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Abstract—The use of virtualization technologies in high
performance computing (HPC) environments has traditionally
been avoided due to their inherent performance overhead.
However, with the rise of container-based virtualization im-
plementations, such as Linux VServer, OpenVZ and Linux
Containers (LXC), it is possible to obtain a very low overhead
leading to near-native performance. In this work, we conducted
a number of experiments in order to perform an in-depth
performance evaluation of container-based virtualization for
HPC. We also evaluated the trade-off between performance
and isolation in container-based virtualization systems and
compared them with Xen, which is a representative of the
traditional hypervisor-based virtualization systems used today.

Keywords-Container-based virtualization; Linux containers;
High performance computing.

I. INTRODUCTION

Virtualization technologies have become very popular in
recent years, bringing forth several software solutions (such
as Xen [1], VMware [2] and KVM [3]) and the incorporation
of hardware support in commodity processors (such as Intel-
VT [4] and AMD-V [5]). The main benefits of virtualization
include hardware independence, availability, isolation and
security. It is widely used in server consolidation and can
be considered one of the foundations of cloud computing.

Nevertheless, despite its benefits, the use of virtualiza-
tion has been traditionally avoided in most HPC facilities
because of its inherent performance overhead [6]. There
have been many studies on the performance of virtual-
ization in the literature, a few of them focusing on HPC
environments [7], [6]. In general, past studies have shown
that the traditional hypervisor-based virtualization (such as
Xen [1], VMware [2] and KVM [3]) has a high performance
overhead, specially in terms of I/O, making prohibitive its
use in HPC.

Recent operating container-based virtualization imple-
mentations (such as Linux-VServer [8], OpenVZ [9] and
Linux Containers (LXC) [10]) offer a lightweight virtualiza-
tion layer, which promises a near-native performance. In this
context, we argue that container-based virtualization can be
a powerful technology for HPC environments and propose
a performance and isolation evaluation of recent container-
based implementations. To support our claim, we would like
to illustrate two usage scenarios:

• Better resource sharing: HPC clusters usually have
their resources controlled by a Resource Management
System (RMS), such as PBS/TORQUE [11], which
enables sharing of the resources among multiple users.
With the proliferation of multicore technology, cur-
rent HPC clusters’ nodes are composed of dozens of
processing units. Since one of the primary goals of a
RMS is trying to maximize the overall utilization of the
system, a single multicore node can be shared by many
different users. However, without an isolation layer,
there are no guarantees that applications from different
users will work together in the same node. In this
scenario, the use of container-based virtualization could
improve the resource sharing allowing for multiple
isolated user-space instances. This is the case with
MESOS [12], a platform that uses LXC for sharing
a cluster between multiple diverse cluster computing
frameworks, such as Hadoop and MPI.

• Custom environments: HPC clusters are typically
shared among many users or institutes, which may have
different requirements in terms of software packages
and configurations. Even when the users share some
software packages, it is hard to update them without
disturbing each other. In practice, software packages
in working clusters are often once installed and kept
unchanged for a very long time except for some bug
fix, security enhancement, or small upgrades [13].
This usage scenario makes it difficult to deploy newly
developed or experimental technologies in traditional
cluster environments. Hence, the use of a virtualization
layer could facilitate the creation and maintenance
of multiple environments customized according to the
users’s needs.

In both scenarios, there is a need for an isolation layer
without loss of performance. Therefore, we conducted ex-
periments using the NAS Parallel Benchmarks (NPB) [14],
which is a well-known benchmark in HPC, to evaluate the
performance overhead and the Isolation Benchmark Suite
(IBS) [15] to evaluate the isolation in terms of performance
and security. Since our focus is also on partitioning the
resources of HPC clusters with multicore nodes, we evaluate
the performance in both single and multi node environments,
using respectively OpenMP and MPI implementation of
NPB.

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.41

233

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.41

233



II. CONTAINER-BASED VIRTUALIZATION

Resource virtualization consists of using an intermediate
software layer on top of an underlying system in order to
provide abstractions of multiple virtual resources. In general,
the virtualized resources are called virtual machines (VM)
and can be seen as isolated execution contexts. There are
a variety of virtualization techniques. Today, one of the
most popular is the hypervisor-based virtualization, which
has Xen, VMware and KVM as its main representatives.

The hypervisor-based virtualization, in its most common
form (hosted virtualization), consists of a virtual machine
monitor (VMM) on top of a host OS that provides a full
abstraction of VM. In this case, each VM has its own
operating system that executes completely isolated from the
others. This allows, for instance, the execution of multiple
different operating systems on a single host.

A lightweight alternative to the hypervisors is the
container-based virtualization, also known as Operating Sys-
tem Level virtualization. This kind of virtualization par-
titions the physical machines resources, creating multiple
isolated user-space instances. Figure 1 shows the difference
between container-based and hypervisor-based virtualiza-
tion. As can be seem, while hypervisor-based virtualization
provides abstraction for full guest OS’s (one per virtual ma-
chine), container-based virtualization works at the operation
system level, providing abstractions directly for the guest
processes. In practice, hypervisors work at the hardware
abstraction level and containers at the system call/ABI layer.
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Figure 1. Comparison of container-based and hypervisor-based virtualiza-
tion.

Since the container-based virtualization works at the op-
erating system level, all virtual instances share a single
operating system kernel. For this reason, container-based
virtualization is supposed to have a weaker isolation when
compared to hypervisor-based virtualization. However, from
the point of view of the users, each container looks and
executes exactly like a stand-alone OS [9].

The isolation in container-based virtualization is normally
done by kernel namespaces [16]. It is a feature of the Linux
kernel that allows different processes to have a different view
on the system. Since containers should not be able to interact
with things outside, many global resources are wrapped in

a layer of namespace that provides the illusion that the
container is its own system. As examples of resources that
can be isolated through namespaces, consider filesystem,
process IDs (PID), inter-process communication (IPC) and
network [16].

On the other hand, the resources management in
container-based virtualization systems is normally done by
Control Groups (cgroup) [17], which restricts the resource
usage per process groups. For example, using cgroups it is
possible to limit/prioritize CPU, memory and I/O usage for
different containers. In some cases, some systems use their
own implementations to perform the resource management
due to the incompatibility with cgroups.

The rest of this section presents each of the container-
based virtualization systems studied in this work: Linux-
VServer, OpenVZ and LXC.

A. Linux-VServer

Linux-VServer is one of the oldest implementation of
Linux container-based system. Instead of using namespaces
to guarantee isolation, Linux-VServer introduced (through
a patch) its own capabilities in the Linux kernel, such
as process isolation, network isolation and CPU isolation.
Linux-VServer uses the traditional chroot system call to jail
the file system inside the containers. That way, it limits
the scope of the file system for the processes. The pro-
cesses isolation is accomplished through a global PID space,
which hides all processes outside of a container’s scope and
prohibits unwanted communications between processes of
different containers. The main benefits of this approach is
its scalability for a large number of containers. However, the
drawback is that the system is unable to implement usual
virtualization techniques, such as live migration, checkpoint
and resume, due the impossibility to re-instantiate processes
with the same PID [8].

Linux-VServer does not virtualizes network subsystems.
Rather, all networking subsystem (such as routing tables and
IP tables) are shared among all containers. In order to avoid
having one container receive or sniff traffic belonging to
other containers, this approach sets a container identifier tag
into the packets and incorporates the appropriate filters in
the networking stack to ensure that only the right container
can receive them. The drawbacks is that the containers are
unable to bind sockets to a subset of host IPs and to change
their own route table and IP tables rules, it needs to be made
by the host administrator [8].

To perform CPU isolation, Linux-VServer uses the stan-
dard Linux scheduler, overlapped by the Token Bucket Filter
(TBF) [18] scheme. A token bucket is associated with each
container and serves to accumulate tokens at a certain rate.
In that way, every process running in a container is linked
to the creation of a token. The processes of a particular
container are removed from the run-queue until their bucket
accumulates a certain minimum number of tokens. This
token bucket scheme can be used to provide a fair sharing
and work-conservation of the CPU and may also impose
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rigid upper limits [8]. The token bucket scheme is very
similar to Xen Credit Scheduler [19].

Resource limits, such as memory consumption, number
of processes and file-handles, are performed using system
calls (rlimit tool) provided by the Linux kernel. In addition,
the Linux-VServer kernel includes even more capabilities
for limiting another types of resources, such as the number
of sockets and file descriptors opened. However, the recent
versions of Linux-VServer includes support to cgroups,
which can also be used to restrict the CPU usage and
memory consumption for containers. The Linux-VServer
containers are managed by the util-vserver tools package [8].

B. OpenVZ
OpenVZ offers similar functionality to Linux-VServer.

However, it is built on top of kernel namespaces, making
sure that every container has its own isolated subset of
a resource. The system uses a PID namespace to guaran-
tee the process isolation between different containers. It
is so that every container processes has its own unique
process IDs. Furthermore, unlike Linux-VServer, the PID
namespace makes possible the use of usual virtualization
techniques, such as live migration, checkpoint and resume.
In OpenVZ, each container has its own shared memory
segments, semaphores, and messages, due the IPC kernel
namespace capability. Moreover, the OpenVZ also uses the
network namespace. In this way, each container has its own
network stack, which includes network devices, routing ta-
bles, firewall rules and so on. It also provides some network
operation modes, such as Route-based, Bridge-based and
Real Network based. The main differences between them
is the layer of operation. While Route-based works in Layer
3 (network layer), Bridge-based works in Layer 2 (data
link layer) and Real Network in Layer 1 (physical layer).
In the Real Network mode, the host system administrator
can assign a real network device (such as eth1) into a
container, similar to Linux-VServer, providing the better
network performance [9].

OpenVZ introduces four resource management compo-
nents named as User Beancounters (UBS), fair CPU schedul-
ing, Disk Quotas and I/O scheduling. The first provides a
set of limits and guarantees controlled per-container done
through control parameters. In this way, we can restrict
memory usage and various in-kernel objects such as IPC
shared memory segments and network buffers. The OpenVZ
CPU scheduler is implemented in two levels, trying to
promote a fair scheduling among containers. The first level
decides which container will get attention from the processor
at some instant of time. The second level performs the
scheduling of internal processes of the container based on
priority scheduling policies, such as in Linux. There is an-
other approach named VCPU Affinity, which tells the kernel
the maximum number of CPUs that a container can use. The
Disk Quota is a feature that allows to set up standard UNIX
per-user and per-group disk limits for containers [9]. Finally,
a similar approach of CPU scheduling is used for I/O.
In this case, the second level scheduling uses Completely

Fair Queuing (CFQ) Scheduler [20]. For each container
is given an I/O priority, and the scheduler distributes the
I/O bandwidth available according to priorities. In this way,
no single container can saturate a channel, interfering with
performance isolation. The OpenVZ containers are controled
by the vzctl tool [9].

C. LXC
In the same way as OpenVZ, LXC uses kernel names-

paces to provide resource isolation among all containers.
During the container startup, by default, PIDs, IPCs and
mount points are virtualized and isolated through the PID
namespace, IPC namespace and file system namespace,
respectively. In order to communicate with the outside
world and to allow the network isolation, LXC uses the
network namespaces. Two configuration are offered by LXC
in order to configure the network namespaces: Route-based
and Bridge-based. Unlike Linux-VServer and OpenVZ, the
resource management is only allowed via cgroups. Thus,
LXC uses cgroups to define the configuration of network
namespaces [10]. The process control is also accomplished
by cgroups, which has function of limiting the CPU usage
and isolating containers and processes. I/O operations are
controlled by CFQ scheduler, as in OpenVZ. LXC containers
are managed by the lxc-tool [10].

III. EXPERIMENTS

This section studies the performance and isolation
of container-based and hypervisor-based virtualization.
We performed several experiments with the current
linux container-based virtualization implementations: Linux
VServer, OpenVZ and LXC. We chose Xen as the represen-
tative of hypervisor-based virtualization, because it is con-
sidered one of the most mature and efficient implementations
of this kind of virtualization [21].

Our experimental setup consists of four identical Dell
PowerEdge R610 with two 2.27GHz Intel Xeon E5520
processors (with 8 cores each), 8M of L3 cache per core,
16GB of RAM and one NetXtreme II BCM5709 Gigabit
Ethernet adapter. All nodes are inter-connected by a Dell
PowerConnect 5548 Ethernet switch. The Ubuntu 10.04 LTS
(Lucid Lynx) Linux distribution was installed on all host
machines and the default configurations were maintained,
except for the kernel and packages that were compiled in
order to satisfy the virtualization systems’ requirements. We
know that different versions of the kernel may introduce
gains or losses of performance that would influence the
experiments results. Hence, we took care of compiling
the same kernel version for all systems. We chose the
kernel version 2.6.32-28, because it has support to all sys-
tems’ patches and configurations. Therefore, for OpenVZ,
we patched the kernel (2.6.32-feoktistov) and installed the
package vzctl (3.0.23-8), which is necessary to manage the
OpenVZ containers. We have compiled the OpenVZ kernel
with the official configuration file (.config) suggested by the
OpenVZ developing team [9], in order to ensure that all
OpenVZ kernel options were enabled. For Linux-VServer,
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we also patched the kernel (2.3.0.36.29.4) and installed
the package util-vserver (0.30.216 r2842-2) to control the
Linux-VServer containers. The LXC already has a mainline
implementation in the official kernel source. In that way,
we just installed the LXC toolkit (0.6.5-1) and ensure that
all requirements present by lxc-checkconfig tool were met.
Finally, for Xen, we compiled and installed the kernel (xen-
4.1.2) and tools provided by the Xen package.

The rest of this section presents the results of our evalu-
ation of all linux container-based systems.

A. Computing Performance

To evaluate the computing performance on a single com-
puter node, we selected the LINPACK benchmark [22].
It consists of a set of Fortran subroutines that analyzes
and solves linear equations by the least squares method.
The LINPACK benchmark runs over a single processor and
its results can be used to estimate the performance of a
computer in the execution of CPU-intensive programs. We
ran LINPACK for matrices of order 3000 in all container-
based system and compare them with Xen. As shown in Fig-
ure 2(a), all container-based system obtained performance
results similar to native (there is no statistically significant
difference between the results). We believe that it is due
to the fact that there are no influence of the different CPU
schedulers when a single CPU-intensive process is run in
a single processor. The results also show that Xen was not
able to achieve the same performance, presenting a average
overhead of 4.3%.

B. Memory Performance

The memory performance on a single node was evaluated
with STREAM [23], a simple synthetic benchmark program
that measures sustainable memory bandwidth. It performs
four type of vector operations (Add, Copy, Scale and Triad),
using datasets much larger than the cache memory available
in the computing environment, which reduces the waiting
time for cache misses and avoid memory reuse.

The results are shown in Figure 2(b). As can observed,
container-based and native systems present similar perfor-
mance, regardless of the vector operation. This is due to the
fact that container-based systems have the ability to return
unused memory to the host and other containers, enabling
better use of memory. The worst results were observed in
Xen, which presented an average overhead of approximately
31% when compared to the native throughput. This overhead
is caused by the hypervisor-based virtualization layer that
performs memory accesses translation, resulting in loss of
performance. Also, Xen shows the problem of double-cache,
i.e., the same blocks are used by the host and the virtual
machine.

C. Disk Performance

The disk performance was evaluated with the IOzone
benchmark [24]. It generates and measures a variety of file
operations and access patterns (such as Initial Write, Read,

Re-Read and Rewrite). We ran the benchmark with a file
size of 10GB and 4KB of record size.

Closer inspection in container-based systems shown in
Figure 2(c) revels that both LXC and Linux-VServer had
a similar result for read and re-read operations. Otherwise
for write operations, where the VServer slightly exceeds the
native performance, and LXC that reaches a near-native per-
formance. The same behavior obtained for write operations
regarding to Linux-VServer were similar as describe in [25].
Comparing these results with OpenVZ, we observed a gain
of performance. We believe that it is due the I/O scheduler
used by the different systems. While LXC and Linux-
VServer use the ”deadline” linux scheduler [26], OpenVZ
uses CFQ scheduler in order to provide the container disk
priority functionality. The ”deadline” scheduler imposes a
deadline on all I/O operations to ensure that no request
gets starved, and aggressively reorders requests to ensure
improvement in I/O performance. The worst result was
observed in Xen for all I/O operations due to the para-
virtualized drivers. These drivers are not able to achieve a
high performance yet.

D. Network Performance

The network performance was evaluated with the NetPIPE
(Network Protocol Independent Performance Evaluator) [27]
benchmark. NetPIPE is a tool for measurement of network
performance under a variety of conditions. It performs sim-
ple tests such as ping-pong, sending messages of increasing
size between two processes, either through a network or a
multiprocessor architecture. The message sizes are chosen
and sent at regular intervals to simulate disturbances and
provide a complete test of the communication system. Each
data point involves many ping-pong tests to provide accurate
time measurements, allowing the calculation of latencies.

Figure 3 shows the comparison of the network bandwidth
in each virtualization system. The Linux-VServer obtained
similar behavior to the native implementation, followed by
LXC and OpenVZ. The worst result was observed in Xen.
Its average bandwidth was 41% smaller the native, with a
maximum degradation of 63% for small packets. Likewise,
the network latency presented in Figure 4 shows that Linux-
VServer has near native latency. The LXC again has a
great score, with a very small difference when compared
to Linux-VServer and native systems, followed by OpenVZ.
The worst latency was observed in Xen.

These results can be explained due to different implemen-
tations of the network isolation of the virtualization systems.
While Linux-VServer does not implement virtualized net-
work devices, both OpenVZ and LXC implement network
namespace that provides an entire network subsystem. We
did not configure a real network adapter in OpenVZ system,
as described in Section II, because it would reduce the
scalability due the limited number of network adapter that
normally exist in host machine. The Xen network perfor-
mance degradation is caused by the extra complexity of
transmit and receive packets. The long data transfer path
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(b) Memory throughput using STREAM.
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(c) Disk throughput using IOZone.

Figure 2. Performance evaluation for different micro-benchmarks

between the guests and the hypervisor adversely impact the
throughput [28].
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Figure 3. Network bandwidth using NetPIPE.

E. Performance Overhead in HPC Applications
This section presents an analysis of the performance

overhead in container-based systems for HPC applications.
For that, we conducted experiments using the NPB bench-
mark suite [14]. NPB is derived from computational fluid
dynamics (CFD) applications and consist of five kernels (IS,
EP, CG, MG, FT) and three pseudo-applications (BT, SP,
LU).

The first experiment aimed to evaluate the performance
overhead of the virtualization system in a singlenode envi-
ronment. Figure 5 shows the results for each NPB bench-
mark using its OpenMP implementation. In all cases, the
container-based systems obtained execution times very close
to the native system. However, among the container-based
systems evaluated, OpenVZ had the worst performance,
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Figure 4. Network latency using NetPIPE.

specially for the benchmarks BT and LU. This is due to
these benchmarks make intensive use of memory and cause
many cache misses and some implementations of container-
based systems, such as OpenVZ, have limited cache memory
blocks. Also, Xen shows the problem of double-cache, as
described in Section III-B. The results of Xen show that it
was only able to achieve near native performance for CPU-
intensive benchmarks, such as EP, FT and IS.

When evaluating a multinode, we can see in Figure
6 differences become more evident, since several of the
benchmarks used are tests that include network, such as
CG, FT and MG. The Xen obtained the worst performance
among all the virtualization systems probably due to network
driver virtualized, as observed in network performance tests.

In singlenode, the differences are not so expressive, with
some differences only in benchmarks that used intensively
the cache. When evaluating a multinode environment, the
influence of the network can be noted as the primary metric
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Figure 6. Multi node comparison of NPB performance overhead.

to be discussed, since the network has a direct impact in
isolation.

F. Isolation
To analyze the best results of isolation between the

different systems, we use the Isolation Benchmark Suite
(IBS) [29] that demonstrates how much a virtualization
system can limit the impact of a guest with other guest
running on a single host machine. This set of benchmarks
includes six different stress tests: CPU intensive test, mem-
ory intensive test, a fork bomb, disk intensive test and two
network intensive tests (send and receive). To perform the
isolation tests, we construct environments with two guests
on the same host machine, and the resources of the host

machine were divided by two and assigned on each guest.
Hence. we will present our detailed analysis of the isolation
performance for Linux-VServer, OpenVZ, LXC and Xen.
The resource limits of each environment were set based
on techniques available for each virtualization system. In
both Linux-VServer and LXC, the resource limits have been
set up through the cgroups, which restrict the usage of the
defined CPU’s and the memory consumption for each guest.
In OpenVZ we used the vzsplit tool that divides the total
amount of available resources between guests. Lastly, in Xen
environment we create two guest virtual machines on the
host machine to reflect the configuration of the container-
based environments.

First of all, we collected the execution time of a given
baseline application upon one of the guest, we chose the
LU pseudo application of NPB benchmark. After completing
the baseline measurements, we ran the baseline application
on all guests an then in addition introduce a stress test in
one of the guest. We collected the application execution
time of the well-behaved guest. The IBS isolation metric
was obtained comparing the application execution time that
was ran into one guest against the application execution
time obtained from the well-behaved guest while the stress
test was performed. Finally, we quantify the performance
degradation of the well-behaved guest.

As shown in Table I, all systems had no impact in CPU
intensive test. It demonstrates that the CPU affinity config-
ured by cgroup, and the VCPU Affinity technique used in
OpenVZ environment are working well. However, all others
resources when stressed had some impact in well-behaved
guests. As described in Section II, all virtual instances in
container-based systems shares a single operating system
kernel. Hence, we supposed that while the kernel needs to
handle instruction calls from the stressed guest, it is unable
to handle instruction calls from the well-behaved guest.
This behavior could has influenced the performance for all
virtualization systems while the memory, disk and network
tests were performed. The fork bomb test is a classic test
that loops creating new child processes until there are no
resources available. The fork bomb test demonstrates that
exist security failures on LXC system, due to the impos-
sibility to limit the number of processes by cgroups. Both
Linux-VServer and OpenVZ use their own implementations
in order to limit the number of processes. As result, the
well-bahaved guests are not impacted by the stress test. Our
tests also demonstrate that the Xen has the better isolation,
due to non shared operating system.

IV. RELATED WORK

Many papers have studied the performance overheads of
virtualization technologies, a few of them focusing on HPC
environments. Walters et al. [7] evaluated the performance
of VMware Server, Xen, and OpenVZ for HPC, using the
NPB benchmark (using both OpenMP and MPI) and micro-
benchmarks for network and disk. In their experiments, both
Xen and OpenVZ achieved near-native performance for the
CPU intensive benchmarks, but OpenVZ outperformed Xen
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Table I
PERFORMANCE ISOLATION FOR LU APPLICATION. THE RESULTS

REPRESENT HOW MUCH THE APPLICATION PERFORMANCE IS IMPACTED

BY DIFFERENT STRESS TESTS IN ANOTHER VM/CONTAINER. DNR
MEANS THAT APPLICATION WAS NOT ABLE TO RUN.

LXC OpenVZ VServer Xen

CPU Stress 0 0 0 0

Memory 88.2% 89.3% 20.6% 0.9%

Disk Stress 9% 39% 48.8% 0

Fork Bomb DNR 0 0 0

Network Receiver 2.2% 4.5% 13.6% 0.9%

Network Sender 10.3% 35.4% 8.2% 0.3%

for the network intensive ones. VMware Server had the
worst performance in all cases. Their experiments were only
focused on performance.

Regola and Ducom [6] evaluated KVM, Xen and OpenVZ
for HPC. They also used the NPB benchmark (using both
OpenMP and MPI) and micro-benchmarks for network and
disk. Their experiments included instances of the Amazon’s
EC2 ”Cluster Compute Node” service, which is supposed to
use Xen as underlying hypervisor and a 10 Gbit/s Ethernet
for high throughput communication. Again, all virtualization
systems obtained near-native performance for CPU intensive
benchmarks. OpenVZ had the best performance for I/O in-
tensive benchmarks. Their experiments using EC2 instances
showed that the Amazon’s service was not able to delivery
the full network capacity, resulting in a poor performance
in the network benchmark. No experiments to evaluate the
isolation were performed for any of the systems.

Soltesz et al. [25] presented the design and implemen-
tation of Linux-VServer and compared it with Xen. They
did not use any HPC workloads in this evaluation. Instead,
their experiments used a benchmark for database servers and
micro-benchmarks for CPU, disk and network. Their results
showed that Linux-VServer provides comparable support for
isolation and superior performance than Xen. The network
performance in Linux-VServer was significantly better than
in Xen.

It seems to be a consensus that today’s hypervisor-
based virtualization systems perform well for CPU intensive
applications, but exhibit a high overhead when handling
I/O intensive applications, especially the network intensive
ones [30], [31]. However, there are some alternatives to
avoid the high overhead in network operations in virtualized
systems. For example, Liu et al. [30] presented the idea of
VMM-bypass, which extends the original idea of OS-bypass
to VM environments. Basically, it allows time-critical I/O
operations to be carried out directly in guest VMs without
any involvement of the VMM. When applied to networking,
VMM-bypass allows, for example, the direct access to high
performance network devices, such as InfiniBand, resulting
in a near-native network performance [30]. We conducted
our experiments without any special configuration to bypass
VMM for I/O operations in Xen.

As discussed early in this paper, isolation is an important
concern in virtualization for HPC environment, specially for
the case of sharing multicore machines between multiples
users. However, we found little work evaluating it. Deshane
et al. [32] proposed the Isolation Benchmark Suite (IBS) that
quantifies the degree to which a virtualization system limits
the impact of a misbehaving VM on other well-behaving VM
running on the same physical machine. They also evaluated
the performance isolation for VMware Workstation, Xen and
OpenVZ. We reproduced their experiments in this paper, but
this time including Linux-VServer and LXC, and obtained
results similar to theirs, i.e., hypervisor-based virtualization
provides better isolation than container-based. Matthews et
al. [15] also used IBS to compare the isolation performance
of Xen and KVM. They reported that KVM had an unex-
pectedly poor performance for disk and network isolation
tests.

We believe our work is complementary to the works
presented in this section. We evaluated the performance
and isolation of container-based virtualization for HPC en-
vironments. Our experiments cover all the important parts
of an HPC platform (CPU, memory, disk and network)
and the main software technologies for HPC (OpenMP and
MPI). Moreover, this is the first work to perform an in-
depth performance evaluation of LXC, including isolation
measurements and tests with typical HPC workloads. Also,
to the best of our knowledge, this is the first work to
perform a comparison of the three current container-based
implementation: LXC, OpenVZ and Linux-VServer.

V. CONCLUSION AND FUTURE WORK

We presented container-based virtualization as an
lightweight alternative to hypervisors in HPC context. As we
have shown, there are useful usage cases in HPC where both
performance and isolation are need. In that way, we con-
ducted experiments to evaluate the current Linux container-
based virtualization implementations and compare them to
Xen, a commonly used hypervisor-based implementation.

HPC clusters are typically shared among many users or
institutes, which may have different requirements in terms
of software packages and configurations. As presented, such
platforms might benefit from using virtualization technolo-
gies to provide better resource sharing and custom environ-
ments. However, HPC will only be able to take advantage
of virtualization systems if the fundamental performance
overhead (such as CPU, memory, disk and network) is
reduced. In that sense, we found that all container-based
systems have a near-native performance of CPU, memory,
disk and network. The main differences between them lies in
the resource management implementation, resulting in poor
isolation and security. While LXC controls its resources only
by cgroups, both Linux-VServer and OpenVZ implement
their own capabilities introducing even more resource limits,
such as the number of processes, which we have found to
be an important contribution to give more security to the
whole system. We suppose this capability will be introduced
in cgroups in a near future.
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Careful examination of the isolation results reveals that
all container-based systems are not mature yet. The only re-
source that could be successfully isolated was CPU. All three
systems showed poor performance isolation for memory,
disk and network. However, for HPC environments, which
normally does not require the shared allocation of a cluster
partition to multiple users, this type of virtualization can be
very attractive due to the minimum performance overhead.

Since the HPC applications were tested, thus far, LXC
demonstrates to be the most suitable of the container-based
systems for HPC. Despite LXC does not show the best per-
formance of NPB in multinode evaluation, its performance
issues are offset by the easy of and management. However,
some usual virtualization techniques that are useful in HPC
environments, such as live migration, checkpoint and re-
sume, still need to be implemented by the kernel developer
team.

As future work, we plan to study the performance and
isolation of container-based systems for other kind of work-
loads, including I/O bound applications. For example, data-
intensive applications such as those based on the MapReduce
model.
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