates a blanket FORWARDACCEPT iptables

rule by default, risks cross-container and container to host network connectivity. This inner Docker host

network communicationmaynot be intuitiveduringdeployments or expected for users or developers new to

Linux containers. This communication may pose a security risk, depending on the types of network services

and the overall trust model for the deployment. An example could be understood as front-end API servers

(directly exposed to the Internet) deployed via dynamic resource scheduling alongside back-end databases,

with caching services for API sessions or other stores of sensitive information. Within many application-

backends, debug interfaces or health and monitoring ports are also commonly bound to all interfaces then

protected at the network parameter. Another example could be the host's Docker API bound to a reachable

interface and inadvertently accessible. Finally, such cross-container networking is also vulnerable to security

problems on regular hardware switches, such as ARP spoofing329 Spanning Tree Protocol (STP) or even IPv6

attacks.

Dealing with Image upgrades or stale containers is problematic. Upgrades of containers in place (via package

managers) is problematic and largely discouraged by the community in lieu of immutable images330, .331

326http://seclists.org/fulldisclosure/2014/Dec/52
327https://theupdateframework.github.io/
328This mistake has been discovered on a large number of different NCC Group container, application and network security

assessments. In addition to various online recommendations, such as How to use Docker by Digital Ocean.
329https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
330http://blog.codeship.com/immutable-deployments/
331http://chadfowler.com/blog/2013/06/23/immutable-deployments/

90 | Understanding and Hardening Linux Containers NCC Group

https://docs.docker.com/reference/run/#expose-incoming-ports
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9357
https://blog.docker.com/2015/08/content-trust-docker-1-8/
http://seclists.org/fulldisclosure/2014/Dec/52
https://theupdateframework.github.io/
https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-docker-application
https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
http://blog.codeship.com/immutable-deployments/
http://chadfowler.com/blog/2013/06/23/immutable-deployments/

This can pose a problem for those developers or administrators moving from amore traditional server archi-

tecture to application containers, as security risks from stale images andoutdated libraries place applications

at risk. Large base images are more problematic to update, and in some cases strike the official images

themselves. Jérôme Petazzoni of Docker has a great write-up and exploration on this topic.332

Large Docker base images using in FROM directives. When considering Docker images, it is important to

consider how most Docker base images are still quite large. Using ``FROM ubuntu'' or ``FROM centos''

will pull in a large base set of packages. Hundreds of megabytes, containing unknown numbers of likely

unrequited binaries, dependencies and libraries containing an unknown number of vulnerabilities. While

the intent is often to be running just a single application per container, many Dockerfiles or base images

pull in a gamut of other libraries, tools and system applications. The large base image problem, along with

stale images, was the root cause for the article 30 percent of Docker Hub images contain vulnerabilities. It is

also worth noting the unofficial Docker response to that article333 dispels several, but not all myths. Finally,

it seems Docker has recently started to switch some base images over to Alpine.

TheDocker client does not verify the TLS certificate by default, leading to a potential false sense of security. When

using the TCP socket connection for the Docker command line utility, the DOCKER_TLS_VERIFY environment

variable or --tlsverify is required for certificate/host validation. While there is admittedly little potential

for exploitation with many use cases (such as local-only connections), if the Docker client is used to connect

to other Docker daemons across the network, this could present a risk of both server spoofing and client

impersonation (in order to then compromise the server). See Docker documentation Secure by default for

more information.

9.9 CoreOS Rocket

``Rkt is the next-generation container manager for Linux clusters. Designed for security, simplicity,

and composability within modern cluster architectures, rkt discovers, verifies, fetches, and executes

application containers with pluggable isolation.''

– CoreOS Rkt documentation

9.10 CoreOS and Rkt Background

CoreOS started out as a fork of Google's Chrome OS, and is intended to be a minimal Linux distribution for

hosting Linux containers. CoreOS was known specifically for hosting Docker as the popularity of containers

(and Docker itself) grew rapidly starting in late 2013. Much more than a Linux distribution, CoreOS and

the development team are now an ecosystem of software and standards. This includes but is not limited

to the Application Container Framework (appc) intended to be a generic specification for Linux containers,

the Rocket (Rkt) container which is an implementation of the App Container Framework and etcd which is a

distributed key-value store for a clustered and redundant deployment of services.

332https://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/
333http://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/

91 | Understanding and Hardening Linux Containers NCC Group

http://www.banyanops.com/blog/analyzing-docker-hub/
https://docs.docker.com/engine/security/https/
https://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/
http://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/

CoreOS released Rocket (Rkt)334, 335 in December of 2014. The design goals included simplicity (via the

UNIX philosophy), speed and security. When launching Rkt, CoreOS largely pointed to Docker as devolving

from their originalmission andmanifesto336 ``as theymoved fromDockerContainers to theDocker Platform''.

Rkt implements the Application Container Runtime which, alongside the App Container Image portion for

container images and are strongly tied to both the Application Container Specification or "AppC".

As with both LXC andDocker, Rkt is just one part of the container puzzle. Further integrationwith Kubernetes

is also underway, which itself was released by Google for container management, deployment, clustering

and other features (after years337 of using similar methods via Borg, Google's internal container system).

Integration of Kubernetes is provided through Tectonic, although these features and solutions are largely

outside the scope of this paper. It is likely that CoreOS will remain a solid platform for Docker or LXC

deployments, even as Rkt is intended to be the focus and key implementation of the App Container Spec

and essentially competes with Docker and LXC.338 As CoreOS only uses systemd for init, a key difference

between Rkt, Docker and LXC is that Rkt also uses systemd as the supervisor daemon whereas the Docker

Daemon is effectively the ``supervisor'' for Docker containers. LXC has no supervisor process (although it

does have a related command socket).

9.11 Rkt Components

A key component of Rocket (Rkt) is intended to be simplicity, with no running daemon or real dependences

apart from supported Linux kernel versions and CPU architecture. By executing a single command (rkt),

users can create an entire container, pull down images (which can be signed and stored in internal or

external repositories) and use many, although not all, of the standard Linux container or kernel features.

CoreOS also is partnering with VMware for the App Container Specification work339 and with Intel Open

Source developers on ``Clear Containers'' by using a modified KVM to create a minimal, container-focused,

hardware-implemented hypervisor.340

Rkt works through executing multiple ``stages''341 which perform different ``heavy lifting'' functions, anal-

ogous to a real rocket. Different stages allow for flexibility of implementation and can be understood as

a design decision key to the App Container Specification. This flexibility was part of why Intel chose Rkt

to create their proof of concept ``Clear Containers'', the power of a LKVM hypervisor applied to container

isolation. The following ASCII diagram was recreated to illustrate the application hierarchy:

OS virtualization via namespaces and

systemd-nspawn with Rkt:

host OS

└─ rkt

└─ systemd-nspawn

└─ systemd

└─ chroot

└─ user-app1

LKVM via Clear Containers:

host OS

└─ rkt

└─ lkvm

└─ kernel

└─ systemd

└─ chroot

└─ user-app1

This goal of simplicity for Rkt is discussed by CoreOS, is also a key component of security. This is especially

334https://github.com/coreos/rkt
335https://coreos.com/blog/rocket/
336https://github.com/docker/docker/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
337https://queue.acm.org/detail.cfm?id=2898444
338https://coreos.com/blog/app-container-and-docker/
339https://coreos.com/blog/vmware-ships-rkt/
340https://coreos.com/blog/rkt-0.8-with-new-vm-support/
341https://github.com/coreos/rocket/blob/master/Documentation/architecture.md

92 | Understanding and Hardening Linux Containers NCC Group

https://github.com/appc/spec/blob/master/spec/ace.md
https://github.com/appc/spec/blob/master/spec/aci.md
https://github.com/appc/spec/blob/master/SPEC.md
http://kubernetes.io/
https://research.google.com/pubs/pub43438.html
https://coreos.com/blog/announcing-tectonic/
https://github.com/coreos/rkt
https://coreos.com/blog/rocket/
https://github.com/docker/docker/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
https://queue.acm.org/detail.cfm?id=2898444
https://coreos.com/blog/app-container-and-docker/
https://coreos.com/blog/vmware-ships-rkt/
https://coreos.com/blog/rkt-0.8-with-new-vm-support/
https://github.com/coreos/rocket/blob/master/Documentation/architecture.md

the case as Rkt relates to Docker and what the CoreOS Rkt team sees as Docker becoming overly complex

or requiring Docker specific tools and formats. According to project co-founder Alex Polvi, during an inter-

view342 on Rkt vs Docker, a major focus of Rkt is apparently security itself (despite some slow real-world

improvements):

Libby Clark: ``Will it (Rkt) be more secure?''

Polvi: ``I mean, if they're using our products (laughs). I don't say that to be overconfident I say that because

we are sincerely focused on securing the backend of the Internet. If we don't deliver on that mission, we

fail as a company. We sincerely are putting everything we can into security, going beyond just turning it

on and making it easy to use. More and more companies are recognizing a lot of the different security

technologies are very difficult to use. It's time to get serious about security.''

The Application Container specification and image format, key CoreOS initiatives, are also intended to

be included within the Open Container Initiative (OCI).343 The team also hopes to make CoreOS Rkt an

implementation of the standard chosen or supported by the OCI going forward.344 However, apart from a

stream of additional members over several months, little public information has been released apart from

the draft implementation by Docker's runC powered by libcontainer.345

9.12 Rkt Security Analysis

Before assessing the security of Rkt, it's important to understand the project is still in the early ``very stages''.

This is easily illustrated by the types of issues opened within the public GitHub tracker, such as unsafe image

extraction346 or download,347 requiring root,348 the lack of documentation and relatively small number of

core project contributors and developers. Although some security issues have been closed, many should

not have been opened in the first place, especially for a project who is apparently so focused on security.

Other critical issues, such as the unexpected disabling of TLS certificate validation349 when installing Docker

images remained open for more than nine months despite relatively trivial fixes.

Recently CoreOS also introduced ``Clair''350 which scans images (Docker and CoreOS) for vulnerabilities

present within the supported package managers, all without executing the actual container image. In the

Spring of 2016, Clair 1.0 was launched,351 which is described as production ready and contains a number of

helpful features. However, while Clair offers easy detection for known vulnerabilities which are patched up-

streamwithin platform repositories, it will only detect known vulnerabilities in packages installed by platform

packagemanagers, although this is a known limitation.352 Aswith the cursory reviews of LXC andDocker, the

following assessment of security should not be considered extremely in-depth, but is intended to provide

the reader with an idea of positive security controls, hardening and design. Many prior issues, outstanding

risks or vulnerabilities, known weaknesses in deployment and additional items for consideration have also

been included.

342http://www.linux.com/news/featured-blogs/200-libby-clark/806347-collaboration-summit-keynote-alex-polvi-coreos
343https://www.opencontainers.org
344http://techcrunch.com/2015/06/22/docker-coreos-google-microsoft-amazon-and-others-agree-to-develop-common-

container-standard/
345https://github.com/opencontainers/runc
346https://github.com/coreos/rkt/issues/904
347https://github.com/coreos/rkt/issues/194
348https://github.com/coreos/rkt/issues/539
349https://github.com/coreos/rkt/issues/912
350https://coreos.com/blog/vulnerability-analysis-for-containers/
351https://coreos.com/blog/clair-v1.html
352https://github.com/coreos/clair/issues/58

93 | Understanding and Hardening Linux Containers NCC Group

http://www.linux.com/news/featured-blogs/200-libby-clark/806347-collaboration-summit-keynote-alex-polvi-coreos
https://www.opencontainers.org
http://techcrunch.com/2015/06/22/docker-coreos-google-microsoft-amazon-and-others-agree-to-develop-common-container-standard/
http://techcrunch.com/2015/06/22/docker-coreos-google-microsoft-amazon-and-others-agree-to-develop-common-container-standard/
https://github.com/opencontainers/runc
https://github.com/coreos/rkt/issues/904
https://github.com/coreos/rkt/issues/194
https://github.com/coreos/rkt/issues/539
https://github.com/coreos/rkt/issues/912
https://coreos.com/blog/vulnerability-analysis-for-containers/
https://coreos.com/blog/clair-v1.html
https://github.com/coreos/clair/issues/58

9.12.1 Rkt Strengths

Key goal of simplicity aids security implementations and reduces attack surfaces. The simplicity of design will

help maintain good visibility, auditing and understanding, although feature creep is a problem for many

Open Source projects even those with good check-in review.353

Clear Containers support via KVM. In August of 2015, Rkt version 0.8 was released which added LKVM or Intel

Clear Container support.354 This swaps ``stage1'' with a full hardware Virtual Machine, offering increased

security. This security feature is largely unique to the three platforms and offers significant defense in depth,

however Docker will soon have support for pluggable runtimes via the new containerd.

Isolator concept supports key security controls. CoreOS has a concept of an ``isolator''. These have started

to be implemented with respect to resources355 and ``Linux Isolators'' via capabilities (os/linux/capabilities-

remove-set) although they may be established for other security functions in the future such as SELinux,

AppArmor and system calls.356

TPMSupportwithin Rkt for container image security. Support for TPMs aspart of ``trusted computing''357within

Rkt is an interesting additionwhich is not supported by other container platforms. This offers a cryptographic

binding which can help in some secret distribution scenarios, incident response and offers unique benefits

for strong container to hardware binding. However, it remains to be seen how many Linux servers with

supported TPMs this feature will be effective on.

SELinux support via specific SVirt integrations. This support was added in early 2015,358 Each container

can run within a different SELinux context or a custom defined context for additional, application-specific

restrictions. Although documentation is currently quite weak and support requires the use of SVirt, SELinux

is automatically enabled by default on kernels which support it. However SELinux may not work with recent

versions of systemd (impacting Rkt) when set to enforcing mode359 due to a systemd bug.360

9.12.2 Rkt Weaknesses

See Section 10.4 on page 108 for Rkt specific security recommendations to help counter some of the fol-

lowing risks.

User namespaces within Rkt disabled by default and remain experimental. Using the --private-users with

rkt run will enable experimental support for user namespaces. As with Docker, user namespaces are

not enabled by default. However Docker drops many more capabilities, has a seccomp filter and default

Mandatory Access Controls, all of which significantly raise the difficulty of container escape or Linux kernel

code execution. CoreOS Rkt has only basic support or no support at all for some of these security features,

making user namespaces all the more necessary.

Rkt retains dangerous capabilities in containers. Due to the use of systemd, dangerous capabilities are still in-

herited by containers.361 This includes CAP_SYS_ADMIN, which is understood bymany to be a trivial pathway

to root. Other high risk capabilities also remain enabled which may due to the integration or complications

of systemd.

353Just revisit the DTLS implementation of and default inclusion within OpenSSL which lead to heartbleed.
354https://coreos.com/blog/rkt-0.8-with-new-vm-support/
355https://github.com/appc/spec/blob/master/spec/ace.md#resource-isolators
356https://github.com/coreos/rkt/issues/1614
357https://coreos.com/blog/coreos-trusted-computing.html
358https://coreos.com/blog/rkt-0.7.0-with-selinux-and-new-build-system/
359https://github.com/coreos/rkt/issues/2264
360https://bugzilla.redhat.com/show_bug.cgi?id=1317928
361https://github.com/coreos/rkt/issues/576

94 | Understanding and Hardening Linux Containers NCC Group

https://github.com/docker/containerd
https://coreos.com/blog/rkt-0.8-with-new-vm-support/
https://github.com/appc/spec/blob/master/spec/ace.md#resource-isolators
https://github.com/coreos/rkt/issues/1614
https://coreos.com/blog/coreos-trusted-computing.html
https://coreos.com/blog/rkt-0.7.0-with-selinux-and-new-build-system/
https://github.com/coreos/rkt/issues/2264
https://bugzilla.redhat.com/show_bug.cgi?id=1317928
https://github.com/coreos/rkt/issues/576

Weak trust establishment for image signing keys. While Rkt does support image verification via GPG signa-

tures, if the rkt trust command is not issued before a rkt fetch, the key will be automatically down-

loaded and trusted without user interaction (if the endpoint is hosted over HTTPS) by using the ``meta

discovery'' functionality. This is performed via a meta HTML tag in the page which points to a different

URI on the website hosting the CoreOS ACI itself. Some improvements are also required to establish better

trust of official Rkt images.362 Finally, it is worth noting that Rkt signatures do not have timestamps, which

may allow for downgrade or replay attacks depending on transport security and other factors.

Rkt currently requires root for all subcommands. Although the goal is to have a least privilege model, Rkt

still requires root for almost all operations. Some progress is being made363 and a full discussion is avail-

able.364, 365 Currently the only non-root command is when downloading images366 and is an optional com-

ponent when setting up Rkt. Requiring root encourages elevated privileges by programswhichmust interact

with Rkt or users running the various Rkt subcommands.

If Docker images are used, image signature verification is disabled. Docker image verification is not supported

within Rkt, however this may be a common use case and some development is underway to bridge this

gap.367 Until recently both TLS certificate verification and image verification were disabled.368 The docu-

mentation has now made clear, and warnings provided, with separate flags for disabling different types of

security. Fortunately, apart from Docker image verification being disabled, other security features for image

fetching are not disabled by default.

Seccomp support not integrated within Rkt. The App Container Specification and current Rkt implementation

currently do not support seccomp-bpf directly, but instead rely on systemd configuration.369 Seccomp

support is currently claimed by using seccomp within systemd-nspawn. When enabled,370 systemd-nspawn

drops the following ten systemcalls: iopl(2), ioperm(2), kexec_load(2), swapon(2), swapoff(2), open_-

by_handle_at(2), init_module(2), finit_module(2), delete_module(2), and syslog(2). Compared

to the roughly 60 known dangerous calls the base Docker seccomp-bpf profile restricts, this should be

considered an extremely weak seccomp implementation. It should be noted that ptrace(2) is not dropped,

which can allow seccomp to be subverted in many attack scenarios. Finally, this ``outsourced'' seccomp

support may complicate a given container configuration and prove difficult for integration with the OCI.

Weak or missing support for Mandatory Access Controls (MAC). Due to the large number of root capabilities

that remain enabled, MAC systems not enabled by default, and only experimental support for user names-

paces, the kernel attack surface should be considered ``highly available''. SELinux is also the only Mandatory

Access Control (MAC) solution supported, and support and documentation should be considered weak.

With strong support for AppArmor by both LXC and Docker, it would be helpful to have the support within

Rkt as well.371 While SELinux is enabled by default, the profile is extremely generic andmay not be effective

for a particular application. SELinux is also recommended to actually be disabled when trying out Rkt.372

This mirrors the typical fact that SELinux is often disabled by many devops or system administrators.

362https://github.com/coreos/rkt/issues/2234
363https://github.com/coreos/rkt/issues/1585
364https://github.com/coreos/rkt/issues/1585
365https://github.com/coreos/rkt/issues/820
366https://github.com/coreos/rkt/blob/master/Documentation/trying-out-rkt.md
367https://github.com/coreos/rkt/issues/2188
368https://github.com/coreos/rkt/issues/912
369https://github.com/coreos/rkt/issues/1614
370https://github.com/systemd/systemd/blob/09541e49ebd17b41482e447dd8194942f39788c0/src/nspawn/nspawn.c#L1564
371As everything is Open Source, support could always be added manually, but some official profiles for Rkt would be a good start

for the community.
372https://github.com/coreos/rkt/blob/v1.0.0/Documentation/trying-out-rkt.md

95 | Understanding and Hardening Linux Containers NCC Group

https://github.com/coreos/rkt/issues/2234
https://github.com/coreos/rkt/issues/1585
https://github.com/coreos/rkt/issues/1585
https://github.com/coreos/rkt/issues/820
https://github.com/coreos/rkt/blob/master/Documentation/trying-out-rkt.md
https://github.com/coreos/rkt/issues/2188
https://github.com/coreos/rkt/issues/912
https://github.com/coreos/rkt/issues/1614
https://github.com/systemd/systemd/blob/09541e49ebd17b41482e447dd8194942f39788c0/src/nspawn/nspawn.c#L1564
https://github.com/coreos/rkt/blob/v1.0.0/Documentation/trying-out-rkt.md

Weakormissingprocfs and sysfs limits by default. Rkt is effectivelymissing a number of limits for procfs (/proc)

and sysfs (/sys), allowing information to leak from the container host or easily allowing attacks from the

guest container. This includes but is not limited to the following exploits discussed within 7.2.1 on page 52:

uevent_helper, sysrq-trigger, core_pattern, and modprobe. While some protections are enabled by default

via read-only bind mounts, these can be easily subverted by using CAP_SYS_ADMIN to remount the mounts

as read-write.

9.13 Container Defaults

Listed below are the relevant security features for the three major container platforms explored within this

paper. Each security feature is covered directly or indirectly within this paper and the title can be clicked,

for those which are covered in detail, in order to jump to the relevant section. To avoid any misconceptions,

the following parameters are defined as to their use in the table below:

• Default: The security feature is enabled by default.

• Strong Default: The most secure configuration is enabled by default.

• Weak Default: A less secure configuration is enabled by default.

• Optional: The security feature can be optionally configured. This is not a given weakness unless no other

equivilant feature can be configured or enabled.

• Not Possible: The security feature cannot be configured in any way, no documentation exists, the feature

is still under development, or the feature is not planned to be implemented.

Available Container Security Features, Requirements and Defaults

Security Feature LXC 2.0 Docker 1.11 CoreOS Rkt 1.3

User Namespaces Default Optional Experimental

Root Capability Dropping Weak Defaults Strong Defaults Weak Defaults

Procfs and Sysfs Limits Default Default Weak Defaults

Cgroup Defaults Default Default Weak Defaults

Seccomp Filtering Weak Defaults Strong Defaults Optional

Custom Seccomp Filters Optional Optional Optional

Bridge Networking Default Default Default

Hypervisor Isolation Coming Soon Coming Soon Optional

MAC: AppArmor Strong Defaults Strong Defaults Not Possible

MAC: SELinux Optional Optional Optional

No New Privileges Not Possible Optional Not Possible

Container Image Signing Default Strong Defaults Default

Root Interation Optional True False Mostly False

96 | Understanding and Hardening Linux Containers NCC Group

10 Security Recommendations

10.1 Generation Container Recommendations

Security recommendations for containers are complex, and greatly vary depending on the type of system

used (LXC, Docker, Rkt, etc.), the deployment scenario, if running untrusted containers is supported, what

basic internal or cloud network hardening is present. The recommendations can also differ if it's being de-

ployed to Dev/Test vs Production or containers are being used for desktop/clients as a form of sandboxing.

Realistic capabilities and time of the devops or system administration team, as well as architecting a new

solution can also impact what security recommendations are actionable. Finally, the level of configuration

and customization required within a deployment, even apart from any technical limitations, may help dictate

the container platform of choice.

In short, many different recommendations can be made for any container platform, and in almost any de-

ployment scenario. However, these generally boil down to similar security recommendations for almost any

system, platform or service:

1. Reduce all attack surfaces to only those required and harden what surfaces must be exposed.

2. Attempt to isolate based on trust, risk, exposure, in addition to network ``zone'' such as development

vs production vs corporate.

3. Apply and enable all security relevant and supported configuration options for the platform.

4. Keep the host and container up-to-date and follow all industry or container-specific standards.

5. Regularly test and review the above security recommendations (1-4) for security gaps or implementa-

tion weaknesses.

6. Remember that complexity breeds insecurity, always try to keep implementations and code as simple

as possible.

7. Consider and evaluate the security and trust placed in third party code, various cloud platforms and

other elements common to containers such as continuous integration (CI).

The attack surfaces for containers and their applications must be carefully and systematically reduced or

removed through the available kernel namespaces cgroups, capabilities, Mandatory Access Control (MAC),

and syscall filtering. When deploying container solutions or when becoming certified, reviewed and or

otherwise audited for various forms of compliance, it is also important to consider how some third party

businesses or auditors may assess the system. Some older (in Internet years) institutions may have problems

understanding the ``container'' or ``microservices'' model, as common deployments (container or otherwise)

are traditional 3-tier monolithic systems.373 The traditional ``DMZ'' is largely missing frommicroservices, and

although it can now be built ever-stronger, it may be a pain point during auditing and compliance.

The following list of container-agnostic recommendations explore and expand upon the above high-level

or generic recommendations that should apply to all containers. Following these, additional in depth rec-

ommendations which are container-specific for LXC (Section 10.2 on page 104), Docker (Section 10.3 on

page 105), and Rkt (Section 10.4 on page 108). As with other sections within this paper, the order in which

the recommendations are listed is not reflective of their importance.

373That is, a single web front-end or load balancer, web application or API within a DMZ and finally database in-line.

97 | Understanding and Hardening Linux Containers NCC Group

Follow standard hardening best practices for non-container systems. These generic recommendations for

system or application hardening can easily be applied to container deployments.

• Continuously review the container configuration options and security features, strengthening defaults

whenever possible.

• Practice and attempt to follow or encourage simplicity of mechanism, avoiding complexity when possible.

• Consider how authentication and authorization are handled within the system.

• Use strong encryption whenever possible, and especially for transport security. Standard encryption

algorithms (such as AES and RSA) and protocols (such as TLS and IPsec) should always be used over

in-house developed solutions.

• Reduce component scope when possible, isolating operations into discreet elements.

• Examine how the principle of least privilege is implemented within any container solution and overall

architecture:

– For privileged containers, drop all possible capabilities and use whitelist model whenever possible.

– If writing new system daemons from scratch, if they must run with some form of elevated privileges,

consider using prctl(2) to set no_new_privs.374 See Section 5.7 on page 42 for more information or

the Linux Weekly News article System call filtering and no_new_privs.

– Consider hardening the container host itself to avoid highly privileged operations or users, as these

users or daemons may be inadvertently exposed to containers through network access control failures

or other misconfigurations.

• Investigate how the container follows the principle of least access. This can be both physical access, the

location within a network or container to container and container to host network access.

• Develop a threat model for the deployment or architecture and understand how the containers and con-

tainer hosts fit within it. This should be established through posing questions for the design such as:

– If a malicious container is present on a host, what actions could be performed?

– If a container host is compromised, what additional access within the environment could be gained?

– If the local network between container hosts is compromised, what attacks would succeed?

– How is the container prevented from accessing data, networks or interfaces which should be highly

restricted?

Reduce the available attack surfaces. This can be performed through configuration hardening, security fea-

tures such as seccomp and Mandatory Access Control, minimal Linux kernel builds as well as via small

container base images or rootfs structures. Containers can even be used for a single binary..375 See the

specific Docker recommendations below (Section 10.3 onpage 105) for an exploration of small base images.

Apply Linux kernel hardening, key for defense in depth and ensuring container isolation. The kernel is arguably

themost key security component of any container solution, and themost difficult to secure. This recommen-

dation is also explored in more depth within Section 10.5 on page 109.

374https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
375https://medium.com/@kelseyhightower/optimizing-docker-images-for-static-binaries-b5696e26eb07

98 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/475678/
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://medium.com/@kelseyhightower/optimizing-docker-images-for-static-binaries-b5696e26eb07

• Consider using a custom host kernel with a minimal set of loaded modules and compiled-in options. In

an ideal case, only the required features should be present. When building this kernel, consider using

compile-time hardening protections such as CONFIG_CC_STACKPROTECTOR_STRONG376

• Keep the kernel as up-to-date as possible, having a process in place for upgrading container hosts on

a regular basis and a process for emergency updates. In some cases, such as leveraging KSPLICE377 it

may be possible to perform kernel updates without rebooting. This can also help when a known flaw is

released but is not patched within upstream kernels.

• If at all possible, strongly consider using grsecurity and PaX patches for any custom kernel. This signifi-

cantly hardens the kernel against a wide range of exploit techniques and knownweaknesses. However, for

containers to operate or run properly alongside grsecurity, a number of defaults may need to bemodified

using sysctl before locking the settings down. This includes but is not limited to different chroot restrictions

which default to enabled. See ``Hard Containers''378 additional information as well as 10.5.2 on page 110.

• Typical sysctl hardening shouldbe applied.379 Specifically for containers, the following fewoptions should

be enabled at minimum (beyond other defaults and network sysctl hardening):

– kernel.dmesg_restrict=1 - Preventing access to the kernel ring buffer for non-administrative users,

unprivileged user namespaces containers will also be included in this restriction.

– kernel.randomize_va_space=2 - Enable the strongest form of Address Space Randomization (ASLR)

within the vanilla Linux kernel for userland processes. This chiefly randomizes the heap/brk between

executions.

– kptr_restrict=2 - Restrict kernel symbol addresses from being easily discovered by even privileged

users. Disclosure of these addresses undermines KASLR and are often used within kernel exploits.

– kernel.sysrq=0 - Disable system rescue mode, unlikely to be used on modern systems.

Apply traditional disk and storage limits and security. Consider using separate physical storage block devices,

or partitions for containers and their related volume mounts, metadata, rootfs images and other container

data. This can increase speed, allow for better isolation and can provide defense in depth against DoS

attacks targeting the host.

• Standard mount security options should use nodev, nosuid and noexec should be applied where pos-

sible. More advanced options such as bind mounts, using overlay filesystems, and temporary volume

mounts can also be used once the basics have been applied.

• Consider using extended filesystem attributes such as immutable flags on critical configuration files or

append-only flags on sensitive log files for additional restrictions and defense in depth.

Control device access and limit resource usage using Control Groups (cgroups). While the configuration of

cgroups is often left to defaults, this is typically only related to devices themselves. These container defaults

can be increased through tailored resource limits, (are often disabled by default for ``out of box'' usability

reasons).

• Containers should carefully expose host and kernel devices, only doing so as required. The default deny

376This may add a performance penalty, but offers better security over CONFIG_CC_STACKPROTECTOR_REGULAR which is used in

Ubuntu by default.
377http://www.ksplice.com/
378https://blog.flameeyes.eu/2012/04/hard-containers
379https://github.com/konstruktoid/ubuntu-conf/blob/master/misc/sysctl.conf

99 | Understanding and Hardening Linux Containers NCC Group

http://www.ksplice.com/
https://blog.flameeyes.eu/2012/04/hard-containers
https://github.com/konstruktoid/ubuntu-conf/blob/master/misc/sysctl.conf

model for devices within cgroups should be the bases for any access controls. This also helps prevent

attacks which leverage CAP_MKNOD in privileged containers to create new devices dynamically.

• By using container management software or direct configuration, cgroups for resource limits on CPU,

memory, and disk usage should be applied to avoid potential Denial of Service attacks.380

If compiling native code for use within a container, always apply compile-time hardening options. For Ubuntu

and Debian Linux systems, consider using the hardening-wrapper virtual package which applies many of

the following features by default. This includes but is not limited to:

• Complier flag -fstack-protector-strong: Enables ``strong'' stack protection via canary values. This

was released by Google in GCC 4.9, which heuristically protects more functions than the older version

-fstack-protector, yet it may still miss protecting some. To avoid missing stack protections for any

functions, use the -fstack-protector-all declaration. This protects all functions regardless of the stack

buffer size, however this comes at a possible performance cost. See the "Strong" stack protection for GCC

article by Jake Edge of Linux Weekly News for more information.

• Complier flag -D_FORTIFY_SOURCE=2: Provides a number of runtime protections for unsafe areas of libc

(such as format strings) as well as some buffer related protections. Note this is only activated when code

is compiled with -O1 or higher optimization.

• Compiler flags -Wformat -Wformat-security: Enabling warnings which may catch coding mistakes

related to format strings.

• Linker flags -Wl,-z,relro: Providing read-only relocation tables for produced ELF binaries.

• Linker flags -fPIE -fpie: In order to fully support Address Space Layout Randomization (ASLR) and PIE

(Position Independent Executables381). This is required for ASLR to be effective at protecting binaries,

see A look at ASLR in Android Ice Cream Sandwich 4.0 for examples and more information by security

researcher Jon Oberheide.

Limit the network attack surfaces from several different perspectives. Due to the default use of bridge network-

ing, containers can often freely communicate with other containers as well as with any network daemon on

the host which is listening or bound to all interfaces or otherwise bound to 0.0.0.0, a commonmisconfigura-

tion. There are also issues relating to ARP spoofing within Docker and LXC, as the default bridge interfaces

work similar to normal networking switches, each attached virtual interface corresponds to a single ``physical

port''.

Protections include cross-container layer three traffic access control via iptables, cross-container layer two

traffic limits via ebtables382 and general container to host traffic via the bridge interface. If the bridge

interface is not used, and instead shared-host networking is in place, attempt to limit the host attack surface

via MAC systems.

• The container should be isolated from the host network daemons first and foremost in order to eliminate

potential escapes and prevent access to potentially sensitive services (such asmistakenly exposedDocker

Daemon).

• Access control should be restricted between containers on the same host or different hosts in order to

prevent lateral movement or a compromised container affecting other systems.

380Some advanced features for resource control may be missing direct support from the container platform. For instance, disk

performance controls or restrictions are not currently supported in Docker.
381https://en.wikipedia.org/wiki/Position-independent_code
382http://ebtables.netfilter.org/

100 | Understanding and Hardening Linux Containers NCC Group

https://lwn.net/Articles/584225/
https://duo.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
https://en.wikipedia.org/wiki/Position-independent_code
http://ebtables.netfilter.org/

• Restrictions should be in place for traffic bound for local or upstream networks, only allowing the required

communication, ports or protocols. This is especially the case for any container management or moni-

toring solutions which may offer a bridge to then unrestricted networks. This is also critical for upstream

networks, host-related management systems or cloud metadata services (e.g. http://169.254.169.254),

which may contain sensitive secrets or allow for lateral movement if compromised.

• For LXC and Docker, consider implementing different bridges based on trust as opposed to the de-

fault lxcbr0 or docker0 bridge for all containers. This may help isolate some attacks such as ARP spoof-

ing.383, 384, 385 The most secure configuration would use a separate bridge for each container or if that is

not possible, a separate bridge based on trust or container type.

Managing security artifacts such as secrets, keys, passwords or other sensitive information shouldbe a key security

design consideration. While themanaging, storage, rotation, distribution andoverall security of secretswithin

a container environmentmay not be a concern for somedeployments, it can be amajor consideration in oth-

ers. Secret storage and distribution is a subject of considerable ongoing debate for container platforms,386

although it is not limited to just containers or their hosts. Depending on the container environment, types

of secrets and duration of their use, several best practices should be followed:

• Avoid storing security artifacts in source code, as these can leak in various ways. Secrets within source

code are also difficult to rotate, can reduce the overall uniqueness of any secret and can easily be reverse-

engineered or otherwise extracted.

• For Docker, avoid storing security artifacts within Dockerfiles, these could be exposed within Docker

container history, image information or via malicious registry access. Secrets within Dockerfiles also have

many of the same problems as storing secrets within source code.

• Security artifacts within environment variables risk exposure in a number of different areas. This includes

butmay not be limited to application features, log files or any local file read or file disclosure vulnerabilities

through /proc/self/environ. Environment variables are also typically passed to any child processes,

which may increase their exposure depending on the application and system.

• Temporary volumemounts or temporary fileswithin a volumemount canbeused to inject security informa-

tion into a running container before removing the files or mount and keeping the information in-memory.

This helps eliminate long-term access and reduce risk of local file read vulnerabilities.

• Specifically designed secret distribution systems such as Vault by Hashicorp or Keywhiz by Square should

be strongly considered. These purpose built security artifact distribution tools have varied support for

containers but a large amount of documentation or success stories.

• Message Queue (MQ) systems can provide for temporary security distribution ``topics'', although boot-

strapping these securely can be problematic. If MQ systems are used within the overall architecture,

consider using the same or similar mechanisms for managing security tokens to help reduce complexity.

• If key material security is a critical concern, consider the use of a Hardware Security Module (HSM) or a

similar well-vetted software implementation. These systems typically have antiquated APIs, so access may

need to be wrapped in yet another layer or API. If this is performed, ensure the overall security model is

maintained and strong access controls, rate limiting and auditing are in place.

Use the relatively new hardening features of modern Linux kernels such as user namespaces for defense in depth

and Seccomp-BPF for a reduced kernel attack surface. These features are further discussed and implementa-

tions explored within Section 8.1 on page 66 and Section 8.3 on page 74 for each platform respectively. It

383http://events.linuxfoundation.org/sites/events/files/slides/secure-lxc-networking.pdf
384https://lists.linuxcontainers.org/pipermail/lxc-users/2011-May/002025.html
385https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
386https://github.com/docker/docker/issues/13490

101 | Understanding and Hardening Linux Containers NCC Group

http://169.254.169.254
https://www.vaultproject.io/
https://square.github.io/keywhiz/
http://events.linuxfoundation.org/sites/events/files/slides/secure-lxc-networking.pdf
https://lists.linuxcontainers.org/pipermail/lxc-users/2011-May/002025.html
https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
https://github.com/docker/docker/issues/13490

should be noted the seccomp ruleset should follow a whitelist approach and specifically avoid allowing for

ptrace(2) due to known risks.387

• For LXC containers: Seccomp-bpf is supported by default starting in version 1.0 but only a limited blacklist

filterset is applied by default. The lxc.seccomp template directive should be used which allows for both

syscall whitelists and blacklists based on the system call number. If profiling the application or system to

be deployed within the container is not feasible, at the very least consider implementing a blacklist based

on known dangerous or privileged syscalls.

• For Docker containers: Seccomp-bpf is enabled by default starting in version 1.10 (on Linux kernels which

support it and when using seccomp version 2.2.1, not part of Ubuntu Trusty)). The seccomp filter is

using a whitelist of roughly 300 system calls. While this default whitelist offers attack surface reduction,

custom per-container profiles should be used by passing the following directive on the command line:

--security-opt seccomp:/path/to/seccomp/profile.json.

• For Rkt containers: No direct support of either version of seccomp is currently supported, although sys-

temd use is encouraged. The systemd configuration appears straightfoward388 although documentation

is lacking.

Apply a Mandatory Access Control (MAC) System which will likely be AppArmor or SELinux. MAC systems

are crucial for containers not taking advantage of user namespaces, or failing to drop capabilities. With

a user namespace in place, MAC systems contribute to greater defense in depth. For AppArmor, Docker

and LXC have strong support and many examples of both base default profiles, and extended container-

specific profiles. For Docker, the Bane tool can be used to develop specific profiles and for LXC, traditional

AppArmor tools can help profile the application. The grsecurity project also offers an excellent Role Based

Access Control (RBAC) although most container platforms do not easily support or integrate with it. Finally,

SELinux is supported within all three platforms, although documentation is often weak.

Consider access controls to the container environment. For example, avoid using OpenSSH within all contain-

ers. While this can be difficult for development or QA teams attempting to debug issues, consider creating

a separate staging environment which allows quick and easy SSH, and then using a production environment

which has some additional verification steps, bastion hosts, multi-factor authentication, restricted access,

and other securitymeasures for access to container hosts. The same security should be in place for container

orchestration and management software.

Have a plan and procedure in place for regular container updates in addition to emergency fixes, taking into

account potential upstream lag time. With LXC, this could be as simple as running apt-get upgrade, as

containers are often full Linux distributions. For Docker, this style of image updates is considered by many

as ``bad form''. Container related infrastructure is intended to move towards being immutable and images

should not be modified once built. For Docker, upgrading should involve building and deploying a new

container image, then having services switched over (obviously easier in a high-availability environment).

See 9.8.2 on page 90 for more information. In addition to container updates, the container host and kernel

will need to be updated, traditionally requiring a reboot. The Ksplice project allows ``rebootless'' container

project hosts via in-memory kernel patches. The project is open source, although it is now owned byOracle.

Instructions for Ubuntu389 or docker390 can be found on the Ksplice and Oracle websites respectively.

387https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
388https://plus.google.com/+LennartPoetteringTheOneAndOnly/posts/cb3uNFMNUyK
389https://www.ksplice.com/uptrack/download-ubuntu
390https://blogs.oracle.com/wim/entry/oracle_linux_containers_and_docker

102 | Understanding and Hardening Linux Containers NCC Group

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://plus.google.com/+LennartPoetteringTheOneAndOnly/posts/cb3uNFMNUyK
https://www.ksplice.com/uptrack/download-ubuntu
https://blogs.oracle.com/wim/entry/oracle_linux_containers_and_docker

Isolate containers based on trust and exposure. Avoid having containers share the same network or host

when conflicting trust, security models or container ownership is involved. This can be the case with web

applications and cache sytems ormulti-tenant systems, where ``company owned'' containers are used along-

side customer container. In yet other cases, this may involve development running alongside production.

For security, resource control and isolation should limit attempt to the effect of any compromise.

Access controls at the most basic level should be well understood, such as read or write access. This can involve

exploring the security model and posing questions. What does a container specifically need write or read

access to? Can a container be entirely read-only or write-only as a strong security barrier? For example,

simple containers which handle untrusted data and return the contents (such as parsing and resizing an

image, uploaded from a potentially untrusted user). Other container deployments, such as a web server

with static files or an SFTP server for a ``dropbox'', could leverage read-only or write-only volume mounts.

Strongly consider having a single application per container. ``App VMs'' should be preferred over ``OS VMs''.

Not only does this avoid fully virtualized Linux distributions, it keeps attack surfaces down, reduces com-

plexity, and increases efficiency. It also encourages application specific security options or hardening. MAC

rules or syscall filters can now be tailored for single application.

Privileged container actions should be always be established during container start-up and executed by binaries

in the host. By trusting any data within the container, or by requiring the container system to perform some

privileged operation a number of risks present themselves. Vulnerabilities can be introduces by increasing

capabilities to risking attacks against the container management software. All data within the guest should

be treated as untrusted. Recent Docker and LXC AppArmor bugs (CVE-2015-3631 and CVE-2015-1334) for

examples or libvirt issues such as CVE-2013-6456 and CVE-2014-0179.

Carefully expose containers on specific network interfaces and understand what potential networks or hosts

can reach the container service. Only expose container interfaces to the specific host interfaces or bridges

required, as opposed to all interfaces. Aswith all network security, other standard security recommendations

apply. This includes, but is not limited to, understanding how the exposed service is authenticated by

clients clients, how the server authenticates clients (if required) and how encryption offers confidentiality

and integrity protections.

When downloading or building LXC rootfs images, building Dockerfiles, downloading Docker images or Rkt

App Container Images, always consider where images are downloaded from and the security of the related

network traffic. Cryptographic image verification has come a long way since the inception for several of

these container projects, but interoperability (in the case of Rkt), continued vulnerabilities, or Docker images

being opaque, mandates taking care when downloading and verifying images.

Logging, auditing andmonitoring is important for container deployment. Withmodern storage andprocessing,

logging and monitoring should be verbose (without exposing sensitive values) and performed everywhere

possible. Operations within container hosts, and the logging of applications themselves is key for testing,

development, debugging and other efforts. Centralized logging and time synchronization is also critical in

the event of any breach, compromise or other incident response.

Use hardware virtualization along application trust zones. Using a single container per VM (if performance or

efficiency is not a key concern) is a nice way to leverage the advantages of both containers and hypervi-

sors. In multi-tenant environments, this could allow for tenant isolation via hardware VMs and inner-tenant

application isolation via containers. This is one example of isolating by trust (obviously, per-tenant physical

machines would offer the best isolation, but that may not be realistic).

Application hardening itself, of the application being contained, is also a key step which cannot be overlooked

103 | Understanding and Hardening Linux Containers NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3631
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0179

when deploying containers. By preventing an attacker from gaining any access to the system (usually by

obtaining code or command execution within the application), the entire system benefits via this first line

of what is hopefully a defense in depth strategy. First breaking into the container itself should be the initial

hurdle of attacking any container system. Application vetting can be performed through code auditing,

hardened tool-chains, strong permissions, least privileges, defensive design and internal or third-party ap-

plication security testing.

10.2 LXC Specific Recommendations

LXC security recommendations largely encompass two key areas. Avoidingweakdefaults throughadditional

configuration and avoiding treating containers as full operating systems. As new defaults and security

improvements are added as time goes on, always consult with the current documentation, best practices

and third-party security guides.

Follow the abovegeneral security recommendations. Ensure layer two and layer three firewall rules are applied

to limit container to host and guest to guest communication. Use user namespaces to further isolate the con-

tainer from the host when appropriate. Enabling and using the user namespacewithin LXC is simply defining

the requiredUIDmapping files391 within the LXC template, invoking LXC commands as an unprivileged user

and using a supported kernel. These two security features are critical for additional LXC hardening.

Consider creating custom AppVMs or single-application containers as opposed to full Operating Systems. This

will require additional development effort, however the lxc-sshd (as an example) and lxc-busybox templates

can be used as a starting point for minimal container images. This allows for more specific security controls,

less disk space, reduced update requirements and a minimal attack surface.

For privileged containers, drop any capabilities which are not required for the application or applications within

the container. Use lxc.cap.keep within the LXC template or even apply it to the default configuration file,

which will follow a whitelist model. Performing capability restrictions is much easier when using App VMs

instead of fully containerized operating systems. Privileged containers should always be avoided if possible,

instead taking advantage of user namespaces.

Ensure default AppArmor profiles, providing Mandatory Access Controls (MAC) are applied. The base Ap-

pArmor profile (typically /etc/apparmor.d/abstractions/lxc/container-base, or found on github392)

offers a good defense in depth against container escape. The lxc.aa_profile directive should not be set

to ``unconfined'', which disables AppArmor. In many ways, LXC defaults for privileged containers require

AppArmor as part of the security model, enforcing many security options. This is mainly due to many

default containers retaining the highly privileged CAP_SYS_ADMIN capability, as some OS operations are

used within the container (such as the container fstab mounting /dev/shm in some default templates). It is

also recommended to explore developing container-specific profiles.393

Consider using seccomp-bpf to reduce the attack surface exposed by the Linux kernel. The lxc.seccomp direc-

tive supports both blacklists and whitelists and multiple versions. While some syscall blacklisting is applied

by default, this is not comprehensive. Explicitly blocking x86 vs x86-64 system calls within this configuration

file is non-trivial394 and even some outstanding weaknesses exist.395 Finally, be sure any seccomp-bpf

profile filters block access to ptrace(2), in addition to dropping the related capability (CAP_SYS_PTRACE) if

391Using a different UID shift or slide for each container is also a good idea, although it is largely an additional defense in depth

measure.
392https://github.com/lxc/lxc/tree/master/config/apparmor
393https://help.ubuntu.com/lts/serverguide/lxc.html#lxc-apparmor
394https://plus.google.com/+MathiasKrause/posts/Mj4j7UK6NSn
395https://github.com/lxc/lxc/issues/571

104 | Understanding and Hardening Linux Containers NCC Group

https://github.com/lxc/lxc/tree/master/config/apparmor
https://help.ubuntu.com/lts/serverguide/lxc.html#lxc-apparmor
https://plus.google.com/+MathiasKrause/posts/Mj4j7UK6NSn
https://github.com/lxc/lxc/issues/571

possible.

Use cgroups to restrict access to all devices, then only permit those required. The lxc.cgroup.devices.deny

parameter should be set to ``a'' for all (the default). The LXC template should explicitly allowonly the required

devices via lxc.cgroup.devices.allow.

Use custommount options to increase defense in depth. Each lxc.mount.entry directive should use a selec-

tion from or combination of the following security relatedmount options (nodev, nosuid, noexec and bind).

For example, no device files should ever be created within /lib or no binaries executed from the web server

directory root.

10.3 Docker Specific Recommendations

The Docker ecosystem is a complex collection of software. Recommendations may change for specific

versions and generic yet actionable recommendations for a broadly-used system a difficult task. Regardless

of this moving target, security recommendations for Docker are included below.

Follow the abovegeneral security recommendations. Ensure layer two and layer three firewall rules are applied

to limit container to host and guest to guest communication. Enable and use user namespaces and the

base seccomp profile to further isolate the container from the host when appropriate. These three security

features are critical for Docker hardening over the defaults.

Closely follow Docker development and upgrade whenever possible. At the time of this writing, user names-

pace and seccomp-bpf support are now included within the Docker 1.10 release. Both security features are

implemented at a basic level, although neither feature are enabled by default. The Docker Engine, daemon

and client should always be upgraded upon release, especially in the case of a security vulnerability or

additional security feature.

In Docker 1.11 and later, consider using the ``No New Privileges'' feature. GitHub Pull 20727 merged optional

support for the new ``No New Privileges'' feature, better supporting a least privileges model. This can be

enabled via the --security-opt=no-new-privileges flag for docker run. This security feature is further

explained within Section 5.7 on page 42 and relevant kernel documentation for prctl(2).396

Avoid using Docker with the --privileged flag at all costs. As discussed within the Docker configuration

section (Section 6.2 on page 45), the --privileged option effectively disables several major container

isolation features and provides little or no security.

Avoid running as root within privileged non-user namespace containers. Dockerfiles should almost always

include a useradd command and USER directive. This can add some defense in depth, similar to not running

as root for normal host operations. However, now with user namespaces released as part of Docker 1.10 it

is not necessarily required.

Develop container specific AppArmor rules for containers. Apply the --security-opt=apparmor:<profile>

flag when running Docker. For help developing a policy, see the Bane tool by Jessie Frazelle who worked

for a long time at Docker. The genSeccomp.sh script by Thomas Sjögren can additionally be used to help

generate an AppArmor policy, however Bane was more recently released (and may be better supported).

Use --read-only when running containers and overall consider building an overall immutable architecture.

Immutable containers offer many benefits such as limiting attack scenarios, helping prevent compromise,

simplifying deployment and allowing for easier upgrade paths. Although this new paradigm may require

396https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt

105 | Understanding and Hardening Linux Containers NCC Group

https://github.com/docker/docker/pull/20727
https://github.com/jfrazelle/bane
https://github.com/konstruktoid/Docker/blob/master/Scripts/genSeccomp.sh
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt

rearchitecture, retooling, adjustment and refactoring, the end result will be easier to manage and secure.

The idea of immutable images is growing as a deployment trend, in virtualization, cloud and container

architectures. Some also advocate for not storing application data within application containers. See Data-

only container madness for additional information. See Making Docker read-only in production and Im-

mutable Infrastructure with Docker and Containers by Jérôme Petazzoni of Docker, Building a glass house

by Jason Chan of Netflix or Immutable Infrastructure with Docker and EC2 byMichael Bryzek of Gilt for more

information.

Avoid providing access to the docker user or docker group. As discussed within Docker specific threats (Sec-

tion 7.4 on page 62) and Docker specific configuration (Section 6.2 on page 45), it is widely accepted397

a user with docker privileges can trivially escalate to root. While it can be tempting to allow access to the

docker group, this is essentially the same thing as providing root. Only provide such access for users which

are expected to be able to gain root access on the host where such Docker permissions exist. See Docker

daemon attack surface within the Docker security documentation. Privileged access will be required until

future Docker versions or runC398 allow unprivileged users. Always grant access to the Docker daemon

carefully.

Avoid providing access to the Docker UNIX socket or REST API to potentially untrusted callers or containers.

Providing access to the Docker UNIX socket within a container should always be avoided. This exposure

may be due or even recommended in some cases for introspection or to allow management of the Docker

daemon fromwithin a Docker container itself. Just as access to the docker user or group can provide a trivial

path to root, access directly to the REST API or UNIX socket can just as easily compromise the security of the

entire host (and therefore and all containers running within it).

If the RESTful API is exposed, always enable TLS and authentication (both of which default to disabled). See the

Docker specific threats in Section 7.4 on page 62 as well as Protecting the Docker daemon socket on the

Docker site for more information. TLS verification for the Docker command-line client can also be set via the

DOCKER_TLS_VERIFY environment variable.

If user namespaces are not in use, containers should only retain the required capabilities using --cap-add. If for

some reason user namespaces cannot be used, drop all but the required capabilities for Docker containers.

If this cannot be done, drop potentially risky capabilities which remain enabled by default using --cap-drop

such as the default CAP_NET_RAW and CAP_MKNOD. Note that using --cap-add implies dropping all other

capabilities.

Consider using the docker-bench-security tool by Docker. The docker-bench-security tool checks for ``dozens

of common best practices around Docker containers in production''. As this is a simple bash script, it could

easily be extended for specific needs, security regression tests or additional company security requirements.

It should be noted the docker-bench-security system is required to run with an extreme level of privilege,

apparently required for the verification. This dictates sensitive access on deployment of this privileged

container.

Attempt to use small base images within Dockerfiles. This includes replacing FROM calls to large distributions

such as ubuntu or centOS which themselves use large rootfs images with dependency friendly package

managers with smaller, purpose-built or minimal distributions. For example, replacing Ubuntu Linux with

Alpine Linux, which also offers its own package management.399 This reduces attack surfaces, reduces

397One of just many examples: http://reventlov.com/advisories/using-the-docker-command-to-root-the-host.
398https://github.com/opencontainers/runc/issues/38
399Alpine Linux is a small distribution or development team, with unknown build-chain hardening for packages and without HTTPS

repositories (although packages are signed, this exposes an additional attack surface).

106 | Understanding and Hardening Linux Containers NCC Group

http://container42.com/2014/11/18/data-only-container-madness/
http://container42.com/2014/11/18/data-only-container-madness/
http://www.projectatomic.io/blog/2015/12/making-docker-images-write-only-in-production/
http://www.slideshare.net/jpetazzo/immutable-infrastructure-with-docker-and-containers-gluecon-2015
http://www.slideshare.net/jpetazzo/immutable-infrastructure-with-docker-and-containers-gluecon-2015
https://www.youtube.com/watch?v=wH-8610xh6s
https://www.youtube.com/watch?v=GaHzdqFithc
https://docs.docker.com/articles/security/#docker-daemon-attack-surface
https://docs.docker.com/articles/security/#docker-daemon-attack-surface
https://docs.docker.com/articles/https/
https://github.com/docker/docker-bench-security
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
https://github.com/opencontainers/runc/issues/38

complexity, image footprint size, and likely future patching requirements. Minimal container base images

also more closely support the ``App VM'' model, rather than having a large container image with lots of

different applications and only one running. Continuing the trend of specific container base images, min-

imal containers can be made even smaller by using the FROM scratch within Dockerfiles or simply using

docker import on few files a binary requires. See Create the smallest possible Docker container for more

information. Finally, some offeringsmay even auto-generate seccompprofiles and perform other hardening

along with supporting minimal containers.400

If using SELinux for Manditory Access Control (MAC), use different SELinux labels for each container with --sec

urity-opt. This allows specific control and custom labels to be applied to different containers on the same

host. See Adjusting SELinux labels by Daniel Walsh for more information.

Exercise caution when exporting ports or exposing containers to the network. Docker defaults expose the

container on all system interfaces. This may allow a container to break expected network controls or open a

container to unexpected network attacks. This includes command line parameters -p and -P in addition to

EXPOSE directives within created or downloaded Dockerfiles.

Avoid using the LXC runtime via -lxc-conf flags for the Docker Daemon. This is currently unsupported, and

is likely to create inconsistencies with expected Docker image behavior and security assertions, such as

restrictions to procfs not being applied when in LXC mode. Prior reasons to use LXC included support for

seccomp and UID mapping for the user namespaces, however this is now unnecessary.

ExploreDocker and container auditing tools. Tools such as drydock, CoreOSClair, docker-bench-security, and

Docker Project Nautilus offer methods to audit the security of your Docker configuration and containers.

Drydock offers configurable templates, Clair can scan for known issues patched in upstream repositories

and docker-bench-security runs a number of standard security benchmarks (although some implemented

security checks may be outdated). Docker Project Nautilus takes the idea of Clair but goes a bit further,

scanning within all container binaries themselves rather than using package metadata.401

Follow best practices when writing DockerFiles. Dockerfiles are a key area of security-related configuration

and the resulting Image security for any Docker container. See Dockerfile best practices by Docker and

Dockerfile best practices take 2 by Michael Crosby for specific information and great overall recommenda-

tions, not just for security impacting decisions.

Follow the development of Security Profiles and consider assisting if possible and implementing when ready.

Outlined within Github Issue 17142 there is a desire to develop a ``security profile'' for Docker containers

which will use a combination of seccomp, capabilities andMAC to restrict the operations of processes within

a container and limit potential attack surfaces. This could improve the default security of many widely used

Docker images.

If possible limit the container to container communication by using-icc=false. This disables the blanket inner-

container communication by applying a default DROP iptables policy, however layer two communication

may still be permitted (as iptables only controls layer three traffic). Containers should always be restricted

from the host and each-other whenever possible to avoid trivial cross-host attacks (via each container within

a network), and cross-container attacks within the same host. Note this should be configured in conjunction

with dropping the CAP_NET_RAW capability, and possibly using per-container bridges to avoid ARP spoofing

400NCC Group has not evaluated the effectiveness of this tool and has no relationship with CloudImmunity https://github.com/

cloudimmunity/docker-slim.
401There are no details yet on how exactly the systemwill work, but they will be released soon (as of 4/06/2016) according to Docker.

107 | Understanding and Hardening Linux Containers NCC Group

http://blog.xebia.com/2014/07/04/create-the-smallest-possible-docker-container/
https://opensource.com/business/15/3/docker-security-tuning
https://github.com/zuBux/drydock
https://github.com/coreos/clair
https://github.com/docker/docker-bench-security
https://blog.docker.com/2015/12/docker-webinar-qa-intro-to-docker-security/
https://docs.docker.com/articles/dockerfile_best-practices/
http://crosbymichael.com/dockerfile-best-practices-take-2.html
https://github.com/docker/docker/issues/17142
https://github.com/cloudimmunity/docker-slim
https://github.com/cloudimmunity/docker-slim

attacks.402 See Communication between containers within the Docker Networking documentation.

Follow existing hardening guides to supplement or augment this whitepaper. Several Docker hardening guides

and configuration benchmarks have been released over the last two years. As with anything related to doc-

umenting technology (and particularly security), some recommendations may be outdated. This includes

but is not limited to:

• The CIS Docker Engine 1.6 benchmarks provides good information about hardening and explores a myr-

iad of configuration settings. This was a collaboration between Docker security team members, Jérôme

Petazzoni and VMware, Rakuten, Cognitive Scale and the International Securities Exchange.

• An Introduction to Container Security by the Docker team explores the basics of Docker, process, file

and device restrictions as part of Linux containers powered by the Docker Engine (libcontainer). A brief

overview of Docker Image security is also included. See Docker security and best practices on the Docker

blog for more information.

• Docker Secure Deployment Guidelines by Gotham Digital Science offers a clear list of hardening items

and direct recommendations based on public presentations and other information. While this document

is roughly a year old at time of writing this paper, and the version of Docker discussed is 1.4 (11/12/14),

many of the guidelines still apply.

10.4 CoreOS Rkt Specific Recommendations

As discussed within the main overview, the Rkt container framework is under is under active development,

and many key security features remain merely planned or under discussion. As of Febuary 2016, Rkt claims

it is ready for production. RedHat, Intel and VMware are supporting the CoreOS Rkt in various parts, but

some supporters (RedHat) do not think Rkt is ``ready for the enterprise''.403

Follow the above general security recommendations. Most if not all of the above generic recommendations

will apply to Rkt containers.

Always use the newest Rkt version. Due to the rapid development, new or expected security features and

bugfixes (both vulnerabilities and otherwise) are crucial to obtain as soon as possible.

If possible, avoid sharing the network namespace with the host. Rkt users should not use the --net=host

flag. The risks are numerous and range from accessible network daemons, interface sniffing, RAW packet

injection and access to abstract sockets. For Rkt, if layer two protections are not setup for protecting from

against potential attacks, consider implementing a per-container network bridge.

Consider using the LKVM stage1 for high risk containers and normal kernel namespaces for others. This allows

the isolation and security to match the risk profile. This could even be conditionally applied to the same

container image, depending on where in the network it is deployed or the user accessing the system. See

Running rkt with an LKVM stage1 for more information and a walkthrough.

Use SELinux with Rkt, at least until other Manditory Access Control solutions become available. SELinux can

be used in order to help contain different Rkt containers on the same system from accessing the host or

from other malicious or compromised containers. Currently the documentation is sparse at best404 and the

use of SVirt is required (likely due to RedHat integrations). This may create implementation difficulties on

non-Redhat based Linux distributions.

402https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
403http://rhelblog.redhat.com/2015/05/05/rkt-appc-and-docker-a-take-on-the-linux-container-upstream/
404https://github.com/coreos/rkt/blob/master/Documentation/selinux.md

108 | Understanding and Hardening Linux Containers NCC Group

https://docs.docker.com/articles/networking/
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1.0.0.pdf
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
https://coreos.com/rkt/docs/latest/running-lkvm-stage1.html
https://nyantec.com/en/2015/03/20/docker-networking-considered-harmful/
http://rhelblog.redhat.com/2015/05/05/rkt-appc-and-docker-a-take-on-the-linux-container-upstream/
https://github.com/coreos/rkt/blob/master/Documentation/selinux.md

Always use rkt trust before issuing rkt fetch in order to ensure the Image is verified correctly, as opposed

to purely trusting TLS and the specified endpoint automatically. The defaults when using rkt fetchwill down-

load the image using ``meta discovery'' (a meta tag ac-discovery-pubkeys on the target server) and trust

the key associated with it automatically without user interaction or specification.405 The automatic trust

functionality is still under continued work by the developers, see Github issue 481 for more information.

Additionally, users can set the TrustKeysFromHttps flag to false and avoid this behavior.

Follow the instructions for basic privilege separation. Although the majority of Rkt commands must be run

as root, it is possible to run image downloading commands as an unprivileged user. In order to follow the

principal of least access, even this small portion of code should run with reduced privileges. For rkt fetch,

non-root users can be created by executing the shell instructions found within the Rkt getting started page.

Carefully add users to the ``rkt'' group. Similar to the ``docker'' user and group for Docker, the ``rkt'' group

should be considered privileged and will allow privilege escalation in the host through malicious use of

containers. Avoid providing access to users you intend to be restricted on the container host (this also

includes the ``core'' user within CoreOS).

Due to a lack of image verification for Docker images, consider manual verification. When using Docker images

within Rkt, be sure to not disable TLS verification in order to create a secure connection to the Docker server

and then attempt to verify the image out of band. Some efforts are underway to enable this feature.406

10.5 Relevant Kernel Hardening

``Containers will always (by design) share the same kernel as the host. Therefore, any vulnerabilities in

the kernel interface, unless the container is forbidden the use of that interface (i.e. using seccomp)''

- LXC Security Documentation by Serge Hallyn, Canonical

As the Linux kernel is the underpinning of security or isolation features, hardening the Kernel against attack

and limiting the attack surface should be considered one of the top priorities. While the history of Linux ker-

nel vulnerabilities should be a whitepaper in itself, understanding some of the higher profile vulnerabilities

and historical issues helps us to understand kernel attack surfaces and guide attempts to eliminate or isolate

potential weak areas and restrict what is not required for container operation.

10.5.1 Hardening Actions

As a large number of exploits resulting in local arbitrary, ring-0 code execution resulted via two interfaces:

syscalls such as do_brk(2), do_remap(2), vmsplice(2) to name a famous few or and network protocols

(snmp, econet, CAN, SCTP, UDP). Both of these interfaces can now be restricted via seccomp-BPF, module

whitelisting or a minimal kernel build. Additionally, a small number of additional weaknesses in procfs,

debugging and filesystems have also been discovered, and these can be restricted by removing support or

limiting access. See Section 7.1 on page 49 for a more in-depth overview of the various kernel threats and

past attacks.

Current kernel exploitationmethods are non-trivial (especially sogiven thedefault hardening (such asKASLR,

ACPI protections and the closing of many address leaks which some distributions apply,407 but not overly

difficult. When faced with a hardened, Grsecurity kernel, attackers must utilize a stack information leak and

then use ``stackjacking'', in addition to chaining several weaker vulnerabilities into a single, combined privi-

lege escalation vulnerability. Similar to recent Google Chrome browser exploits are built, which require the

405https://github.com/coreos/rkt/pull/1239
406https://github.com/coreos/rkt/issues/2188
407https://wiki.ubuntu.com/Security/Features

109 | Understanding and Hardening Linux Containers NCC Group

https://github.com/coreos/rkt/issues/481
https://coreos.com/rkt/docs/latest/trying-out-rkt.html
https://wiki.ubuntu.com/LxcSecurity
https://github.com/coreos/rkt/pull/1239
https://github.com/coreos/rkt/issues/2188
https://wiki.ubuntu.com/Security/Features

combination of multiple and often very specific vulnerabilities to achieve a complete system compromise.

A tiered sandbox, which models defense in depth, both decreases the likelihood of escape, increases the

complexity of the required exploit and narrows the possibility of a successful exploit chain. Security can

often be reduced to making attackers work hard, or in some cases, as the common saying goes ``You don't

have to outrun the bear''.

Creating a minimal hardened kernel408 is not typically done (or is even a default option) with commodity

Linux distributions, which must support a wide array of hardware, software and use cases from servers to

laptops. Selective and specific kernel options can reduce the significant attack surfaces and decreases the

potential vulnerability window for exposed systems by simply including less code in the built kernel. The

kernel itself can also be built with compile-time hardening, both CONFIG_CC_STACKPROTECTOR_STRONG to

protect a reasonable number of functions (20%)409 vs CONFIG_CC_STACKPROTECTOR_REGULAR at just 2.81%

of functions protected. Using the STRONG optionmay add a performance penalty, but offers better security

over REGULAR (which is used in Ubuntu by default).

When building a new kernel, reviewing the configuration of sysctl values, performing hardening and imple-

menting additional security features, I would recommend starting by reviewing the Ubuntu hardening steps

incrementally and increasingly implemented by the Ubuntu security team for default kernels, Hardening

Debian or the Gentoo Hardened projects. When building any custom kernel, it is still important to keep it

consistently kept up to date, so the process for building, testing and deployment should be practiced and

well staffed. Finally, various regressions and kernel security features can be tested by using Ubuntu's test-

kernel-security.py script.410 This script checks for around 60 different kernel security related regressions or

misconfigurations.

10.5.2 Grsecurity

TheGrsecurity/PaX project creates the opportunity for a significant barrier against successful kernel exploita-

tion through their available patchset. This protection should be considered required hardening for any

highly security sensitive or at risk system, but especially so for well-hardenedOS-virtualization environments.

The core focus of Grsecuirty/PaX is to harden the kernel via the ``prevention and containment''411 of exploita-

tion techniques. This core idea introduced the first version of non-executable pages NOEXEC412 and Address

Space Layout Randomization (ASLR) from pwnie-winning Grsecurity/PaX team member pipacs413 which is

now implemented in a large number of Operating Systems. This ranges from OpenBSD and FreeBSD to

Apple OSX, Apple iOS, Microsoft Windows and of course the vanilla Linux kernel. For those developers or

administrators considered with potential performance impacts, some positive information (for at least the

vast majority of grsecurity protections) can be found in provided overview slides by grsecurity's lead Brad

Spengler.

Grsecurity is fully compatible with various Linux container kernel features, includingMandatory Access Con-

trol (MAC) frameworks, and can easily be established in server environments (which require less drivers

and typically less complexity is found). See Compile and patch your own secure Linux kernel with PaX and

grsecurity by InsanityBit for a good overview of the process. Then Gentoo Hardened project also contains a

408http://cecs.wright.edu/~pmateti/Courses/4420/HardenOS/#sec-7
409https://lwn.net/Articles/584225/
410http://bazaar.launchpad.net/~ubuntu-bugcontrol/qa-regression-testing/master/view/head:/scripts/test-kernel-security.py
411https://pax.grsecurity.net/docs/pax.txt
412This would later become Data Execution Prevention (DEP) on Microsoft Windows.
413``Microsoft today has announced a challenge, giving out $200,000 for work very similar to that that has been done and given away

for free by pipacs, a decade ago'' stated Dino Dai Zovi, who awarded pipacs with a lifetime achievement pwnie award: http://www.

darkreading.com/attacks-and-breaches/pwnie-award-highlights-sony-epic-fail-and-more/d/d-id/1099384

110 | Understanding and Hardening Linux Containers NCC Group

https://wiki.ubuntu.com/Security/Features
https://wiki.debian.org/Hardening
https://wiki.debian.org/Hardening
https://wiki.gentoo.org/wiki/Project:Hardened
https://grsecurity.net/grsecurity-slide_files/frame.htm
http://www.insanitybit.com/2012/05/31/compile-and-patch-your-own-secure-linux-kernel-with-pax-and-grsecurity/
http://www.insanitybit.com/2012/05/31/compile-and-patch-your-own-secure-linux-kernel-with-pax-and-grsecurity/
http://cecs.wright.edu/~pmateti/Courses/4420/HardenOS/#sec-7
http://bazaar.launchpad.net/~ubuntu-bugcontrol/qa-regression-testing/master/view/head:/scripts/test-kernel-security.py
https://pax.grsecurity.net/docs/pax.txt
http://www.darkreading.com/attacks-and-breaches/pwnie-award-highlights-sony-epic-fail-and-more/d/d-id/1099384
http://www.darkreading.com/attacks-and-breaches/pwnie-award-highlights-sony-epic-fail-and-more/d/d-id/1099384

great Gentoo PaX Quckstart guide. Finally, grsecuriy itself has a comprehensiveWikibooks series for further

information on the features and options the patchset provides.

Often times, creating or running containers can violate existing default grsecurity hardening, you can tem-

porarily disable these settings via sysctl for testing. Typically, the conflicting options are chroot_deny_chroot,

chroot_caps, chroot_deny_mount, chroot_deny_mount, chroot_deny_chroot and chroot_deny_chmod al-

thoughothersmaybe involveddependingon the container system in use and specifically enabledgrsecurity

features. Many protection features can be temporarily disabled, tuned and tested via sysctl then finally

locked down (setting kernel.grsecurity.grsec_lock equal to 1) once the issues are resolved.

After 14 years, grsecurity stable patches are no longer publicly available. This is unfortunately due to ``several

very large companies in the embedded Linux world'', who are ''not playing by the same rules as every other

company using our software violates users' rights, misleads users and developers, and harms our ability to

continue our work'', largely though false claims and continued trademark violations.414 The test series, which

is unfit for production use according to the grsec team, remains available ``in order to avoid impacts to the

Gentoo Hardened and Arch Linux hardened communities''. Stable patches can be obtained by becoming a

sponsor or commercial support. If Linux containers are used currently within your organization, or deploy-

ment of grsecurity is merely a security goal, I strongly suggest becoming a corporate sponsor to support

this excellent work which benefits us all, as history as shown.

414https://grsecurity.net/announce.php

111 | Understanding and Hardening Linux Containers NCC Group

https://wiki.gentoo.org/wiki/Hardened/PaX_Quickstart
https://en.wikibooks.org/wiki/Grsecurity
https://grsecurity.net/business_support.php
https://grsecurity.net/announce.php

11 The Future

While somemay say containers are just a fad and toomany have jumped on the hype train, it's hard to argue

with the advantages, from efficiency to security. Containers are just starting to see deployment in large num-

bers to production, making inroads where hardware virtualization is king. Their use and implementations

are also only recently reaching maturity in terms of security or documentation. Containers are clearly one

future415 OS-virtualization platform which can offer reduced attack surfaces and improve security controls.

The world of technology is also seeing a move to software-everything, just as application security is outpac-

ing hardware solutions.416 For example, software defined networking and overlay networks can architect

designs and offer microsegmentation in ways never thought possible before, as well as offer dynamism that

would be impossible in any hardware solution. Entire software defined data centers, powered by containers

and hardware virtualization can achieve flexibility, scalability, and prototyping which was simply not possible

(at least without large amounts of money), especially before the advent of cloud computing.

It should be noted that the following sections briefly discuss newly released, beta versions or otherwise

upcoming technology or applications. While very interesting froma security, sandboxing or container stand-

point, they have not been reviewed (nor is any one technology endorsed) by the author or NCC Group.

11.1 Containers on the Desktop

Desktop application containers417 and the use of kernel features that power containers are a possible future

for isolation on modern Linux or security-focused distributions. Ubuntu's ever-increasing base AppArmor

profiles418 and Gnome Desktop's Sandboxed Apps419 project also illustrates similar efforts to sandbox the

modern Linux desktop. Google's ChromeOS can also be used an example of the power of ``containerized''

client-focused Operating Systems.

When using containers on the desktop, unprivileged containers are a perfect fit.420 Introduced in Linux

3.12 and LXC 1.0, fully unprivileged containers offer a solution for low-rights, non-root users a method to

``containerize'' desktop applications and retain a model of least privilege, although LXC often retains large

base images for full ``OS virtualization'' unless something such as the busybox template is used to support

``AppVMs''. Desktop application containers can also easily limit CPU, disk andmemory for applicationswhich

like to monopolize these resources, such as web browsers.

A number of Open Source developers or container focused companies have demonstrated421 GUI applica-

tions in containers or systems to isolate containers.422 Past Docker employee and Linux junkie Jessie Frazelle

also has given numerous talks and created articles discussing the use of containers on the desktop.423 It

should be noted that while X11 within a container is possible424 the design of X11 remains a risk. Many

Desktop container solutions do not attempt to isolate X11 at all, opting to expose the X11 magic socket into

the container for transparent and full-speed X.425

However a new high-security and privacy focused Linux distribution, SubgraphOS, is attempting to offer OS

virtualized applications and aswell as address the coreX11 risk. SubgraphOSalso comeswith adefault grse-

415http://blog.circleci.com/its-the-future/
416https://www.youtube.com/watch?v=2OTRU--HtLM
417http://venturebeat.com/2015/07/09/cloud-on-your-desk-this-docker-container-comes-in-a-mini-shipping-container/
418https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
419https://wiki.gnome.org/Projects/SandboxedApps
420https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
421http://www.flockport.com/run-gui-apps-in-lxc-containers/
422https://blog.philippklaus.de/2011/06/sandboxing-on-ubuntu-with-arkose-using-lxc/
423https://blog.jessfraz.com/post/docker-containers-on-the-desktop/
424https://web.archive.org/web/20140728171918/http://box.matto.nl/lxcxserver.html
425https://www.stgraber.org/2014/02/09/lxc-1-0-gui-in-containers/

112 | Understanding and Hardening Linux Containers NCC Group

http://blog.circleci.com/its-the-future/
https://www.youtube.com/watch?v=2OTRU--HtLM
http://venturebeat.com/2015/07/09/cloud-on-your-desk-this-docker-container-comes-in-a-mini-shipping-container/
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
https://wiki.gnome.org/Projects/SandboxedApps
https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
http://www.flockport.com/run-gui-apps-in-lxc-containers/
https://blog.philippklaus.de/2011/06/sandboxing-on-ubuntu-with-arkose-using-lxc/
https://blog.jessfraz.com/post/docker-containers-on-the-desktop/
https://web.archive.org/web/20140728171918/http://box.matto.nl/lxcxserver.html
https://www.stgraber.org/2014/02/09/lxc-1-0-gui-in-containers/

curity patched kernel, is under active development,426 and has a recently released alpha versionwhichworks

surprisingly well, including many working security features such as a metaproxy app fiirewall, AppArmor

profiles, seccomp-bpf and the OZ sandbox. Subgraph OS represents the next generation model of a high-

security Linux distribution with client-side sandboxing architectures. You can explore their artistic design

through their graph.427 Many high risk applications within SubgraphOS are restricted via the ``OZ'' sandbox.

This sandbox is described as ``a sandboxing system targeting everyday workstation applications''428 which

uses Xpra429 for X11 isolation, setting it apart from other implementations. Finally, Subgraph is developed

by a respected set of researchers, committed to making Subgraph OS both secure and usable.

Subuser, developedbyTimothHobbs, is another newly released client-focused container solutiondescribed

as ``docker on the desktop'' or ''QubesOS light'', where applications are sandboxed usingDocker containers,

and X11 is again isolated using Xpra.430 While Subuser is similar to ``OZ'' by the Subgraph OS team, it is not

a full distribution. Subgraph OS is also a more comprehensive and security focused project with tight Tor

integration and a grsecurity patched kernel, whereas Subuser is simply application containers via Docker

with Xpra. Subuser is overall an interesting idea, and the permissions model may allow it to be usable and

generic. However, it currently requires the main user to be in the docker group, which effectively means

you're always running with elevated privileges. Maybe future versions will leverage runC, when it no longer

requires root for unprivileged containers.

Overall, withmodern smartphone platforms using application sandboxing by default such as Seatbelt within

Apple iOS and UID sandboxing within Google Android, we may see a time soon where unsandboxed code

is the exception, not the other way around. Sandboxing, namespaces, dropped capabilities and other

restrictions are the security controls that modern Linux needs, in order to keep pace with other mainstream

closed-source Operating Systems. See The State of the Art of Application Restrictions and Sandboxes: A

survey of Application-oriented Access Controls and their Shortfalls by Z. Cliffe Schreuders Z, Tanya McGill,

Christian Payne for more information on this overall subject.

11.2 New Potential Namespaces

While the current set of namespaces is adequate, a number of security gaps must be mitigated directly

through security such as Mandatory Access Control or cgroups which, in many cases, should remain in place

for defense-in-depth. Future Namespaces may include a device namespace431,432 a time namespace,433

and a security namespace (for LSMs). With each newnamespace, Linux containers will gain increaseddefault

security or can be more easily isolated for specific kernel provided features.

11.3 Additional Lightweight Isolation and Sandbox Platforms

While full LXC, Docker and Rkt are often the focus of Container discussions, there are a number of options

available for simple sandboxeswhich leveragemanyof the sameLinux kernel technologies (cgroups, names-

paces, and capabilities) as containers. These lightweight solutionsmay bemore adaptable to a specific need

or are focused on desktop application sandboxing. For a more generic exploration of sandboxing, outside

of using Linux containers, see The Methods of Sandboxing and Isolation by Ján Lieskovský.

426https://subgraph.com/sgos/index.en.html
427https://subgraph.com/sgos/graph/index.en.html
428https://github.com/subgraph/oz
429https://www.xpra.org/
430http://subuser.org/news/0.3.html
431https://lwn.net/Articles/564854/
432https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2013_0.pdf
433https://lwn.net/Articles/179825/

113 | Understanding and Hardening Linux Containers NCC Group

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.4042&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.4042&rep=rep1&type=pdf
http://openalt.cz/2015/data/Jan%20Lieskovsky%20-%20the_methods_of_sandboxing_and_isolation.pdf
https://subgraph.com/sgos/index.en.html
https://subgraph.com/sgos/graph/index.en.html
https://github.com/subgraph/oz
https://www.xpra.org/
http://subuser.org/news/0.3.html
https://lwn.net/Articles/564854/
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2013_0.pdf
https://lwn.net/Articles/179825/

11.3.1 Google Minijail

The Google ChromeOS team developed their own micro-container and sandbox platform ``minijail'' as a ``li-

brary/application launcher for quickly creating restricted jails to run daemons inside of ChromeOS''. Further

information and implementation details can be found in the System design and hardening documentation,

and the code can be found within the newer platform2 repository.434

11.3.2 MBOX

MBOX is ``a lightweight sandboxingmechanism that any user can use without special privileges in commod-

ity operating systems'', and similar to other desktop solutions it can be invoked by an unprivileged user.

MBOX achieves this sandbox through a layered sandbox filesystem and interposing on system calls to add

hooks, user acceptance/confirmation for actions and other security checks. The MBOX sandbox can easily

disable all network access for a target binary, control various signal handling, and present a fake filesystem to

measure or snapshot changes (making it also useful for reverse-engineering ormalware analysis). The syscall

interpositioning/hooking supports both seccomp and ptrace, however ptrace is the default. As discussed

earlier, syscall interposition frameworks are often vulnerable to various timing attacks such as Time-of-Check-

Time-of-Use (TOCTOU).MBOXavoids this problemby simply and elegantly using a read-onlymemory page:

``MBOX avoids TOCTOU problems by mapping a page of read-only memory in the tracee process. When

MBOX needs to examine, sanitize, or rewrite an in-memory data structure, such as a path name, used as a

systemcall argument,MBOXcopies thedata structure to the read-onlymemory (usingPTRACE_POKEDATA

or the more efficient process_vm_writev(2)), and changes the system call argument pointer to point

to this copy.''

- Practical and effective sandboxing for non-root users by Taesoo Kim and Nickolai Zeldovich

The MBOX whitepaper Practical and effective sandboxing for non-root users and associated presentation

slides offer an in-depth explanation on features or use and examples for different sandboxing goals. For

more information onmore general forms of TOCTOU attacks, see the iSEC Partners/NCCGroup whitepaper

Recognizing and Preventing TOCTOU by Chris Hacking.

11.3.3 Unshare

As discussed above, in some cases, a full container solution may be overkill and installing separate appli-

cations or sandboxing frameworks too burdensome, depending on the platform or storage constraints. As

discussed earlier within this whitepaper, the unshare(2) system call allows for namespace ``disassociation''.

This can be easily explored using the unshare command from the utils-linux package and with minimal

effort, can allow for an extremely lightweight application container with support for all of the major names-

paces. Other unshare-based container platforms have been developed such as a version written in the rust

high-security programming language435 or divehttps://github.com/vi/dive written in C. These essentially

container methods, which directly use unshare(2), may be ideal on embedded platforms where space,

simplicity and compatibility are key concerns.

11.3.4 runC

The runC project, released in the summer of 2015, is a ``a CLI tool for spawning and running containers

according to the OCP specification'' (OCP referring to the older name for the Open Container Initiative).

This Docker project is under very active development and is powered by Docker's own libcontainer and is

the first instance of an Open Container Project initiative and governed platform, confirming to version one

of the various specifications.436 The runC tool also supports running Docker images, and does not use the

434https://chromium.googlesource.com/chromiumos/platform2/+/factory-rambi-6420.B/libchromeos/chromeos/minijail/
435https://github.com/tailhook/unshare
436https://github.com/opencontainers/specs

114 | Understanding and Hardening Linux Containers NCC Group

https://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
https://pdos.csail.mit.edu/archive/mbox/
https://people.csail.mit.edu/nickolai/papers/kim-mbox.pdf
https://taesoo.gtisc.gatech.edu/pubs/2013/mbox/mbox.pdf
https://taesoo.gtisc.gatech.edu/pubs/2013/mbox/mbox-slides.pdf
https://taesoo.gtisc.gatech.edu/pubs/2013/mbox/mbox-slides.pdf
https://github.com/iSECPartners/publications/blob/master/whitepapers/TOCTOU_whitepaper.pdf?raw=true
https://github.com/vi/dive
https://runc.io/
https://chromium.googlesource.com/chromiumos/platform2/+/factory-rambi-6420.B/libchromeos/chromeos/minijail/
https://github.com/tailhook/unshare
https://github.com/opencontainers/specs

Docker daemon, so it can be easilymanagedby other systems or integratedwith systemd. As runC is backed

by libcontainer, many of the libcontainer security features will work out of the box.

11.3.5 Systemd itself

The systemd init systemcan alsobedirectly used to create containers. By using systemd-nspawn, lightweight

application containers can be created, just as systemd-nspawn is used within CoreOS Rkt. See the Flockport

article A Quick Look at Systemd Nspawn Containers for a basic overview of the use and configuration of

systemd for containers. For additional analysis, see the LWN article Systemd vs. Docker by Josh Berkus for

more information.

11.3.6 Firejail

Firejail437 is a ``SUID sandbox program that reduces the risk of security breaches by restricting the running

environment of untrusted applications using Linux namespaces, seccomp-bpf and Linux capabilities''. This

simple sandbox offers a straightforward way to sandbox different Linux applications, although it is still under

very active development. As is especially true with software providing security protections, make sure you

have the latest release as Release 0.9.30 introduced a local privilege escalation bug438 which was fixed in

0.9.32.

The numerous Firejail sandbox examples show that it can be used to secure a web server or a modern web

browser or create a restricted shell. Firejail also supports user-defined ``profiles'' which can create rules for

everything from filesystem controls (blacklisting, whitelisting and private directories), syscall filtering, and

user namespace options to resource limits, environment variables, and network namespaces. Default pro-

files have been created for a large number of common desktop Linux software including Firefox, Chromium,

Evince, Dropbox, Pidgin, Transmission, Spotify, Steam and VLC.439

11.3.7 Pflask

Pflask is another lightweight container solution which, similar to the unshare command, does not require

configuration and supports unprivileged containers via user namespaces (when supported andpermittedby

the kernel).440 Pflask is written in C and offers ephemeral containers, disabled capabilities, optional network

and filesystem configuration as well as backgrounded containers and systemd-machined integration.441

11.4 The Open Container Initiative

The Open Container Project (OCP) later renamed to the Open Container Initiative (OCI), is a large multi-

industry and multi-stakeholder ``open governance structure'' for container formats and runtimes. The OCI

has over 35 sponsors and run under the auspices of the Linux Foundation. Standards and specifications

are expected to slowly be publicly released in the coming months, with various implementations to follow.

As referenced above, OCI has released, in partnership with Docker, the ``runC'' framework,442 a lightweight

wrapper around the native Golang libcontainer (which started under Docker and is now maintained as part

of runC itself). Future versions of CoreOS Rkt are also intended to be OCI compliant. For more information,

see the Open Containers project website.

437https://github.com/netblue30/firejail
438https://l3net.wordpress.com/2015/10/14/firejail-0-9-32-rc1-release-announcement/#more-4783
439https://github.com/netblue30/firejail/tree/master/etc
440https://github.com/ghedo/pflask
441https://www.freedesktop.org/wiki/Software/systemd/machined/
442https://github.com/opencontainers/runc

115 | Understanding and Hardening Linux Containers NCC Group

https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://www.flockport.com/a-quick-look-at-systemd-nspawn-containers/
https://lwn.net/Articles/676831/
https://l3net.wordpress.com/projects/firejail/
https://l3net.wordpress.com/2014/06/08/securing-a-web-server-using-a-linux-namespaces-sandbox/
https://l3net.wordpress.com/2014/09/19/firejail-a-security-sandbox-for-mozilla-firefox/
https://l3net.wordpress.com/2014/09/19/firejail-a-security-sandbox-for-mozilla-firefox/
https://l3net.wordpress.com/2014/04/16/how-to-restrict-a-login-shell-using-linux-namespaces/
http://ghedo.github.io/pflask/
https://www.opencontainers.org/
https://github.com/netblue30/firejail
https://l3net.wordpress.com/2015/10/14/firejail-0-9-32-rc1-release-announcement/#more-4783
https://github.com/netblue30/firejail/tree/master/etc
https://github.com/ghedo/pflask
https://www.freedesktop.org/wiki/Software/systemd/machined/
https://github.com/opencontainers/runc

11.5 Containers In Other Platforms

Onemajor benefit of Linux is it's flexibility, which includes a long history of very different hardware platforms.

The use of Linux within the ``Internet of Things'' (IoT) is a direct testament of it's dynamic configuration,

value, and support, as a vast majority of IoT and other embedded devices use Linux. Apart from the IoT,

Google Android could also use more container features than simply the mount namespace and SELinux

for MAC, either using additional namespaces, developing a custom Android-specific kernel namespace or

using seccomp-BPF. All of these features could be used to further isolate processes and improve security

through sandboxing or security beyond typical UID limits.

Containers, powered by kernel features, or simply different security and hardening options discussed within

this paper (such as root capabilities and specific namespaces for one-off isolation techniques) are not com-

monly found on embedded systems and specifically, not found within the IoT landscape. Numerous vul-

nerabilities within these devices are routinely discovered, many of which may be mitigated, at least in part,

by additional sandboxing, namespaces, filtering, and reduced root capabilities. Lightweight containers and

related sandboxes can and should be used within various embedded devices, often which have extremely

poor application security or run all processes with elevated privileges. Examples range from Linux powered

routers and security hardware to kiosks and payment systems, as well as augmenting existing connected

vehicle or automotive sandboxes, gaming systems or even infotainment systems in airplanes.

11.5.1 Microsoft Windows

Not to be outdone by the Open Source community and to keep pace with many enterprise customers,

Microsoft has even released support for Docker images443 using a custom runtime. According to one rather

comical Hacker News comment, this means Linux containers are serious now:

``This will be what takes containers into the mainstream businesses. Companies may adopt docker or

other instead of this, but Microsoft creating their own version of it means its a viable technology.''

- Containers are serious now by Kirinan

The Microsoft fork of Docker started with a single, very important commit444 and associated pull request.445

Apart fromDocker, Microsoft also has future plans to implement native OS-virtualization within theWindows

platform.446 See theMicrosoft articleMicrosoft announces new container technologies for more information

on native Windows containers.

11.6 Container Specific Operating Systems

Ubuntu Core, RedHat's Atomic Host, boot2docker, CoreOS and systems such as RancherOS are particularly

interesting for hosting Linux containers. RancherOS in particular runs two different Docker engines, one for

system services, which are each within Docker containers, and another for normal user applications. The

author nor NCC Group has examined the security or hardening of these container Operating Systems, their

patch cycles, Linux kernel configuration and other considerations, as this was deemed outside the scope of

this whitepaper. See theDocker blogpost The newminimalist operating systems and TinyDockerOperating

Systems for more information. Additionally, as a spin-out from RancherOS, plain ``Rancher'' offers a number

of container orchestration features, Docker management and an overlay network (optionally protected by

IPSec) all while coupling-in RancherOS.While this platform is in it's infancy, it may offer an ``all in one'' solution

for self-hosted PaaS, similar to OpenStack but focused on containers.

443http://www.infoworld.com/article/2834122/application-virtualization/windows-server-is-getting-docker-says-microsoft-and-

docker.html
444https://github.com/Microsoft/docker/commit/bad29cf9adb8fcc78347eb0a8c154c04a7b36e2e
445https://github.com/Microsoft/docker/pull/1
446https://msdn.microsoft.com/en-us/virtualization/windowscontainers/quick_start/container_setup

116 | Understanding and Hardening Linux Containers NCC Group

https://news.ycombinator.com/item?id=9342369
http://blogs.technet.com/b/server-cloud/archive/2015/04/08/microsoft-announces-new-container-technologies-for-the-next-generation-cloud.aspx
https://blog.docker.com/2015/02/the-new-minimalist-operating-systems/
https://blog.docker.com/2015/03/tiny-docker-operating-systems/
https://blog.docker.com/2015/03/tiny-docker-operating-systems/
http://www.infoworld.com/article/2834122/application-virtualization/windows-server-is-getting-docker-says-microsoft-and-docker.html
http://www.infoworld.com/article/2834122/application-virtualization/windows-server-is-getting-docker-says-microsoft-and-docker.html
https://github.com/Microsoft/docker/commit/bad29cf9adb8fcc78347eb0a8c154c04a7b36e2e
https://github.com/Microsoft/docker/pull/1
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/quick_start/container_setup

11.7 Unikernels and Microhypervisors and Hybrid Models

An idea to augment the OS virtualization model with Hardware Virtualization, attempting to create a hybrid

platformwith additional security is an evolutionwell underway. Joyent, public cloud container host also uses

a ``purpose-built container hypervisor'' which is likely based on KVM, and follows the model of Solaris Zones

as implemented with Illumos/SmartOS447). CoreOS Rkt, as discussed earlier can use Linux KVM for stage1,

as co-developed by the Intel Clear Containers project.

11.7.1 Intel ClearContainers

``The impetus for the container effort is to embed security using VT-x technology''

- Intel Looks to Secure Containers by Imad Sousou

The Intel Clear Containers project is part of Intel's Clear Linux which provides a stripped down hardware VM

(via KVM) for wrapping containers. This is exciting for many reasons, as it allows for hardware virtualization

speed, security and isolation to be paired with OS virtualization efficiency and ease of use.448 See the Clear

containers project page for more information and a few different examples.

The Clear Containers project claims only 18-20MB of memory overhead per container and onmodern SSDs

it can be started in less than 150 milliseconds. Clear Containers were implemented first within CoreOS Rkt,

starting in 0.8. Docker support is still under development. See An introduction to Clear Containers by Arjan

van de Ven on Linux Weekly News for more information.

11.7.2 Canonical LXD

LXDcanbe compared tomanybasicDocker features. Toput thismore simply, LXD is to LXCwhatDocker is to

runC. LXD is working towards a ``container hypervisor'' that also offers livemigration, unprivileged containers

and at some point, hardware-assisted isolation. It is stated the primary goal of LXD is to ``extend containers

into process based systems that behave like virtual machines''. It is rumored LXDwill also support Intel's new

Software Guard Extensions (SGX).449, 450

The following statement from the team further illustrates the LXD roadmap:

``We're working with silicon companies to ensure hardware-assisted security and isolation for these

containers, just like virtual machines today. We'll ensure that the kernel security cross-section for

individual containers can be tightened up for each specific workload. We will make sure you can live-

migrate these containers from machine to machine. And we're adding the ability to bind storage and

network interfaces to the containers, just like virtual machines.''

- Is LXD a real Linux hypervisor? by the LXD team

It's important to note, LXD is not yet an actual hypervisor, it is currently implemented in Golang and provides

a REST API, again very similar to Docker. The LXD live migration, possibly a key differentiator451 has been

successfully demonstrated.452 See Where does LXD fit in and Where are we going with LXD for more

information.

447https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
448https://blogs.intel.com/evangelists/2015/05/19/fostering-new-data-center-usages-with-clear-containers/
449https://twitter.com/grsecurity/status/530490056893825024
450https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-

researchers-primer/
451http://tycho.ws/blog/2015/04/lxd-live-migration.html
452https://www.youtube.com/watch?v=a9T2gcnQg2k&t=1189

117 | Understanding and Hardening Linux Containers NCC Group

https://www.joyent.com/blog/why-container-security-is-critical
http://www.enterprisetech.com/2015/05/19/intel-looks-to-secure-containers/
https://clearlinux.org/features/clear-containers
https://clearlinux.org/features/clear-containers
https://clearlinux.org/features/clear-containers
https://lwn.net/Articles/644675/
http://www.ubuntu.com/cloud/tools/lxd
http://www.ubuntu.com/cloud/lxd
https://s3hh.wordpress.com/2014/12/12/where-does-lxd-fit-in/
http://blog.dustinkirkland.com/2014/11/where-were-going-with-lxd.html
https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
https://blogs.intel.com/evangelists/2015/05/19/fostering-new-data-center-usages-with-clear-containers/
https://twitter.com/grsecurity/status/530490056893825024
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
http://tycho.ws/blog/2015/04/lxd-live-migration.html
https://www.youtube.com/watch?v=a9T2gcnQg2k&t=1189

11.7.3 Siemens Jailhouse

Jailhouse is a partitioning Hypervisor ``based on Linux''. This solution apparently can run bare-metal applica-

tions or as a sort of paravirtualization layer via ``adapted operating systems besides Linux''. Jailhouse is said

to focus on simplicity, rather than feature richness and offers support for x86, x86-64 and ARM processors.

Themain project also states the ``aim of Jailhouse is to keep the amount of code responsible for establishing

andmaintaining cell isolation as small as possible''.453 Overall this is new and interesting project which is still

under very active development. The core ideas behind Jailhouse are explored within the 2013 presentation

Static System Partitioning and KVM by project lead Jan Kiszka.

11.7.4 Full Unikernels: App VMs on Steroids

The next stepbeyond container-focused hypervisor platforms is fully isolated unikernels deployed alongside

an immutable architecture or infrastructure.454 This fundamental shift towards single-purpose appliances

and single-application containers begs the question, can micro containers simply run within their own hard-

ware backed hypervisor? This basic idea is implemented in OSv and MirageOS and is explored in the ACM

article Unikernels: Rise of the Virtual Library Operating System. For specific applications, such as networking

middleware (firewalls, software routers, monitoring devices, etc) ClickOS is yet another example for per-

formance focused unikernels.455 Finally, Xen, a longtime platform of choice for testing new virtualization

platforms is itself leading the charge: this time on exploring the idea of ``Cloud Operating Systems''.456

Figure 2: A high-level meta-example of reducing down an entire stack into a Mirage runtime and the

application code in order to run the minimal unikernel image inside of a traditional hypervisor.

Full unikernels offer simplicity benefits, hardware-backed isolation and extreme levels of attack surface re-

duction457 but, overall, they are not a well known solution for most devops or IT shops. This lack of support

and general understanding can lead to misimplementations that introduce other potential security risks.

Several arguments can also be made that they are still unfit for production458 even if they can be deployed

and manged successfully. Another key concern is large mounts of security-sensitive code may need to

be re-implemented in unikernel specific libraries. To use ``Rump kernels'' as an example459 this includes

453https://lwn.net/Articles/574273/
454https://medium.com/@darrenrush/after-docker-unikernels-and-immutable-infrastructure-93d5a91c849e
455https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
456http://www.linux.com/news/enterprise/cloud-computing/751156-are-cloud-operating-systems-the-next-big-thing-
457https://twitter.com/dinodaizovi/status/702209109567733760
458https://www.joyent.com/blog/unikernels-are-unfit-for-production
459http://rumpkernel.org/

118 | Understanding and Hardening Linux Containers NCC Group

https://github.com/siemens/jailhouse#jailhouse
http://www.linux-kvm.org/images/b/b1/Kvm-forum-2013-Static-Partitioning.pdf
https://github.com/cloudius-systems/osv
https://mirage.io/
http://queue.acm.org/detail.cfm?id=2566628
http://cnp.neclab.eu/clickos/
https://lwn.net/Articles/574273/
https://medium.com/@darrenrush/after-docker-unikernels-and-immutable-infrastructure-93d5a91c849e
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
http://www.linux.com/news/enterprise/cloud-computing/751156-are-cloud-operating-systems-the-next-big-thing-
https://twitter.com/dinodaizovi/status/702209109567733760
https://www.joyent.com/blog/unikernels-are-unfit-for-production
http://rumpkernel.org/

TCP/IP stacks, filesystem drivers, random number generators, cryptographic primitives and other areas

typically provided by well vetted Operating System implementations. Overall these reimplementations will

likely introduce new vulnerabilities or risks and other security regressions. Unikernel applications based on

provably secure micro kernels460 are left as an exercise to the reader.

At Dockercon EU, in the winter of 2015, Anil Madhavapeddy a lead developer for MirageOS presented

Unikernels meet Docker. This demo involved developing Docker into a unikernel microservice, such that

different applications were deployed atop hardware-virtualization backed unikernels on KVM. For more

information see Contain Your Unikernels! and the code repository for the demo.461 For more performance-

specific information on Unikernels and several related implementations such as OSv, see the Linux Founda-

tion presentation A survey of high performance virtualization techniques by Mike Day of IBM.

11.8 The Big Idea Of Microservices

The microservices model is much more than an underground devops movement to place a REST API on

every single application. From a security perspective, microservices can encourage a logical breakdown

of application components, isolate high-risk or sensitive services and help establish an overall architecture

of least access and least privilege.462 The Nginx blog article Introduction to Microservices offers a concise

overview of many advantages and disadvantages. In short, microservices offer a model of reducing tradi-

tionally large applications into discrete components, just as classes or namespaces within an application

isolate features, microservices can separate authentication, authorization, data processing, and logging.

Microservices also break-down different application features and disparate functions into specific APIs or

services. Payment services can be well isolated from email notifications code, front-end minimal token

caching systems restricted from back-end databases. Each application ``micro service'' can now also be

scaled, upgraded, fault tolerant, distributed and (most importantly) secured separately.

Microservices can operate similar to secure networks and modern application sandboxes, translating IPC

calls or inner-OS API calls into cross-container or cross-host API calls. This embraces networking and au-

thentication based application segmentation based on trust, data handling and required access. Within

application sandboxes (such as the Google Chrome browser), broker processes and isolated services are

based on risk, trust, attack surfaces and a combination of related security requirements. This can offer a very

robust design with defense-in-depth monitoring, auditing and control where traditionally it was difficult to

achieve or not chiefly encouraged. Security and isolation can now be part of the design, development or

deployment process. Toput it simply, the linediagramdrawnonwhiteboards cannowbe logically deployed,

with security enforced at the application and network level rather than a much less defined, isolated or

restricted, as is often the case.463

Logically isolating application components into different services can also help a system adapt to perfor-

mance requirements at scale, which may be yet another reason to consider a microservices architecture.

Breaking down different application requirements such as authentication, creating database cursors, or

performing token generation is logical. Isolating areas of the application which convert between different

binary formats, parse untrusted data or other high-risk operations helps the application, logging and related

container hardening move towards specificity vs generality. One example could be web application with an

image processing component. This can be split into separate, highly locked down and minimal containers

connected via a message bus or API. The web application UI container can communicate with a back-end

webAPI container, in turn, this container can control and log access to, aswell as authenticate service-specific

460https://sel4.systems/
461https://github.com/Unikernel-Systems/DockerConEU2015-demo/
462https://www.gartner.com/doc/2974417
463https://pbs.twimg.com/media/CY3NsQjUwAE6Afz.png:large

119 | Understanding and Hardening Linux Containers NCC Group

http://unikernel.org/blog/2015/unikernels-meet-docker/
http://unikernel.org/blog/2015/contain-your-unikernels/
https://events.linuxfoundation.org/sites/events/files/slides/Survey%20of%20HP%20Virtualization%20Techniques.pdf
https://www.nginx.com/blog/introduction-to-microservices/
https://sel4.systems/
https://github.com/Unikernel-Systems/DockerConEU2015-demo/
https://www.gartner.com/doc/2974417
https://pbs.twimg.com/media/CY3NsQjUwAE6Afz.png:large

connections. Finally, potentially dangerous image verification or format conversion then be performed

within another separate and tightly restricted or resource limited container.

Figure 3: One potential Microservices model, using JSONWeb Tokens (JWT) for authentication. Image from

Microservices in Practice: From Architecture to Deployment.

Container orchestration is often discussed when considering moving an existing platform to containers,

using a large number of containers, or migrating to a Microservices model. Orchestration is also a major

difficulty point of many deployments. This is not only due to different requirements, interoperability, con-

figuration and competing platforms, but the complexity and overall immaturity of many of these systems.

Orchestration systems or service discovery either via Docker Swarm, CoreOS Fleet, Apache Mesos/Aurora

or a myriad of other newcomers have a high impact if they contain various security risks. However, these

risks may prove less serious than introducing inconsistency or a general lack of configuration management,

as often present without orchestration. Inconsistency within application deployments often leads to security

gaps, either through misconfiguration or lack of patching, as NCC Group commonly witness during various

types of security assessments.

Overall, containers and microservices were destined to support each-other. As applications moved from

large monolithic untamed beasts to service oriented and API decorated designs, the logical progression is

to further isolate and reduce service size. This fits perfectly with distilling applications into their required

libraries andOperating System needs. Potential concerns related to rearchitecture costs, development time

and other requirements may dictate how, when and if an organization will switch to microservices. In any

case, the microservices model should be considered for any deployment or platform rearchitecture, as it

offers a number of benefits including performance, scale, security.

120 | Understanding and Hardening Linux Containers NCC Group

https://dzone.com/articles/microservices-in-practice-1

12 The End

12.1 Conclusion

As I hope that this whitepaper has made clear, effort is still required for containers to be secure. However,

this is largely due to the relative immaturity of implementations, either the container systems themselves or

kernel features which support containers, and the nature of OS virtualization itself. Recent advances such as

Linux Clear Containers or Siemens Jailhouse aim to create a hybrid approach of application VMs alongside

hardware virtualization. This may offer an excellent solution for high security applications and improved

container trust, at the same time retaining packaging, flexibility and efficiency.

In this modern age, I believe that there is little excuse for not running a Linux application in some form of a

Linux container, MAC or lightweight sandbox. Even if readers of this paper don't take the efforts described

to further harden container systems, raising the bar with default container or sandbox deployments can be a

simple exercise that greatly increases attacker time and effort. Containers can also provide an organization

the ability to have minimal and consistent application deployments, without the need for a heavy handed

configurationmanagement system such as Puppet or Chef (for applications aswell as systemadministration).

Containers can't provide perfect security; as rational people we know this is impossible for any system of

moderate complexity and usability. Security through Linux containers is all about making attackers simply

work harder through least privilege, least access, attack surface reduction, and simplicity through basic

(yet often logical) process restrictions. As with any risk consideration, all of the eggs shouldn't be in one

basket. Software virtualization places 100% of the security into the container system; as such, implementa-

tions should endeavor to prevent a single security failure from compromising an entire data center, cloud

deployment or even simply the container host.

Are Linux containers the future? I think they're onepiece of the puzzle that helps both application developers

and security teams. As with any technology stack, security vigilance and an ongoing evaluation process is

required. Key container features and kernel namespaces are still missing or in progress and overall have

been added-on rather than built-in. Does this mean we should abandon containers and stick with full virtual

machines? No, but it takes some additional effort to secure containers. Fortunately, the majority of these

security efforts align to existing best or recommended practices, hopefully making the integration easy with

existing programs. If security is the utmost concern, above all else, then containers are not what should be

used. For those looking to balance the scales, use physical isolation, hardware virtualization and containers

along well-audited trust boundaries.

``We can only see a short distance ahead, but we can see plenty that needs to be done.''

- Alan Turing

12.2 Acknowledgements

I would like to thank NCCGroup coworkers and peer reviewers Jesse Hertz, Jon Barber, Raphael Salas, Mark

Manning, Jake Heath, Max Burkhardt. Nathan McCauley of the Docker security team also deserves thanks,

as do close friends Josh ``hex'' Dukes, and Kyle ``greenfly'' Rankin, all of who commented on a pre-released

version of this document. As I work in this space, I also try to keep inmind we're standing on the shoulders of

giants. I would like to thank hardworking Linux kernel or container developers, fellow security researchers,

the Google Chrome team, the Grsecurity team, original Plan9 developers, and open source security efforts

everywhere for continuing to advance, and break, the state of the art.

121 | Understanding and Hardening Linux Containers NCC Group

12.3 About The Author

Aaron (@dyn___) Grattafiori is a Technical Director and research lead at NCC Group. With over ten years

of experience, he regularly performs application security engagements, Linux and container assessments,

network penetration tests and many other tests for a large variety of NCC Group clients. Aaron also stays

busy with research on a number of topics involving Linux security, automotive systems, network protocols,

fuzzing and privacy or liberation technologies. Aaron has spoken on a number of security topics at both

regional and national security conferences such as Blackhat, DEFCON, and Toorcon.

122 | Understanding and Hardening Linux Containers NCC Group

	Introduction
	Motivation
	Virtualization Background
	Benefits of An OS-Virtualization System
	Drawbacks of an OS-Virtualization system

	Linux Containers Overview
	A Brief History of OS Containers
	Linux Containers: where are they now?
	Prior Art: Linux Container Security, Auditing and Presentations
	TL;DR Linux Containers

	Namespaces
	Namespaces Background
	Namespaces Implementation
	Mount Namespace
	IPC Namespace
	UTS Namespace
	PID Namespace
	Network Namespace
	User Namespace

	Control Groups
	Cgroups Background
	Working with Vanilla cgroups
	Containers and cgroups
	Future of cgroups

	Capabilities
	Capabilities Background
	Additional Introductory Resources
	Understanding Capabilities
	Exploring Capabilities
	Capabilities and User Namespaces
	Capability Defaults In Modern Containers
	A World Without Root

	Configuration and Basic Use
	LXC
	Docker
	CoreOS Rocket

	Understanding Container Threats
	The Linux Kernel Itself
	Exploring Container Threats
	LXC Specific Threats
	Docker Specific Threats
	CoreOS Rkt Specific Threats
	Indirect or Unexpected Threats

	Recent Security Advancements
	The User Namespace
	Mandatory Access Control
	Syscall Filtering with Seccomp

	LXC, Docker and CoreOS Rocket
	LXC
	LXC Background
	LXC Components
	Brief LXC Security Analysis
	Docker
	Docker Background
	Docker Components
	Brief Docker Security Analysis
	CoreOS Rocket
	CoreOS and Rkt Background
	Rkt Components
	Rkt Security Analysis
	Container Defaults

	Security Recommendations
	Generation Container Recommendations
	LXC Specific Recommendations
	Docker Specific Recommendations
	CoreOS Rkt Specific Recommendations
	Relevant Kernel Hardening

	The Future
	Containers on the Desktop
	New Potential Namespaces
	Additional Lightweight Isolation and Sandbox Platforms
	The Open Container Initiative
	Containers In Other Platforms
	Container Specific Operating Systems
	Unikernels and Microhypervisors and Hybrid Models
	The Big Idea Of Microservices

	The End
	Conclusion
	Acknowledgements
	About The Author

