Bachelor Thesis Project

Container Hosts as Virtual Machines
- A performance study

NN
RS
NS

")
-,

”
~
=
\\
N

~—

NN

e =
AR

==
_—= 77
= '[/’%/7'
I
i/ ~

Author: Andreas Aspernis
Author: Mattias Nensén
Supervisor: Jacob Lindehoff
Semester: VT 2016

Subject: Computer Science

Abstract

Virtualization is a technique used to abstract the operating system from the hard-
ware. The primary gains of virtualization is increased server consolidation, leading
to greater hardware utilization and infrastructure manageability. Another technology
that can be used to achieve similar goals is containerization. Containerization is an
operating-system level virtualization technique which allows applications to run in
partial isolation on the same hardware. Containerized applications share the same
Linux kernel but run in packaged containers which includes just enough binaries and
libraries for the application to function. In recent years it has become more common
to see hardware virtualization beneath the container host operating systems. An up-
coming technology to further this development is VMware’s vSphere Integrated Con-
tainers which aims to integrate management of Linux Containers with the vSphere
(a hardware virtualization platform by VMware) management interface. With these
technologies as background we set out to measure the impact of hardware virtual-
ization on Linux Container performance by running a suite of macro-benchmarks
on a LAMP-application stack. We perform the macro-benchmarks on three different
operating systems (CentOS, CoreOS and Photon OS) in order to see if the choice of
container host affects the performance. Our results show a decrease in performance
when comparing a hardware virtualized container host to a container hosts running
directly on the hardware. However, the impact on containerized application perfor-
mance can vary depending on the actual application, the choice of operating system
and even the type of operation performed. It is therefore important to consider these
three items before implementing container hosts as virtual machines.

Keywords: Virtualization, Containerization, Cloud Computing, Container Host,
Linux Container, Performance, Virtual Machine, Wordpress, Linux, Apache,
MySQL, PHP, CoreOS, Photon OS, VMware, LAMP, Software Container, Docker,
Hardware Virtualization, Full Virtualization

Preface

We would like to thank our supervisor Jacob Lindehoff for taking the time to review
and assist our work. Our thanks goes to Linnaeus University for allowing us to use the
laboratory in which our work was conducted. The laboratory has been an invaluable asset
for developing our skills when it comes to virtualization and server infrastructure. We
would also like to give a shout out to the software companies across the world which
allows universities to use their software for educational purposes.

Contents

1 Introduction

1.1 Background
1.2 Previousresearch
1.3 Problem formulation,
1.4 Motivation e e e
1.5 ResearchQuestion,
1.6 Scope/Limitation
1.7 Targetgroup e e e
1.8 Outline e

2 Technical background

2.1 Cloud Computing o i it e e e
2.2 Virtualization

2.2.1 Hardware Virtualization

2.2.2 Containerization
2.3 VMwarevSphere
24 PhotonOS
2.5 CoreOS e
2.6 CentOS e
277 Docker. e
2.8 Apache
2.9 ApacheJMeter
2.10 MySQL e e

3 Method

3.1 Scientificapproach L o
3.2 Method descriptiono

32.1 Topology e

3.2.2 Prestudy: Hardware I/O Benchmarks

323 HTTPRequests

324 SQLQueries
3.3 Method Discussion
3.4 Reliability and Validity 0.

4 Results and Analysis

4.1 HTTPRequests e
42 SQLQueries e e e e

5 Discussion

6 Conclusion
6.1 Futureresearch

References

A Appendix A: System Documentation
A.1 Physical Configuration
A2 Network Topology

12
12
12
13
14
14
16
16
17

18
18
20

22

23
25

26

A3 Versions e e e 3
A.4 Prestudy: Hardware Benchmarks 3
A5 DockerCommands 4
A.6 PHP Scripts 5
A.6.1 SQLSELECT 5
A6.2 SQLINSERT 6

B Appendix B: JMeter Results 7
B.1 CentOS e 7
B.2 CoreOS e 13
B.3 VMCentOS e 19
B.4 VMCoreOS e 25
B.5 VMPhoton. 31

C Appendix C: SQL Query Results 37

1 Introduction

In this chapter we describe the background of this thesis, the problem we intend to exam-
ine, as well as previous research done in the field. It will further explain the motivation
behind our study, why we believe it holds a scientific value and also introduce the ques-
tions we seek to answer. The chapter ends with a description of the scope of the project,
its intended target group and a brief outline of the report.

1.1 Background

Hardware virtualization is used for application isolation with one application for each
server while still increasing application density on a physical host by means of server con-
solidation. Virtual server consolidation allows multiple servers to run on any single host
which gives greater utilization of hardware capacity, reduce floor space, power consump-
tion and computer cooling, which all help to reduce costs [1]. Similarly, containerization
is a technique that in recent years has increased in popularity with the development of
Docker[2], a container management software. Containerization creates lightweight op-
erating system-level isolation on a single physical host or virtual machine, that allows
for multiple applications to run on different operating systems while sharing the same
kernel. Containerization removes the need to create a new virtual machine running its
own full operating system for every new application which would produce greater storage
and memory overhead than the lightweight shared-OS approach of containerization|3,
Linux Kernel Containment]. However, because the applications share the same kernel,
it does not achieve the hardware isolation for applications provided by hardware virtu-
alization. In hardware virtualization each virtual machine has its own set of virtualized
hardware and the isolation between virtual machines makes them agnostic to the hard-
ware utilization of other virtual machines and thus increasing operational security[4]. A
solution to this problem is to combine hardware virtualization and containerization to
run container hosts as virtual machines. The result is hardware isolated virtual machines
hosting lightweight containers and is one of the common implementation for Platform
as a Service (PaaS) vendors[5]. Hardware virtualized containerization is also supported
by companies like VMware that specialises in virtualization and are developing their own
container host operating system called Photon OS for the purpose of running virtualized
containers[6].

1.2 Previous research

In 2014 Mathijs Jeroen Scheepers did a study comparing hardware virtualization to container-
based virtualization by macro-benchmarking the performance of a LAMP-application
stack. The setup was two virtual machines running on XenServer and two Linux Contain-
ers (LXC)[7] running on CoreOS with Docker as the container engine. Ubuntu Server
was used as operating system for both virtual machines and containers. One virtual ma-
chine and one container ran as an Apache web server with WordPress and the other virtual
machine and container ran as a MySQL database server. On each of the two setups two
things were benchmarked: The first benchmark focuses on the application performance
when the web server is utilized by an increasing number of clients over a time of 800 sec-
onds. The benchmark showed that LXC setup could process about four times the number

of requests totally than that of the XenServer setup. Jeroen Scheepers states that the dif-
ference could be explained by how CPU isolation is handled. The Xen Project hypervisor
used by XenServer isolates per CPU core compared to the cgroup priority based isolation
of LXC containers.

The second benchmark was comprised of two SQL tests, the purpose of which was to mea-
sure the performance of inter-virtual machine communication compared to inter-container
communication by having the web server perform SQL queries to the database server. The
first test was to measure the time it takes to complete one SQL-SELECT query. Results
show that XenServer was slightly slower than CoreOS which means LXC containers intro-
duce less overhead than the virtual machines running on the Xen hypervisor. The second
test is a PHP script that inserts randomly generated data into the database with 10 000
SQOL-INSERT queries. Results show that the applications running on XenServer com-
pletes this in 16 seconds compared to 355 seconds on the CoreOS/LXC setup. Mathijs
Jeroen Scheepers explains that the massive performance drop on CoreOS/LXC could be
explained by the lack of hardware isolation between the LXC containers[4].

Another research paper is the IBM Research Report An Updated Performance Compar-
ison of Virtual Machines and Linux Containers by Wes Felter, Alexandre Ferreira, Ram
Rajamony and Juan Rubio. In the paper they attempt to contrast the performance between
virtual machine deployments and Linux Containers. The method used was to use a suite of
different workloads to put strain on the hardware resources and compare how container-
ized performance stand in comparison to hardware virtualized performance. The results
show that Linux Containers perform better than virtual machines based on a number of
metrics, such as IOPS, CPU and memory utilization because of the extra abstraction layer
added when virtualizing the hardware. In their Conclusions and Future Work section they
question the deployment of containers inside virtual machines since it imposes the extra
overhead while not, in their view, adding any benefits[8].

1.3 Problem formulation

There are advantages to using both virtualization and containerization; hardware virtual-
ization has the advantage of hardware isolation which creates greater security and isolates
applications from each other on a hardware level[9]. Containers are on the other hand very
lightweight and can be created and removed very fast[10]. With coming technologies like
vSphere Integrated Containers we believe nested use of container hosts like CoreOS and
Photon OS running as virtual machines could become more common.

However, questions remain how this can affect the performance of applications running
inside of the containers. No research which makes a macro-benchmark performance
analysis comparing non-virtualized container hosts to virtualized container hosts, while
also comparing possible container hosts operating systems, was found when searching on
Google Scholar with the keywords hardware virtualization and container host. We want
to study the implications of running container hosts as virtual machines, specifically the
impact it could have on the performance of applications inside of the containers.

1.4 Motivation

We believe combining both hardware virtualization and containerization could potentially
allow better utilization of the hardware while still be able to provide hardware isolation
between applications or groups of applications. There is also value in being able to con-
solidate all servers unto one infrastructure and today’s containerization clusters only sup-
port Linux. In a hardware virtualization infrastructure there’s an option to have Windows
servers running beside container hosts. However, there remains a question on how the
performance of applications could be affected when combing these two technologies, and
using them on different operating systems. These are questions we deem important for
any IT-administrators looking to implement these kinds of solutions as a decrease in per-
formance could hurt the benefits of using containers inside of virtual machines. Even
if virtual container hosts is a common implementation among PaaS vendors[5] and and
technologies like vSphere Integrated Containers are being developed, IBM claims in a
report that there would be no benefit in running containers inside virtual machines[8] and
the article Why Containers Instead of Hypervisors? by Steven J Vaughan-Nichols[11] ar-
gues that containers are better then virtual machines because of greater application density
when using containers, particular in application development. As we found no research
into the subject and find insufficient consensus to rule out the implementation entirely,
we believe the implications of using virtual container hosts needs to be further investi-
gated.

1.5 Research Question

Based on work by Mathijs Jeroen Scheepers[4] mentioned in Previous Research, server
setups using hardware virtualization is expected to bring additional overhead compared
to letting software containers run on a non-virtualized implementation. The reason be-
ing that the hypervisor adds an additional abstraction layer. Making a macro-benchmark
performance test comparing non-virtualized container hosts to virtualized container hosts
by measuring the performance of the applications inside of the containers, the research
questions we will attempt to answer are as follows:

RQ1 How will containerized application performance be affected by:
a) virtualized and non-virtualized container hosts?
b) different container host operating system?

1.6 Scope/Limitation

The scope of this thesis project is limited to answering the specific research questions
mentioned in the previous Research Question chapter. Macro-benchmark performance
tests will be conducted with the primary goal of comparing how well an Apache and
Wordpress-application stack runs in containers on CentOS, CoreOS and Photon OS, in
both in a bare metal and virtualized environment. Photon OS will however not run non-
virtualized because it is designed for virtualization. When we ask the question How will
containerized application performance be affected by: b) different container host operat-
ing system? we are only interested in seeing the differences. A deeper discussion about
the reasons behind the differences is beyond the scope of this thesis project.

In our motivation we point out that using virtual container hosts is a common implemen-
tation among PaaS vendors as one argument why this is an interesting research, however
we are not looking to answer any question to why they are doing to, but rather would
could happen when one does.

1.7 Target group

The target group is administrators of virtualization infrastructures and I'T-technicians which
are interested in virtualization concepts and/or may be in the process of or are considering
to move from a non-virtualized containerization approach to a hardware virtualized ap-
proach of running container hosts. The information we wish to provide is the difference
in performance of the two and the performance difference between individual container
hosts.

1.8 Outline

This chapter outlines the different sections of the project report. It will start with the
section Technical Background which aims to give the necessary background information
about virtualization and technologies used to answer the research questions outlined in the
section Research Questions. Next is the Method section which explains the method used
to answer the research questions. Following the Method section is the Results section
which contains the results of our experiments as described in the Method section, and
the Analysis section which evaluates the results. The report ends with Discussion which
discusses our findings, Conclusion where we present our conclusions and Future research
present possible areas outside the limit of this thesis project that could be worthy of future
research.

2 Technical background

This chapter intends to give a description of the technologies used in this thesis project.
It also aims to give a theoretical background for the subjects which are addressed in this
report. The purpose is to give the reader a basic understanding of the technologies and
concepts to create a baseline of discussion.

2.1 Cloud Computing

With evolving network technology and the expansion of the Internet it is now possible
to centralize computing resources, a concept called cloud computing. The National In-
stitute of Standards and Technology (NIST) has developed a document defining cloud
computing. They define cloud computing as "a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing resources"
and describe its essential characteristics. The primary characteristics that NIST describes
are the ability for a consumer to provision computer resources with the service provider,
the ability to reach resources through network access, the ability to pool resources using
a multi-tenant model, scalability and monitoring of resource usage. Cloud computing can
be available through several different service models. The Software-as-a-Service service
model is to deliver application access to users without giving them insight to the underly-
ing platform on which the application is running. Another service model is Platform-as-
a-Service which lets consumers deploy their own services on the centralized platform but
with no insight into the underlying infrastructure on which the services are running. The
last service model is Infrastructure-as-a-Service which lets consumers set up their own
virtual data center with control over operating systems and service deployment. The con-
sumer has no control over the underlying cloud infrastructure. [12] Besides the need for
the networking technology enabling access to these resources there has to be something
enabling the isolation and management of the different resources running in the cloud.
One such technology which is widely used is virtualization.

2.2 Virtualization

The virtualization concept is believed to originate in the 1960s and early 1970s. The pio-
neers were International Business Machines Corporation, IBM, which spent considerable
effort trying to develop efficient time-sharing technology for their mainframes. Time-
sharing enables the computing power of a mainframe to be divided into shares which
could be distributed to different groups of users[13]. Skipping ahead to the late 1990s,
the technology company VMware developed the first virtualization products which could
virtualize the x86 architecture[14, The Challenges of x86 Hardware Virtualization]. With
x86 virtualization the hardware and operating system was split in two by an abstraction
layer. The abstraction layer allows the operating systems and applications running on the
physical machine to become hardware agnostic and with that comes increased agility and
business continuity. Services no longer needs to be taken down for hardware maintenance
or backups because the applications can easily be migrated to other physical hosts or
copied. In a white paper from year 2007 VMware stated it had customers with production
servers which had been running for over three years without downtime[14, Overview of
x86 Virtualization].

2.2.1 Hardware Virtualization

Hardware virtualization is a technology which creates an abstraction layer between the
hardware and the operating system. It is done by software called hypervisors. Hypervisors
come in different forms but there are two primary types; Type-1 hypervisors and Type-2
hypervisors. Type-1 hypervisors are also referred to as bare-metal hypervisors because
they run directly on the hardware. Examples of Type-1 hypervisors are Microsoft Hyper-
V, VMware ESXi and Citrix XenServer. Type-2 hypervisors run on a host operating system
and is therefore come with increased overhead for the virtual machines. Examples of
Type-2 hypervisors are VMware Workstation and Oracle VM VirtualBox[15].

The primary functionality of hardware virtualization is to make multiple operating sys-
tems and applications runnable in parallel on the same hardware by creating virtual in-
stances of the hardware for each virtual machine and thereby make cost savings by in-
creasing hardware utilization[4]. The earliest server-side product which managed to do
this was VMware ESX. It used a custom-built kernel called VMkernel which was de-
signed to run and manage virtual machine workloads. The VMkernel itself runs a Vir-
tual Machine Monitor, VMM, for each virtual machine in the system. The VMM is
responsible for implementing the virtual hardware and to execute the virtual machine.

In order to have multiple virtual machines
running on the same host, they have to be
isolated from each other and the actual ac-
tual hardware. To exemplify why this is Ring 2[
important one can imagine a virtual ma-

chine sending a privileged instruction to

turn itself off. In order for this instruc- Ring 1

Ring 3[

Direct
Exectuion

of User
Requests

tion to only turn the virtual machine off Binary

.) Translation
and not the entire system, the call must Ring 0[of 0S
be interpreted in the correct way. For this Requests
purpose a technique called binary transla-
.o . . Hardware
tion 1s used. The technique traps privileged

instructions coming from virtual machines

and translates them into what the instruc-

tion means in the context of the source be- Figure 2.1: Full Virtualization with Binary
ing a virtual machine. Figure 2.1 describes Translation

how full virtualization with binary transla-

tion works in relation to the instruction execution rings of the x86 architecture[14, Tech-
nique 1 — Full Virtualization using Binary Translation].

Another early approach to hardware virtualization is paravirtualization. Using paravir-
tualization requires the guest operating system to be modified with virtualization man-
agement applications and device drivers. The advantage of this is to remove the need for
binary translation by making the guest operating system aware that it is being virtualized.

With this extra self awareness the guest
operating system replaces the non virtual-
izable privileged instructions with hyper-
calls. Hypercalls are special instructions
which are sent to the hypervisor. The hy-
pervisor then forwards the privileged in-
structions to the hardware. Paravirtualiza-
tion is supposed to decrease the virtual-
ization overhead by removing the need for
binary translation but VMware claims per-
formance advantage varies greatly depend-
ing on the server workload and presses the
fact that paravirtualization causes greater
complexity when it comes to management
and support because of the need to modify
the guest operating system kernels. Fig-
ure 2.2 describes how paravirtualization
works in relation to the instruction execu-
tion rings of the x86 architecture[14, Tech-
nique 2 - OS Assisted Virtualization or
Paravirtualization].

In the recent decade a third approach
to hardware virtualization has been used
which is hardware-assisted virtualization.
It first appeared in 2006 when Intel Cor-
poration and Advanced Micro Devices re-
leased their respective support features
for hardware virtualization, Intel-VT and
AMD-V. The new additions added a new
CPU execution mode feature which meant
the VMM could be run below ring 0, in
a new mode called root (sometimes re-
ferred to as ring -1). Privileged instruc-
tion calls are automatically trapped to the
hypervisor and thus removing the need for
binary translation and it also removes the
need to run modified operating systems us-
ing the paravirtualization approach. Fig-
ure 2.3 describes how hardware-assisted
virtualization works in relation to the up-
dated instruction execution rings of the

7 N
Ring 3
. d Direct
[B Exectuion
Ril‘lg 2 of User
\, A Requests
,
Ring 1
\ y

Ring 0

Modified Guest OS

"Hypercalls to the
Virtualization
Layer replace Non-
virtualizable 0S
Instructions

[

[Hardware
Figure 2.2: Paravirtualization with hyper-
calls
' N
Ring 3
. o Direct
i B Exectuion
Ril‘lg 2 of User
\, 7 Requests
~
Ring 1
N w
Ring 0
Root [0S Requests
Trap to VMM
Mode without Binary

[Hardware

Translation or
Paravirtualization

Figure 2.3: Hardware-assisted Virtualization

x86 architecture[14, Technique 3 - Hardware Assisted Virtualization].

2.2.2 Containerization

Containerization is a operating system-level virtualization used to provide isolation and
management of resources, primarily in Linux environments. The name containerization
is derived from the way shipping containers is standardized and in the context of appli-
cations it refers to an agile way of packaging applications in an isolated execution envi-
ronment. The isolation is created by three main components; chroot, cgroups and kernel
namespaces. chroot is a command in Linux which lets a process change root directory
to create container specific file systems. cgroups is the kernel subsystem by which the
processes can be assigned resource quotas. The kernel namespaces enables every con-
tainer to receive its own network configuration and inter-process communication, IPC,
namespaces[5, IV. Container Overview]. Figure 2.4 shows an overview of the container-
ization architechture.

Container Container
Lib/Bins Lib/Bins

Container Host OS

Figure 2.4: Containerization

Examples of Container Hosts OS as seen in figure 2.4 are CoreOS, Photon OS that are
specificly designed for this purpose but most major Linux distributions have support to
run a Container Engine. A Container Engine, for example Docker or rkt, is the software
which runs the containers.

Containerization allows creation of multiple user space instances which are isolated from
each other, and it is these segmented instances which are referred to as containers. In
Linux where multiple Linux distributions uses the same kernel this allows each container
to have a separate distribution from the container host OS. Applications running inside
them can have its own libraries and containers can be tailored to fit that particular appli-
cation. The parts of the container host operating system that are shared by the containers
are read-only for the containers while they have their own share in which they can write.
The sharing of kernel resources makes the containers much more lightweight than its
virtual machine counterpart. Inside the containers is just enough to run each applica-
tion, keeping its size to a minimum, drivers are kept inside the shared OS as a part of
the kernel. Containers therefore allow multiple applications to run isolated from each
other a single shared OS. To run multiple isolated applications on the same host in tradi-
tional server virtualization, one virtual machine (VM) would have to be created for each
application[16].

2.3 VMware vSphere

VMware vSphere is a proprietary server virtualization platform from VMware. The prod-
ucts core is the vSphere ESXi hypervisor. vSphere ESXi is a Type-1 hypervisor which
means it is installed directly onto the hardware and works like a miniature OS. It uses a
VMkernel at its core with a installation footprint of 150 MB which means it has minimal
effects on the storage resources available and its small size also decrease likelihood of
security breaches because of the minimal attack surface[17].

The other components of vSphere is vCenter Server, vSphere Client and vSphere Web
Client; these are used to manage one or more hosts. ESXi itself has only a slimmed down
terminal interface for only basic configuration such as setting hostname and doing net-
work configuration. When managing a single host a administrator logs in remotely using
the vSphere Client which runs on the local computer. When hosts are joined together in
a cluster, this cluster is managed by the vCenter Server which controls all the individual
hosts. The vCenter Server is can be run outside or as part of the cluster. When admin-
istrating a cluster the administrators connect to vCenter Server using either the vSphere
Client or the vSphere Web Client, the later which offers additional features and manage-
ment tools.

VMware vSphere has a High Availability feature which provides failover protection to the
virtual machines. The feature can monitor both virtualization hosts and virtual machines
and if there is a hardware failure or guest operating system failure the virtual machine
is automatically started on another functional host. The failover can be done fairly fast
depending on the operating system which needs to be booted[18]. vSphere also offers a
feature called Fault Tolerance which creates a live shadow instance of a virtual machine
which runs on a different virtualization host. The shadow instance is at any time ready to
step forward and take over if the other virtual machine crashes or if the virtualization host
goes down. The result is that the downtime of a Fault Tolerance enabled virtual machine
is limited to the time it takes for the system to notice the failure and activate the shadow
instance[19].

2.4 Photon OS

Photon OS is an open source minimal Linux container host in development by VMware.
Being a container host operating system means it is built for the specific purpose of pro-
viding the common kernel for containers running on the host. To run containers Photon
OS has support for container deployment with Docker, rkt and Pivotal Garden and while
it is very minimalistic it comes with a yum-compatible package manager for life cycle
management[6].

Photon OS is a part of another VMware project called Project Bonneville and its goal is
to make the relationship between virtual machines and application containers a comple-
mentary one rather than competitive. The project is an extension of VMware vSphere and
will enable Docker containers to be run as virtual machines and thus gaining the isola-
tion advantages of hardware virtualization. It works by forking the kernel from a running
Photon OS instance to create a new virtual container host for every new container that is
deployed.[20]. By forking only the kernel and a few supporting resources necessary to
run containers allows much faster deployment then that of regular virtual machines.

2.5 CoreOS

CoreOS is a minimal operating system which is designed to run in clusters to host Linux
containers. In the core of CoreOS is Docker, the container engine used to run the contain-
ers. CoreOS does not come with a package manager for lifecycle management, instead,
administrators of a CoreOS cluster must run the tools within containers[21]. CoreOS uti-
lizes fleet, a software that makes an administrator able to treat a large group of CoreOS
machines as a single system with a shared init-system. Using fleet, the cluster also is able
to maintain high availability because if a cluster host fails, the containers running on that
host is automatically started on a different host in the cluster[22].

2.6 CentOS

CentOS is a Linux distribution which is a community-driven derivative to the Red Hat
Enterprise Linux (RHEL) operating system. In contrast to RHEL, CentOS is completely
free and its goal is to provide a platform for the open source communities. The operating
system has been in development since 2004 and the goal is to be functionally compatible
with RHEL[23].

2.7 Docker

Docker is an open-source application that enables deployment of applications inside of
software containers. All of the applications dependencies are included in the container,
anything from code and run-time to system tools and system libraries, everything that is
needed to run the application. Docker makes use of images to launch new containers and
they are templates from which many containers can be created, each container is then
an instance of a particular image. Images are created from layered file systems which
enables sharing of common files, this in turn can help reduce disk storage and speed
up uploading and downloading of images. One of the possible use-case scenarios for
Docker i1s optimization of infrastructure. Docker creates lightweight containers that all
share the same kernel so there is no need for additional guest operating systems to isolate
applications. Containers create less overhead compared to virtual machines, reduces the
time to spin up applications and take up less storage[24].

2.8 Apache

Apache HTTP Server is a web server which as of November 2015 hosts 37% of all web
sites[25], making it the most popular web server in the world. Apache had its initial re-
lease in 1995 and is a free and open-source software; a part of the Apache HTTP Server
Project which is a developer community to further develop and support Apache, all su-
pervised by the Apache Software Foundation.[26]. Apache can be used on Linux, OS X
and Windows among others.

10

2.9 Apache JMeter

Apache JMeter is a Java application which is used to benchmark web application perfor-
mance. The application was first developed by the Apache Software Foundation and the
project was headed by Stefano Mazzacchi. The Apache Software Foundation has since
then developed extra functionalities and a graphical user interface which helps visualising
both the construction of tests and results. JMeter’s only works at the protocol level and
does not render images like a regular browser[27].

2.10 MySQL

MySQL is an open source database developed the company MySQL AB, headquartered
in Cupertino, California, United States and Uppsala, Sweden. In 2008 the company was
aquired by Sun Microsystems, Inc and is since then a joint venture. In 2008 the database
software had been downloaded 100 million times with 50,000 downloads daily[28]. MySQL
is a transactional database which means the data is exchanged within transactions. If a
transaction is not completed in its entirety, the data exchange is rolled back, thus main-
taining the coherency of the transaction in case of a potential system failure[29].

11

3 Method

This chapter contains a description of the method that will be used to answer the research
questions put forward in this thesis project. Under Method Description a topology will be
presented describing the different hardware and software components used in the experi-
ments. A more detailed system documentation can be seen in appendix A.

3.1 Scientific approach

The scientific approach of this report is an inductive approach using an empirical method
to collect quantitative data. In order to measure the performance of applications inside
of containers a number of experiments will be conducted. The data gathered from these
experiments will be time to complete service requests and number of completed service
requests.

3.2 Method description

To answer our research questions three experiments was conducted: One HTTP-GET test,
one SQL-SELECT test and one SQL-INSERT test. The HTTP-GET test was intended to
measure the overhead of CPU virtualization. The web server put the page that was fetched
in its cache and worked at delivering the page to as many parallel users as possible. In
the Apache web server, a new process was created for each new user. The page was 10
000 bytes big and the Gigabit Ethernet network could support a total throughput of 1 000
000 000/8 = 125 MB per second, meaning that the network could support about 12 500
transactions per second not taking into consideration overhead introduced by Ethernet,
TCP and HTTP. The overhead is usually around 2-9% according to forum posts on Stack-
Overflow[30] which still leaves the network supporting more than 10 000 transactions. If
the results show less transactions per second, the network was not overloaded. At maxi-
mum a total number of 100 users was working towards the website, this meant that if the
web server response time was for example 100 milliseconds, no more than 1000 trans-
actions could traverse the network at any given second. If a bottleneck occurred then it
would likely be because the CPU did not have the compute capacity to handle that many
requests.

The SQL-SELECT experiments measured the latency of which a small SQL-SELECT
query could be performed between two application containers running on the same con-
tainer host. When the database server received the query, it also had to read from the
disk. Differences between virtualized and non-virtualized setups was intended to show
the overhead of read operations and if there was a difference in inter-container commu-
nication latency. The third test, the SQL-INSERT test, measured the overhead of write
operations.

The purpose of these experiments was to measure the performance of the applications run-
ning inside of containers deployed by Docker, and to compare non-virtualized container
hosts to virtualized container hosts. Differences in containerized application performance
between the container host operating systems themselves was also examined. The fol-
lowing description section is divided into: Topology for the experiment setups, a prestudy

12

benchmarking the physical hardware verifying their equal /0O performance, ending with
a detailed description of the individual experiments.

3.2.1 Topology

The lab environment consisted of an IBM BladeCenter chassis containing four blade
servers and two Cisco Ethernet switches. All four blades had the same physical configu-
ration which can be seen in futher detail in appendix A.1. The experiments was executed
in five different setups. Each of the blade servers had one or three setups, though no more
then one active at a time.

The four setups were (as seen in figure 3.5):

1. CentOS running on the ESXi hypervisor

2. CoreOS running on the ESXi hypervisor

3. Photon OS running on the ESXi hypervisor
4. CentOS running directly on the hardware
5

. CoreOS running directly on the hardware

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Figure 3.5: The figure shows the five different setups tested in this thesis project

Of the four blade servers, one hosted setup 1, 2 and 3, two others hosted setup 4 and 5,
and the last one acted as the testing client that tested all the other setups using Apache
JMeter 2.13. For details concerning each setup, see appendix A. Kernel versions, Docker
versions and OS releases can be seen in appendix A.3. Each of the blade servers was
connected to two Cisco Ethernet switches through two network interfaces, one for each
switch. To separate management traffic from test traffic on the network, one interface was
a dedicated administration interface used to handle management of hosts, virtual machines
and software containers. The other interface was used to handle the traffic generated by
Apache JMeter. Internet was also be available through the management interface to pull
down Docker containers from the public repositories. For a full view of the topology, see
appendix A.2. Each setup consisted of two applications running inside of its own software
container; an Apache web server and a MySQL database. For a full description of how to
deploy the applications using Docker, see appendix A.S.

13

3.2.2 Prestudy: Hardware I/0 Benchmarks

The three test servers all shared the same hardware specifications but to be able to draw
any valid conclusions in the comparison between setups on different physical servers they
had to be equal in performance relevant to our benchmarks. In this case the read and
write performance of the disks were important because the hardware used is 10 years
old and mechanical disk performance is known to deteriorate over time. During the
benchmarks, CentOS was installed on all three servers to ensure there are no unknown
operating-system-specific variables affecting the performance. The Linux benchmarking
tool FIO was used to perform the tests and the method was based on what is consid-
ered good practice for simulating web server and database workloads on I/O according to
the guide How to benchmark disk I/O at the website Binary Lane[31]. According to the
guide, it is generally best to measure the disk subsystem performance in the unit JOPS
(Input/Output operations per second) in three different tests; random reads/writes, ran-
dom reads and random writes, all with a block size of 4 kilobytes. FIO also allowed for
running multiple threads which was done to simulate multiple visits to a website where
multiple users might want to read and write to the disk at once. The results from the I/O
benchmarks showed that all three servers offered similar performance as seen in figure
3.6 where Blade(01-03 represents each of the three IBM Blade servers. The benchmark
also tested the latency to the disks and the results are presented in figure 3.7. Although
BladeO1 has less then half the latency of Blade02 and Blade03, the longest latency that
of Blade03 is ca 0.50 milliseconds and we believe it is not enough to make a noticeable
effect on our performance experiments. The full details of the implementation of the
benchmarks see appendix A.4.

Hardware I/O Benchmarks

600 I B/ade0+
Il Elad=02
I Blade03

450

300

150

Random RAW Random RAW Random Read Random Write
Read (IOPS) Write (IOPS) (IOPS) (IOPS)

Figure 3.6: Read and Write IOPS (More is better)

3.2.3 HTTP Requests

The forth server was not hosting any setup and instead acted as an external load generator
that sent traffic to each of the five test setups. The tests was done by letting Apache
JMeter simulate an increasing number of active users, starting with an expected parallel

14

Hardware I/O Benchmarks: Latency
06

I Glade01

Il Glade02

I Blade03
045
0.3
0,15

/0 Latency (ms)

Figure 3.7: I/0 Latency (Less is better)

user count of 1 which then increased linearly, as seen in figure 3.8, to 100 over a duration
of 720 seconds. The tests continued for 80 seconds with 100 simultaneous users working
against the website.

M Expected parallel users count
100

Number of active threads
=
o o

0
00:00:00 00:01:20 00:02:40 00:04:00 00:05:20 00:06:40 00:08:00 00:09:20 00:10:40 00:12:00 00:13:21
Elapsed time

Figure 3.8: The figure shows the ramp up of simultaneous users during the tests

Apache JMeter, for each user, requested the starting page of the Wordpress installation
on each of the four setups and the time it took for the application to service the requests
was registered in a CSV file. The procedure was possible because Apache JMeter regis-
tered the time the simulated user sends the HTTP GET Request and registered the time
when the user received the response. Every setup was tested five times each. The in-
dependent variable between experiments were different setups seen in figure 3.5. The
dependent variable was the LAMP-application stack performance measured in response
time, number of completed transactions and transactions per second.

The CSV file contained each successful HTTP Request on a separate row and from the
file we extracted information using two different Listeners in Apache JMeter; response
Time over Time and transactions per second. These listeners were data interpreters which
presented the data in different ways and the response time over time showed how fast
the client could receive a response from the server at the different load levels while the
transactions per second listener showed how many successful transactions that were com-
pleted by the server. From the CSV files it was also possible to extract the total number of
successful transactions completed during the tests by counting the total number of rows
in the CSV files, subtracting 1 for each file to not count the headers. The difference in
these three types of data allowed us to draw conclusions on how well the different setups

15

performed.

The data was then be analyzed by comparing the non-virtualized setups to the virtualized
setups while also comparing the virtualized operating systems, CentOS 7, CoreOS and the
technical preview of Photon OS to non-virtualized operating systems CentOS 7, CoreOS.
The intent was to find and quantify the overhead caused by hardware virtualization but
also to see how well Photon OS performed in relation to other operating systems running
as container hosts.

3.2.4 SQL Queries

To measure how well applications in two different containers on the same host communi-
cate with each other and read/write data, two experiments were conducted. The first test
measured the time it took to complete a single SOQL-SELECT query from the web server
to the database server. The second test measured the time it took to complete 10 000 SQL-
INSERT queries from the web server to the database server. To do this we created two
PHP scripts to execute on each of the web servers. The SQL-query tests were performed
on one setup at a time, with the independent variables being the setup used as seen in the
figure 3.5. The dependent variables were the time it took to complete an SQL-SELECT
query and the time it took to execute 10 000 SQL-INSERT queries.

To run the experiments two PHP scripts were used, one for the SQL-SELECT queries
and one for the SOQL-INSERT queries. Both scripts worked by first creating a MySQL
connection to the database container by specifying the name of the container and the
username and password for the MySQL server. A query was then made to set the active
database to the Wordpress database. In the SQL-SELECT experiments a query was made
to get two entries from the tablewp_users through a SQL-SELECT query. The script
recorded the current time and executed the query a single time after which it recorded the
time again. The time it took to complete the query was then calculated and printed to the
screen. The SQL INSERT experiments script worked in much the same way but instead
of reading a table containing two posts a single time, a SOL-INSERT query was done 10
000 times, writing a simple word “test” to a pre-created empty table. The script ended by
calculating the time to complete the queries and the result was printed to the screen. For
full detail of the scripts, see appendix A.6.

3.3 Method Discussion

The method was based on the previous research[4] by Mathijs Jeroen Scheepers in 2014.
The method we used differed slightly from his because he didn’t leave a detailed de-
scription for us to follow. We created our own PHP-scipts because he didn’t present
which scripts he had used. He wanted to measure the difference in performance when
running applications inside of virtual machines compared to inside of containers using
macro-benchmarks. Our goal was to measure the performance difference when running
containers on virtual container hosts compared to non-virtualized container hosts. Even
though our research questions differed slightly, we decided to use his method because
the goal of his research was the same; to measure virtualized performance compared to
non-virtualized performance.

When looking to answer our research questions we also considered at another method in

16

the report An Updated Performance Comparison of Virtual Machines and Linux Contain-
ers[8] by IBM. The objective was the same as in the the report by Mathijs Jeroen Scheep-
ers, to strain the resources in the systems to compare and to quantify the performance to
see differences. A difference between the two methods were that the IBM research was
a series of benchmarks of more specific parts of a system while the research conducted
by Jeroen Scheepers was a macro-benchmark. Being a macro-benchmark method means
it measured the performance of a system by running an application which itself used the
different parts of the system. A reason we did not chose the method by IBM was that
it was was hard to understand and would therefore be hard to replicate. We chose to do
a macro-benchmark because we wanted to measure the performance of the application
stack as a whole and not just individual components.

The VMware ESXi hypervisor was chosen as it was closely linked to Photon OS, which
is designed to run within the context of vSphere Integrated Containers and is tuned for
vSphere. CentOS was chosen as a representative heavyweight enterprise operating system
to use as a container host. CoreOS was chosen as a representative lightweight container
host operating system because it is specifically designed to act as a container host operat-
ing system and is commonly used and referred to in containerization articles.

There are ways our method could have been done differently though. In a real-world
scenario the system would most likely not have ran at 100% capacity for any extensive
period of time. To simulate this, the tests could have been set to stop at an average number
of user connections for a web site, possibly utilizing 70% resources of the web server.
However, this was not chosen because the overhead was thought of to be more visible at
high resource utilization.

3.4 Reliability and Validity

To improve reliability of the results each test was conducted five times. The difference
between containerized application performance on non-virtualized and virtualized con-
tainer hosts should have been similar on all systems using the same hypervisor and testing
method regardless of the hardware used. The prestudy with measurements of I/O perfor-
mance was conducted to increase the reliability of the results since I/O could have been a
bottleneck.

We weren’t able to run the same version of Docker on all the container hosts. The lat-
est version on Photon OS was 1.8.1, as seen in appendix A.3, and we attempted to run
versions on other hosts close to the version on Photon OS. The reliability threat imposed
by the different versions could however only affect the comparison between different op-
erating systems because both the virtualized and the non-virtualized setup of the same
container host used the same Docker version.

One thing that might have affected the results was that the hypervisor itself consumed
about 0-0,5% of the CPU in the virtualized setups because it had services running lis-
tening to administrator input. Since our tests very quickly utilized all of the computing
resources there may have been an internal validity threat because the CPU utilization of
the hypervisor could alter the performance. The hypervisor also consumed some memory
but our tests did not strain the memory resources of the systems.

17

4 Results and Analysis

In this section the results of our experiments is presented and analysed. Information will
be given for each graph and table. To increase readability of the results and the analysis
they are combined into one section. The graphs illustrate the results while the surrounding
text contains analysis of the results.

4.1 HTTP Requests

The results seen in figure 4.9 showed a decrease in performance in virtualized envi-
ronments compared to the non-virtualized environments. The non-virtualized CentOS
machine performed 20% better on average than the virtualized CentOS and the non-
virtualized CoreOS machine performed 27% better on average than the virtualized CoreOS
when comparing the number of successful HTTP Requests completed during the tests.
It should be noted however, that the first test run on the CoreOS virtual machine per-
formed significantly worse than its own average, a performance reduction of 33%. The
cause was unknown but we can speculate that an event like a scheduled job was per-
formed on the hypervisor during the test. Discounting the first test run on the virtualized
CoreOS machine, the performance of the virtualized CoreOS machine compared to the
non-virtualized CoreOS machine was 18% lower . By those numbers, the average de-
crease in performance when hardware virtualizing a container host was 19%. The results
in figure 4.9 showed that the Photon OS container host performed better than the other
virtualized operating systems. Although still a technical preview, VMware explains that
Photon OS is ’validated on and tuned for VMware product and provider platforms”[6,
What is Photon OS] which could explain the slight performance increase compared to the
other operating systems.

H Test1 M Test2 [Test3 H Test4 Ml Testb

80000

60000

40000

Successful HTTP Requests

20000

CentOS VM CentOS CoreOS VM CoreOS VM Photon
Operating System

Figure 4.9: Successful HTTP Requests (More is better)

As seen in figure 4.10 the transactions per second increased more quickly in the non-

18

virtualized systems but since the number of transactions was initially low the difference
was barely noticeable. The difference became more noticeable at higher number trans-
actions per second. A possible explanation was that the overhead of every transaction,
although small in comparison to the total transaction time, still stacked up. The overhead
itself was in most part likely attributed to the hardware virtualization which introduced
an extra abstraction layer between the application and the resources it used. A reason for
the decreased performance could also have been the internal virtual switching in the hy-
pervisor. Virtual machines running on the VMware vSphere hypervisor was connected to
internal virtual switches which were connected to the physical network interface cards on
the hypervisor. Traffic going to the virtual machines needed to go through one extra layer
of switches before it got to the applications compared to the non-virtualized container
hosts.

Hjp@gc - Response Times Over Time > CentOS:HTTP Request M jp@gc - Response Times Over Time > Core0S:HTTP Request

Hjp@gc - Response Times Over Time > VMCentOS HTTP Request Mljp@gc - Response Times Over Time > VMCoreOS HTTP Request

Hjp@gc - Response Times Over Time = VMPhoton:HTTP Request Bjp@gc - Transactions per Second > CentOS:HTTP Request (success) (x10)

Hjp@gc - Transactions per Second > Core@S HTTP Request (success) (x10) M jp@gc - Transactions per Second > YMCentOS HTTP Request (success) (x10)

Mjp@qgc - Transactions per Second > VMCoreOS:HTTP Request (success) (x10) W jp@gc - Transactions per Second = VMPhoton:HTTP Request (success) (x10)
2 000

1 800
1600
1400

1200

3
é 1 000 e .
P il = AL M4)
& 800 R i
¥
6500 " iy
ot 2 freey
400 ‘:., st T i
E ,,,;,r.“"'
» e
200 3 L L
o e
0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:16 00:10:35 00:11:55 00:13:14

Elapsed time

Figure 4.10: Respons Time over Time vs. Transactions Per Second

The full results of the HTTP Request tests can be seen in appendix B. The graph in figure
4.10 is only presented as representative results in relation to the actual full test results in
appendix B. This is done because of the difficulties of combining all the JMeter results
into a graph which can more easily be interpreted. In figure 4.10 the amount of trans-
actions per second is scaled up by a factor of ten to make a combination of the graphs
possible.

Examining all of the test results in appendix B, the ”spread” of the response times over
time differed greatly between the different tests although the time granularity was the
same, i.e. 100 milliseconds. When increasing the time granularity to produce averages
with a time granularity of for example 4 seconds, the graphs were close to the same,
something that could mean that there was a slight measurement problem. One hypothesis
was that because the servers were fully utilized, some of the simultaneous requests were
put on hold while waiting for CPU time to become available. Since the response time was
measured on the Apache JMeter client, the CPU time needed to complete the request may
have been the same but the order in which the responses were sent from the server might

not have been in the order of which the simultaneous requests were sent from the Apache
JMeter client.

19

4.2 SQL Queries

In the second part of the experiments SQL queries were done from the web server con-
tainer to the database container to measure the difference in completion time. The average
results for SQL-SELECT queries is presented in figure 4.11. The values are the average
execution times to complete a single SOL-SELECT query where less is better. For detailed
results see table 3.3 in appendix C.

M Physical OS M Virtual OS

Request time (ms)

CentOS CoreOS Photon
Operating System

Figure 4.11: Execution times to complete 1 SQL-SELECT query shown as a graph. (Less
is better)

The results from SOQL-SELECT query experiments (figure 4.11) showed an increase in ex-
ecution time when running the operating systems virtualized compared to non-virtualized.
On average CentOS showed an increase of 162% and CoreOS showed an increase of
253%. Photon OS could not be compared due to it not being non-virtualized but per-
forms on par with the other virtualized operating systems with a difference of 6.6% com-
pared to CentOS and 9.6% difference compared to CoreOS. The difference between the
operating systems were lower compared to the difference between virtualized or non-
virtualized, with the greatest difference being between CentOS and CoreOS that of 15%
virtualized.

An observation is the varying time it took to complete a single SOQL-SELECT between the
different test runs. One explanation could be that because we used physical hard drives
the disk read-and-write head is not likely positioned at the location of the data being
sought for by the SQL-SELECT query. Every query would then act as a random read with
different completion time as a result.

20

The results from the SQL-INSERT queries where the time to complete 10 000 SQL-
INSERT queries from the web server to the database server are presented in figure 4.12.
The values presented are values in number of seconds and less is better. For detailed
results see table 3.4 in appendix C.

M Physical OS M Virtual OS

400

Request time (seconds)
ny w
o o
o o

-
o
o

CentOS CoreOS Photon
Operating System

Figure 4.12: Execution times for 10 000 SQL-INSERT queries shown as a graph. (Less is
better)

The results from the SQL-INSERT query experiments showed a relatively low difference
between non-virtualized operating systems and virtualized operating systems, the greatest
difference being for CentOS with a difference of 13%. The difference between operating
systems were significantly larger by comparison; CoreOS (virtual) had the lowest execu-
tion time of 65,7 seconds on average, CentOS was 122% slower than CoreOS virtualized
and Photon OS was 143% slower compared to CentOS virtualized.

When comparing the SQL-SELECT and SQL-INSERT results to each other we made two
observations: The first was that in the SOQL-INSERT tests the average execution time for
the virtualized container hosts were lower or comparable to that of when running it non-
virtualized. One hypothesis was that the total time it took for the data to be written to
disk was substantially larger than the time it took for the operating system to, through
the hypervisor, call for the data to be written. This could mean that for time-consuming
operations like writing data the performance cost of hardware virtualization had less of
an impact. The other observation is related to the difference between non-virtualized and
virtualized SQL-SELECT query results. The results showed that there was a difference
between non-virtualized an virtualized performance. The nature of the workload was
here the opposite of the SQL-INSERT query experiment. Instead of a large quantity of
write-operations a double read-operation was done. The results suggested that the smaller
the physical work (for example I/O-operations) the more was the impact of hardware
virtualization.

21

5 Discussion

The purpose of this study is to answer the following research question: How will con-
tainerized application performance be affected by 1) virtualized and non-virtualized con-
tainer hosts, and 2) choice of container host operating systems. To answer the questions
we adopt a method where application performance is measured with the independent vari-
ables first being the choice of whether or not to use hardware virtualization and second
variable being the choice of container host operating system. Given the setup of an LAMP-
application stack with a web server and a database server in two separate containers; how
well does containerized applications perform when simulating HTTP Requests and SQL
queries.

The results show that there is a performance decrease in the number of answerable HTTP
Requests when running the container host as a virtual machine. There is approximately
an 18-20% decrease of completed HTTP Requests. A decrease is expected because of the
extra abstraction layer added when virtualizing an operating system, which has to com-
municate to hardware through the hypervisor. The network traffic must also be switched
through the hypervisor from the physical port to the virtual switch which the virtualized
container host is connected to. Photon OS performs slightly better than the other virtual-
ized container host operating systems when measuring HTTP Requests, possibly because
it is said be tuned to run efficiently in vSphere. It might also be tuned in ways which don’t
affect LAMP-stack performance. It will be interesting to see how VMware can integrate
Photon OS more and add container management support to vSphere in the future when
vSphere Integrated Containers is launched and Photon OS leaves the technical preview
phase.

In the analysis we explain a difference in the results between the two types of SOL
experiments. There is a notable difference in time to complete a single SQL-SELECT
query between containers running on virtualized compared to non-virtualized operating
systems, while only showing a minor difference between the different operating sys-
tems themselves. In the SOQL-INSERT experiments the choice of operating system had
a much greater impact on performance, whilst showing almost no difference between
non-virtualized and virtualized operating systems. We believe the reason for this is that
when the number of queries increases it becomes more important how different operating
systems handle the workload. Also the nature of the workload seem to be a major reason
for differences in performance, virtualized compared to non-virtualized, as described in
the analysis of the SQOL tests.

IBM claims as described in Previous Research that the extra abstraction layer of hardware
virtualization only adds overhead without any additional benefits[8] when deploying con-
tainers inside of virtual machines. It is true that it comes with extra overhead, even when
running container host operating systems like Photon OS which is specifically designed
to run in a vSphere environment. However, hardware virtualization comes with several
benefits such as hardware isolation and features such as Fault Tolerance in vSphere which
helps reduce downtime for critical systems. Software containers are fast to boot though
so the difference in downtime in case of a failure in a CoreOS-fleet cluster compared to
vSphere cluster with Fault Tolerance may be negligible.

22

6 Conclusion

In this study we examined the implications for application performance when running
containers inside of virtual machines. This was done by comparing non-virtual container
hosts to virtual container hosts and measure the performance of two of their applica-
tions.

Our conclusion is that running virtual container hosts could affect the performance of
their applications negatively, something to be expected considering the abstraction layer
provided by the hypervisor. However, the impact of virtualizing a container hosts differs
between the type of operation performed inside the applications running on it. We found
that on larger amounts of consecutive SQL-INSERT queries the performance on virtual
container hosts were even on par with physical ones. The opposite was found in the
SQL-SELECT experiments. From the HTTP Request test we saw a 20% decrease in
completed HTTP-Requests on average when running on a virtual machine instead of a
physical installation. Non-virtualized CoreOS and CentOS had both faster response time
over time as well as more transactions per second than virtualized CoreOS and CentOS.
These experiments show that CPU intensive applications will see greater a performance
decrease in a virtualized environment.

The choice of container host operating system is a complicated issue because they all offer
different advantages. The results of the HTTP-Request experiments show that Photon OS
performs slightly better in the virtualized setups than CoreOS and CentOS when it comes
to the total number of completed HTTP Requests. CoreOS and Photon OS is also very
small distribution which compared to CentOS requires less storage and memory resources
to be installed and to be run. However, in the SQL-INSERT test Photon OS performed
worse then all other tested operating systems, be it virtualized or non-virtualized. This
shows that it is also important to consider the application before choosing an operating
system for this kind of implementation.

The results is likely not fully generalizable. This is because our research found that the
impact of hardware virtualization depends on the operation performed. When doing heav-
ier operations like writing to disk the impact of hardware virtualization was negligible but
when doing smaller operations like a small read operation the impact was large. Our
conclusion based on those results is that the smaller the operation, the bigger the impact.
To make the result more generalizable we would want to make more measurements with
different amounts of read and writes. The overhead caused by hardware virtualization
also becomes more visible at higher utilization levels in our experiments meaning that
our results in the HTTP tests may only be general at those utilization levels.

Our method was based on previous research by Mathijs Jeroen Scheepers[4], but when
analysing our data we found that our conclusions could be made stronger by improving
or supplementing our experiments. In the SQL experiments there could be a compari-
son between doing a single query and multiple queries of the same type because time to
execute can be significantly different between reading and writing data. Each of our ex-
periments only included a single SQL-SELECT query and 10 000 SQL-INSERT queries.
In retrospect we could have analyzed the methods of earlier research more critically. In
the HTTP-Request experiments it might also have been better to test the systems at lower
utilization levels to get a picture of performance at workload closer to what would be in
a production environment. A test could be done to see at which number of simultaneous
users simulated by Apache JMeter would push the system to about 70-90% CPU load

23

and then do a linear increase from one user to that specified number. In our current tests,
the maximum amount of transactions per second are at t=/00s (12% into the test), the
number then decreases as the system becomes overloaded. Our reasoning for choosing
method is that we wanted to push the utilization high to make the overhead caused by the
hardware virtualization more visible. The overhead is on a operation-basis which means
the overhead would not be as visible at low utilization. Now we get a picture of how much
overhead exists from hardware virtualization in a fully utilized system.

Another thing that could improve our method is to also test using less hardware (CPU
and memory) for the non-virtualized operating systems and then reduced the hardware
for the virtual machines to the same amount of CPU and memory. In our tests the virtual
machine running on the hypervisor was assigned all of the hardware on the virtualization
host because the hypervisor itself only utilizes about 0-0,5% of the hardware resources
according to our management view through the vSphere Client. It is however unknown if
the virtual container host was actually competing for resources with the hypervisor during
the high utilization phase of the tests in a way that affected the results. To analyze this
more resources could be assigned to the hypervisor or less hardware resources installed on
the physical blades hosting the non-virtualized installations of CentOS and CoreOS.

One possible scenario for this kind of implementation is to use virtual machines as ap-
plication platforms consisting of multiple components where each component is a con-
tainer. The application platform could be a web shop and the necessary components
could be the web server to host site for the customers interact with. There might also be
a database server to hold information about the products and an inventory system used
by the employees. Instead of running each component in it’s own virtual machine each
component is run as a container inside of a single virtual machine. The components
would be lightweight with inter-container communication being more effective compared
to inter-virtual machine communication, while also receiving hardware isolation between
different application platforms running on the same physical hardware. Having all com-
ponents necessary to run the application platform inside the same virtual machine also
makes migration between physical machines easier because the administrators does not
have to move each component separately.

We believe these results to be relevant to the IT industry because even though companies
like VMware and Microsoft are putting both time and money into developing technologies
to better support virtual container hosts, we found no academic research on the concept of
running containers in virtual machines. Virtual container hosts bring new and interesting
possibilities to the data center administrators but questions about the implications of doing
so, such as performance, needs to be addressed. As we believe virtual container hosts
is going to be a major part of future data centers it is important to fill this knowledge

gap.

24

6.1 Future research

It would be interesting if someone could do our tests with a further developed method. If
future research takes into account the proposed improvements discussed in the Conclusion
chapter the results may be different. In a future where Photon OS has left technical
preview we would also like to see our tests done again to see if there are any improvements
to performance.

Future research could also be to evaluate different container engines. CoreOS has its own
container engine called rkt which could be compared to Docker. Why is there a need for
two different container engines, is one better than the other and in which ways?

Another future research that could be conducted is a well structured operational compar-
ison between different virtualization platforms. One could for example compare CoreOS
with fleet to VMware vSphere on provisioning-, high availability-, fault tolerance- and
migration-features to see which one suits which environment and for what reasons. It is
especially interesting if the operational comparison is made when container management
has been integrated in vSphere.

25

References

[1] D. Kumar. (2015) Server consolidation benefits — with real world exam-
ples. (Accessed on 07/27/2016). [Online]. Available: http://www.sysprobs.com/
server-consolidation-benefits- with-real-world-examples

[2] Docker. (2016) What is docker? [Online]. Available: https://www.docker.com/
what-docker

[3] S. Hogg. (2014) Software containers: Used more frequently than
most realize | network world. (Accessed on 05/09/2016). [On-
line]. Available: http://www.networkworld.com/article/2226996/cisco-subnet/
software-containers--used-more-frequently-than-most-realize.html

[4] M. J. Scheepers, “Virtualization and containerization of application infrastructure:
A comparison,” 21st Twente Student Conference on IT, pp. 1-7, 2014.

[5] R. Dua, A. Raja, and D. Kakadia, “Virtualization vs containerization to support
paas,” in Cloud Engineering (IC2E), 2014 IEEE International Conference on, March
2014, pp. 610-614.

[6] VMware, Inc. (2015) Photon OS by VMware. [Online]. Available: https:
/lvmware.github.io/photon/

[7] Canonical Ltd. What’s LXC? [Online]. Available: https://linuxcontainers.org/lxc/
introduction/

[8] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers,” in Performance Analysis of Sys-
tems and Software (ISPASS), 2015 IEEE International Symposium On. 1EEE, 2015,
pp. 171-172.

[9] D. Kumar. (2014) Docker vs vms. (Accessed on 07/27/2016). [Online]. Available:
http://devops.com/2014/11/24/docker-vs-vms/

[10] S. Seshachala. (2014, 11) Docker vs vms - devops.com. (Accessed on 05/20/2016).
[Online]. Available: http://devops.com/2014/11/24/docker-vs-vms/

[11] S. J. Vaughan-Nichols. (2014, 08) Why Containers Instead of Hypervisors?
(Accessed on 05/24/2016). [Online]. Available: http://blog.smartbear.com/
web-monitoring/why-containers-instead-of-hypervisors/

[12] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud computing,”
National Institute of Standards & Technology, Gaithersburg, MD, United States,
Tech. Rep., 2011.

[13] Oracle. 1.1.1. Brief History of Virtualization. [Online]. Available: https:
//docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html

[14] VMware, Inc. (2007, 09) Understanding Full Virtualization, Paravirtualization
and Hardware Assist. [Online]. Available: https://www.vmware.com/files/pdf/
VMware_paravirtualization.pdf

[15] R. Vanover. (2009, 06) Type 1 and Type 2 Hypervisors Explained. (Ac-
cessed on 05/24/2016). [Online]. Available: https://virtualizationreview.com/blogs/
everyday- virtualization/2009/06/type- 1 -and-type-2-hypervisors-explained.aspx

26

http://www.sysprobs.com/server-consolidation-benefits-with-real-world-examples
http://www.sysprobs.com/server-consolidation-benefits-with-real-world-examples
https://www.docker.com/what-docker
https://www.docker.com/what-docker
http://www.networkworld.com/article/2226996/cisco-subnet/software-containers--used-more-frequently-than-most-realize.html
http://www.networkworld.com/article/2226996/cisco-subnet/software-containers--used-more-frequently-than-most-realize.html
https://vmware.github.io/photon/
https://vmware.github.io/photon/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
http://devops.com/2014/11/24/docker-vs-vms/
http://devops.com/2014/11/24/docker-vs-vms/
http://blog.smartbear.com/web-monitoring/why-containers-instead-of-hypervisors/
http://blog.smartbear.com/web-monitoring/why-containers-instead-of-hypervisors/
https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html
https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html
https://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://virtualizationreview.com/blogs/everyday-virtualization/2009/06/type-1-and-type-2-hypervisors-explained.aspx
https://virtualizationreview.com/blogs/everyday-virtualization/2009/06/type-1-and-type-2-hypervisors-explained.aspx

[16] P. Rubens. (2015) What are containers and why do you need them? | cio. (Ac-
cessed on 05/12/2016). [Online]. Available: http://www.cio.com/article/2924995/
enterprise-software/what-are-containers-and-why-do-you-need-them.html

[17] VMware, Inc., “vSphere ESXi Hypervisor,” 2016. [Online]. Available: http:
/Iwww.vmware.com/se/products/vsphere/features/esxi-hypervisor.html

[18] (2016) Vmware vsphere with operations management: High availability
| vmware sverige. (Accessed on 05/06/2016). [Online]. Available: http:
/l'www.vmware.com/se/products/vsphere/features/high-availability

[19] (2016) vsphere fault tolerance: Vmware | vmware sverige. (Accessed on
05/06/2016). [Online]. Available: http://www.vmware.com/se/products/vsphere/
features/fault-tolerance.html

[20] B. Corrie. (2015, 06) Introducing Project Bonneville - Cloud-Native AppsCloud-
Native Apps - VMware Blogs. (Accessed on 05/24/2016). [Online]. Available:
http://blogs.vmware.com/cloudnative/introducing-project-bonneville/

[21] CoreOS. Using CoreOS. (Accessed on 05/24/2016). [Online]. Available: https:
/[coreos.com/using-coreos/

[22] ——, “Using fleet with coreos,” https://coreos.com/using-coreos/clustering/, (Ac-
cessed on 02/25/2016).

[23] (2016) About centos. (Accessed on 05/06/2016). [Online]. Available: https:
/Iwww.centos.org/about/

[24] . Docker. (2016) What is docker? (Accessed on 05/20/2016). [Online]. Available:
https://www.docker.com/what-docker

[25] Netcraft Ltd. (2016) November 2015 Web Server Survey. [Online]. Available: http:
/lnews.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html

[26] Apache Software Foundation. (2016) Foundation Project. [Online]. Available:
http://www.apache.org/foundation/

[27] ——. (2016) Apache JMeter - User’s Manual: Introduction. [Online]. Available:
http://jmeter.apache.org/usermanual/intro.html

[28] M. AB, “Mysql ab :: Sun to acquire mysql,” https://web.archive.
org/web/20080117192218/http://www.mysql.com:80/news-and-events/
sun-to-acquire-mysql.html, 01 2008, (Accessed on 05/03/2016).

[29] T. T. FAQ, “Transactional database,” http://www.tech-faq.com/
transactional-database.html, 10 2012, (Accessed on 05/03/2016).

[30] F. Penov. (2010) networking - what % of traffic is network over-
head on top of http/s requests - stack overflow. (Accessed on
07/27/2016). [Online]. Available: http://stackoverflow.com/questions/3613989/
what-of-traffic-is-network-overhead-on-top-of-http-s-requests

[31] How to benchmark disk I/O. [Online]. Available: https://www.binarylane.com.au/
support/solutions/articles/1000055889-how-to-benchmark-disk-i-o

27

http://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html
http://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html
http://www.vmware.com/se/products/vsphere/features/esxi-hypervisor.html
http://www.vmware.com/se/products/vsphere/features/esxi-hypervisor.html
http://www.vmware.com/se/products/vsphere/features/high-availability
http://www.vmware.com/se/products/vsphere/features/high-availability
http://www.vmware.com/se/products/vsphere/features/fault-tolerance.html
http://www.vmware.com/se/products/vsphere/features/fault-tolerance.html
http://blogs.vmware.com/cloudnative/introducing-project-bonneville/
https://coreos.com/using-coreos/
https://coreos.com/using-coreos/
https://coreos.com/using-coreos/clustering/
https://www.centos.org/about/
https://www.centos.org/about/
https://www.docker.com/what-docker
http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html
http://www.apache.org/foundation/
http://jmeter.apache.org/usermanual/intro.html
https://web.archive.org/web/20080117192218/http://www.mysql.com:80/news-and-events/sun-to-acquire-mysql.html
https://web.archive.org/web/20080117192218/http://www.mysql.com:80/news-and-events/sun-to-acquire-mysql.html
https://web.archive.org/web/20080117192218/http://www.mysql.com:80/news-and-events/sun-to-acquire-mysql.html
http://www.tech-faq.com/transactional-database.html
http://www.tech-faq.com/transactional-database.html
http://stackoverflow.com/questions/3613989/what-of-traffic-is-network-overhead-on-top-of-http-s-requests
http://stackoverflow.com/questions/3613989/what-of-traffic-is-network-overhead-on-top-of-http-s-requests
https://www.binarylane.com.au/support/solutions/articles/1000055889-how-to-benchmark-disk-i-o
https://www.binarylane.com.au/support/solutions/articles/1000055889-how-to-benchmark-disk-i-o

A Appendix A: System Documentation

Appendix A contains all the documentation describing the topology used in this thesis
project.

A.1 Physical Configuration

The physical hardware is contained in an IBM BladeCenter. The physical machine is
shown in figure 1.13.

R
¢~
ladeCenter
L -

v

)

i
|
j
1 .
|]
a—
|

1) J

))

))

)

¥ / h)
)
y
)
)

! U =

B

e b

BRI

Figure 1.13: The IBM BladeCenter used in this thesis project

The BladeCenter contains 14 blade servers. The first blade server seen in 1.13 is used to
run CoreOS directly on the physical hardware. The second blade server runs the ESXi 6.0
hypervisor which virtualizes the virtual implementations of CoreOS, CentOS and Photon
OS. The third blade server is used to run CentOS directly on the hardware. The forth blade
server is the client which is used to run the JMeter tests towards the different implemen-
tations. The last ten blade servers are not used in this thesis project.

Each of the blades have the following hardware specifications:
e CPU 1: Intel Xeon 5320 1,86 GHz 4 cores
e CPU 2: Intel Xeon 5320 1,86 GHz 4 cores
e Memory: 2x 4 GB ECC DDR2 + 2x 2 GB ECC DDR2
e Storage: 2x 10k rpm eServer xSeries SAS disk at 73.4 GB

e 2x Gigabit Ethernet Network Interfaces

A.2 Network Topology

This section describes the network topology used in this thesis project. The core of the
network is the Dell PowerConnect 6248 Gigabit Ethernet switch, as seen in figure 1.14.
It connects the BladeCenters two switch modules to the two administration clients. The
administration clients are running VMware Workstation to host an edge router and a PXE-
server. The edge router is used for Internet-connection while the PXE-server is used to
PXE-boot the different operating systems onto the blade servers. The networks within
the BladeCenter are the production network used to do the HTTP GET testing from the
JMeter machine(blade04) to the container hosts and the administration network used to
start containers do general administration tasks. The reason behind dividing the networks

up is to ensure the HTTP GET testing is done within its own broadcast domain with as
little disturbances as possible.

Virtualized Container Hest

===
} .I
—
| e
kI
L]
Production wSwitch q Administration WSwitch
]
Bladed 1: Core 0S5 Blade02: ESXi Hypenvisor | Blade3: CeniDS Blad=D4: IMeter
L
'
Wl s I8 B i “ 17778
A

Client2:Wiwars Workstation

Figure 1.14: Network topology used in this thesis project

A.3 Versions

This chapter contains the versions and releases of the software and operating systems
used in this thesis project. Table 1.1 show the kernel-, Docker- and operating system-
versions used. For Apache JMeter, the version number is 2./3 and Jmeter Extras 1.31 is
also installed for the extra functionality to merge the data from different tests.

Table 1.1: Kernel-, Docker- and OS-versions of the operating systems used in this thesis

project
Type CentOS CoreOS Photon OS
Kernel 3.10.0-327.10.1.e17.x86_64 4.3.7-coreos 4.0.9
Docker 1.8.2-el17.centos, 1.9.1, . 1.8.1,
build a01dc02/1.8.2 build 9894698 build d12ea79
OS Release 7.2.1511 899.15.0 1.0 Tech Preview 2

A.4 Prestudy: Hardware Benchmarks

In the beginning of the thesis project, hardware benchmarks were conducted to ensure that
the disks of the blade servers would not have different levels of physical deterioration. The
software used was FIO. In order to install the different components needed to run Random
Read-, Random Write- and Random R/W-tests the following commands were used:

#Install

cd /root

yum install -y make gcc libaio-devel || (apt—get update
&& apt—-get install -y make gcc libaio-dev </dev/null)

wget https://github.com/Crowd9/Benchmark/raw/master\
/fio-2.0.9.tar.gz ; tar xf fiox

cd fiox

make

To run the three tests the following commands were used:

#Random read/write

./fio —--randrepeat=1 --ioengine=libaio —--direct=1
—-—gtod_reduce=1 —--name=test --filename=test --bs=4k
——iodepth=64 --size=4G --readwrite=randrw —--rwmixread=75
#Random Read

./fio ——-randrepeat=1 --ioengine=libaio --direct=1
—-—gtod_reduce=1 —--name=test —--filename=test --bs=4k
—-—1odepth=64 --size=4G —--readwrite=randread

#Random Write

./fio —-randrepeat=1 --iocengine=libaio —--direct=1
—-—gtod_reduce=1 --name=test --filename=test --bs=4k
——iodepth=64 --size=4G —--readwrite=randwrite

Disk latencty was also measured. The software used was IOPing. The command to install
IOPing was the following:

cd /root

yum install -y make gcc libaio-devel || (apt-get update &&
apt—-get install -y make gcc libaio-dev </dev/null)

wget https://ioping.googlecode.com/files/ioping-0.6.tar.gz
; tar xf iopingx

cd ioping=*

make

To run the test the following command was used:

#Test
./ioping —-c 10

A.5 Docker Commands

The following script is used to deploy the LAMP stack which includes a MySQL container
and an Apache container:

#!/bin/bash

Enviroment variables
export ROOT_PASSWORD=password
export WORDPRESS_PASSWORD=password

Run MySQL container

docker run —--detach \
——name mysqgll \
——env MYSQL_ROOT_PASSWORD=SROOT_PASSWORD \
——env MYSQL_USER=wordpress \
——env MYSQL_PASSWORD=SWORDPRESS_PASSWORD \
——env MYSQL_DATABASE=wordpress \
mysql

sleep 10
Run Wordpress container
docker run --detach \
——publish 80:80 \
—--name wordpressl \
—-—env WORDPRESS_DB_HOST=mysqgl:3306 \
——link mysqgll:mysgl \
—-—env WORDPRESS_DB_USER=wordpress \
——env WORDPRESS_DB_PASSWORD=SWORDPRESS_PASSWORD \
wordpress

A.6 PHP Scripts

The two following PHP scripts describes how to establish and connect to a MySQL
database server and measure the time to complete SELECT or INSERT queries.

A.6.1 SQL SELECT

The following PHP script is used to measure the time it takes to complete an SQL-

SELECT query:

<?php

Sservername = "mysqll";
Susername = "wordpress";
Spassword = "password";

Sdbname = "wordpress";

// Create connection
Sconn = new mysqgli ($servername, S$Susername,

// Check connection
if (Sconn—->connect_error) {

Spassword) ;

die ("Connection failed: " . S$Sconn—->connect_error);

}

echo "Connected successfully\n";

$Ssgql = "USE wordpress";
Sconn->query ($sql) ;

Ssgql = "SELECT * FROM wp_users";
Stime = microtime (TRUE) ;
Sconn->query ($sql) ;

Stime = microtime (TRUE) - S$Stime;

echo "Time to complete 1 SQL SELECT: ";
echo S$time;

echo "\n";

?>

A.6.2 SQL INSERT

The following PHP script is used to test the time it takes for the web server to complete
10 000 SQL-INSERT queries where the value “test” is inserted to a test table within the

Wordpress database:

<?php

Sservername = "mysqgll";
Susername = "wordpress";
Spassword = "password";

Sdbname = "wordpress";

// Create connection
Sconn = new mysqgli ($servername, S$Susername,

// Check connection
if ($Sconn—->connect_error) {

Spassword) ;

die ("Connection failed: " . S$conn—->connect_error) ;

}

echo "Connected successfully\n";

$Ssgql = "USE wordpress";
Sconn—->query ($sql) ;

$sgl = "INSERT INTO test_table(test) VALUES('test’)";

Stime = microtime (TRUE) ;

for($i = 0; $i < 10000; S$i++) {
Sconn->query ($Ssqgl) ;

}

Stime = microtime (TRUE) - $Stime;

echo "Time to complete 10 000 SQL INSERT: ";

14

echo S$Stime;
echo "\n";
7>

B Appendix B: JMeter Results

This section contains all of the results from the tests conducted with JMeter. Table 2.2
shows the full results in table-format.

Run CentOS CoreOS VM CentOS VM CoreOS VM Photon
1 69705 68664 58122 35783 58532
2 69341 67828 56898 57263 58263
3 70402 67620 56850 58398 59727
4 69335 67609 57967 56835 58339
5 69898 67817 58729 58116 58882
Average | 69736 67908 57713 57653%* 58749

Table 2.2: Number of successful HTTP Requests completed during the tests. More is
better.

Table 2.2 shows the full results of the HTTP Request-tests. The first test on the virtual-
ized CoreOS setup is excluded when calculating the average to show a more just compar-
ison.

B.1 CentOS

This section contains all of the results from the JMeter tests towards the non-virtualized
CentOS 7 machine.

B Test 1:HTTP Request B Test 2:HTTP Request [Test 3:HTTP Request [Test 4:HTTP Request M Test 5:HTTP Request
2000

1800
1600
1400

u

E

H 1200

Elouo
i

5 200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:08:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.15: CentOS - Test 1 - 5 - Response Time over Time (Less is better)

[Test IHTTP Request (success) [Test 2HTTP Request (success) B Test 3HTTP Request (success) BTest 4HTTP Request (success)
W Test 5:HTTP Request (success)

200

180

160

= =
[N B
=] £5)
—t—a

-
(=]
o

o - RSNt O g 1ot o 2] ZET el e 0y e e o0, BB DA e T el i

w
o

o

=]

-
.

Number of transactions /sec

=
o
"

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.16: CentOS - Test 1 - 5 - Successfull Transactions Per Second (More is better)

B HTTP Request
2000

1 800
1600
1400
1200
1000

800

Response times in ms

600

400

200

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.17: CentOS - Test 1 - Response Time over Time (Less is better)

W HTTP Request (success)
200

180

160 }

—
)
(<]

140 ‘

S e e SOV NSV VAN S N PO

—
o [+] [=]
o = (=]

Number of transactions fsec

i
(=]

20

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.18: CentOS - Test 1 - Successfull Transactions Per Second (More is better)

B HTTP Request
2000

1 800
1600
1400
1200
1 000

800

Response times in ms

600

400 3 a1

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
FElapsed time (granularity: 100 ms)

Figure 2.19: CentOS - Test 2 - Response Time over Time (Less is better)

B HTTP Request (success)
200

180

160

= = =
@ W o N N
=] =] =] =} o

Number of transactions /sec

i
o

20

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.20: CentOS - Test 2 - Successfull Transactions Per Second (More is better)

B HTTP Request
3000

2700
2 400

2100

4]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.21: CentOS - Test 3 - Response Time over Time (Less is better)

B HTTP Request (success)
200

180

160

= = =
[22] o] B
o o o o

—

@
o

Number of transactions fsec

40

20

0
00:00:00 00:01:18 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.22: CentOS - Test 3 - Successfull Transactions Per Second (More is better)

10

B HTTP Request
3000

2700
2400

2100

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.23: CentOS - Test 4 - Response Time over Time (Less is better)

W HTTP Request (success)
200

180

160

= = =
@ o [Y
o (=] (=] (=]

o
o

Number of transactions /sec

20

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.24: CentOS - Test 4 - Successfull Transactions Per Second (More is better)

11

B HTTP Request
2000

1800
1600
1400

& REN
1200 : BRGRAY
1000

800

Response times in ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
FElapsed time (granularity: 100 ms)

Figure 2.25: CentOS - Test 5 - Response Time over Time (Less is better)

W HTTP Request (success)
200

180

160

= = =
(=] [+2] [=]) e
(=] o =] =1 o

— 5

Number of transactions /sec

I
(=]

20

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.26: CentOS - Test 5 - Successfull Transactions Per Second (More is better)

12

B.2 CoreOS

This section contains all of the results from the JMeter tests towards the non-virtualized
CoreOS machine.

B Test 1:HTTP Request M Test 2.HTTP Request B Test 3:HTTF Request [Test 4:HTTP Request M Test 5:HTTP Request
2000

1800
1600

1400

Response times in ms

400

200

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.27: CoreOS - Test 1 - 5 - Response Time over Time (Less is better)

W Test 1:HTTP Request (success) [Test 2:HTTP Request (success) [Test 3:HTTP Request (success) B Test 4:HTTP Request (success)

M Test 5:HTTP Request (success)

110

100
90
80
70

60

50

Number of transactions /sec

40

30

20

00:00:00 00:01:19 00:02:38 00:03:57 00:05:17 00:06:36 00:07:55 00:09:15 00:10:34 00:11:53 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.28: CoreOS - Test 1 - 5 - Successfull Transactions Per Second (More is better)

13

B HTTP Request
2000

1800
1600
1 400
1200
1000

800

Response times in ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:08:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.29: CoreOS - Test 1 - Response Time over Time (Less is better)

B HTTP Request (success)
99

g0

81

E) L (=] ~l
wn B w =)

W
o

Number of transactions /sec

18

9
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.30: CoreOS - Test 1 - Successfull Transactions Per Second (More is better)

14

B HTTP Request
2000

1800

1600

1400
w
£ 1200
£

E 1000

b

5 800
600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.31: CoreOS - Test 2 - Response Time over Time (Less is better)

B HTTP Request (success)
99

a0

Y Ln @ ~
wn B w]

w
=)

Number of transactions /sec

18

9
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
FElapsed time (granularity: 4 sec)

Figure 2.32: CoreOS - Test 2 - Successfull Transactions Per Second (More is better)

15

B HTTP Request
2000

1800

1600

1400
w
£ 1200
5

E 1000
]

5 200
600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.33: CoreOS - Test 3 - Response Time over Time (Less is better)

B HTTP Request (success)
150

135

120

—
S @ ~ w o
wn o wn o w

Number of transactions /sec

w
o

15
1]
00:00:00 00:01:19 00:02:38 00:03:57 00:05:17 00:06:36 00:07:55 00:09:15 00:10:34 00:11:53 00:13:13

Elapsed time (granularity: 4 sec)

Figure 2.34: CoreOS - Test 3 - Successfull Transactions Per Second (More is better)

16

B HTTP Request
2000

1800

1600

1400

w

£ 1200

£

E 1000

b

5 800
600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.35: CoreOS - Test 4 - Response Time over Time (Less is better)

W HTTP Request (success)
99

90
81

72

w B w @
[+ i = w

Number of transactions /fsec

]
~l

18

2]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.36: CoreOS - Test 4 - Successfull Transactions Per Second (More is better)

17

B HTTP Request
2000

1800
1600
1400
1200
1000

200

Response times n ms

600

—

400

200

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.37: CoreOS - Test 5 - Response Time over Time (Less is better)

W HTTP Request (success)
99

90

81

@ ~
w [N

.
T

(5]
I

'S
wn

Number of transactions /sec

w
=]

18

9
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.38: CoreOS - Test 5 - Successfull Transactions Per Second (More is better)

18

B.3 VMCentOS

This section contains all of the results from the JMeter tests towards the virtualized Cen-
tOS 7 machine.

W Test 1:HTTP Request M Test 2:HTTP Request M Test 3:HTTF Request [Test 4:HTTP Request M Test 5:HTTP Request
2000

1800
1600
1400
1200
1000

800

Response times in ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.39: VMCentOS - Test 1 - 5 - Response Time over Time (Less is better)

B Test 1:HTTP Request (success) M Test 2:HTTP Request (success) [Test 3:HTTP Request (success) BTest 4 HTTP Request (success)
M Test 5:HTTP Request (success)

200

180

160

—
I
(=]

-
%)
(<]

—
[=]
(=]

[+2]
=]

Number of transactions /sec
[+
(=]

I
(=]

%)
(=]

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.40: VMCentOS - Test 1 - 5 - Successfull Transactions Per Second (More is
better)

19

B HTTP Request
2000

1800

1600

1400
1]
£ 1200
c

E 1000
&

5 800
600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:34 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.41: VMCentOS - Test 1 - Response Time over Time (Less is better)

B HTTP Request (success)
200

180

160

= =
[e
o o
———

=
[=]
(<]

60

Number of transactions fsec

40

20

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.42: VMCentOS - Test 1 - Successfull Transactions Per Second (More is better)

20

B HTTP Reguest
3000

2 700
2400

2100

[4)
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.43: VMCentOS - Test 2 - Response Time over Time (Less is better)

B HTTP Request (success)
200

180

160

= = =
(=)} w o] Y
o o o o o

Number of transactions /sec

=
o

20

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.44: VMCentOS - Test 2 - Successfull Transactions Per Second (More is better)

21

B HTTP Request
3000

2700
2400

2100

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.45: VMCentOS - Test 3 - Response Time over Time (Less is better)

W HTTP Request (success)
200

180
160

140

= =
o o) =]]
(=] o o o

Number of transactions fsec

e
(=]

20

o
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.46: VMCentOS - Test 3 - Successfull Transactions Per Second (More is better)

22

B HTTP Request
3000

2 700
2400

2100

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
FElapsed time (granularity: 100 ms)

Figure 2.47: VMCentOS - Test 4 - Response Time over Time (Less is better)

B HTTP Request (success)
110

100 |
90
80
70 !
60
50

a0

Number of transactions /sec

30

20

00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.48: VMCentOS - Test 4 - Successfull Transactions Per Second (More is better)

23

B HTTP Request
3000

2700
2400

2100

0
00:00:00 00:01:18 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:08:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.49: VMCentOS - Test 5 - Response Time over Time (Less is better)

B HTTP Request (success)
200

180
160

140

= =
(=)} w o]
o o o o

Number of transactions /sec

=
o

20

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.50: VMCentOS - Test 5 - Successfull Transactions Per Second (More is better)

24

B.4 VMCoreOS

This section contains all of the results from the JMeter tests towards the virtualized
CoreOS machine.

M Test 1:HTTP Request M Test 2:HTTP Request B Test 3:HTTP Request [Test 4 HTTP Request MTest 5:HTTP Request
3000

2 700

2 400

2100

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.51: VMCoreOS - Test 1 - 5 - Response Time over Time (Less is better)

M Test 1:HTTP Request (success) M Test 2:HTTP Request (success) [@Test 3:HTTP Request (success) M Test 4:HTTP Request (success)

M Test 5:HTTP Request (success)

100
90
80
70
60

50

40

Number of transactions /sec

30

20

10

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.52: VMCoreOS - Test 1 - 5 - Successfull Transactions Per Second (More is
better)

25

B HTTP Request
3000

2700
2400

2100

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:16 00:10:35 00:11:55 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.53: VMCoreOS - Test 1 - Response Time over Time (Less is better)

W HTTP Request (success)
60
1
55 |

|
WWMWW%MMMWWWAW

] w w B Y %]
%] (=] n o tn (=]

Number of transactions sec

]
(=]

15

00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.54: VMCoreOS - Test 1 - Successfull Transactions Per Second (More is better)

26

B HTTP Request
2000

1800
1600
1400
1200
1000

200

Response times in ms

600

400

200

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.55: VMCoreOS - Test 2 - Response Time over Time (Less is better)

W HTTP Request (success)
98

—a

89

80

w ~ w @ ~
w B o ¥ ot

Number of transactions /sec

]
o

17

e
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.56: VMCoreOS - Test 2 - Successfull Transactions Per Second (More is better)

27

B HTTP Request
2000

1 800
1600
1400
1200
1 000

800

Response times n ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
FElapsed time (granularity: 100 ms)

Figure 2.57: VMCoreOS - Test 3 - Response Time over Time (Less is better)

B HTTP Request (success)
90

81

72

M w = L o
- = w B w

Number of transactions fsec

=
@

9

4]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.58: VMCoreOS - Test 3 - Successfull Transactions Per Second (More is better)

28

B HTTP Request
2000

1800

1600

1400
w
£ 1200
£

E 1000

b

5 800
600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 100 ms)

Figure 2.59: VMCoreOS - Test 4 - Response Time over Time (Less is better)

B HTTP Request (success)
99

90 ‘

81 |

w Y Ln @ ~
=) wn B w]

Number of transactions /sec

o]
-

18

9
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
FElapsed time (granularity: 4 sec)

Figure 2.60: VMCoreOS - Test 4 - Successfull Transactions Per Second (More is better)

29

B HTTP Request
2000

1 800
1600
1400
1200
1 000

800

Response times in ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
FElapsed time (granularity: 100 ms)

Figure 2.61: VMCoreOS - Test 5 - Response Time over Time (Less is better)

W HTTP Request (success)
99

N |

81 ‘

~
s

w) wn (=]
[=2] (5] = w

Number of transactions fsec

]
-~

18

9
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:36 00:07:56 00:09:15 00:10:35 00:11:54 00:13:13
Elapsed time (granularity: 4 sec)

Figure 2.62: VMCoreOS - Test 5 - Successfull Transactions Per Second (More is better)

30

B.5 VMPhoton

This section contains all of the results from the JMeter tests towards the virtualized Photon
OS machine.

W Test 1:HTTP Request M Test 2:HTTP Request W Test 3:HTTP Request [Test 4:HTTP Request M Test 5:HTTP Request
2000

1800
1600
1400
1200
1000

800

Response times in ms

600

400

200

00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:16 00:10:35 00:11:55 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.63: VMPhoton - Test 1 - 5 - Response Time over Time (Less is better)

B Test 1:HTTP Request (success) M Test 2:HTTP Request (success) [Test 3:HTTP Request (success) BTest 4 HTTP Request (success)
M Test 5:HTTP Request (success)

200

180

160

= = =
(=] [+2] [=] %) e
(=] =] (=] (<] (=]

Number of transactions /sec

I
(=]

%)
(=]

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.64: VMPhoton - Test 1 - 5 - Successfull Transactions Per Second (More is better)

31

B HTTP Request
2000

1800
1600
1400
1200
1000

200

Response times in ms

600

400

200

1]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.65: VMPhoton - Test 1 - Response Time over Time (Less is better)

W HTTP Request (success)
88

w B Y 5] o
L) o [++] (=] =

Number of transactions /fsec

Y]
I

16

8
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.66: VMPhoton - Test 1 - Successfull Transactions Per Second (More is better)

32

B HTTP Request
2000

1800
1600
1400
1200
1000

800

Response times in ms

600

400

200

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
FElapsed time (granularity: 100 ms)

Figure 2.67: VMPhoton - Test 2 - Response Time over Time (Less is better)

W HTTP Request (success)
99

Q0 1

81

W Ee (%] [« =~
o tn o w [N

Number of transactions fsec

)
~

18

2]
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.68: VMPhoton - Test 2 - Successfull Transactions Per Second (More is better)

33

B HTTP Request
3000

2 700
2 400

2100

0
00:00:00 00:01:19 00:02:39 00:03:58 00:05:18 00:06:37 00:07:57 00:09:16 00:10:36 00:11:55 00:13:15
FElapsed time (granularity: 100 ms)

Figure 2.69: VMPhoton - Test 3 - Response Time over Time (Less is better)

B HTTP Request (success)
g8

|

w Y o wn =]
) o w 5] 2

Number of transactions /sec

[
B

16

8
00:00:00 00:01:19 00:02:39 00:03:58 00:05:18 00:06:37 00:07:57 00:09:16 00:10:36 00:11:55 00:13:15
Elapsed time (granularity: 4 sec)

Figure 2.70: VMPhoton - Test 3 - Successfull Transactions Per Second (More is better)

34

B HTTP Request
3000

2700
2 400
2100
[

1500 ; : il ALuhl

P Ji0 iy
|Slgut!
I

900 rohd 7 '. i l |

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.71: VMPhoton - Test 4 - Response Time over Time (Less is better)

B HTTP Request (success)
88

. M%
72 / WWN\N\WW\/WWN

8
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Number of transactions fsec
[¥Y) E E (%)
[a¥) (=] w (=]

L]
s

Figure 2.72: VMPhoton - Test 4 - Successfull Transactions Per Second (More is better)

35

B HTTP Request
3000

2700
2400

2100

0
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 100 ms)

Figure 2.73: VMPhoton - Test 5 - Response Time over Time (Less is better)

B HTTP Request (success)
88

80

72 YN Mﬂ\’\r’\l

w B B wn =]
1] (=] @ (=] =

Number of transactions /sec

(o)
B

16

8
00:00:00 00:01:19 00:02:38 00:03:58 00:05:17 00:06:37 00:07:56 00:09:15 00:10:35 00:11:54 00:13:14
Elapsed time (granularity: 4 sec)

Figure 2.74: VMPhoton - Test 5 - Successfull Transactions Per Second (More is better)

36

C Appendix C: SQL Query Results

This appendix presents the results from the SQL queries experiments.

SQL-SELECCT, measured in miliseconds.

Run CentOS CoreOS VM CentOS VM CoreOS VM Photon
1 0.728 0.453 1.290 1.514 1.885
2 0.521 0.522 2.246 2.042 2.105
3 0.570 0.490 1.242 1.746 1.632
4 0.514 0.505 1.812 1.651 1.249
5 0.505 0.513 0.850 1.815 1.061
Average | 0.568 0.497 1.488 1.754 1.586

Table 3.3: Execution times to complete 1 SQL-SELECT query shown as a graph. (Less is
better

SQL-INSERT, measured in seconds.

Run CentOS CoreOS VM CentOS VM CoreOS VM Photon
1 174.197 64.388 145.171 66.479 414.104
2 164.675 64.270 148.839 64.520 355.149
3 161.202 64.835 145.204 65.698 332.823
4 161.954 64.971 141.341 65.789 333.578
5 159.437 65.118 146.912 66.020 333.317
Average | 164.293 64.716 145.493 65.701 353.794

Table 3.4: Execution times for 10 000 SQL-INSERT queries shown as a graph. (Less is
better)

37

	Introduction
	Background
	Previous research
	Problem formulation
	Motivation
	Research Question
	Scope/Limitation
	Target group
	Outline

	Technical background
	Cloud Computing
	Virtualization
	Hardware Virtualization
	Containerization

	VMware vSphere
	Photon OS
	CoreOS
	CentOS
	Docker
	Apache
	Apache JMeter
	MySQL

	Method
	Scientific approach
	Method description
	Topology
	Prestudy: Hardware I/O Benchmarks
	HTTP Requests
	SQL Queries

	Method Discussion
	Reliability and Validity

	Results and Analysis
	HTTP Requests
	SQL Queries

	Discussion
	Conclusion
	Future research

	References
	Appendix A: System Documentation
	Physical Configuration
	Network Topology
	Versions
	Prestudy: Hardware Benchmarks
	Docker Commands
	PHP Scripts
	SQL SELECT
	SQL INSERT

	Appendix B: JMeter Results
	CentOS
	CoreOS
	VMCentOS
	VMCoreOS
	VMPhoton

	Appendix C: SQL Query Results

