
Faculty of Physics, Mathematics and Informatics
MSc System and Network Engineering

Final Research Project

Power Efficiency of Hypervisor-based Virtualization

versus Container-based Virtualization

February 11, 2016

Author:
Jeroen van Kessel

Supervisors:
dr. ir. Arie Taal
dr. Paola Grosso

Abstract

Up until recently, hypervisor-based virtualization platforms dominated the virtualiza-
tion industry. However, container-based virtualization, an alternative to hypervisor-
based virtualization, simplifies and fastens the deployment of virtual entities. Rele-
vant research has already shown that container-based virtualization either performs
equally or better than hypervisor-based virtualization in terms of performance in
almost all cases. This research project investigates whether the power efficiency
significantly differs on Xen, which is based on hypervisor virtualization, and Docker,
which is based on container-based virtualization. The power efficiency is obtained
by running synthetic applications and measuring the power usage on different hard-
ware components. Rather than measuring the overall power of the system, or looking
at empirical studies, hardware components such as CPU, memory and HDD will be
measured internally by placing power sensors between the motherboard and circuits
of each measured hardware component. This newly refined approach shows that
both virtualization platforms behave roughly similar in IDLE state, when loading the
memory and when performing sequential writes for the HDD. Contrarily, the results
of CPU and sequential HDD reads show differences between the two virtualization
platforms, where the performance of Xen is significantly weaker in terms of power
efficiency.

Keywords: Linux Containers, Hypervisor Virtualization, Power Efficiency

http://www.uva.nl/en/home
http://gss.uva.nl
https://www.os3.nl
http://delaat.net/rp/2015-2016/index.html
mailto:jeroen.vankessel@os3.nl
http://www.uva.nl/en/about-the-uva/organisation/staff-members/item/a.taal.html?f=taal
https://staff.fnwi.uva.nl/p.grosso/

Contents

1 Introduction 1

2 Related Work 2

3 Research Questions 3

4 Theoretical Framework 4
4.1 Traditional Hypervisor-based Virtualization . 4

4.1.1 Xen Hypervisor . 4
4.1.2 Xen Paravirtualization . 5
4.1.3 Xen HVM Virtualization . 5
4.1.4 Xen PVHVM Virtualization . 5

4.2 Linux Container-based Virtualization . 6
4.2.1 Docker Engine . 6
4.2.2 Docker Namespaces . 6
4.2.3 Docker Control Groups . 6
4.2.4 Docker Images . 7
4.2.5 Union File Systems . 7

5 Experimental Setup 8
5.1 Greening the Cloud and SEFlab . 8
5.2 Power Consumption Sensors . 8
5.3 Data Acquisition Software . 9
5.4 Running the Measurements . 10
5.5 Server Specifications . 10

6 Experiments 11
6.1 Synthetic Applications . 11

6.1.1 LINPACK . 11
6.1.2 sysbench . 11
6.1.3 Bonnie++ . 11

6.2 Calculation Methodology . 12

7 Results 13
7.1 IDLE Results . 13
7.2 CPU Results . 15
7.3 Memory Results . 18
7.4 HDD Results . 20

8 Conclusions 23

9 Future Research 24

References 26

Appendices 30

1 Introduction

Throughout the development of data centers, many researchers have investigated the power
consumption of servers with respect to a certain factor such as performance [1] or power efficiency
[2]. This new research will attempt to evaluate the power efficiency of hardware component,
the CPU, Memory, and HDD, when using a traditional hypervisor versus a container-based
virtualization approach.

Virtualization is extensively implemented in modern data centers. According to Cisco, by
the year of 2019, more than 86 percent of all workload will be processed by cloud data centers,
while 14 percent will be processed by other data centers [3]. Most of these running virtual
nodes are handled by a hypervisor such as KVM [4], Xen [5] or vSphere [6]. These hypervisors,
however, come with certain overhead when deploying virtual nodes, since isolation and resource
control is desired. This virtualization method leads to the deployment of separate operating
systems for each virtual node. Besides the computational overhead, migrating virtual nodes is
still challenging due to compatibility and integration issues.

Container-based virtualization is a different approach of deploying virtual nodes based on a
shared operating system kernel. Rather than deploying a full operating system, container-based
virtualization modifies an existing operating system to provide extra isolation and proves
to be more resource efficient [7]. An application with all of its dependencies is deployed
into a container which can then be moved to any infrastructure platform independent of its
system architecture. Docker [8] is such an open-source implementation of this container-based
virtualization technology.

Besides performance gain, power efficiency is a factor which should be taken into account.
According to measurements from the Earth System Research Laboratory, the amount of carbon
dioxide in the Earth’s atmosphere has risen above 400 parts per million (ppm) for the first time in
3 million years [9]. This means that the global CO2 levels have permanently exceeded the safety
zone. The extensive use of cloud services also contribute to the yearly rise of carbon dioxide
CO2 emissions. Furthermore, energy consumption is a prominent cost factor for any data center.
Therefore, in the United States, the Environmental Protection Agency (EPA) has proposed that
large data centers use energy meters as a first step toward creating operating-efficiency standards
[10]. The European Union has issued a voluntary code of conduct laying out best practises for
running data centers at higher levels of energy efficiency [11].

The research presented in this thesis will attempt to quantify and compare the power consump-
tion of the overhead of hypervisor versus container-based virtualization. This research will
be part of a larger project called ‘Greening the Cloud’ [12], which aims to develop a larger
framework in order to label the ‘greenness’ of data centers by researching the impact of software
on hardware [13].

The outline of this thesis is as follows. Chapter 2 will discuss the previous academic work.
Next, Chapter 3 discusses the research questions of this project. Chapter 4 briefly introduces
the concepts of both virtualization platforms. Next, Chapter 5 describes the experimental setup
and Chapter 6 elaborates on the approach and the calculation methodology. Chapter 7 presents
and elaborates on the acquired results of this research. Lastly, Chapters 8 and 9 elaborate on
the conclusions of this research together with future directions.

1

2 Related Work

Both power and performance efficiency of hypervisors and Linux containers have been resear-
ched in the past. Power models for virtual nodes exist but the coefficient of each component
is often obtained through empirical studies [14]. This research will measure each prominent
hardware component independently instead of using a power measurement device. The following
studies are relevant to this project.

C. van der Poll (2015) studied the resource usage in hypervisors [15]. This research presents
the comparison of power consumption of two open-source hypervisors, KVM and Xen. Van
der Poll uses the stress utility [16] to impose load on the CPU, memory and HDD. The
results of these tests point towards KVM as a more green solution than Xen. However,
container-based virtualization was not mentioned during this research. This new research builds
onto the conclusion and future work of van der Poll. The author proposed a quantitative
power consumption and performance scale model of the server’s CPU, Memory and HDD I/O.
Furthermore, van der Poll used several benchmark scripts to specify the duration and to create
a well defined result overview. Therefore, van der Poll’s scripts will be customised and re-used
during this research project.

X. Peng and Z. Sai (2013) developed a power model for virtual nodes [17]. This power
model measures the virtual node’s power consumption running on an Xen hypervisor. X. Peng
and Z. Sai took the following components into account: processor, memory, Hard Disk Drive
and I/O controller. Their measuring technique is claimed to be low-cost and effective for
virtualized resources in large-scale data centers. Therefore, this power model will be studied
although container-based virtualization might not be applicable to this power model. This
research concluded that this power model is effective at improving the power efficiency when
the virtualization ratio of a data center is high.

In 2014, the IBM research division made a performance comparison of virtual nodes ran
on a hypervisor versus Linux containers, where KVM was used as a hypervisor and Docker as
container-based virtualization software [7]. The IBM researchers demonstrated that Docker had
equal or faster performance compared to KVM. The researchers used the following synthetic
applications to stress the hardware components: LINPACK [18] for the CPU, STREAM [21]
for memory and fio [22] for stressing the HDD. LINPACK benchmarks the CPU performance
of a server using a linear algebra problem. Figure 1 on the next page shows a specific use case
from this research with 45000 linear algebra problems. Although the performance of KVM and
Docker was thoroughly researched, power efficiency was not taken into account.

Like the IBM research division, the Ericsson research division (2015) also made performance
comparison between KVM and Xen, which are based on hypervisor virtualization, and Docker
and LXC, which are based on container virtualization [1]. This study also uses LINPACK to
stress the CPU, STREAM for the memory and Bonnie++ [25] to benchmark the HDD. The
authors concluded that the relative differences in performance between the different platforms
are not substantial. Furthermore, the performance results from this research will be compared.
Little difference in terms of performance results should be measured such that the power
efficiency of the different virtualization platforms can be determined later on.

2

Figure 1: LINPACK performance on two physical CPUs, all cores dedicated to the virtual
entities. Mean obtained from ten runs. Error bars indicate the standard deviation obtained

over all runs. [7]

In December 2015, the Ericsson researcher released another empirical study [2]. This time,
power consumption of KVM, Xen, Docker and LXC was researched. This study uses sysbench
[24] to stress the CPU and memory, while the HDD was not taken into account. The result of
this study shows, despite the number of virtual nodes running, Xen and Docker behave similarly
in IDLE state and in CPU/ Memory stress test. However, this research does not measure each
hardware component individually, but instead uses a power measurement device. Therefore,
the author reports the average power consumed by the platforms when increasing the number
of virtual nodes and cores. This thesis will disentangle the various components and provides the
power efficiency metric (performance per watt). Power consumed alone is not as informative as
the efficiency, which will be investigated in this new research. Nonetheless, results of this second
Ericsson research will be compared. This research will use LINPACK for the CPU, sysbench
for memory and Bonnie++ for stressing the HDD.

3 Research Questions

This research aims to quantify and compare the power consumption of the overhead of a
traditional hypervisor-based virtualization versus container-based virtualization. The primary
research question of this research is as follows:

Is there a measurable difference in power efficiency when running an application under a
traditional hypervisor-based virtualization versus Linux containers?

Answering this research question will allow to analyse whether the power efficiency is
different per hardware component while running a virtual node under a hypervisor versus a
Linux container-based application.

To answer this research question, one must thoroughly define a methodology and install
power sensors between the motherboard and circuits of each hardware component. Therefore,
the following sub-question needs to be answered:

How does one measure the power consumption of each hardware component internally in the
most accurate way?

The next chapter explains the different virtualization platforms that will be used during the
course of this research.

3

4 Theoretical Framework

Currently, there are two widely used virtualization technologies, namely hypervisor-based
virtualization and container-based virtualization [26]. This chapter describes these two virtualiza-
tion concepts in more detail.

4.1 Traditional Hypervisor-based Virtualization

Virtualization is, at its foundation, a technique for hiding the physical characteristics of
computing resources from the way in which other systems, applications, or end users interact
with those resources [27]. This includes making a single physical resource, such as an operating
system or application, appear to function as multiple logical resources. Therefore, virtualization
makes multiple physical machines, such as server, appear as a single logical resource [27]. In
other words, the traditional concept of virtualization is based on emulating virtual hardware by
using a hypervisor, which can be inefficient in terms of system resources.

Unlike containers, which are based on a shared kernel, hypervisors deploy a separate kernel
for each virtual node, also known as a virtual machine [28]. Nonetheless, hypervisors allow the
deployment of operating systems that are heterogeneous to the host machine. This means a
hypervisor is capable of deploying operating systems with different kernel versions simultaneously.
This is illustrated in Figure 2. The next subsection describes the specification of one of these
hypervisors, namely Xen. Xen will be used in this research project as a traditional hypervisor.

(a) (b)

Figure 2:
(2a): Hypervisor-based Virtualization Architecture
(2b): Container-based Virtualization Architecture.

Figure is based on the diagram in [29]

4.1.1 Xen Hypervisor

Xen is an open-source bare-matel hypervisor. This makes it possible to run a finite number
of virtual nodes in parallel on a single host [5]. Cloud providers such as Amazon Web Services
and Rackspace Public Cloud use Xen hypervisor as its foundation. Xen is also integrated in
OpenStack orchestration software. This research will use the 64-bit Ubuntu 15.10 4.2.0-19-
generic kernel, which supports direct kernel integration with Xen 4.5.1 hypervisor. Xen offers

4

different modes of deploying a virtual node, namely paravirtualization (PV), hardware virtual
machine (HVM) and a combined (PVHVM) mode, which are explained in the next sections.

4.1.2 Xen Paravirtualization

Paravirtualization (PV) is a software virtualization mode that allows for the deployment
of virtual nodes. The virtual nodes must have a modified kernel. Xen paravirtualized nodes
are aware of the hypervisor, and do not have any virtual emulated hardware [30]. Therefore,
Paravirtualized nodes make direct calls without an additional layer [30]. Paravirtualization
generally has less overhead and is faster at deploying virtual nodes compared to HVM. However,
system calls inside the virtual node need to be translated and sent to the host machine’s kernel.
This extra step reduces performance. Intel processors use VT-x to fix this problem by providing
virtualization hardware instructions and eliminating the system call translation step [41].

4.1.3 Xen HVM Virtualization

Hardware Virtual Machine (HVM), also known as Hardware Assisted Virtualization, is a
processor virtualization mode that requires the extension from the host processor. Intel processors
complies to this extension by using hardware virtualization, which is addressed as VT-x. This
processor extension uses the privileged instructions, syscalls and the page tables. This results
in better performance compared to paravirtualization [30]. Furthermore, HVM nodes do not
require a modified kernel for virtual nodes. Therefore, heterogeneous kernels other than the
host kernel can be deployed simultaneously as virtual nodes.

HVM uses the QEMU (Quick EMUlator) hardware emulator. The HVM QEMU emulates
the processor through dynamic binary translation and allocates them as vCPUs. In order to
optimise the use of synthetic benchmark programs and to separate the CPU workload of the
virtual node from the hypervisor, vCPU topology vcpu-pin will be configured for the research
presented to exclusively pin physical CPU cores to the vCPUs of the virtual node [31]. This
should prevent the virtual node from swapping to a vCPU cores used by hypervisor (scheduler)
[32].

During the course of this research project, HVM proved to use the host processor topology for
better vCPU allocation and performance. This is because vCPU topology is not yet supported
on paravirtualization virtual nodes [33]. Therefore, paravirtualization was not reseached during
this research.

4.1.4 Xen PVHVM Virtualization

The PVHVM modus is a combination of PV and HVM, where HVM is used as the underlying
mode in combination with paravirtual drivers. These paravirtual drivers are included in the
Ubuntu 15.10 4.2.0-19-generic kernel which bypass the emulation for HDD and the
Network Interface Card (NIC). These paravirtual drivers result in better performance of HVM
virtual nodes [30]. Another mode is PVH, which is currently considered experimental. Therefore,
PVH mode will not be used nor studied during this research project [30].

In this research project, a PVHVM virtual node will be deployed in order to make a fair
comparison between an optional Xen Hypervisor environment and a container-based virtualizati-
on platform on Docker. The configuration file for this virtual node is attached in Appendix A.
Figure 2a illustrates the high-level architecture of Xen on top of the Ubuntu kernel.

5

4.2 Linux Container-based Virtualization

Linux container-based virtualization provides a different level of abstraction without a hypervi-
sor. Container-based virtualization results in a lighter virtual environment compared to hypervi-
sor-based virtualization [34], because containers do not need a separate kernel. Instead, all
hardware will be simulated [35]. Therefore, Linux containers are much more efficient and smaller
in terms of compute resources compared to hypervisor-based virtual nodes. While hypervisors
virtualize hardware, containers are deployed on top of the Linux kernel.

Container-based virtualization deploys a ‘container’, which is an execution environment that
shares the host kernel of the host system and is isolated from other containers in the system [39].
A container thus consists of an operating system, user-added files, and meta-data [28] as shown in
the previous Figure 2b. Because containers result in a significant decrease in compute resources
needed to run an actual application, the deployment density can be increased compared to a
hypervisor-based virtualization platform.

Most container-based virtualization platforms use the LXC (LinuX Container) toolset, which
takes care of sandboxing processes from one another, such that each container has its own
vCPU, memory and file system [35]. This LXC toolset uses the same principle to abstract
the operating system kernel [34]. Many container-based virtualization platforms exist, such as
OpenVZ [36], VServer [37], Google’s container platform lmctfy [38] - ‘Let Me Contain That For
You’ and, of course, Docker [8]. Docker, which is the industry standard, is used in this research
project and described in more detail in the next section.

4.2.1 Docker Engine

Docker is an open-source platform which can build, ship, and run applications without the
deployment of a complete guest operating system [8]. Therefore, container-based virtualization
allows the deployment of applications with less overhead. Docker packages an application,
including its libraries and dependencies, into a ‘container’. Docker used to rely on the LXC
toolset, but recently released its own libraries called libcontainer [39]. libcontainer
deploys containers with namespaces and control groups [39]. These Linux kernel features are
described in the next section.

4.2.2 Docker Namespaces

Namespaces have existed for many years in Unix world. Namespaces are used to limit the
scope of kernel-side names and data structures [40]. In 1998, FreeBSD could already isolate
processes using jails to improve security [41]. Namespaces in Docker are also used to isolate
containers, such that they have their own view of the system [28]. In basic terminology,
namespaces limit what you can see, and therefore what a container can use. Namespaces
are created with the clone() system call [40]. Namespaces provide a layer of isolation. Each
aspect of a container runs in its own namespace and does not have access outside it. Docker
uses namespaces for process IDs, network devices, mount points and kernel isolation [40].

4.2.3 Docker Control Groups

Control groups, also addressed as cgroups, take care of the resource limitation of the hardware
component, such as vCPU, memory and disk I/O [40]. This research project uses cgroups to
limit the memory and vCPU allocation to containers.

6

4.2.4 Docker Images

Docker uses images as a foundation to deploy containers. Docker has its own centralised
repository for available images called ‘Docker Hub’ [42]. This Docker Hub platform allows users
to download and update images, such as Red Hat, Ubuntu, Debian, openSUSE and CentOS [42].
Also, applications such as NGINX, MongoDB and Tomcat deployed on top of a Linux operating
system, can be pulled and started in real-time [43]. These pre-compiled Docker images may use
different Linux kernels, but the host operating system kernel is shared when possible. It should
be noted that Docker cannot deploy heterogeneous operating systems such as Windows. The
commands for deploying the container is attached in Appendix B.

4.2.5 Union File Systems

Docker images use the Union file systems [44], which separate file systems by known branching.
UnionFS uses layers, forming a single file system [28]. Rather than replacing the whole image,
only the specific layer is added or updated [28]. When Docker deploys a container from an
image, it first mounts the root file system as read only. However, instead of making the file
system read-write, another file system layer is attached to the container. This process continues
every time a change occurs to the file system of the container [41]. This whole process results in
a hierarchical tree structure of the container’s file system, which is visualised in Table 1 using
the dockviz Docker utility [45].

dockviz images -t -i

|--511136ea335a Virtual Size: 0.0 B

|--f10ebce230e1 Virtual Size: 101.7 MB

| |-82cdea73b5b5 Virtual Size: 255.5 KB

| |--5dbd93b5a02f Virtual Size: 1.9 KB

| |--74338d11401 Virtual Size: 105.7 MB Tags: ubuntu:15.04

|--ef519c93291a Virtual Size: 105.6 MB

| |--07302303becc Virtual Size: 251.0 KB

| |--cf83c907452c Virtual Size: 1.9 KB

| |--a3cf8ae4e998 Virtual Size: 70.1 MB Tags: ubuntu:15.10

Table 1: dockviz incremental file system layers. Two independent Ubuntu 15.04 and Ubuntu
15.10 containers where each file system change is branched [45]

7

5 Experimental Setup

Rather than looking at empirical studies or measuring the total power consumption of the
servers’ Power Supply Unit (PSU), specific hardware components are measured independently.
This section describes the experimental setup and how the power consumption data is obtained
together with the calculation methodology.

5.1 Greening the Cloud and SEFlab

Today’s data centers consume enormous amounts of energy, most of which is generated from
environmentally-unfriendly fossil fuels [46]. The Greening the Cloud project investigates the
energy efficient of virtualized efficiency without sacrificing performance. Therefore, investigating
utilisation with respect to power efficiency may lead to unnecessary waste of energy in data
centers. This research projects contributes to this larger framework by investigating the power
efficiency of industry standard virtualization platforms.

In order to answer the research questions of this project, one must study the power consumpti-
on and efficiency of each hardware component independently. The Software Energy Footprint
laboratory (SEFlab) [13] of the HvA provides measurement equipment and servers to conduct
these measurements. Therefore, the SEFlab facilitated this research project. Furthermore, the
Greenlab of the VU [47] also offers a server for research. This server is maintained and owned
by the SEFlab.

5.2 Power Consumption Sensors

In order to calculate the power dissipation of each hardware component, the current and
voltage needs to be measured internally. This is done by installing so called power sensors
between the motherboard and circuits of each hardware component as shown in Figure 3 and
in Appendix C. The two physical CPUs, all memory banks and the HDD are the hardware
components measured separately during power measurements. This measurement setup allows
to measure the impact of virtualization platforms in a new and refined way.

Figure 3: Power Measurement Setup at SEFlab [13]

8

The power sensors built with Eurocircuits PCBs (Printed Circuit Boards) [48], shown in
Figure 4a, are installed onto the motherboard by installing connectors into the component
power circuitry. The power sensors are mounted onto the connectors. Next, these power sensors
measure the current (I) and the voltage (V) of the connected component such that an accurate
power usage (P) is obtained by calculating P = I ∗ V . The current (I) is measured with a
sense resistor through which the component current flows. The resulting small voltage over this
shunt is filtered, amplified and digitized on the power sensor itself. This digitized signal is sent
to a second module, the data-acquisition interface board, shown in Figure 4b, which sends the
data to the computer by use of an USB-interface. In post processing, the measured current
is gained as this digitized signal is converted into the actual current, by use of the full scale
voltage, the shunt resistance, and amplification factor. The voltage measured by the power
sensor is transported in analog to the data-acquisition interface board, where it is divided by
a resistor bridge and also digitized. The measured voltage is gained in a comparable way as it
is done with the current. To improve the accuracy of the power measurements, each sensor is
calibrated such that the measurement error margins are minimised. Appendix D describes the
exact specifications of the measurement boards. Ultimately, the resulting deviation is smaller
than 2 percent.

(a) (b)

Figure 4: (a): Power Usage Measurement Sensor [48]
(b): Data Acquisition Interface Board [48]

5.3 Data Acquisition Software

Data acquisition software written for this research project is custom made, specifically to read
out the acquired data stream. The power consumption data is measured by the power sensors
and is sent directly to the data-acquisition interface board which in turn sends it to the data
acquisition software. The current is sampled 1000 times a second together with the less altering
voltage. The data acquisition software calculates the power consumption (P) by multiplying
both voltage (V) and current (I) as in P = U ∗I. This power consumption (P) is later appended
to a csv-file. The software reduces the sample speed to 10 samples per second by averaging,
before writing the data to the .csv-file. The resulting csv-file is later used by the statistical
program R to interpret results. Ultimately, this experiment should outline the energy footprint
and the power efficiency of each hardware component, CPU, Memory and HDD, running on
bare-metal, Xen and Docker. Measurement data acquired during this research is uploaded on
the following GitHub repository:

https://github.com/energy-hypervisor-container-rp2/measurements.git

9

https://github.com/energy-hypervisor-container-rp2/measurements.git

5.4 Running the Measurements

Measurements are only executed 30 minutes after the server is booted to prevent other system
processes form interfering. Note that there is a power sensor placed on the serial COM port of
the server. The small power usage of this COM port will be used to determine the start and
stop time of each measurement. By making a reverse serial connection to the ttyusb0 COM
port just before executing the synthetic application, a spike of 20 mW is registered. This allows
precise registration of an accurate start and stop time, which are of vast importance during the
statistical processing phase.

5.5 Server Specifications

Table 2 lists the components present inside the IBM 1U rack-server. This IBM 1U [49] is
representable for an in-use data center server. Xen, Docker and the Native Ubuntu OS will
run on separate physical hard disk drives so that the libraries for each platform are separated.
Furthermore, the server’s physical hardware includes hardware virtualization acceleration support
(VT-x). The installation of the latest Ubuntu version encountered a few compatibility issues.
These issues are explained in Appendix E.

System Information

Model IBM System x3550 M4 7914B3G Server (Firmware version 1.9)

Motherboard IBM 00D3449

Power Supply IBM Emerson 550W (80+ Platinum Certification)

Processors 2x Intel Xeon E5-2609 v2 @ 2.50 GHz, 8 cores, 6.4 GT/s, 25 MB Cache

Memory 64 GiB (8 GiB x 8 Slots) Hynix DDR3 PC3 1333MHz 14900R, 13-12-B1

HDD HP 146 GB 2.5-inch SCSI SAS, 3.0 GB/sec, 10,000 RPM

Table 2: IBM 1U Server Specifications [49]

10

6 Experiments

This chapter explains which synthetic applications were used to benchmark the server. Further-
more, the calculation methodology to acquire the power efficiency is explained.

6.1 Synthetic Applications

The power consumption of hypervisor-based virtualization and Linux containers will be
measured using a number of resource intensive applications. Three synthetic applications will
be ran, each stressing a different hardware component, being either the processor, memory or
the HDD, which is described in Table 3. The following synthetic applications will be used as
workload generators on the IBM 1U server:

Hardware Components Synthetic Application

Processors Intel (MKL) modified LINPACK 11.3.1.002 [23]

Memory sysbench 0.4.12-1.1 [24]

HDD Bonnie++ 1.97.1 [25]

Table 3: Hardware components and their synthetic benchmark applications

6.1.1 LINPACK

LINPACK is a synthetic software library that performs a number of linear algebra problems
[18]. LINPACK is written in FORTRAN by Jack Dongarra et al. However, Intel released its
own version of LINPACK [23] that is optimised for Intel processors. Therefore, the Intel version
of LINPACK will be used during this research project.

LINPACK measures how fast the server can solve a dense N ∗N system of linear equations,
Ax = b. The algorithm applies Gaussian Elimination with Partial Pivoting, and has a time
complexity as stated below [19]:

2

3
N3 + 2N2 +O (N)

The exact performance results are expressed in MFLOPS (Mega Floating Point Operations
Per Second) [20]. The LINPACK benchmark script in Appendix F is used during this project.
A total of 15 runs will be completed using a problem size where N = 22350.

6.1.2 sysbench

sysbench [24] is an open-source benchmark utility that can load the CPU, memory or disk
I/O. This research configures sysbench to transfer 333 GiB (230 bytes) over the memory bus.
The benchmark script in Appendix G is used during this project.

6.1.3 Bonnie++

Bonnie++ [25] is also an open-source benchmark utility that will be used to stress the HDD.
The disk I/O will be measured transferring a test file of 26844 Megabyte, which is the equivalent
of 25 GiB. Bonnie++ benchmarks the sequential writes and sequential reads in block speed [51].
The benchmark script in Appendix H is used to benchmark the HDD.

11

6.2 Calculation Methodology

Since not all hardware components are accountable for power consumption, the following
three hardware components will be measured internally: two physical processors, all memory
banks and the HDD. Synthetic applications described in the previous chapter will run with a
number of compute intensive tasks for each hardware component. Every benchmark is executed
between 5 and 15 times to achieve more reliable results within the data set.

Equation 1 expresses how the mean (µ) average power (in Watt) is calculated. The Average
Power (AP) is calculated by adding all individual measurements during different benchmark
runs ni, then dividing them by the total number of measurements by the benchmark runs
(N). The duration of each benchmark run is approximately 8 minutes for CPU, memory and
HDD. The data on power usage of the measured hardware component is collected 1000 times
per second during one benchmark run. Therefore, the Equation below for the Average Power
N ≈ 5 (Benchmark runs)× 8 (Minutes)× 60 (Seconds)× 1000 (Measurements).

Average Power (AP) =
1

N

∑
ni (1)

Next, Equation 2 expresses how the sample standard deviation (STD) is calculated. The
sample standard deviation is used to measure the variability of each individual measurement
around the Average Power (AP).

Sample Standard Deviation (STD) =

√√√√ 1

N

N∑
i=1

(ni −AP)2 (2)

Next, the total energy (in Joule) can be calculated by multiplying the average power (in
Watt) times the total time (in seconds) that the benchmark took to complete. This calculation
is shown in Equation 3:

Total Energy = Average Power (AP)× Total T ime (3)

Ultimately, the power efficiency [52] will be calculated, according to the Green List 500
methodology [53] by dividing the average compute power, expressed either in Mega Floating-point
Operations Per Second (MFLOPS), Operations Per Second (Ops) or Kilobit Per Second (Kb/s),
by the Average Power. This calculation is shown in Equation 4:

Power Efficiency (PE) =
Average Compute Performance (ACP)

Average Power (AP)
(4)

In order to determine the reliability of Power Efficiency (PE), the sample standard deviation
(STD) was used. As power efficiency depends on both Average Compute Performance and
Average Power (as is shown in equation 4), standard deviation of Power Efficiency is computed
in Equation 5. This formula neglects possible correlations between Average Compute Power
and Average Performance.

STDPE

PE
=

√
(
STDACP

ACP
)2 + (

STDAP

AP
)2 (5)

12

7 Results

This chapter presents and attempts to justify the measurement results found during this
research. First, the IDLE power consumption of each measured hardware component is discussed
to establish a baseline. Next, the CPU, Memory and HDD results are presented and explained.

7.1 IDLE Results

Figure 5 shows the average power usage (in Watt) when the platforms are running IDLE.
Xen is running one virtual node while Docker is running one container, both with the same OS
kernel as the host system. Native OS in this research represents a patched 64-bit version of
Ubuntu Server 15.10. As described in the Setup Section, all platforms run on a separate HDD,
such that a fair comparison can be made. The observation time is roughly 15 minutes, resulting
in approximately 55,000 sample entries of power usage for each measured hardware component.
These measurements have been repeated at least five times. The first half an hour after the
server is booted was not measured, in order to minimise system processes from intervening.

(a) (b)

Figure 5: (a): Average Power Usage in Watt (W) when IDLE
(b): Total Average Power Usage in Watt (W) when IDLE

Exact numbers are given in Table 4 and Table 5
Error-bars in all bar-plots indicate the sample standard deviation obtained over all runs

APCPU APMEMORY APHDD APTOTAL

Xen 7.70 6.90 4.93 19.53

Docker 7.38 6.63 4.87 18.88

Native OS 7.27 6.56 4.86 18.68

Table 4: Average Power Usage (AP) in IDLE (in Watt) for each Measured Hardware Component

STDCPU STDMEMORY STDHDD STDTOTAL

Xen 0.88 0.80 0.08 1.19

Docker 0.69 0.66 0.08 0.95

Native OS 0.34 0.34 0.07 0.49

Table 5: STD of the Average Power Usage (AP) in IDLE (in Watt)

13

On average, the server’s total power usage in IDLE was deduced from a power measuring
device, where the server roughly consumes 70 Watt of power. This means, hardware components
such as the PSU, fans and other components are unmeasured power overhead. Next, Table 4
compares each platform of each hardware component individually, where the power usage is
obtained from the internal power sensors. The CPU variable accounts for the total Wattage of
physical CPU1 and CPU2. Memory is the total Wattage of all memory banks, while the HDD
variable accounts for the total wattage used for the HDD. The TOTAL variable is considered
the sum in Watt of CPU, memory and HDD:

APTOTAL = < APCPU > + < APMemory > + < APHDD >

The errors are calculated by taking the sample STD of the APCPU , APMEMORY and APHDD.
The STDTOTAL is calculated as the square root of variances of the measured hardware compon-
ents:

STDTOTAL =
√
STD2

CPU + STD2
MEMORY + STD2

HDD

It can now be deduced from Table 4 and Figure 5a that all platforms roughly use the same
average power in the range of approximately 1 Watt, which can be considered almost negligible
on a small scale. Nonetheless, Xen consumes the most power in Watt on average. These IDLE
results give a fundamental baseline for the next measurements.

The Ericsson researcher also studied the IDLE usage of Xen, Docker and a native OS [2].
However, this research deploys multiple virtual nodes and containers. This research shows an
average power consumption of 123 Watt for native OS, 124 Watt for docker and 128 Watt for
Xen. However, the researcher uses a power measuring device, which results in a less refined
sensing setup. Differences in results are likely due to the different types of nodes used, which have
different characteristics - hence different absolute values. Nonetheless, the Ericsson researcher
also states Xen consumes the most power, even though the difference respect to containers is
not high [2].

14

7.2 CPU Results

The IBM 1U server contains two physical processors, each with four cores. Cores [0-3] are
registered to the first physical CPU1, while cores [4-7] are registered to physical CPU2. Two
experiment scenarios were researched. The first experiment deploys a virtual entity, a Xen
virtual node and a Docker container, each allocated four vCPUs pinned to the first four physical
cores of the first CPU1. Hence, all cores [0-3] from CPU1 will be allocated to the virtual entities.

The second research scenario deploys a virtual entity with also four allocated vCPUs. However,
this time, each vCPU is pinned to two cores of each physical CPU1 and CPU2 core [2-5]. Hence,
cores [2-3] of physical CPU1 and cores [4-5] of physical CPU2 are allocated. This scenario should
divide the CPU workload over both physical processors. Appendix I shows the configuration
used during this research.

Table 6 shows the power consumption and total duration in seconds during the LINPACK
benchmark described in the previous chapter. The average CPU power usage in Watt accounts
for the average power consumption of both physical CPU1 and CPU2. Differences in power
consumption of both virtualization platforms is not significant on this scale. However, the
total duration in seconds varies significantly for the Xen virtual node. On average, there is
approximately a 10 second difference in completing the same LINPACK benchmark task for
Xen nodes [0-3] and Xen nodes [2-5]. Furthermore, the difference between a Xen virtual node
and a Docker container is even more significant. Xen takes approximately 80 seconds longer to
complete the same LINPACK benchmark runs compared to a Docker container.

APCPU STDCPU Average Duration STDAV ERAGE DURATION

Xen cores [0-3] 44.52 3.23 434 3.29

Xen cores [2-5] 46.56 4.24 424 2.77

Docker cores [0-3] 45.78 0.48 348 0.58

Docker cores [2-5] 47.98 0.49 350 0.55

Table 6: Average CPU Power Usage (APCPU) (in Watt)
Average Duration (in Seconds)

Figure 6 shows the result of the first research scenario. This Figure shows three LINPACK
benchmark runs on both an Xen and Docker virtual entity. Both Figure 6a and 6b show the
average power usage when cores [0-3] of physical CPU1 are allocated to the virtual entities.
It can be observed from Figure 6a that the Xen virtual node is intensively content switching
between physical CPU1 and CPU2, compared to a much cleaner CPU utilization of the Docker
container, which is shown in Figure 6b. However, the observed behaviour of Xen might as well
be the results of the Xen scheduler interfering with the vCPU-pinning configuration. It can
also be observed that LINPACK is staging before running the actual benchmark run. The Xen
PVHVM node seems to have more difficulty staging down after each benchmark run.

15

(a) (b)

Figure 6: (a): LINPACK on an Xen node loading cores [0-3]
(b): LINPACK on a Docker container loading cores [0-3]

Shown are the curves of CPU1, cores [0-3]

Figure 7 shows the result of the second research scenario. Again, three LINPACK benchmark
runs performed on a Xen and Docker virtual entity. However, this time both physical CPU1
and CPU2 are used to divide the workload. The Xen PVHVM virtual node shown in Figure 7a
fluctuates more in terms of power usage compared to the Docker container in Figure 7b.

(a) (b)

Figure 7: (a): LINPACK on an Xen node loading cores [2-5]
(b): LINPACK on a Docker container loading cores [2-5]

Shown are the curves of CPU1, cores [2-3] and CPU2, cores [4-5]

Table 7 and Figure 8 show the total CPU performance results during 15 LINPACK benchmark
runs. The number of Mega Floating-point Operations Per Second (MFLOPS) done between
the two scenarios on the same platform is not that significant. However, The Xen PVHVM
virtual node performs approximately 10,000 MFLOPS less than the Docker container. Next,
power efficiency of Xen and Docker is expressed according to the two research scenarios. It
can be deduced from these results that Docker with CPU core [0-3] configuration is the most
efficient. Xen, configured with cores [2-5], is the most inefficient in terms of power efficiency.
It should be noted that without resource allocation and isolation, and without a virtualization
platform, the server’s Native OS consumes on average 73.5 Watt on CPU power, and performs
approximately 139,638 MFLOPS.

16

(a) (b)

Figure 8: (a): Average CPU Performance (ACPCPU) (in MFLOPS)
(b): CPU Power Efficiency (PECPU) (in MFLOPS / W)

Exact numbers are given in Table 7

ACPCPU STDACP APCPU STDAP PECPU STDPE

Xen cores [0-3] 62,204 1,145 44.52 3.23 1,397 105

Xen cores [2-5] 62,441 929 46.56 4.24 1,341 124

Docker cores [0-3] 72,401 17 45.78 0.48 1,581 17

Docker cores [2-5] 72,075 101 47.98 0.49 1,502 16

Table 7: Average CPU Performance (ACPCPU) (in MFLOPS)
Average CPU Power Usage (APCPU) (in Watt) Obtained from the previous Table 6

CPU Power Efficiency (PECPU) (in MFLOPS / W)

As described in the related work section, the IBM research division studied the CPU perform-
ance’s impact on Docker and KVM [7]. The Intel MKL LINPACK version is used to benchmark
the virtualization platforms using a problem size where N = 45000, executing 10 benchmark
runs. Furthermore, this research allocates all 16 physical cores to the virtual entities, instead of
8 cores. The IBM research division observes similar results. Performance is almost identical on
both the Native OS and Docker. This is justified because of the little OS involvement during
the execution [7]. However, the KVM performance is markedly worse, as can be seen in Figure
1. This shows the costs of abstracting, thus hiding system information from the execution [7].
Although Xen is not researched by the IBM division, it uses a similar virtualization technology,
namely a hypervisor.

One year later, the Ericsson research division also studied the CPU performance impact on
Docker and KVM [1] by using a different version of LINPACK [50] with a problem size where
N = 1000. This study states that the relative differences in performance between the different
virtualization platforms are not substantial [1]. The study also claims differences are neglectable
with larger values of N [1]. These results do not match with the results from the IBM research
division nor from the results acquired during this research. The Ericsson research mentions the
IBM research in its related work, but does not compare its results, nor does it elaborate on the
different results.

17

The Ericsson researcher also studied the CPU power consumption of Xen and Docker [2].
This study outlines differences in power usage between the virtualization platforms. These
differences might be partly due to a different Xen mode since this was not specified in the
Ericsson research. Furthermore, the results are hard to compare as the researcher studied the
active power and not the power efficiency.

7.3 Memory Results

Table 8 shows the results of the sysbench benchmark described in the previous chapter. Both
Xen and Docker are allocated 4 GiB of virtual memory. During the sysbench memory transfer
of 333 GiB, the average memory power usage in Watt remained the same on both virtualization
platforms. Furthermore, the total time it took to complete the benchmark run differs 1 second,
which is considered to be negligible. Native OS is not compared because results have to be
derived based on heuristics of the total system memory, which is 16 GiB. This would result in
an unfair comparison.

APMEMORY STDMEMORY Average Duration STDAverage Duration

Xen 13.48 0.03 271 2.50

Docker 13.47 0.03 270 3.48

Table 8: Average Memory Power Usage (APMEMORY) (in Watt)
Average Duration (in Seconds)

Figure 9a shows the average power usage in Watt. Unlike the CPU benchmark runs, no
staging takes place during the memory transfer. Both Xen and Docker have similar trend lines.
Figure 9b shows a scoped frame of Figure 9a.

(a) (b)

Figure 9: (a): Average Memory Power Usage (APMEMORY) (in Watt)
(b): A scoped view on the Memory Power Usage of in Figure 9a

Exact numbers are given in Table 8

Table 9 and Figure 10 show the performance in Operations per second (Ops). On this scale,
both Xen and Docker perform almost equal results. Therefore, the power efficiency difference
of both platforms is almost negligible.

18

(a) (b)

Figure 10: (a): Average Memory Performance (ACPMEMORY) (in Ops / Sec)
(b): Memory Power Efficiency (PEMEMORY) (in (Ops / Sec) / W)

Exact numbers are given in Table 9

ACPMEMORY STDACP APMEMORY STDAP PEMEMORY STDPE

Xen 1,355,898 12,373 13.48 0.03 100,585 945

Docker 1,368,017 9,669 13.47 0.03 101,634 753

Table 9: Average Memory Performance (ACPMEMORY) (in Ops / Sec)
Average Memory Power Usage (APMEMORY) (in Watt) obtained from the previous Table 8

Memory Power Efficiency (PEMEMORY) (in (Ops / Sec) / W)

The IBM research division studied the memory performance of KVM and Docker [7] using
STREAM [21]. STREAM executes four operations namely: copy, scale, add, and triad [7]. This
research uses a 36 GB working set and allocates half of its dedicated cores to the virtual entities,
where once a page table entry is installed in the TLB. The IBM researh division shows that the
performance on KVM and Docker is almost identical [7]. However, Xen was not studied during
this research.

The Ericsson researchers also studied the memory performance of KVM and Docker [1].
This research also uses STREAM to benchmark the platforms. This research observes KVM
and Docker perform similar to the native OS. However, the methodology performed in this
research was not clear on how much memory was dedicated to each virtual entity. Furthermore,
Xen was not taken into account while studying the memory performance of hypervisor-based
virtualization platforms.

The power consumption study of the Ericsson researchers also looked at the memory component
[2]. This time, Xen was studied and compared with other virtualization platforms. The Ericsson
researcher deploys multiple virtual entities and later observes the average power consump-
tion. All virtual entities are stressed by using the sysbench utility, which is also used during this
research. However, the researcher was not on its benchmark methodology. Vital information
such as memory throughput was not specified. Nonetheless, the author also concludes hypervisor
and container-based virtualization behave on average similarly and no clear difference can be
noticed in terms of memory power consumption [2].

19

7.4 HDD Results

Table 10 shows the results of the average power usage in Watt of the HDD. Docker uses
approximately the same amount of power as the Native OS. Xen uses approximately 10 milliWatt
(mW) more power compared to the Native OS and Docker. However, the difference is almost
negligible. It is interesting to notice here the duration in seconds it took to complete the
benchmark. 25 GiB of data was written and read on all platforms. Docker completes the same
task approximately 10 seconds faster then Xen.

APHDD STDHDD Average Duration STDAverage Duration

Xen 6.35 0.42 722 1.41

Docker 6.39 0.37 712 0.55

Native OS 6.48 0.24 629 9.14

Table 10: Average HDD Power Usage (APHDD) (in Watt)
Average Duration (in Seconds)

Figure 11 shows the average power usage of the HDD during a 25GiB Bonnie++ benchmark.
The 12V trend line shows the power usage needed to power the mechanical part of the HDD,
while the 5V trend line shows the power usage of the circuitry of the HDD.

Figure 11: HDD Power Usage (in Watt) while performing a Bonnie++ benchmark

Table 11 and Table 12 show the sequential write and read performance of the HDD when
using Bonnie++. Docker performs in both cases the closest to the native OS. Read and write
speed can be limited in Docker using cgroups. However, by default, read and write speed is
unlimited [56]. By default Xen does not limited the read and write speeds. Xen performs
significantly worse in terms of sequential read performance, see Table 12. The Xen PVHVM
node was not deployed in logical volume, but on the physical volume as an image file (.img).
As described in section 4.2.5, Docker uses UnionFS.

20

(a) (b)

Figure 12: (a): HDD Sequential Write Performance (APCHDD Writes) (in Kb/s)
(b): HDD Sequential Read Performance (STDHDD Reads) (in Kb/s)

Exact numbers are given in Table 11 and Table 12

ACPHDD Writes STDAPC APHDD Writes STDAP PEHDD Writes STDPE

Xen 73,720 295 6.35 0.42 11,609 769

Docker 78,292 1,033 6.39 0.37 12,252 728

Native OS 78,670 1,206 6.48 0.24 12,140 487

Table 11: Average HDD Write Performance (ACPHDD Writes) (in Kb/s)
Average HDD Writes Power Usage (APHDD Writes) (in Watt) obtained from Table 10

HDD Power Efficiency Sequential Writes (PEHDD Writes) (in (Kb/s) / W)

ACPHDD Reads STDAPC APHDD Reads STDAP PEHDD Reads STDPE

Xen 777,387 30,846 6.35 0.42 122,423 9,443

Docker 4,773,599 48,148 6.39 0.37 747,042 43,907

Native OS 5,452,535 97,161 6.48 0.24 841,440 34,584

Table 12: Average HDD Write Performance (ACPHDD Reads) (in Kb/s)
Average HDD Reads Power Usage (APHDD Reads) (in Watt) obtained from Table 10

HDD Power Efficiency Sequential Reads (PEHDD Reads) (in (Kb/s) / W)

(a) (b)

Figure 13: (a): HDD Power Efficiency Sequential Writes (PEHDD Writes) (in (Kb/s) / W)
(b): HDD Power Efficiency Sequential Reads (PEHDD Reads) (in (Kb/s) / W)

21

Table 11 and Table 12 also shows the power efficiency of both the sequential writes and
reads. The power efficiency of the sequential writes is less significant, where Xen performs the
worst and Docker and the Native OS approximately the same. Furthermore, Xen performs
significantly worse then Docker and the Native OS when comparing the sequential reads due to
its bad read performance. Docker has the best power efficient sequential writes. However, if we
consider the STD values, the native OS performs within the same values. The native OS has
the best power efficient sequential reads, while Xen has the worst performance.

The IBM research create a SAN block storage using ext4 on a 20 TB IBM FlashSystem [58]
containing several SSD drives. Therefore, the results of this research will not be compared
because of the different storage technologies.

The Ericsson researcher studied the HDD performance of Docker and KVM [1]. Bonnie++
was also used to conduct the experiments with a test file of 25 GiB. This research points out
that KVM write throughput is roughly a third and read throughput almost a fifth of the Native
OS [1]. The Ericsson study found a mismatch between the results of Bonnie++ and other tools
such as sysbench [1]. This suggests that Disk I/O performance estimation can be tricky [1].
Again, Xen was not taken into account. The other Ericsson study [1] does not take the HDD
component into account. For reliability, the HDD results should require more research.

22

8 Conclusions

This research is concluded by answering the following research questions:

How does one measure the power consumption of each hardware component internally in the
most accurate way?

This research demonstrates a new refined method of measuring the power consumption of
the CPU, Memory and HDD hardware components. Rather than employing a power measuring
device, the power consumption of these hardware components is measured internally by placing
power sensors between the motherboard and circuits of each measured hardware component.
Next, the power consumption is acquired by multiplying both voltage and current. The data on
power consumption of these measured hardware components is collected 1000 times per second
during one benchmark run. A reverse serial connection, a spike of 20 mW, is registered. This
allows precise registration of an accurate start and stop time.

Is there a measurable difference in power efficiency when running an application under a
traditional hypervisor-based virtualization versus Linux containers?

First, the results of the IDLE measurements show Xen, Docker and the Native Ubuntu
OS roughly use the same average power in the range of approximately 1 Watt, which can be
considered almost negligible on a small scale. Nonetheless, Xen consumes the most power in
Watt on average. These results show the CPU component is the dominant hardware component.

Next, the CPU power efficiency of Xen and Docker was researched. The server used during
this research contains two physical processors, each with four cores. Cores [0-3] are registered
to the first physical CPU1, while cores [4-7] are registered to physical CPU2. Two experiment
scenarios were researched. The first experiment deploys a virtual entity, a Xen virtual node and
a Docker container, each allocated four vCPUs pinned to the first four physical cores of the first
CPU1, hence cores [0-3]. Results show that Docker with the CPU cores [0-3] configuration is the
most efficient, while Xen, configured with cores [2-5], is the most inefficient in terms of power
efficiency. This is mainly due to the performance difference where Xen performs approximately
10,000 MFLOPS less than the Docker container.

Unlike the CPU results, the average memory power efficiency in Watt remained the same on
both virtualization platforms. Furthermore, the total time it took to complete the benchmark
run differs 1 second, which is considered to be negligible.

Lastly, the HDD power efficiency is divided in sequential write and sequential read results.
Xen performs significantly worse than Docker and the Native OS when comparing the sequential
reads due to its bad read performance. Docker and the Native OS produce roughly the same
values. The power efficiency of the sequential writes is less significant, where Xen performs the
worst, and Docker and the Native OS approximately the same. For reliability, the HDD results
should require more research.

23

9 Future Research

New research can be conducted to investigate the impact of power efficiency on other Xen
virtualization modes, such as PV, HVM and PVH mode. Furthermore, the impact of power
efficiency on multiple virtual nodes and containers can be studied. One can deploy a finite
number of virtual entities to its maximum deployment density, such that a power efficiency
curve can be mapped. Moreover, real-life applications can be investigated and evaluated.

The Ericsson research team studied the power consumption of the network component [1]. It
would be interesting to research the power efficiency of this component using the more refined
methodology used in this research. Lastly, other virtualization platforms, such as LXC, KVM
and VMware, could be investigated.

24

Acknowledgements

I would like to thank Arie Taal and Paola Grosso from the System and Network Engineering
(SNE) research group for providing the research, the help during the research and reviewing
my work. I also would like to thank Erik Hoektra from the HvA, who is also responsible for the
SEFlab, for facilitating me at the laboratory, making useful suggestions and the clear guidance.

25

References

[1] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. Lightweight Virtualization: a
Performance Comparison”, Ericsson Research, 2015 IEEE International Conference on Cloud
Engineering http://metrics.it.uc3m.es/wp-content/uploads/ic2e.pdf

[2] R. Morabito, “Power Consumption of Virtualization Technologies: an Empirical
Investigation”, December 2015 http://arxiv.org/ftp/arxiv/papers/1511/1511.01232

.pdf

[3] Cisco Global Cloud Index, “Forecast and Methodology”, 2014 – 2019, 2015
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global

-cloud-index-gci/Cloud Index White Paper.pdf

[4] KVM (Kernel Virtual Machine) http://www.linux-kvm.org/page/Main Page

[5] J. Philipps, “Ubuntu Xen”, April 2015 https://help.ubuntu.com/community/Xen

[6] VMware vSphere https://www.vmware.com/products/vsphere

[7] IBM Research Division, “An Updated Performance Comparison of Virtual Machines
and Linux Containersm”, July 2014 http://domino.research.ibm.com/library/cyberdig

.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

[8] dotCloud, “What is Docker?”, 2015 https://www.docker.com/what-docker

[9] Earth System Research Laboratory, “Trends in Atmospheric Carbon Dioxide”, November
2015 http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html

[10] ENERGY STAR, “Report to Congress on Server and Data Center Energy Efficiency”,
August 2007 https://www.energystar.gov/ia/partners/prod development/downloads/

EPA Datacenter Report Congress Final1.pdf

[11] European Commission, Institute for Energy, “Code of Conduct on Data
Centres Energy Efficiency”, October 2008 http://ec.europa.eu/information society/

activities/sustainable growth/docs/datacenter code-conduct.pdf

[12] Greening the Cloud http://www.greeningthecloud.nl/

[13] SEFlab, “Software Energy Footprint Lab”, 2013 http://www.seflab.com/seflab/

[14] Q. Chen, “Towards energy-aware VM scheduling in IaaS clouds through empirical
studies”, August 2011 https://staff.fnwi.uva.nl/c.t.a.m.delaat/smartgreen/Qingwen

-Chen thesis.pdf

[15] C. van der Poll, “Resource usage in Hypervisors”, August 2015 https://esc.fnwi.uva

.nl/thesis/centraal/files/f1542049703.pdf

[16] Ubuntu Manuals, “stress - tool to impose load on and stress test systems” http://

manpages.ubuntu.com/manpages/trusty/man1/stress.1.html

[17] X. Peng, Z. Sai, “Virtual machine power measuring technique with bounded error in cloud
environments”, June 2013 http://www.sersc.org/journals/IJGDC/vol6 no3/6.pdf

[18] LINPACK, http://www.netlib.org/linpack/

26

http://metrics.it.uc3m.es/wp-content/uploads/ic2e.pdf
http://arxiv.org/ftp/arxiv/papers/1511/1511.01232.pdf
http://arxiv.org/ftp/arxiv/papers/1511/1511.01232.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.linux-kvm.org/page/Main_Page
https://help.ubuntu.com/community/Xen
https://www.vmware.com/products/vsphere
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
https://www.docker.com/what-docker
http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://ec.europa.eu/information_society/activities/sustainable_growth/docs/datacenter_code-conduct.pdf
http://ec.europa.eu/information_society/activities/sustainable_growth/docs/datacenter_code-conduct.pdf
http://www.greeningthecloud.nl/
http://www.seflab.com/seflab/
https://staff.fnwi.uva.nl/c.t.a.m.delaat/smartgreen/Qingwen-Chen_thesis.pdf
https://staff.fnwi.uva.nl/c.t.a.m.delaat/smartgreen/Qingwen-Chen_thesis.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1542049703.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1542049703.pdf
http://manpages.ubuntu.com/manpages/trusty/man1/stress.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/stress.1.html
http://www.sersc.org/journals/IJGDC/vol6_no3/6.pdf
http://www.netlib.org/linpack/

[19] Dongarra, Jack J., “Performance of Various Computers Using Standard Linear Equations
Software in a Fortran Environment”, SIGARCH Comput. Archit News, vol. 11, nr 5, December
1983, Pages 22-27 http://doi.acm.org/10.1145/859551.859555

[20] Jack J. Dongarra,Victor Eijkhout, Journal of Computational and Applied Mathematics,
“Numerical linear algebra algorithms and software”, November 2000, Pages 489–514 http://

www.sciencedirect.com/science/article/pii/S0377042700004003

[21] McCalpin, John D, “STREAM: Sustainable Memory Bandwidth in High Performance
Computers”, http://www.cs.virginia.edu/stream/

[22] fio, “Flexible IO Tester”, http://git.kernel.dk/?p=fio.git;a=summary

[23] Zhang Z., “Intel LINPACK Math Kernel Library Benchmarks”, November 2015 https://

software.intel.com/en-us/articles/intel-mkl-benchmarks-suite

[24] Monty Taylor, Launchpad sysbench, “Overview” 2016 4̆rlhttps://launchpad.net/sysbench

[25] Russell Coker, Bonnie++, 2016 http://www.coker.com.au/bonnie++/

[26] J. Schwartz, “Are Containers the Beginning of the End of Virtual Machines”, October
2014 https://virtualizationreview.com/articles/2014/10/29/containers-virtual

-machines-and-docker.aspx

[27] Susanta Nanda Tzi-cker Chiueh and Stony Brook. “A Survey on Virtualization
Technologies. RPE Report”, pages 1-42, 2005

[28] Docker, “Understand the architecture” https://docs.docker.com/engine/

introduction/understanding-docker

[29] S. J. Vaughan-Nichols, “What is Docker and why is it so darn popular?” Figure
1, August 2014 http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn

-popular/

[30] Xen Wiki, “Xen Project Software Overview”, April 2015 http://wiki.xen.org/wiki/

Xen Project Software Overview

[31] R. Pau, FOSDEM, Benefits of the new Xen paravirtualization mode, February 2013
https://archive.fosdem.org/2013/schedule/event/xen paravirtualization mode/

attachments/slides/241/export/events/attachments/xen paravirtualization mode/

slides/241/new xen paravirt mode.pdf

[32] R. Pau, Xenbits, “Performance tuning Xen”, November 2013 http://xenbits.xen.org/

people/royger/talks/performance.pdf

[33] Xen Project Mailing List, “Low CPU performance on Xen PV VM”, 12 January 2016
http://lists.xen.org/archives/html/xen-users/2016-01/msg00053.html

[34] X. Z. Wang et al. “An Interactive Web-Based Analysis Framework for Remote Sensing
Cloud Computing”, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume II-4/W2, 2015 http://www.isprs-ann-photogramm-remote

-sens-spatial-inf-sci.net/II-4-W2/43/2015/isprsannals-II-4-W2-43-2015.pdf

[35] Linux Containers, November 2015, https://linuxcontainers.org

27

http://doi.acm.org/10.1145/859551.859555
http://www.sciencedirect.com/science/article/pii/S0377042700004003
http://www.sciencedirect.com/science/article/pii/S0377042700004003
http://www.cs.virginia.edu/stream/
http://git.kernel.dk/?p=fio.git;a=summary
https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
http://www.coker.com.au/bonnie++/
https://virtualizationreview.com/articles/2014/10/29/containers-virtual-machines-and-docker.aspx
https://virtualizationreview.com/articles/2014/10/29/containers-virtual-machines-and-docker.aspx
https://docs.docker.com/engine/introduction/understanding-docker
https://docs.docker.com/engine/introduction/understanding-docker
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://archive.fosdem.org/2013/schedule/event/xen_paravirtualization_mode/attachments/slides/241/export/events/attachments/xen_paravirtualization_mode/slides/241/new_xen_paravirt_mode.pdf
https://archive.fosdem.org/2013/schedule/event/xen_paravirtualization_mode/attachments/slides/241/export/events/attachments/xen_paravirtualization_mode/slides/241/new_xen_paravirt_mode.pdf
https://archive.fosdem.org/2013/schedule/event/xen_paravirtualization_mode/attachments/slides/241/export/events/attachments/xen_paravirtualization_mode/slides/241/new_xen_paravirt_mode.pdf
http://xenbits.xen.org/people/royger/talks/performance.pdf
http://xenbits.xen.org/people/royger/talks/performance.pdf
http://lists.xen.org/archives/html/xen-users/2016-01/msg00053.html
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4-W2/43/2015/isprsannals-II-4-W2-43-2015.pdf
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4-W2/43/2015/isprsannals-II-4-W2-43-2015.pdf
https://linuxcontainers.org

[36] OpenVZ, 24 December 2015 https://openvz.org/Main Page

[37] VServer, 22 April 2013 http://linux-vserver.org/Overview

[38] Githb, “lmctfy - Let Me Contain That For You”, May 28 2015 https://github.com/

google/lmctfy

[39] Github, “Opencontainers, libcontainer”, 11 January 2016 https://github.com/

opencontainers/runc/tree/master/libcontainer

[40] Cambridge University, “Linux Containers”, L. Carata, October 2014 https://www.cl

.cam.ac.uk/~lc525/files/Linux Containers.pdf

[41] Razvan, Docker vs Virtualization, September 2014 http://sleekd.com/servers/docker

-vs-virtualization/

[42] Docker, “Hub Image Repository”, 2015 https://docs.docker.com/docker-hub/

[43] Docker, “Build your own images”, https://docs.docker.com/engine/userguide/

dockerimages/

[44] Unionfs, “A Stackable Unification File System”, 18 May 2015 http://unionfs

.filesystems.org

[45] GitHub, “dockviz: Visualizing Docker Data”, November 2015 https://github.com/

justone/dockviz

[46] University of Amsterdam, System and Network Engineering Research, “Green IT”
https://ivi.fnwi.uva.nl/sne/green-it/

[47] VU University Amsterdam, “Homepage of the Software and Services Research Group”,
January 2016 http://www.s2group.cs.vu.nl/green-lab/

[48] Eurocircuits, http://www.eurocircuits.com

[49] IBM, Hardware Announcement 113-153, “IBM System x3550 M4 servers”, September
2013 http://www-01.ibm.com/common/ssi/rep ca/3/897/ENUS113-153/ENUS113-153.PDF

[50] J. Burkardt, Florida State University, “LINPACK BENCH”, March 2008 http://people

.sc.fsu.edu/~jburkardt/c src/linpack bench/linpack bench.html

[51] Ubuntu Manual page, “Bonnie++ - program to test hard drive performance” http://

manpages.ubuntu.com/manpages/gutsy/man8/bonnie.8.html

[52] W. Manning, “CompTIA Strata - Green IT”, Section 3.3 - Measurements, October 2012

[53] The Green List 500, November 2015, http://www.green500.org/greenlists

[54] Ubuntu Manual page, “sysbench - A modular, cross-platform and multi-threaded
benchmark tool” urlhttp://manpages.ubuntu.com/manpages/utopic/man1/sysbench.1.html

[55] S. van Vugt, “Memory and CPU allocation in Xen environments: Optimizing
performance”, December 2007 http://searchservervirtualization.techtarget.com/

tip/Memory-and-CPU-allocation-in-Xen-environments-Optimizing-performance

[56] Heinrich, “What is Docker and How Do You Monitor It?”, July 2015 http://axibase

.com/docker-monitoring/

28

https://openvz.org/Main_Page
http://linux-vserver.org/Overview
https://github.com/google/lmctfy
https://github.com/google/lmctfy
https://github.com/opencontainers/runc/tree/master/libcontainer
https://github.com/opencontainers/runc/tree/master/libcontainer
https://www.cl.cam.ac.uk/~lc525/files/Linux_Containers.pdf
https://www.cl.cam.ac.uk/~lc525/files/Linux_Containers.pdf
http://sleekd.com/servers/docker-vs-virtualization/
http://sleekd.com/servers/docker-vs-virtualization/
https://docs.docker.com/docker-hub/
https://docs.docker.com/engine/userguide/dockerimages/
https://docs.docker.com/engine/userguide/dockerimages/
http://unionfs.filesystems.org
http://unionfs.filesystems.org
https://github.com/justone/dockviz
https://github.com/justone/dockviz
https://ivi.fnwi.uva.nl/sne/green-it/
http://www.s2group.cs.vu.nl/green-lab/
http://www.eurocircuits.com
http://www-01.ibm.com/common/ssi/rep_ca/3/897/ENUS113-153/ENUS113-153.PDF
http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
http://manpages.ubuntu.com/manpages/gutsy/man8/bonnie.8.html
http://manpages.ubuntu.com/manpages/gutsy/man8/bonnie.8.html
http://www.green500.org/greenlists
http://searchservervirtualization.techtarget.com/tip/Memory-and-CPU-allocation-in-Xen-environments-Optimizing-performance
http://searchservervirtualization.techtarget.com/tip/Memory-and-CPU-allocation-in-Xen-environments-Optimizing-performance
http://axibase.com/docker-monitoring/
http://axibase.com/docker-monitoring/

[57] Xen Wiki, “Virtualization Spectrum”, October 2014 http://wiki.xen.org/wiki/

Virtualization Spectrum

[58] IBM, Implementing IBM FlashSystem 840, July 2015 http://www.redbooks.ibm.com/

abstracts/sg248189.html

29

http://wiki.xen.org/wiki/Virtualization_Spectrum
http://wiki.xen.org/wiki/Virtualization_Spectrum
http://www.redbooks.ibm.com/abstracts/sg248189.html
http://www.redbooks.ibm.com/abstracts/sg248189.html

Appendices

Appendix A Xen PVHVM virtual node settings

builder = "hvm"

boot = "c"

xen_platform_pci = "1"

pae = "1"

#all four cores on one physical CPU

cpus = "0-3"

#two cores on each physical CPU

cpus = "2-5"

vcpus = "4"

memory = "4096"

name = "PVHVM_1"

dhcp = "dhcp"

vif = [‘mac=00:16:3E:85:F1:B1’]

disk = [‘file:/etc/xen/PVHVM_1.img,hdc,w’]

stdvga = "1"

keymap = "en"

on_poweroff = "destroy"

on_reboot = "restart"

on_crash = "restart"

Appendix B Docker Deployment Settings

#Docker container running on cores [0-3]

docker run -it --cpuset-cpus="0-3" --memory 4G --memory-reservation 4G

ubuntu /bin/bash

#Docker container running on cores [2-5]

docker run -it --cpuset-cpus="2-5" --memory 4G --memory-reservation 4G

ubuntu /bin/bash

30

Appendix C Physical installation of the measurement equipment
on the server

Figure 14: Physical Server

31

Appendix D Power Sensor Specifications

Flow Measurements Values

Shunt resistor 5 mΩ

Maximum current 20 Ampère

Maximum theoretical deviation +/- 10%

Deviation after calibration +/- 2%

3dB Lowpass filter 100 Hz

Differential Amp 50x

Table 13: Power Sensor Flow Measurement

Voltage Measurements Values

Accuracy +/- 2%

Maximum voltage 20 V

Table 14: Power Sensor Measurement

Sensor Temperature Values

Variable Temperature 20◦ - 60◦

Preciseness +/- 3◦

Table 15: Power Sensor Temperate

32

Appendix E Install Xen 4.5.1 Hypervisor on IBM x3550 Server

There were some challenges installing the latest 64-bit Ubuntu 15.10 operating system on the
IBM x3550 server in BIOS only mode. I was struggling to boot Ubuntu 15.10 x64 Server from
a bootable USB memory device on an IBM X3550 M4 7914 server.

I figured that this might be a bug, so I upgraded to the latest server firmware version 1.91
and Integrated Management Modules (IMM) 5.20. However, this was without success. Adding
the Generic boot option and placing it on top of the boot order did not work either. Also the
removal of the /USBSTICK/EFI/boot/bootx64.efi file did not work.

I was forced to apply the following work-around: PXE boot Ubuntu 15.10 from another
machine (tftpd32). Next, I installed OpenSSH along with the kernel in order to login remotely
because the screen remained black.

The behaviour seems like a bug, but could just be the result of a bad combination of platform
and an uncertified operating system. According to ServerProven1, Ubuntu 15.x is not certified
for any of the IBM 3650 M4 machine types (14.x and prior appear to be). Red Hat Enterprise
Linux 7 did however boot from a USB-stick.

1https://www.ibm.com/developerworks/community/forums/html/topic?id=1b2be66e-5a33-404e-9c16

-b64a03adad3a

33

https://www.ibm.com/developerworks/community/forums/html/topic?id=1b2be66e-5a33-404e-9c16-b64a03adad3a
https://www.ibm.com/developerworks/community/forums/html/topic?id=1b2be66e-5a33-404e-9c16-b64a03adad3a

Appendix F LINPACK Benchmark Script

#!/bin/bash

#Author: J. van Kessel based on J. van der Poll benchmark scripts

#11-01-2016, Amsterdam

#CPU Benchmark script

#Variables

RUNTIME=480 #Runtime in seconds

BENCHMARK=1 #Benchmark time in seconds

BEGIN_TIME=$(date +%s) #begin Time

CURRENT_TIME=$(date +%s) #Current time in seconds

END_TIME=$((CURRENT_TIME + $RUNTIME)) #Total runtime in seconds

ROUNDS=0 #number of rounds variable

gnome-terminal -e ’screen /dev/ttyUSB0 115200’

printf "Loading the following variables: \n\n"

printf "PID: "$$" \n"

printf "Current Date: $(date) \n"

printf "Begin Time: "$BEGIN_TIME" (in seconds) \n"

printf "End Time: "$END_TIME" (in seconds) runs "$RUNTIME" seconds \n\n"

#Running the synthetic LINPACK 11.3.1.002 CPU application:

while ["$CURRENT_TIME" -lt "$END_TIME"]

do

printf "Loading the system... \n"

l_mklb_p_11.3.1.002/linpack/./xlinpack_xeon64 -i linpack_settings.txt

CURRENT_TIME=$(date +%s) #update current time variable

let ROUNDS="$ROUNDS"+1 #update number of rounds done

if ["$?" -eq "0"] #error handeling

then

printf "\n Number of benchmarks rounds done: "$ROUNDS" \n\n"

else #error handeling

printf "Benchmark Failed! \n\n"

exit 1

fi

done

printf "Total spent ‘expr "$CURRENT_TIME" - "$BEGIN_TIME"‘ seconds. \n"

printf "ALL BENCHMARKS ARE COMPLETED. \n"

Sample Intel(R) Optimized LINPACK Benchmark data file (lininput_xeon64)

Intel(R) Optimized LINPACK Benchmark data

1 # number of tests

22350 # problem sizes

22350 # leading dimensions

3 # times to run a test

1 # alignment values (in KBytes)

34

Appendix G sysbench Benchmark Script

#!/bin/bash

#Author: J. van Kessel based on J. van der Poll benchmark scripts

#11-01-2016, Amsterdam

#Memory Benchmark script

clear

#Variables

RUNTIME=480 #Runtime in seconds

BENCHMARK=1 #Benchmark time in seconds

BEGIN_TIME=$(date +%s) #begin Time

CURRENT_TIME=$(date +%s) #Current time in seconds

END_TIME=$((CURRENT_TIME + $RUNTIME)) #Total runtime in seconds

ROUNDS=0 #number of rounds variable

gnome-terminal -e ’screen /dev/ttyUSB0 115200’

printf "Loading the following variables: \n\n"

printf "PID: "$$" \n"

printf "Current Date: $(date) \n"

printf "Begin Time: "$BEGIN_TIME" (in seconds) \n"

printf "End Time: "$END_TIME" (in seconds) runs "$RUNTIME" seconds \n\n"

#Running the synthetic sysbench application with the following switches:

while ["$CURRENT_TIME" -lt "$END_TIME"]

do

printf "Loading the system... \n"

sysbench

--test=memory

--memory-block-size=1K

--memory-scope=global

--memory-total-size=350G

--memory-oper=write

run

CURRENT_TIME=$(date +%s) #update current time variable

let ROUNDS="$ROUNDS"+1 #update number of rounds done

if ["$?" -eq "0"] #error handeling

then

printf "\n Number of benchmarks rounds done: "$ROUNDS" \n\n"

else #error handeling

printf "Benchmark Failed! \n\n"

exit 1

fi

done

printf "Total spent ‘expr "$CURRENT_TIME" - "$BEGIN_TIME"‘ seconds. \n"

printf "ALL BENCHMARKS ARE COMPLETED. \n"

35

Appendix H Bonnie++ Benchmark Script

#!/bin/bash

#Author: J. van Kessel based on J. van der Poll benchmark scripts

#11-01-2016, Amsterdam

#HDD Benchmark script

clear

#Variables

RUNTIME=480 #Runtime in seconds

BENCHMARK=1 #Benchmark time in seconds

BEGIN_TIME=$(date +%s) #begin Time

CURRENT_TIME=$(date +%s) #Current time in seconds

END_TIME=$((CURRENT_TIME + $RUNTIME)) #Total runtime in seconds

ROUNDS=0 #number of rounds variable

gnome-terminal -e ’screen /dev/ttyUSB0 115200’

printf "Loading the following variables: \n\n"

printf "PID: "$$" \n"

printf "Current Date: $(date) \n"

printf "Begin Time: "$BEGIN_TIME" (in seconds) \n"

printf "End Time: "$END_TIME" (in seconds) runs "$RUNTIME" seconds \n\n"

#Running Bonnie++

#24600MiB is 25GiB disk Throughput used in this benchmark in combination with 4GB memory

while ["$CURRENT_TIME" -lt "$END_TIME"]

do

printf "Loading the system... \n"

bonnie++ -d /tmp -r 4096 -s 26850 -u root

CURRENT_TIME=$(date +%s) #update current time variable

let ROUNDS="$ROUNDS"+1 #update number of rounds done

if ["$?" -eq "0"] #error handeling

then

printf "\n Number of benchmarks rounds done: "$ROUNDS" \n\n"

else #error handeling

printf "Benchmark Failed! \n\n"

exit 1

fi

done

printf "Total spent ‘expr "$CURRENT_TIME" - "$BEGIN_TIME"‘ seconds. \n"

printf "ALL BENCHMARKS ARE COMPLETED. \n"

36

Appendix I Xen CPU Pinning

Xen CPU topology used during this research [55].

#Xen Dom0 allocated to use and switch between all 8 vCPUs/ CPU cores

Name ID VCPU CPU State Time(s) CPU Affinity

Domain-0 0 0 0 -b- 77.4 all / all

Domain-0 0 1 1 -b- 74.4 all / all

Domain-0 0 2 2 -b- 80.7 all / all

Domain-0 0 3 3 -b- 71.4 all / all

Domain-0 0 4 4 -b- 81.7 all / all

Domain-0 0 5 5 -b- 90.7 all / all

Domain-0 0 6 6 -b- 94.2 all / all

Domain-0 0 7 7 r-- 542.5 all / all

#4vCPUs used for pvhvm node. Core [0-3] are pinned to vCPU [0-3] and allocated

Name ID VCPU CPU State Time(s) CPU Affinity

pvhvm 1 0 0 r-- 1622.8 0-3 / 0-3

pvhvm 1 1 1 r-- 1622.5 0-3 / 0-3

pvhvm 1 2 2 r-- 1622.2 0-3 / 0-3

pvhvm 1 3 3 r-- 1622.6 0-3 / 0-3

#4vCPUs used for pvhvm node. Core [2-5] are pinned to vCPU [2-5] and allocated

Name ID VCPU CPU State Time(s) CPU Affinity

pvhvm 1 2 2 r-- 1843.3 2-5 / 2-5

pvhvm 1 3 3 r-- 1843.4 2-5 / 2-5

pvhvm 1 4 4 r-- 1843.2 2-5 / 2-5

pvhvm 1 5 5 r-- 1843.4 2-5 / 2-5

37

