
© 2017 The Aerospace Corporation

Containers for Highly Scalable Applications in the
Cloud

Dr. Ann L. Chervenak

Computer Systems Research Department

2Ann.L.Chervenak@aero.org
Computer Systems Research Department

Talk Outline

• Virtualization in clouds
• Containers

– A lightweight virtualization mechanism
– Comparison of Containers and Virtual Machines

• Minimal Operating Systems to facilitate container scaling
• Containers as an enabling technology for highly scalable

internet applications
• Key technologies for containers
• Docker containers
• Container Management (Kubernetes)
• Security Issues for Containers
• Summary

3Ann.L.Chervenak@aero.org
Computer Systems Research Department

Virtualization

• Virtualization techniques allow sharing of physical resources by
multiple applications
– Widely used in cloud computing
– Each application sees a model of computation, storage and networking:

appears to run on its own machine
– Multiple applications share underlying hardware resources

• To enable different workloads to be co-located on a node,
virtualization technologies must support:
– Isolation of virtualized workloads

• Workloads run securely in separate software environments
• Any faults (bugs, crashes, viruses) are contained within virtualization
• Performance of each workload is independent of others running on server

– Resource management:
• Control the resources consumed by each workload
• Don’t allow any workload to consume all the resources

4Ann.L.Chervenak@aero.org
Computer Systems Research Department

Containers

• Mature virtualization technology (e.g., Docker, Rocket, LXC)
• Can be thought of as virtualizing an Operating System (OS)

– Each container effectively receives a slice of an operating system kernel
• Container engine sits above the OS; manages and isolates

containers on the server
• Each container includes an application and its dependent libraries

and binaries
– Packaged for fast, easy deployment

• Portable: can run on a wide range of hardware and cloud platforms
– Easily deploy in development, test and production environments

Server hardware

Operating System

Container Engine

App
Container

App
Container

App
Container

5Ann.L.Chervenak@aero.org
Computer Systems Research Department

Comparing Containers
and Virtual Machines

Virtual machines (VMs)
• Earlier, mature virtualization technology
• Can be thought of as providing each VM

a slice of the underlying server hardware

Server hardware

Guest
OS

App
VM

App
VM

App
VM

Hypervisor

Guest
OS

Guest
OS

– Hypervisor software runs above server, manages one or more VMs
– Portable: Each VM contains a full OS version (the “Guest OS”), necessary

libraries and dependencies, and the application

• Problem: Modern Operating Systems are very large
– Linux: Over 25 million lines of code; Windows: Over 50 million lines of code;

MacOS: Over 85 million lines of code
• Having a full Guest OS makes VMs very large

– Slow to deploy (several minutes)
– Take up space on server: limits number of VMs that can be deployed

6Ann.L.Chervenak@aero.org
Computer Systems Research Department

Containers vs. Virtual Machines

Server hardware

Guest
OS

App
VM

App
VM

App
VM

Hypervisor

Guest
OS

Guest
OS

• Containers provide a lightweight alternative to VMs
– Do not contain a full guest Operating System for every application container

• Containers are smaller (*if applications are small compared to OS*)
• Can be deployed more quickly (in seconds rather than minutes)
• Can be deployed more densely on cloud resources
• Results in improved resource utilization and lower power usage

– Important considerations for data centers and clouds

Server hardware

Operating System

Container Engine
App

Container
App

Container
App

Container

7Ann.L.Chervenak@aero.org
Computer Systems Research Department

Minimal OS or Cloud OS

• Containers share a single operating system

• However, further improvements are needed
– Potential limits to scalability

• Linux is not really optimized for 1000s of processes
– Security is a concern

• Still large unused portion of shared OS with potential vulnerabilities

• Cloud OS or Minimal OS
– E.g., Red Hat Atomic Host, CoreOS, Ubuntu Snappy, RancherOS
– An operating system designed and optimized for use in a cloud environment
– Goal: include minimal OS capabilities needed to host container-based

cloud applications
• Containers running on a host share a minimal OS kernel
• No need for the majority of OS utilities
• Select the OS utilities normally used by cloud applications

• Note: VMware also reducing size of OS for VMs

8Ann.L.Chervenak@aero.org
Computer Systems Research Department

Containers are a Key Enabling Technology for
Modern, Massive Scale Internet Applications

• Virtual Machines are too large and deploy too slowly to enable
fast scaling of interactive, massive internet applications
– E.g., Google search, Gmail, Netflix

• Containers are small and deploy quickly (*if applications are
small relative to the OS*)
– Can be deployed more densely on cloud resources

• In 2014, Google announced that they launch more than 2 billion
container instances per week across their global data centers

• Note: Containers don’t provide as much advantage if large,
monolithic legacy applications are just wrapped in a container

and deployed on the cloud
– Get portability but do not achieve density or performance improvements
– Mitigation: refactor legacy applications

9Ann.L.Chervenak@aero.org
Computer Systems Research Department

Containers are a Key Enabling Technology for
Modern, Massive Scale Internet Applications (cont.)

• Containers enable a Microservices Architecture approach

• Microservices replace large, monolithic applications with a
distributed system of lightweight, narrowly focused, independent
services that communicate with other parts of the system
– Each microservice is a small application that can be deployed, scaled and

tested independently and that has a single responsibility
– In practice, microservices typically range from a few hundred to a few thousand

lines of code (* Small compared to size of OS *)

• Containers are a good fit to deploy microservices in the cloud
– Can quickly create and destroy containers
– Facilitates quick scaling of applications, continuous delivery of new functionality
– Portable across a range of platforms (development, test, operations

environments)

10Ann.L.Chervenak@aero.org
Computer Systems Research Department

Key Technologies for Containers

• The concept of containers is not new
– Similar technology has been deployed in operating systems starting in 1979

The current enthusiasm around containers is based on:
• Recent technology developments to improve the security and

isolation of Linux containers:
– Namespaces provide process isolation

• Processes in one container can’t see or affect processes running outside
the container

– Control groups (cgroups) are used to allocate and manage resources
• Cgroups control how much memory, CPU, network and other resources

are allocated to each container
• An emerging ecosystem of products and services for easily

creating, deploying and managing containers:
• Docker containers from Docker, Inc.
• Higher-level container management software (Kubernetes, Swarm, etc.)

11Ann.L.Chervenak@aero.org
Computer Systems Research Department

Multiple Container Implementations

• LinuX Containers (LXC)
– A set of APIs and tools that allow Linux users to create and manage containers

• Docker
– Builds on Linux Containers (LXC), namespaces, cgroups, and other

technologies
– Has quickly become the de facto industry standard for containers

• Rocket
– Implementation of the AppContainer from the CoreOS project
– Specification of a container image format, runtime, and discovery

• lmctfy (or “let me contain that for you”)
– An open source version of Google’s container stack

• Singularity
– Addresses security concerns: blocks privilege escalation within the container

12Ann.L.Chervenak@aero.org
Computer Systems Research Department

Docker Overview

• Docker Engine (a container engine) is a client-server application that consists
of the long-running Docker daemon software, a REST API interface for services
and a command line interface for interactive commands

• A Docker client talks to the Docker engine, which builds, runs, and distributes
Docker containers

• A Docker image is a read-only template used to create Docker containers
• Docker registries are public or private repositories that hold images

Figure from: https://docs.docker.com/engine/understanding-docker/

Docker Engine

13Ann.L.Chervenak@aero.org
Computer Systems Research Department

Container Management
(Also called cluster management)

Higher level software that makes using containers across a
cluster of nodes easier by:
• Scheduling containers on multiple cloud nodes
• Replicating containers on multiple nodes
• Automatically scaling containers based on load
• Monitoring containers, nodes, racks, clusters
• Providing automated recovery from container or node failures
• Providing security: who is allowed to launch containers

Three players:
– Kubernetes from Google
– Swarm from Docker, Inc. (now incorporated into Docker)
– Mesos family of products from Mesos project, Mesosphere (company)

14Ann.L.Chervenak@aero.org
Computer Systems Research Department

Kubernetes Container Management

• Developed by Google based on 15 years of experience
operating their production workloads at large scale in Google
data centers
– Based on lessons learned from Google’s Borg cluster management

system
• Donated to community as open source
• Kubernetes provides capabilities to deploy, schedule, update,

maintain and scale containers
• Monitors and manages containers to ensure that the state of

the cluster meets user requirements
• Supports Docker and Rocket containers and will support other

container image formats and runtimes as they are developed

15Ann.L.Chervenak@aero.org
Computer Systems Research Department

Docker Security

• An important security consideration is that “running containers
(and applications) with Docker implies running the Docker daemon.
This daemon currently requires root privileges”, which creates
potential security risks.

• Mitigation techniques:
– Only trusted users should be allowed to control the Docker daemon
– Use Linux kernel capabilities: containers run with a reduced capability set
– Security Enhanced Linux (SELinux): supports access control policies; protects

the host file system from attacks from inside the container
– AppArmor: Linux kernel security module that supplements standard Linux user

and group based permissions to confine programs to limited set of resources

• Other container formats (e.g., Rocket, Singularity) don’t require
root privileges for running the container

Source: Docker Security, https://docs.docker.com/engine/security/security/

16Ann.L.Chervenak@aero.org
Computer Systems Research Department

Pros of Containers
• Mature technology: standards & industry leaders emerging
• Lighter weight than Virtual Machines (assuming application is

small relative to OS size)
– Smaller, faster to deploy, more scalable
– Can be deployed more densely on cloud resources, improving resource

utilization and reducing power usage
• Containers are a key enabling technology for modern, highly

scalable internet applications and microservices architecture
• Undergoing rapid development

– Extensive industry and venture capital support
• Ecosystem of useful tools has been developed for containers:

– Creation and re-use of container images (e.g., Docker, registries)
– Container management: Deployment, replication, management of

containers on clouds (e.g., Mesos, Kubernetes, Swarm)
• Relatively easy to adopt container technology

17Ann.L.Chervenak@aero.org
Computer Systems Research Department

Cons of Containers

• Not yet as mature as Virtual Machines
• Security of containers still being improved

– Docker containers require root privileges
– Deploy mitigating technologies: Linux capabilities, SELinux, AppArmor
– Other container implementations avoid this (Rocket, Singularity)

• Rapid development of container technologies: a moving target
• To achieve full benefits of containers, applications should be

small relative to OS size
– Large, monolithic legacy applications can be wrapped in containers, but

won’t see as much benefit
• Microservices architecture is a good match for containers but

increases complexity

18Ann.L.Chervenak@aero.org
Computer Systems Research Department

References
• Ying Lu, “Virtual Machines,” Univ. of Nebraska-Lincoln, CSCE 351: Operating System

Kernels (Fall 2011), http://cse.unl.edu/~ylu/csce351/notes/VirtualMachines.ppt
• E. Brewer, "An update on container support on Google Cloud Platform," in Google Cloud

Platform Blog, ed: http://googlecloudplatform.blogspot.com/2014/06/an-update-on-
container-support-on-google-cloud-platform.html, June 10, 2014.

• S. Newman, Building Microservices: O'Reilly Media, Inc., 2015.
• J. Thones, "Microservices," IEEE Software, vol. 32, pp. 116-116, 2015.
• Linux Containers. Available: https://linuxcontainers.org/
• Docker. Available: https://www.docker.com/
• Kubernetes. Available: http://kubernetes.io/
• M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, et al., "A view of

cloud computing," Communications of the ACM, vol. 53, pp. 50-58, 2010.
• W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, "An updated performance comparison of

virtual machines and linux containers," ed: IBM Research Report RC25482 (AUS1407-001),
IBM Research, Austin, TX, 2014.

• D. Bernstein, "Containers and cloud: From LXC to docker to kubernetes," IEEE Cloud
Computing, pp. 81-84, 2014.

• E. Brewer, "Robust Containers," DockerCon Keynote,
http://www.slideshare.net/Docker/brewerdockerconkeynote-140613153819phpapp02-
37588923, June 10, 2014.

• Amazon Web Services. Amazon EC2 Container Service. Available:
https://aws.amazon.com/ecs/

19Ann.L.Chervenak@aero.org
Computer Systems Research Department

References
• Red Hat. (2015). Introduction to Linux Containers. Available:

https://access.redhat.com/articles/1353593
• Let Me Contain That For You (lcmtfy). Available: http://lmctfy.io/
• N. Khare. (2014). Linux Containers and Future of Software Delivery. Available: Rootconf

2014 Workshop, http://neependra.net/docker/rootconfWorkshop.html
• D. Merkel, "Docker: lightweight linux containers for consistent development and

deployment," Linux Journal, vol. 2014, 2014.
• Docker. Docker Registry. Available: http://docs.docker.com/registry/
• Docker. (2015). Docker Security. Available: https://docs.docker.com/articles/security/
• Intel. (2014). Linux Containers Streamline Virtualization and Complement Hypervisor-

Based Virtual Machines. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-
containers-hypervisor-based-vms-paper.pdf

• A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, "KVM: the Linux virtual machine
monitor," in Proceedings of the Linux Symposium, 2007, pp. 225-230.

• A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, "Large-scale
cluster management at Google with Borg," in Proceedings of the Tenth European
Conference on Computer Systems, 2015, p. 18.

• C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, et al., "Live migration of
virtual machines," in Proceedings of the 2nd Symposium on Networked Systems Design
and Implementation, Boston, MA, 2005, pp. 273-286.

