
Testing Docker Performance for HPC
Applications

Alexey Ermakov ermakov.as@mipt.ru
Alexey Vasyukov a.vasyukov@phystech.edu

April 20, 2017

The main goal for this article is to compare performance penalties
when using KVM virtualization and Docker containers for creating iso-
lated environments for HPC applications. The article provides both data
obtained using synthetic tests (High Performance Linpack) and real life
applications (OpenFOAM). The article highlights the influence on per-
formance of major infrastructure configuration options – CPU type pre-
sented to VM, networking connection type used.

Keywords: Docker, KVM, MPI, HPL, OpenFOAM, benchmark

1 Introduction
One of the most important issues related to high performance com-

puting that one may encounter is the availability of certain execution
environment. It means that many scientific programs require a specific
set of dependencies (such as compilers, runtime libraries etc.), that often
may even conflict with dependencies of other software. There is a num-
ber of ways to solve the issue, one the most mature technologies that is

The research was supported by RFBR grant 15-29-07096

1

ar
X

iv
:1

70
4.

05
59

2v
1

 [
cs

.P
F]

 1
9

A
pr

 2
01

7

used for such a purpose is a virtualization. Despite tha fact that virtu-
alization provides full environment isolation, by-design it has some per-
formance penalty. Another approach to provide isolated environment is
operating-system-level virtualization that implies all such environments
have common kernel and separate isolated user-space libraries. The main
goal for this article is to compare performance penalties when using two
mentioned ways of creating isolated environment (KVM and Docker con-
tainers, to be precise).

2 Related work
Cloud computing environments for HPC applications are commonly

based on KVM for virtualization and isolation and OpenStack for clus-
ter management, auto-provision and user self-service. An example of
the system based on these technologies can be found in [1], describing
an experience of Technische Universitat Dresden. Similar KVM-based
clusters are deployed in different organizations over the world. How-
ever, performance penalties for real life applications may be significant
when running in virtualized environment [2]. Container-based systems
for HPC applications emerge during recent years [3–5] and benchmarks
look promising [6,7]. This article also contributes to public benchmarks
of KVM and Docker containers for HPC applications.

3 Virtual machines and containers
As it was mentioned earlier, the main difference (see fig. 1) between

virtualization and containerization is that containers share the same ker-
nel and maybe even some host devices, when each virtual machine has
its own kernel and virtualized devices (e.g. network card)1. More infor-
mation on used technologies may be found in official documentation for
KVM [8,9] and Docker [10].

1In this article we do not consider usage of paravirtualization or any «passthrough» technologies
to make host devices available to virtual machine

2

Figure 1: Comparsion of virtualization and containers architecture2

4 Benchmark setup and methodics
To perform benchmark the following setup was used: two identical

hosts with Intel Core i7-5820K CPU (6 physical cores) and 64 GB RAM,
connected with QDR Infiniband and 100 MB/s Ethernet. Hyperthread-
ing was disabled using corresponding BIOS settings, since it drastically
decreases performance (see fig. 2). MPICH was used as MPI implemen-
tation, because it’s a bit faster than OpenMPI and does not require any
configuration to execute program on two hosts when they belong to dif-
ferent subnets (this is very important to be able to inter-connect virtual
machines and containers.)

Benchmarks described in this article use Intel Linpack benchmark
[11], High-performance linpack [12] and interFoam solver as «real world»
application from OpenFOAM [13]. All experiments were run 10 times to
reduce statistical errors, so each plot shows mean value for measurement

2Image courtesy of Linux Magazine http://www.linux-magazine.com/Issues/2015/171/
Docker#article_f2

3

http://www.linux-magazine.com/Issues/2015/171/Docker#article_f2
http://www.linux-magazine.com/Issues/2015/171/Docker#article_f2

and error bars for confidence interval of 0.95.

Figure 2: Hyperthreading performance impact according to Intel Linpack
benchmark results

(a) QDR infiniband connection (b) 100 Mb/s Ethernet connection

Figure 3: Comparsion of OpenMPI and MPICH performance using HPL

4

5 Benchmark

5.1 1 host benchmarks
First of all let’s see how usage of containers and virtualization impacts

performance. The following tests were performed on a single to host to
avoid networking influence on performance results.

Figure 4: Performance comparsion of KVM and Docker on a single host
using Intel Linpack

Results shown on a fig. 4 should be treated as follows: there is is no
significant difference in performance when running CPU-intensive highly-
optimized application in KVM, Docker or on bare metal. It should be
noted that in these tests Intel Linpack demonstrates 90% of theoreti-
cal CPU performance, thus performance comparsion may be considered
reliable. We can see that Docker shows a bit better performance even
than bare metal, but it should be considered as statistical error. Another
cause for this may be operating system scheduler that for some reason
gives a bit more priority for containerized processes.

In previos test QEMU was run with host-model CPU set, that’s why

5

it showed pretty good performance. In case of different CPU type there
is a huge performance spread: depending on exact CPU model used to
run a virtual machine KVM may be up to 5 times slower than a bare
metal.

Figure 5: KVM performance spread

5.2 2 hosts benchmarks
Another component, besides CPU, that has a major performance

influence is networking. The next series of tests demonstrate what per-
formance impact one may have when using unappropriate networking
stack.

First thing to note is quite obvious but anyway should be mentioned:
networking type matters. According to fig. 6 HPL performs about 2.5
slower on 100 Mb/s Ethernet than on QDR Infiniband.

Another thing that should be taken into account is the way virtual
machine or container is connected to network. For HPL tests there is
almost no difference (see fig. 7) in performance of dockerized network
application between bridged connection and host networking stack, KVM

6

Figure 6: HPL performance comparsion using different inter-connection

Figure 7: Docker and KVM net-
working performance comparsion

Figure 8: virtio and rtl networking
performance comparsion

virtio performs about 15% slower while KVM rtl is almost 5 times slower
(see fig. 8) than host netwoking stack.

7

Earlier we’ve noticed that CPU type used to run virtual machine has
significant influence on overall performance. Let’s see if it still applies
to distributed MPI application. According to pic. 9 CPU used to run
virtual machine does not affect resulting performance. Reason for this
behaviour is the fact that HPL is not as CPU-intensive as Intel Lin-
pack: network performance is more important for HPL rather than CPU
performance.

Figure 9: CPU type influence on performance of HPL

Finally, let’s see how «non-synthetic» distributed MPI application
performs depending on used environment. We used interFoam solver
from OpenFOAM in few scenarios to realize how virtualization type and
kind on networking connection influences overall performance. Results
are shown on figs. 10 – 12. As we can see interFoam performs almost
10 times slower on 100 Mb/s Ethernet rather than on QDR Infiniband,
bridge performance impact is about 20%.

Most important results are shown on fig. 12: a real «non-synthetic»
application is more than 2 times slower in KVM with virtio networking
than the same application in Docker with host or bridged networking.

8

Figure 10: Networking type influ-
ence

Figure 11: Network connection type
influence

Figure 12: Comparsion of interFoam performance depending on used
environment

9

6 Conclusion
Performance of virtualized or containerized applications depends on

many factors, such as CPU type (for virtualization) and networking type.
In some cases performance may degrade up to 10 times, thus environment
to run application in must be carefully selected and verified. A really
important thing is that «synthetic» benchmark does not provide you
with a full exhaustive information necessary to decide if environment is
suitable for an application or not. That’s why it’s strongly recommended
to run benchmarking on exact application you’re going to run when
considering virtualization or containerization as an option for HPC.

References
[1] Ulf Markwardt. Running virtual machines in a slurm batch system.

Slurm User Group, September 2015.

[2] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio.
An updated performance comparison of virtual machines and linux
containers. Technical Report Technical Report RC25482 (AUS1407-
001), IBM Research Division, Austin Research Laboratory, July
2014.

[3] Douglas M. Jacobsen and Richard Shane Canon. Contain this, un-
leashing docker for hpc. In Cray User Group Conference Proceed-
ings, April 2015.

[4] Douglas Jacobsen, James Botts, and Shane Canon. Never port your
code again – docker functionality with shifter using slurm. Slurm
User Group, September 2015.

[5] H.-E. Yu and W. Huang. Building a Virtual HPC Cluster with Auto
Scaling by the Docker. ArXiv e-prints, September 2015, 1509.08231.

[6] Christian Kniep. Containerization of high performance compute

10

workloads using docker. Technical report, QNIB Solutions, Novem-
ber 2014.

[7] B. Varghese, L. Thamsuhang Subba, L. Thai, and A. Barker.
Container-Based Cloud Virtual Machine Benchmarking. ArXiv e-
prints, January 2016, 1601.03872.

[8] Kernel virtual machine project. http://www.linux-kvm.org/
page/Main_Page. Accessed: 2016-05-12.

[9] Qemu process emulator. http://www.qemu-project.org/. Ac-
cessed: 2016-03-17.

[10] Docker documentation. https://docs.docker.com/. Accessed:
2016-02-25.

[11] Intel math kernel library benchmarks. http:
//software.intel.com/en-us/articles/
intel-math-kernel-library-linpack-download. Accessed:
2016-01-11.

[12] High-performance linpack benchmark for distributed-memory com-
puters. http://www.netlib.org/benchmark/hpl/. Accessed:
2016-01-11.

[13] Openfoam, open source cfd software. http://www.openfoam.com.
Accessed: 2016-03-02.

11

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://www.qemu-project.org/
https://docs.docker.com/
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://www.netlib.org/benchmark/hpl/
http://www.openfoam.com

	1 Introduction
	2 Related work
	3 Virtual machines and containers
	4 Benchmark setup and methodics
	5 Benchmark
	5.1 1 host benchmarks
	5.2 2 hosts benchmarks

	6 Conclusion

