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Abstract. In this paper the emerging technology of Linux containers is examined and
evaluated for use in the High Energy Physics (HEP) community. Key technologies required
to enable containerisation will be discussed along with emerging technologies used to manage
container images. An evaluation of the requirements for containers within HEP will be made
and benchmarking will be carried out to asses performance over a range of HEP workflows. The
use of containers will be placed in a broader context and recommendations on future work will
be given.

1. Introduction
Cloud computing enables ubiquitous, convenient and on-demand access to a shared pool of
configurable computing resources that can be rapidly provisioned with minimal management
effort. The flexible and scalable nature of the cloud computing model is attractive to both
industry and academia. In HEP, the use of the “cloud” has become more prevalent with LHC
experiments making use of standard Cloud technologies to take advantages of elastic resources
in both private and commercial computing environments.

A key software technology that has eased transition to a cloud environment is the Virtual
Machine (VM). VMs can be dynamically provisioned, managed and run a variety of Operating
Systems tailored to user requirements. From a resource utilisation perspective however, VMs
are considered a heavyweight solution. Upon instantiation a VM will contain a complete copy of
an operating system and all associated services leading to an increase in resource consumption
when compared to standard “bare metal” deployment. This level of virtualisation is not required
by the majority of workloads processed in HEP and can lead to increases in execution time on
workloads that perform intensive I/O file operations such as LHC data analysis.

An alternative solution which is gaining rapid traction within industry is containerisation.
Here the Linux Kernel itself can virtualise and isolate a user-land level instance of the operating
system in which applications can run. Fewer resources are potentially needed compared to a VM
because nominally only shared system libraries and files needed by the application are virtualised
so performance is close to that of the physical hardware with minimal tuning.

In this study the use of containers is assessed as a mechanism for running LHC experiment
application payloads. Using currently available software tools (in this case the emerging standard
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Docker [1]) deployment strategies have been investigated by the use of a distributed WLCG Tier-
2 facility [2] as an example computing site. In particular the integration of containers with the
OpenStack [3] cloud computing platform has been explored as well as strategies and methods
for harmonising HEP software availability through CernVM-FS [4].

The relative performance of applications running in containers and VM platforms when
compared with native execution will then be detailed by using benchmarking tools and
representative workloads. We conclude by outlining some of the issues and challenges that need
to be addressed before containers can be considered to be a viable alternative to virtualisation
for HEP applications and services.

2. Containerisation
2.1. Overview and History
Linux Containerisation can be described as Operating System (OS) level virtualisation, where
the OS itself creates a Virtual Environment (VE) consisting of a set of system resources allocated
to a process (or processes) which encapsulate and isolate the execution of that process from the
surrounding system. A VE differs from a VM in that a complete, running, copy of an OS is not
needed to run a process, instead only the associated libraries needed by that process are required.
A VE is lighter weight than a complete VM when running an application and therefore uses
less overall system resources. Containerisation or partitioning of system resources was originally
implemented in the “chroot” system developed for System 7 UNIX in 1979 [5] and incorporated
into BSD version 4.0 in 1982. Similarly, a parallel can be made to Workload Partitions (WPAR)
found in IBM AIX systems.

Figure 1. Timeline of software developments leading to Linux Containerisation.

A brief timeline of developments is shown in Figure 1. The “chroot” mechanism developed
in 1982 allowed a process (or set of processes) to be executed within a different, apparent, root
directory isolating their execution from the main system. The concept of “chroot” was expanded
into to BSD “jails” in 2000 [6] and Solaris Containers in 2005 [7] providing a more complete
set of fine grained resource controls. This led to VM like features such as saving state, and
migrating processes. The main purpose of these VEs was to provide separation for build tasks,
run historic code against a fixed set of system libraries, isolating user access and so forth. In 2005
OpenVZ [8] (a precursor to modern Linux Containers) used a modified Linux Kernel to provide
separation of system resources that gave it a similar feature set to VM style Hypervisors. In 2007
namespaces were introduced into the mainline Linux Kernel allowing isolation and separation
of resources. The creation of namespaces allowed the development of userland tools (such as
LibVirt [9] and LXC [10]) to create and work with VEs produced from the mainline Kernel.
Current implementations of Linux containers rely on two key technologies, Kernel Namespaces
and Control Groups.

2.2. Kernel Namespaces
The isolation needed to effectively separate a set of running processes from the remaining OS
is provided by Kernel Namespaces. Currently there are six separate namespaces found in the
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Linux Kernel, namely Network, Mount, User, IPC, PID and UTS [11]. The Network namespace
provides isolation of the network subsystem and allows each container to have its own IP address,
routing tables etc. The Mount namespace prevents containers from accessing filesystems not
within that namespace, localising execution. The User namespace controls User IDs and Group
IDs allowing privileged execution within a container but not external to that container. The
IPC namespace isolates all interprocess communication segregating running processes within
containers. The PID namespace controls the assignment of Process IDs allowing IDs to be
reused within containers leading to simple portability. Finally the UTS namespace allows each
container to have a separate hostname or NIS domain name allowing multiple systems to inhabit
a single machine.

Via these six namespaces containers offer similar isolation, portability and flexibility as found
in standard VM platforms; allowing the saving of state, simple migration of containers and elastic
scaling.

2.3. Control Groups
Another important technology used to create Linux Containers is the use of Control Groups
(or CGroups) [12]. CGroups (initially called Process Containers), were developed to offer fine
grained control of Linux system resources such as CPU usage. In conjunction with the isolation
given by Linux Namespaces, CGroups allow resource constraints to be applied to the processes
run in containers and allow a similar level of resource constraint as offered by a standard VM
platform. They can be used to restrict CPU, IO, memory and network usage and are split up
into hierarchical subsystems which allows new processes to inherit the same resource constraints
that are applied to their parents.

2.4. Emerging Ecosystem and Tools
There are a number of emerging tools which can be used to manage the lifecycle of containers. As
mentioned in the previous section the creation of tools such as LXC [10] or Google’s LMCTFY
[14] allowed the simple instantiation of container images. These low-level tools led to the
development of platforms such as Docker [1] which enabled distributed access to container images
from a central (or self hosted) registry. Another, recently developed, emerging standard is rkt
[19] which promotes a standard container description that can be cryptographically signed. This
cryptographic signing can be used to verify the provenance of the container which is essential
when trusting a distributed image.

The model for container deployment is to provide a minimal hosting environment for a single
application. Complex applications are created by combining a number of container building
blocks; this has led to a number of different orchestration tools. The first of these, CoreOS [15],
is a minimal Linux distribution that hosts a Docker instance and uses systemd [16] to ensure
container images are running across a distributed platform. A number of other software vendors
have released their own orchestration tools, Docker (the company) released Swarm [17], RedHat
released Atomic [18] and Canonical released LXD [20]. These platforms allow the construction of
a complicated system from discrete contained applications which can be monitored and managed
as cohesive unit. In this study we will focus on Docker and examine how this can be integrated
into current cloud deployments.

3. Container Deployment in HEP
To be of use to the HEP community, it is essential that containers are able to access experiment
software and to work with current cloud technologies to take advantage of available deployments.
In this section we will outline our initial investigation into OpenStack and CERNVM file system
(CVMFS) [4] integration using Docker as a management tool for containers.
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3.1. OpenStack Integration
It is beneficial for containers to be managed through existing cloud middleware widely used
in the WLCG (such as OpenStack). A development platform for Tier-2 cloud resources was
used for the evaluation of container deployment. The platform was built around the Juno
release of OpenStack and presently comprises three machines: one management node running
the network services and Horizon, the web management interface, one compute node running
Nova and utilising KVM, and one compute node running Nova with Docker as well as the storage
services (Cinder, Glance and Swift).

To enable the use of containers the Nova driver uses a Unix socket to communicate with the
Docker ReST API. The docker driver must be obtained and built separately in order to make it
available in OpenStack Juno release which was a relatively straight-forward process [13]. Once
the driver has been built and configured the list of supported container formats defined in the
Glance configuration file must be amended to include “docker” images in addition to those
already present.

To make Docker images usable within OpenStack, they must be retrieved from the Docker
image repositories and added to Glance. Once the container images have been retrieved, they
can be instantiated and managed through the same portal or API in exactly the same way as a
standard VM.

3.2. CVMFS integration
For container builds running LHC experiment applications it was necessary to have
CVMFS available to access experiment-specific software environments and detector condition
information. Due to the root privileges required by CVMFS interacting with the FUSE kernel
module [21] extra care needed to be taken during the deployment process.

A container could either be instantiated to provide a CVMFS service to other containers
resident on the same host or CVMFS could be installed on the native platform with the CVMFS
volume mounted to the hosted container images. In the former option the container hosting a
CVMFS service will run in a privileged mode implying root access to the underlying system
and other hosted containers. In the latter option there is an impact on virtualisation flexibility;
namely the dependence on container image dependent services on the host.

For the purposes of this study the latter option was chosen for simplicity of deployment. At
this time no clear solution exists to deploy a container image with CVMFS operating in an
unprivileged mode. However there is ongoing development in this area [22] which could resolve
this issue.

4. Performance Studies
Performance studies were run to determine whether any penalties were incurred by migrating
applications to a container environment and allowed the trade-off between application
performance and increased flexibility to be evaluated. Furthermore it was instructive to
determine the relative performance of applications running under native and container platforms
compared to a VM platform running the same test workload. The performance tests were
framed specifically in a HEP context to complement more general benchmark results on container
platforms elsewhere [23].

4.1. Testing Environment
Two dedicated servers were used to run all performance tests described in this study. During
application execution no other user-based processes were active to minimise extraneous activity
on server resources.

Two different server architectures were employed in the study (Xeon E5-2650 v2 and Avoton
C2750). The Xeon system comprised two E5-2650 v2 2.6Ghz CPUs, each with 8 cores and a
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total of 64GB or RAM. Storage was provided by two 500GB 7200rpm Sata drives. The Avoton
system comprised one 8 core C2750 2.4GHz CPU with 16GB or RAM and an 80GB SSD drive.
The Avoton processors [24] are a recent generation of low power Atom-based system on chip
devices popular for dense server environments. Testing results run on the Avoton-based server
were expected to be less performant than the Xeon-based server and were considered a useful
cross-check to determine performance consistency across different CPU architectures.

A container image was constructed for performance tests using a standard CentOS 6 container
available via the Docker registry and augmented with HEP-specific supplementary libraries and
CVMFS through a remotely mounted volume. A µCERNVM image [25] was used to provide
the same functionality under the KVM [26] virtual machine platform. An investigation prior
to full workload testing determined that the choice of backing storage for the VM (i.e. a raw
image file or LVM partition) had little impact on the performance metrics measured on our test
systems (with a variation of 0.02% difference in the average measurement).

4.2. Test Definition
The HEPSPEC benchmark [27] was firstly used to evaluate the baseline performance of the three
chosen platforms (native, container and VM). The relative performance of HEP applications run
at Grid computing centres was then approximated by the construction of tests using three classes
of typical HEP workload: full detector simulation, detector reconstruction and Monte Carlo
event generation. A profiling harness developed for this study orchestrated these standalone tests
running across different platforms and enabled performance data to be collected and compared
across multiple samples. The harness also ensured that all the tests were executed serially with
no external processes affecting performance results.

Each workflow type was expected to be CPU-bound but with each having a different system
resource usage profile during the lifetime of execution. The diversity of the resource profiles
gave an indication of the overhead incurred from the virtualisation layer indirectly accessing
underlying host resources such as physical memory or disk.

The key performance metric of interest for the HEP workloads was the average CPU time
taken to process an individual event in the test sample. These were extracted from the
monitoring routines native to the application framework and the same extraction method was
applied consistently across all tests.

The number of events processed in each test was scaled accordingly to generate a
representative sample and to negate spurious system activity that would inadvertently affect
the timing results. At least three iterations of the same test were run to validate per-event
timing consistency across samples. The timing results from tests running the same workflow
type and on the same server were within 1% of the overall average.

For each workload type one instance of the test was run at any given time. In addition,
a further series of tests investigated the performance under a fully loaded system by running
concurrent instances of the same workload matching the number of cores on each server.

4.3. Performance Results
The plot on Figure 2 illustrates the HEPSPEC value per CPU core for both of the test servers
(labelled Xeon and Avoton) for the 32-bit and 64-bit version of the benchmark. It is observed
for all tests that the HEPSPEC values for benchmark execution in the container platform were
within 2% of native performance. For the Avoton-based test server a near identical average
score was found. In comparison, tests run under the KVM platform were found to be 14.7% less
than native performance for the Xeon-based server and 15.3% for the Avoton-based server.

The results for simulation workload tests are shown in Figure 3 where the average CPU
time per event as reported by the application is displayed. Results are shown for tests with
one running test instance and concurrent instances on a fully loaded system. It was seen that
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containers had near native performance in both scenarios and when running on both the Xeon
and Avoton processors. For tests running in KVM the simulation workload suffered notable
performance decreases of 13.4% (26.4%) for a single process and 24.7% (32.5%) for a fully
loaded system on the Xeon (Avoton) based server compared to native performance.

Timing results are shown for the event generation and reconstruction workloads in Figure 4
for tests performed on the Avoton-based server. A similar performance trend is seen compared
to the simulation workload and it was again observed that the container platform offers near-
native performance regardless of workload type. However the performance reduction for the
event generation test running under KVM was only minor compared to other workload types
running under the same platform.

It must be noted that the VM performance results were generated on a virtual machine
platform without any optimisations applied. Although some effort could be made to generate
more favourable results [23] it could not be assumed that VM optimisations were applied
consistently on resources available to HEP experiments. The unoptimised results were therefore
considered more representative of the performance expected in a production environment.

A selection of the timing results indicated a marginally smaller average CPU time per event for
containers than was observed for native execution for the same workload. This was a counter-
intuitive result and was in part due to averaging results across multiple tests. One possible
explanation found was that the CPU affinity of the container process and the application running
natively were handled differently by the host operating system. A container process was found
to bind to a CPU core more than a native application during the execution lifetime which may
have led to more efficient use of physical memory. Although this was a minor effect this could
warrant future investigation if containers were found to be consistently performing marginally
better in comparable tests.

Figure 2. Comparison of HEPSPEC 32-bit and 64-bit results for both the Xeon and Avoton
platforms, showing native, VM and container performance.

5. Conclusions
In this paper we have explored the emerging technology of Linux containers and begun evaluation
of their use as an alternative to virtual machines in a HEP context. We have explored the history
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Figure 3. Comparison of Event Simulation results for both the Xeon and Avoton platforms,
showing native, VM and container performance.

Figure 4. Comparison of Reconstruction and Generation results for the Avoton platform,
showing native, VM and container performance.

of containerisation and outlined the technological components that are present in the current
incarnation of containers found on the Linux platform. A brief survey of the emerging tools that
are being developed to work with containers has also been presented along with an evaluation
of the requirements that a HEP container would have.

By defining a suitable container image capable of handling typical HEP computing
environments it has been shown, through the use of realistic HEP workloads, that the
performance of containers is on par with native execution. Specifically it has been shown that on
our test Intel based Xeon and Avoton systems container performance is within in 2% of native
performance. Similar tests on the same physical hardware using KVM and the µCERNVM show
a much larger reduction in performance (on the order of 10-20%) for the same test workloads.

While these results are compelling, in order to properly validate this study a larger number
of simulations needs to be carried out. Running a larger number of simulations on a variety of
hardware and cloud platforms as well as other, additional, types of HEP workload would improve
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confidence in observed result that container performance is on par with native execution. To
carry out a more comprehensive study, work needs to take place to create a generic HEP container
image that can be deployed to Grid or Cloud computing platforms similar to the µCERNVM.
The combination of this generic container and the test harness developed as part of this work
would allow much larger scale testing to take place.

Containers are an interesting new technology which is gaining traction with industry and
leading to new models of computation and software deployment methods. It is essential that
the WLCG and HEP community investigate the emerging possibilities to gain from the advances
being made.
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