
On Exploiting Page Sharing in a Virtualized Environment - an Empirical Study of
Virtualization Versus Lightweight Containers

Ashish Sonone, Anand Soni, Senthil Nathan, Umesh Bellur
Department of Computer Science and Engineering

IIT Bombay
Mumbai, India

ashishsonone, anandsoni, cendhu, umesh@cse.iitb.ac.in

Abstract—While virtualized solutions are firmly entrenched
in cloud data centers to provide isolated execution environ-
ments, the chief overhead it suffers from is that of memory
consumption. Even pages that are common in multiple virtual
machines (VMs) on the same physical machine (PM) are not
shared and multiple copies exist thereby draining valuable
memory resources and capping the number of VMs that can be
instantiated on a PM. Lightweight containers (LWCs) on the
other hand does not suffer from this situation since virtually
everything is shared via Copy on Write semantics. As a result
the capacity of a PM to host LWCs is far higher than hosting
equivalent VMs. In this paper, we evaluate a solution using
uKSM to exploit memory page redundancy amongst multiple
VMs on a PM executing the same operating system thereby
enabling a comparison of the two technologies as far as its
capacity to instantiate multiple instances is concerned. We
performed a thorough empirical evaluation of the two solutions
and present comprehensive results.

Keywords-cloud, virtual machine, light weight container,
KSM

I. INTRODUCTION

Data centers host multiple applications on a single physi-
cal machine to increase resource utilization while provid-
ing performance isolation with the help of either virtual
machines (VM) or containers. Resources such as CPU,
memory, disk and network bandwidth can be allocated to
each VM or container according to the need of application
hosted on them.Containers are light weight in terms of
memory utilization and code execution path compared to
virtual machines as the application hosted inside a container
executes directly on the host operating system (OS). In
the case of a virtual machine, the application is hosted
on the guest OS which runs on the virtual machine. The
hypervisor & host OS aids in sharing resources between
virtual machines. The widely used hypervisor that enables
the execution of virtual machines are Xen [1], KVM [2],
& VMware [3] and widely used containers are LXC [4],
openVZ [5] and VServer [6].

VMs and containers can be compared on the basis of
their (i) functionalities, (ii) performance and (iii) resource
utilization overhead (mainly memory footprint).

Functionality. As applications hosted on containers share
the host OS, crashing of the host OS’s kernel by any

faulty application can result in the failure of all applications
executing on that machine. On the other hand, each virtual
machine runs its own OS and hence, a faulty application
cannot crash the host OS. Further, each application can
run on any customized and optimized guest OS which is
different from the host OS. For example, each guest OS can
run its own I/O scheduler which is optimized for the hosted
application. In addition to this, the hypervisor provides many
other features such as live migration of virtual machines,
high availability using periodic checkpointing and storage
migration.

Performance. For virtual machines, the hardware re-
sources need to be virtualized so that guest OS can run on
a virtual machine. The virtualization of memory, disk and
network resources are handled by the hypervisor which adds
some overheads in the execution of the application. Thus, the
performance of an application executing on virtual machine
degrades compared to the bare-metal machine. On the other
hand, a container executes directly on the host OS without
any virtualization overhead. Prior research [7], [8], [9], [10],
[11], [12] has compared the performance of both virtual ma-
chine and container using micro and macro benchmarks. The
performance of an application executing on containers was
close to it’s performance on the host OS whereas there was
a noticeable performance degradation when executing on a
VM. However, recent advancements in providing hardware
support for virtualization has resulted in significantly denting
the performance overheads of virtualized applications. For
example, Intel provides certain hardware features such as
EPT [13] for memory virtualization and SRIOV [14] for
network virtualization.

Resource utilization overhead. Memory is a critical
resource in a data center which limits the number of appli-
cations that can be hosted on a physical machine and hence
limits the profit. hosted application and hence the profit. The
amount of memory utilized by the virtual machine for a
given application would be higher than the container due to
the additional memory occupied by guest OS. As a result, if
applications are hosted on containers rather than virtual ma-
chines, a data center can host a few additional applications.
However, this would take away the functionalities provided

by the virtual machine. To avoid this, we should try to reduce
the memory utilization of VMs. With each VM running the
same guest OS, the chance of finding identical content in
memory pages are quite high. Hence, one way to reduce the
memory utilization is to replace redundant memory pages
with a single write protected page.

KSM [15] and uKSM [16] are tools which periodically
scans userspace memory to find memory pages with identi-
cal content and keeps only one copy of redundant pages to
save memory. In other words, these tools find the duplicate
memory pages between processes and replace these pages
with a single write protected page (which is also knows as
Copy on Write). In case of KVM and LXC, each virtual
machine and container executes as a user process and
hence the memory sharing technique can be employed to
reduce the memory footprint. None of the existing literature
have compared the memory utilization of both KVM’s VM
and LXC containers with and without a memory sharing
technique. Our goal is to perform a comprehensive study to
understand the effectivenss of the memory sharing technique
on the memory footprint of both KVM’s virtual machine
and LXC container. To be specific, our goal is to answer the
following questions

1) Can memory sharing technique reduce the memory
footprint of VMs such that the memory utilization of
VMs and containers is comparable?

2) Does the execution of a workload on the application
in either of these technologies reduce the memory
sharing opportunity?

3) What is the impact of memory sharing technique on
the performance of application?

4) Is the time taken to boot n VMs significantly higher
than the booting time of n containers?

5) What is the cost paid in terms of resource utilization
during boot time?

The relevance of the last two questions has to do with the
fact that no such comparison exists and is an important
factor in dealing with large boot storms in data center.
We believe that it’s necessary to round out the comparison
of containers and VMs as competing technologies for co-
hosting applications on PMs in a data center.

The rest of the paper is structured as follows: Section
II lists existing work which compared the performance of
application executing on containers and virtual machines.
Section III describes our experimental methodology and
setup used to answer our questions. Section IV presents
the results of our comprehensive study while Section V
concludes this paper.

II. RELATED WORK

Table 1 captures previous performance studies that have
sought to compare containers and virtual machines. As can
be seen, none of the studies looked to compare memory
utilization of VMs with containers. In addition, there has

not been any reported work on using KSM like memory
sharing techniques to reduce the memory footprint of a set
of VMs executing on a PM.

The work in [7] compared the performance of applications
running on LXC container and KVM/Xen’s virtual machine.
The performance of CPU intensive applications and network
intensive applications were observed to be same in both
containers and VMs. However, a significant degradation
is observed for both memory intensive and disk intensive
applications with VMs due to the virtualization overhead of
the respective resources.

[8] studied the performance of WordPress blog executing
on both Xen’s VM and LXC container. The throughput of
WordPress blog with containers was observed to be 8000
requests per second higher than the VM. This work also
qualitatively compare the operational flexibility in terms
of image creation time, startup time, high availability and
migration.

The study in [9] compared the performance of micro
benchmarks executing on containers such as openVZ, docker
and lmctfy with KVM’s virtual machine. The performance of
CPU intensive application was the same on all platforms but
memory and disk intensive application observed a significant
reduction in the performance while executing on a virtual
machine. Further, the performance of network intensive
application also degraded when using large packet sizes.
However, this impact was not observed in [7] as they have
not varied the packet size. The work in [10] compared the
performance of HPC application executing on containers
such as openVZ, VServer, and LXC with Xen’s VM. The
observation listed in this work is similar to [9]. Further, the
observations made in [11] and [12] are also similar to [9],
[10].

All existing work only compared VMs and containers on
the basis of their performance but not in terms of memory
utilization with and without uKSM (i.e., memory sharing
tool). uKSM scans memory pages and compares its content
to find pages with identical content. On detecting identical
pages, a single copy of the page is shared and the memory
occupied by other pages are freed, thereby reducing the
memory utilization. The shared page is write protected.
A write to the shared page by a process is handled by
providing an exclusive copy to of the page to that process.
Though uKSM reduces the memory utilization, additional
CPU resource is consumed for scanning and comparing
memory pages. In our work, we mainly compare the memory
utilization of KVM’s virtual machine and LXC container
in the presence of uKSM functionality. Though several
literature [17], [18], [19] have quantified the memory sharing
opportunity between VMs using KSM, they do not answer
fives questions listed in Section I.

Table I
PERFORMANCE AND COST COMPARISON OF VIRTUAL MACHINES AND CONTAINERS

Paper Virtual
Ma-

chines

Containers Benchmark Memory Usage (with-
/without uKSM)

KVM Xen LXC openVZ VServer CPU Memory Network Disk Macro
[7] X X X X X X X X ×
[8] X X X ×
[9] X X X X X X ×
[10] X X X X X X X X ×
[11] X X X X X X X X ×
[12] X X X X X X X ×
our
work

X X X X

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Experimental Setup

All experiments were performed on a blade server with
8 CPU cores & 24 GB RAM executing Ubuntu 12.04. The
linux kernel (v3.8.13.25) was patched with uKSM version
0.1.2.2. Experiments were performed on KVM and LXC
containers. KVMs were configured with 256 MB RAM and
1 VCPU each.

B. Methodology

Experiments were broadly classified into idle and non-
idle scenarios :

• Idle : Multiple KVMs/LXCs were run with mysql or
apache or a mix of the two (some running apache, some
mysql) but without any workload. Our goal was to find
the maximum amount of sharing possible with uKSM
for both LXC and KVM such that the maximum sharing
can serve as a reference when workload is executed
later.

• Non-idle : OLTP benchmarks were run to generate
mysql database workload. We intended to determine
whether the amount of sharing increases or decreases
due to load. Here is a brief description of different oltp
benchmarks that were used :

– Epinions : This workload is centered around users
interacting with other users and writing reviews
for various items in the database (e.g., products).
It consists of nine different transactions, of which
four interact only with user records, four interact
only with item records, and one that interacts with
all of the tables in the database.

– SEATS : The SEATS benchmark models an airline
ticketing system where customers search for flights
and make online reservations. It consists of eight
tables and six transaction types.

– TPCC : It consists of nine tables and five proce-
dures that simulate a warehouse-centric order pro-
cessing application. TPCC’s transactions are more

complex and write-heavy than in other bench-
marks.

– YCSB : The YCSB workload contains various
combinations of read/write operations and access
distributions that match products inside Yahoo!. It
is representative of very simple primary-key based
key-value store applications.

General Procedure for the experiments : A set of
‘n’ KVM/LXC(s) are started with each running a single
instance of either mysql or apache server. Once they are
up and running, we collect data for a certain time period
with uKSM turned off. Then, uKSM is turned on to collect
data for a certain time period. We collect the following three
metrics every second during every collection period.

1) Memory usage of host(using free -m command)
2) CPU usage of uksm (using top command)
3) Page sharing statistics for uskm (obtained from /sys/k-

ernel/mm/uksm folder)

IV. EMPIRICAL EVALUATION OF LXCS VERSUS VMS

In this paper, we have mentioned the memory utilization
in terms of overhead over idle host’s memory utilization.
This is because, the memory utilization of idle host varies,
and hence instead of host’s total memory utilization, over-
head gives a consistent numerical value to measure memory
utilization across experiments that ran across several days.

First, we measured memory usage of a single LXC/KVM
running apache or mysql server. The idle host (with no
LXC/KVM running) takes around 560 MB memory. The
following are the memory utilization overhead for different
configurations:

• KVM with apache server : 234 MB
• LXC with apache server : 12.3 MB
• KVM with mysql server : 264 MB
• LXC with mysql server : 44 MB

A. Resource Cost with uKSM

To see how uKSM CPU utilization varies as uKSM
performs memory page sharing, we plotted :

• Pages scanned by uKSM vs time

• uKSM CPU utilization vs time
Figure 1 shows the corelation between uKSM memory
scanning and its CPU usage. As observed from the figure,
we observed that the CPU usage is directly proportional to
the rate at which pages are scanned by uKSM. Further, we
observed that uKSM works in batches with periodic bursts of
CPU utilization followed by scanning activity. uKSM does
not affect application performance as separate CPU cores
are assigned to VM and uKSM. Here are two terms we use

Figure 1. CPU usage of uKSM for five KVMs running Apache

frequently with regard to uKSM in this paper:
• uKSM pages shared : It is the number of pages that

have been mapped by different page table entries, i.e.
shared by different processes.

• uKSM memory pages sharing (a.k.a. saved): It is
roughly the number of redundant pages you have saved,
with uKSM.

In all the further experiments, five LXCs/KVMs were started
together and monitored.

B. KVM/LXC running idle mysql server

As observed from Figure 2, when running mysql server
on five LXCs, we recorded a memory overhead of 216 MB,
approximately 5 times the overhead for one LXC running
mysql server. On starting uKSM, the memory overhead dips
down by around 100 MB and comes down to about 118
MB. On the other hand, five KVMs running mysql impose
a memory overhead of around 1300 MB (as expected).
uKSM brings the memory overhead down to 540 MB i.e
a decrease of almost about half of the original overhead.
A plausible explanantion is that multiple KVMs have a
lot of kernel pages in common which were shared by uKSM.

Figure 3 shows that the number of uKSM memory pages
sharing (or saved) increases from 1807 to 6718 and uKSM
pages shared increases from 1135 to 1180 for LXC. We did

not observe the 1:4 ratio of pages shared to memory pages
sharing (or saved) because when uKSM starts, other system
processes also contribute to sharing of pages which fades
away the contribution due to LXC alone.

For KVM, uKSM pages shared increase from 1074 to
around 31240 and uKSM memory pages sharing (or saved)
from 1848 to around 131260. As expected, the ratio of
uKSM pages shared to uKSM memory pages saved is 1:4
because for every five duplicate pages (across 5 KVMs),
only one is kept after uKSM scans the memory and hence
it reduces memory redundancy by 80 percent.

Figure 2. Memory overhead for five KVMs/LXCs running mysql

Figure 3. Page sharing statistics for five KVMs/LXCs running mysql

C. KVM/LXC(s) running idle apache server

For five LXCs running apache server, we expect around
60 MB memory overhead (around 12MB per LXC) with
uKSM disabled. As shown in Figure 4, the experimental
memory overhead of 59.33 MB met this expectation.

However, after uKSM was turned on, memory overhead
increased unexpectedly to around 70 MB. A possible cause
for this could be random jitter in the system.
With five KVMs running apache server, expected memory
overhead was 1170 MB. Experimentally, we recorded a
memory overhead of 1034 MB. This could be due to a
common VMM which uses certain memory whether single
or multiple KVM instances are running, and hence the
overhead is not simply five-fold. After turning uKSM on,
the overhead dips down to 441 MB (a decrease of 593 MB).

In case of KVM, as observable from Figure 5, the number
of pages shared increased from 579 to 27428 and the number
of memory pages sharing (or saved) from 1164 to 112446.
In the case of LXC, pages shared increased from 1193
to 1334. Though pages shared increases, we observed an
increase in memory usage which is just the opposite of what
we expected. Similarly, memory pages sharing saved also
increase from 1832 to 2231.

Figure 4. Memory overhead for five KVMs/LXCs running apache

D. KVM/LXC(s) running a mix of idle apache and mysql
servers

In this experiment, we run three LXCs/KVMs each ex-
ecuting mysql server, and another two KVMs/LXCs each
executing apache sever. We wanted to observe how uKSM
performs when a mix of applications is running. From the
three instances of KVM executing mysql server, we expected
a contribution of 3×264 MB, and a contribution of 2×234
MB from the two instances executing apache server resulting
in a total memory overhead of approximately 1260 MB. As
observable from Figure 6, we recorded an actual overhead
of around 1172 MB which is acceptable. Turning on uKSM
brings down the overhead to 504 MB which is in between
the recorded cut down in memory overhead when running
five mysql servers and five apache servers. From the above
observation, it can be stated that in the case of KVMs,

Figure 5. Page sharing statistics for five KVMs/LXCs running apache

most of the sharing happens due to kernel pages and the
application has a small memory footprint. Hence, the amount
of shareable memory is not severely affected by running a
mix of different applications.

For LXC instances, on the other hand, a total memory
overhead of 152 MB was recorded which was in accordance
with the expected overhead value of 156.6 MB which
includes a contribution of 3× 44 MB (from the three LXC
instances running mysql server) and 2 × 13.2 MB (from
the two LXC instances running apache server). Turning on
uKSM breaks down the memory overhead by 100 MB.

As depicted by Figure 7, for KVM, we observed an
increase in pages shared from 1337 to 32309 and in memory
pages sharing (or saved) from 2194 to 117449. Whereas,
for LXCs, pages shared increases from 1411 to 1439 and
memory pages sharing (or saved) from 2353 to 5170 which
is similar to the case of running five mysql servers instead
of a mix.

E. KVM/LXC(s) running mysql server with OLTP bench-
mark

In this experiment, we generate requests for the mysql
servers executing in the LXC/KVM(s) using OLTP bench-
marks. A separate blade server was used to run the OLTP
benchmarks. Once all the LXC/KVM(s) have booted, we run
the OLTP benchmark for five minutes with uKSM turned off
and record certain metrics (as described in Section III-B) and
collect OLTP throughput logs. We again run the benchmarks
for another five minutes with uKSM turned on. We run five
benchmarks; one targetted at each LXC/KVM.

As observable from Figure 8, with uKSM turned off, five
LXC instances running mysql with OLTP benchmarks have
a memory overhead of 918 MB. This is way higher than 216
MB, the memory footprint of five LXC instances executing
idle mysql. This increase can be attributed to database being
loaded in memory to serve the SQL queries (requests). Since

Figure 6. Memory overhead for five KVMs/LXCs running a mix of mysql
and apache

Figure 7. Page sharing statistics for five KVMs running a mix of mysql
and apache

LXC is not allocated memory beforehand (LXC just has an
upper cap on how much memory it can use), unlike KVM
which uses all of its assigned memory (256 MB), it uses
only the memory required to support the running processes.
When database is loaded, more memory is allocated and
used. Hence we see a significant increase of around 700 MB
in the memory overhead. Turning on uKSM, brings down
this overhead to 883 MB.

On the other hand, the five KVM instances (executing
mysql) used around 1398 MB memory when OLTP bench-
marks were run. This is around 100 MB higher than five
KVMs running idle mysql. Turning uKSM on brought the
overhead down to around 1231 MB reducing it by only 167
MB which is just one-fifth of idle mysql case. A plausible
hypothesis to explain this can be that when KVMs are
running with idle mysql, most of the memory pages (out
of the assigned 256 MB) are zero pages (i.e., not used)

Table II
AVERAGE THROUGHPUT FOR LXC

Benchmark Throughput(with uskm) Throughput(without
uskm)

epinions 462.3 477.5
tpcc 12.98 11.89
seats 108.87 100.23
ycsb 423.3 426.13

and hence uKSM could share these pages. But when OLTP
benchmark is run, these pages are used to load database
records and hence the memory content across KVMs is
different. Since these zero pages are being reused, we don’t
see a significant increase in memory usage and hence the
major contribution to shared memory comes from the kernel
pages and application code (e.g mysql).

Figure 8. Memory overhead for five KVMs/LXCs running mysql with
OLTP benchmark

F. OLTP throughput analysis of LXC/KVM(s) running mysql
server

To identify if uKSM has any degrading effect on the
throughput of OLTP benchmarks because of sharing of
pages, we analyzed the OLTP logs as mentioned in Section
IV-E and plotted the throughput (requests per sec) for
each of the benchmarks against time (Refer Figures 9,
10, 11, 12). However, looking at the two tables (See
Table II and Table III), we observe that uKSM did not
degrade the performance of any of the benchmarks we
ran. The throughputs for each of the benchmarks with
uKSM turned on and turned off are comparable. Hence, it
is safe to assume that the performance does not suffer as
uKSM works in background to share memory and decrease
memory utilization.

If we compare LXC with KVM in terms of througput,
LXC outperforms KVM in epinions, tpcc and seats. However
in the case of ycsb, KVM performs better. This is because,

Table III
AVERAGE THROUGHPUT FOR KVM

Benchmark Throughput(with uskm) Throughput(without
uskm)

epinions 102.6 100.5
tpcc 11.82 10.62
seats 53.7 54.13
ycsb 775.5 746.5

ycsb is a read intensive benchmark, whereas epinions, tpcc
and seats are write intensive benchmarks. For read intensive
application, page cache and cache hits are important param-
eter for performance. For KVM, the memory isolation were
provided by VMM, where LXC has to share the host OS
page cache and hence no isolation between memory. As a
result, more throughput were observed with KVM compared
to LXC due to high cache hits.

Figure 9. Throughput of various benchmarks without uKSM for KVMs

Figure 10. Throughput of various benchmarks with uKSM for KVMs

G. Boot time analysis

We measured how much time it takes for ‘n’
KVM/LXC(s) to boot up. We assume that a KVM/LXC has
started (or is ready) if a ping to the assigned IP address

Figure 11. Throughput of various benchmarks without uKSM for LXCs

Figure 12. Throughput of various benchmarks with uKSM for LXCs

succeeds. Hence, when we are able to ping all the ‘n’ of
them, we record it as the boot time for the ‘n’ KVM/LXC(s).
We performed this experiment for KVM/LXC(s) running
apache servers. We varied ‘n’ in the range : 1 to 10. Refer to
Figure 13. To avoid disk utilization during boot up, we made
sure that all disk block required to boot up the KVM/LXC
were present in the cache. This cache setup is used in today
data centers as well to decrease the boot up time. Hence,
we used the similar setup.

We observed that LXC boots very fast and is ready within
a second or so. Ten LXCs running apache server boot in
just 1.41 seconds. On the other hand, booting KVMs is
a relatively slower process. Booting a single KVM with
apache server takes around 4.1 seconds (when all required
disk blocks are in cache). However, the total boot time
almost remains constant even when multiple KVMs are
started. Ten KVMs take 5.38 seconds to boot. Since CPU
is the bottleneck here and the blade server has 8 cores, the
time taken to boot multiple KVMs don’t vary significantly.

Figure 13 also shows the CPU usage when the LX-
C/KVM(s) are booting. We see that the CPU usage during
boot period of LXCs is less than that of KVMs. Ten KVMs

Figure 13. Booting time for KVM/LXC(s) running Apache

use around 90.42 % CPU during boot as compared to 52.23
% CPU used in case of LXCs. Hence, we can conclude that
LXCs boot faster and also has CPU usage less than KVMs.

V. CONCLUSIONS

We observed that though uKSM reduces the memory
footprint of KVMs significantly, but still KVMs have more
memory overhead than LXCs running similar configuration.
Running OLTP benchmarks as a load reduces the shareable
memory in LXCs to one-third and in KVMs to one-fifth of
the shareable memory in case of idle mysql server. uKSM
does not degrade the performance of OLTP benchmarks in
both LXCs and KVMs. KVMs have higher boot times as
compared to LXCs which boot within a second or two even
when ten of them are started. LXCs are also light on CPU
resource during boot period. Hence, we can conclude that
when the guest kernel is same as that of host, LXCs are a
better choice in terms of memory and CPU usage.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’03.
New York, NY, USA: ACM, 2003, pp. 164–177. [Online].
Available: http://doi.acm.org/10.1145/945445.945462

[2] A. Kivity, “kvm: the Linux virtual machine monitor,” in OLS
’07: The 2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–
230.

[3] B. Walters, “Vmware virtual platform,” Linux J., vol.
1999, no. 63es, Jul. 1999. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=327906.327912

[4] “Linux Container.” [Online]. Available: http://lxc.sourceforge.
net

[5] “openVZ.” [Online]. Available: http://www.openvz.org

[6] “Linux VServer.” [Online]. Available: http://linux-vserver.org

[7] A. S. Kumar, “Virtualizing intelligent river r: A comparative
study of alternative virtualization technologies,” Ph.D. disser-
tation, Clemson University, 2013.

[8] M. J. Scheepers, “Virtualization and containerization of ap-
plication infrastructure: A comparison,” 2014.

[9] X. Tang, Z. Zhang, M. Wang, Y. Wang, Q. Feng, and J. Han,
“Performance evaluation of light-weighted virtualization for
paas in clouds,” in Algorithms and Architectures for Parallel
Processing. Springer, 2014.

[10] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose, “Performance evaluation of
container-based virtualization for high performance comput-
ing environments,” in Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International
Conference on. IEEE, 2013.

[11] J. Che, Y. Yu, C. Shi, and W. Lin, “A synthetical performance
evaluation of openvz, xen and kvm,” in Services Computing
Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010.

[12] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines and
linux containers,” IBM Technology Journal, vol. 28, p. 32,
2014.

[13] “Extending KVM with new Intel Vir-
tualization technologyLinux Container.” [On-
line]. Available: http://www.linux-kvm.org/wiki/images/c/c7/
KvmForum2008$kdf2008 11.pdf

[14] “PCI-SIG SR-IOV Primer: An Introduction
to SR-IOV Technology.” [Online]. Available:
http://www.intel.com/content/www/us/en/pci-express/
pci-sig-sr-iov-primer-sr-iov-technology-paper.html?wapkw=
sr+iov

[15] “KSM: Kernel Same Page Merging.” [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/ksm.txt

[16] “uKSM: Kernel Dedup.” [Online]. Available: http:
//kerneldedup.org/en/projects/uksm/

[17] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat, “Difference
engine: Harnessing memory redundancy in virtual machines,”
Communication of ACM.

[18] C.-R. Chang, J.-J. Wu, and P. Liu, “An empirical study on
memory sharing of virtual machines for server consolidation,”
in Parallel and Distributed Processing with Applications
(ISPA), 2011 IEEE 9th International Symposium on, May
2011, pp. 244–249.

[19] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman, “An
empirical study of memory sharing in virtual machines,” in
Presented as part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12). Boston, MA: USENIX,
2012, pp. 273–284. [Online]. Available: https://www.usenix.
org/conference/atc12/technical-sessions/presentation/barker

http://doi.acm.org/10.1145/945445.945462
http://dl.acm.org/citation.cfm?id=327906.327912
http://dl.acm.org/citation.cfm?id=327906.327912
http://lxc.sourceforge.net
http://lxc.sourceforge.net
http://www.openvz.org
http://linux-vserver.org
http://www.linux-kvm.org/wiki/images/c/c7/KvmForum2008$kdf2008_11.pdf
http://www.linux-kvm.org/wiki/images/c/c7/KvmForum2008$kdf2008_11.pdf
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html?wapkw=sr+iov
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html?wapkw=sr+iov
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html?wapkw=sr+iov
https://www.kernel.org/doc/Documentation/vm/ksm.txt
http://kerneldedup.org/en/projects/uksm/
http://kerneldedup.org/en/projects/uksm/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker

	Introduction
	Related Work
	Methodology and Experimental Setup
	Experimental Setup
	Methodology

	Empirical Evaluation of LXCs Versus VMs
	Resource Cost with uKSM
	KVM/LXC running idle mysql server
	KVM/LXC(s) running idle apache server
	KVM/LXC(s) running a mix of idle apache and mysql servers
	KVM/LXC(s) running mysql server with OLTP benchmark
	OLTP throughput analysis of LXC/KVM(s) running mysql server
	Boot time analysis

	Conclusions
	References

