THE

ELEMENTS
OF

PROGRAMMING
STYLE

SECOND EDITION

Kernighan and Plauger

THE
ELEMENTS
OF
PROGRAMMING
STYLE

Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey

P. J. Plauger

Yourdon, Inc.
New York, New York

McGRAW-HILL BOOK COMPANY

New York St. Louts San Francisco Auckland Bogota
l.ondon Madnd Mexico Montreal New Delh
Panama Pans Sao Paulo Singapore Sydney Tokyo

Library of Congress Cataloging in Publication Data

Kernighan, Brian W.
The elements of programming style.

Bibliography: p.
Includes index.
1. Electronic digital computers— Programming.
I. Plauger, P.J., date joint author.
II. Title.
QA76.6.K47 1978 001.6'42 78-3498
ISBN 0-07-034207-5

The Elements of Programming Style

Copyright © 1978, 1974 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of Bell Laboratories.

Printed in the United States of America.

121314 15D0D0O 89

This book was set in Times Roman and Courier 12 by the authors, using a Graphic Sys-
tems phototypesetter driven by a PDP-11/70 running under the UNIX operating system.

UNIX is a Trademark of Bell Laboratories.

We are deeply indebted to the following authors and publishers for their kind permission
to reproduce excerpts from the following copyrighted material:

R V Andree, J] P Andree, and D D Andree, Comp Prog Techniq Analysis, and Mathematcs. Copyright ©
1973 by R V Andree By permission of Prentice-Hall, Inc

F Bates and M L Douglas, Programming Language/One with Structured Programming (Third Edition) Copyright © 1975 by
Prentice-Hall, Inc Reprinted by permission

C R Bauer and A P Peluso, Basic Fortran 1V with Watfor & Wayfiv. Copyright © 1974 by Addison-Wesley Publishing Com-
pany, Inc By permission

C R Bauer, A P Peluso, and D A Gomberg, Basic PL/I Programming. Copyright © 1968 by Addison-Wesley Publishing
Company, Inc By permission

M Bohl and A Walter, Introduction to PL/I Programming and PL/C. Copyright © 1973 by Science Research Associates, Inc
Reprinted by permission of the publisher

V J Calderbank, A Course on Programming in Fortran 1V. Copyright ® 1969 by Chapman and Hall, Ltd By permission

Paul M Chirlian, Introduction to Fortran IV Copyright © 1973 by Academic Press By permission

Frank J Clark, Introduction to PL/I Programming. Copyright © 1971 by Allyn and Bacon, Inc By permission

Computerworld Copyright © 1972 by Computerworid, Newton, Mass 02160 By permission

Dqlqmauonﬁ’ Copyright © 1972, 1973 by Technical Publishing Company, Greenwich, Connecticut 06830 Reprinted with per-
mission

D F DeTar, Principles of Fortran Programming. Copyright © 1972 by W A Benjamin, Inc, Menlo Park, California By per-
mission of the publisher

H Dinter, Introduction to Computing. Copyright © 1973, Heinz Dinter By permission of The Macmillan Company, New York

D Dmitry and T Mott, Jr, Introduction to Forran IV Programming Copyright © Holt, Rinehart and Winston, Inc, 1966 By
permission

V T Dock, Fortran 1V Programming, Copyright © 1972 by Reston Publishing Company, Inc By permission

W S Dorn, G G Bitter, and D L Hector, Computer Applications for Calculus Copyright © Prindle, Weber & Schmidt, Inc,
1972 By permission

W S Dorn and D D McCracken, Numerical Methods with Fortran 1V Case Studies. Copyright © 1972 by John Wiley & Sons,
Inc By permission

L E Edwards, PL/I for Business Applications. Copyright © 1973 by Reston Publishing Company, Inc By permission
M V Farina, Fortran IV Self-Taught. Copyright © Prentice-Hall, Inc, 1966 By permission
B S Gottfried, Programming with Fortran 1V Copyright ©® 1972 by Quantum Publishers, Inc By permission

Gabriel F Groner, PL/I Prog 1n Technological Applications. Copyright © 1971 by John Wiley and Sons, Inc Reprinted
by permission of the publisher

J N Haag, Comprehensive Standard Fortran Prog Copyright © Hayden Book Company, Inc, 1969 By permission
J K Hughes, PL/l Programming. Copyright ® 1973 by John Wiley & Sons, Inc By permission

J K Hughes and J | Michtom, A Structured Approach to Programming Copyright © 1977 by Prentice-Hall, Inc Reprinted by
permission

R J Kochenburger and C J Turcio, /ntroduction to PL/l and PLIC Programmung - Instructor’s Guide Copyright © 1974 by John
Wiley & Sons, Inc By permission

C B Kreitzberg and B Shneiderman, The Ele of Fortran Style. Copyright © 1972 by Harcourt Brace Jovanovich, Inc By
permission

J L Kuester and J] H Mize, Opnmization Techniques with Fortran Copyright © 1973 by McGraw-Hill, Inc By permission

S_ S Kuo, Computer Applications of Numerical Methods. Copyright © Addison-Wesley Publishing Company, 1972 By permis-
sion

H L Ledgard, Programming Proverbs Copyright ® 1975 by Hayden Book Company By permission

R S Ledley, Fortran IV Programming. Copyright © McGraw-Hill, Inc, 1966 By permission

G O Manifold, Calculating With Fortran Copyright ©® 1972 by Charles E Merrill Publishing Co , Inc By permission

W A Manning and R S Garnero, A Fortran IV Problem Solver. Copyright ® McGraw-Hill, Inc, 1970 By permission

E Marxer and D Hartford, Elements of Computer Progrqm,mng: Fortran. Copyright © 1973 Published by Delmar Publishers, a

Puhlichi

division of Litton Educational P Inc By per

D D McCracken, A Guide to Fortran IV Programnung Copyright © 1965 by John Wiley and Sons, Inc Reprinted by permis-
sion of the publisher

vi THE ELEMENTS OF PROGRAMMING STYLE

D D McCracken, 4 Guide to Fortran IV Programming, Second Edition Copyright © 1972 by John Wiley and Sons, Inc Re-
printed by permission of the publisher

C L McGowan and J R Kelly, Top-Down Structured Programming Techniques Copyright © 1975 by Litton Educational Pub-
lishing, Inc Reprinted by permission of Van Nostrand Reinhold Company, a division of Litton Educational Publishing, Inc

L P Meissner, The Science of Computing. Copyright © 1974 by Wadsworth Publishing Company, Inc By permission
H Mullish, Modern Programmung: Fortran IV Copyright © 1968 by John Wiley & Sons, Inc By permission

Paul W Murrill and Cecil L Smith, Fortran IV Programmung for Engineers and Scienusts, Second Edinon (Intext) Copyright ©
1973 by Harper & Row, Publishers, Inc Used by permission of Harper & Row, Publishers

Paul W Murrill and Cecil L Smith, PL/I Programming (Intext) Copyright © 1973 by Harper & Row, Publishers, Inc Used by
permission of Harper & Row, Publishers

R L Nolan, Fortran 1V Computing and Applications Copyright © Addison-Wesley Publishing Company, 1971 By permission

E 1 Organick and L P Meissner, Fortran IV (Second Edion) Copyright © 1974 by Addison-Wesley Publishing Company,
Inc By permission

S V Pollack, 4 Guide to Fortran 1V. Copyright © Columbia University Press, 1965 By permission

Seymour V Pollack and Theodor D Sterling, A Guide ro PL/I Copyright © 1969 by Holt, Rinehart and Winston Reprinted
by permission of Holt, Rinehart and Winston

Seymour V Pollack and Theodor D Sterling, 4 Guide to PL/I (Second Edion) Copyright © 1976 by Holt, Rinehart and Wins-
ton Reprinted by permission of Holt, Rinehart and Winston

Seymour V Pollack and Theodor D Sterling, Essentals of PL/I Copyright © 1974 by Holt, Rinehart and Winston Reprinted
by permission of Holt, Rinehart and Winston

A Ralston, Fortran 1V Prog A Concise L. Copyright © McGraw-Hill, Inc, 1971 By permission

J K Rice and J R Rice, Introduction to Computer Science Copyright © 1969 by Holt, Rinehart and Winston, Inc Reprinted
by permission of Holt, Rinehart and Winston, Inc

G L Richardson and S J Birkin, Program Solving Using PL/IC Copyright © 1975 by John Wiley & Sons, Inc By permission
J S Roper, PL/l in Easy Stages Copyright © 1973 by Paul Elek (Scientific Books) Ltd By permis~.on
W P Rule, Fortran 1V Programnung Copyright © 1968 by W P Rule Prindle, Weber & Schmidt, Inc By permission

School Mathematics Study Group, Algorithms, Computation and Mathematics, Fortran Supplement, Student Text (Revised Edition)
Copyright © Stanford University, 1966 By permission No endorsement by SMSG is implied

G L Scott and J Scott, PL/I, A Self-Instructional Manual Copyright © 1969 by Dickenson Publishing Company By permis-
sion

R C Scott and N E Sondak, PL/I for Programmers Copyright © Addison-Wesley Publishing Company, 1970 By permission

Donald D Spencer, Programming with USA Standard Fortran and Fortran 1V Copyright © 1969 by Xerox Corporation Used by
permission of Ginn and Company (Xerox Corporation)

Donald D Spencer, Computers and Programming Guide For Engineers Copyright © 1973 by Howard W Sams & Co . Inc By
permission

R C Sprowls, Introduction to PL/I Programnung Copyright © 1969 by Harper & Row, Publishers, Inc By permission
R A Sternand N B Stern, Principles of Data Processing Copyright © 1973 by John Wiley & Sons, Inc By permission
F Stuart, Fortran Programming Copyright © 1969 by Fredric Stuart Reprinted by permission of John Wiley and Sons. Inc

A Vazsonyi, Problem Solving by Digital Computers with PL/l Prog Copyright © Prentice-Hall, Inc, 1970 By permis-
sion

T M Walker and W W Cotterman, An Introduction to Computer Science and Algorithmuc Processes Copyright © 1971 by Allyn
and Bacon, Inc Used by permission

G M Weinberg, PL/I Programmuing* A Manual of Style Copyright © McGraw-Hill, Inc, 1970 By permission

b A o

Preface to the Second Edition
Preface to the First Edition

Introduction

Expression

Control Structure

Program Structure

Input and Output

Common Blunders

Efficiency and Instrumentation
Documentation

Epilogue
Supplementary Reading
Summary of Rules
Index

vii

CONTENTS

101
123
141

155
157
159
163

PREFACE to the Second Edition

The practice of computer programming has changed since The Llements of Pro-
gramming Style first appeared. Programming style has become a legitimate topic of
discussion. After years of producing ‘‘write-only code,”” students, teachers, and
computing professionals now recognize the importance of readable programs. There
has also been a widespread acceptance of structured programming as a valuable cod-
ing discipline, and a growing recognition that program design is an important phase,
too often neglected in the past.

We have revised The Elements of Programming Style extensively to reflect these
changes. The first edition avoided any direct mention of the term ‘‘structured pro-
gramming,”’ to steer well clear of the religious debates then prevalent. Now that the
fervor has subsided, we feel comfortable in discussing structured coding techniques
that actually work well in practice.

The second edition devotes a whole new chapter to program structure, showing
how top-down design can lead to better organized programs. Design issues are dis-
cussed throughout the text. We have made considerable use of pseudo-code as a
program development tool.

We have also rewritten many of the examples presented in the first edition, to
reflect (we hope) a greater understanding of how to program well. There are new
examples as well, including several from the first edition which now serve as models
of how nor to do things. New exercises have been added. Finally, we have
extended and generalized our rules of good style.

We are once again indebted to the authors and publishers who have graciously
given us permission to reprint material from their textbooks. Looking back on some
of our own examples makes us realize how demanding an effort good programming
is.

We would also like to thank friends who read the second edition in draft form.
In particular, Al Aho, Jim Blue, Stu Feldman, Paul Kernighan, Doug Mcliroy,
Ralph Muha, and Dick Wexelblat provided us with valuable suggestions.

Brian W. Kernighan

P. J. Plauger

PREFACE to the First Edition

Good programming cannot be taught by preaching generalities. The way to
learn to program well is by seeing, over and over, how real programs can be
improved by the application of a few principles of good practice and a little common
sense. Practice in critical reading leads to skill in rewriting, which in turn leads to
better writing.

This book is a study of a large number of ‘‘real’’ programs, each of which pro-
vides one or more lessons in style. We discuss the shortcomings of each example,
rewrite it in a better way, then draw a general rule from the specific case. The
approach is pragmatic and down-to-earth; we are more interested in improving
current programming practice than in setting up an elaborate theory of how pro-
gramming should be done. Consequently, this book can be used as a supplement in
a programming course at any level, or as a refresher for experienced programmers.

The examples we give are all in Fortran and PL/I, since these languages are
widely used and are sufficiently similar that a reading knowledge of one means that
the other can also be read well enough. (We avoid complicated constructions in
either language and explain unavoidable idioms as we encounter them.) The princi-
ples of style, however, are applicable in all languages, including assembly codes.

Our aim is to teach the elements of good style in a small space, so we concen-
trate on essentials. Rules are laid down throughout the text to emphasize the les-
sons learned. Each chapter ends with a summary and a set of ‘‘points to ponder,”
which provide exercises and a chance to investigate topics not fully covered in the
text itself. Finally we collect our rules in one place for handy reference.

A word on the sources of the examples: all of the programs we use are taken
from programming textbooks. Thus, we do not set up artificial programs to illus-
trate our points — we use finished products, written and published by experienced
programmers. Since these examples are typically the first code seen by a novice pro-
grammer, we would hope that they would be models of good style. Unfortunately,
we sometimes find that the opposite is true — textbook examples often demonstrate
the state of the art of computer programming all too well. (We have done our best
to play fair — we don’t think that any of the programs are made to look bad by
being quoted out of context.)

Let us state clearly, however, that we intend no criticism of textbook authors,
either individually or as a class. Shortcomings show only that we are all human, and
that under the pressure of a large, intellectually demanding task like writing a pro-
gram or a book, it is much too easy to do some things imperfectly. We have no

xi

xii THE ELEMENTS OF PROGRAMMING STYLE

doubt that a few of our ‘‘good’ programs will provide ‘‘bad’’ examples for some
future writer — we hope only that he and his readers will learn from the experience
of studying them carefully.

A manual of programming style could not have been written without the
pioneering work of numerous people, many of whom have written excellent pro-
gramming textbooks. D. D. McCracken and G. M. Weinberg, for instance, have
long taught the virtues of simplicity and clarity. And the work of E. W. Dijkstra and
Harlan Mills on structured programming has made possible our rules for properly
specifying flow of control. The form and approach of this book has been strongly
influenced by The Elements of Style by W. Strunk and E. B. White. We have tried to
emulate their brevity by concentrating on the essential practical aspects of style.

We are indebted to many people for their help and encouragement. We would
like especially to thank the authors and publishers who gave us permission to repro-
duce the computer programs used in this text. Their cooperation is greatly appreci-
ated.

Our friends and colleagues at Bell Laboratories provided numerous useful
suggestions, which we have incorporated, and saved us from more than one embar-
rassing blunder, which we have deleted. In particular, V. A. Vyssotsky bore with us
through several revisions; for his perceptive comments and enthusiastic support at
every stage of this book’s evolution (and for several aphorisms we have shamelessly
stolen) we are deeply grateful. We would also like to single out A. V. Aho, M. E.
Lesk, M. D. Mcliroy, and J. S. Thompson for the extensive time and assistance they
gave to this project.

We were able to type the manuscript directly into a PDP 11/45, edit the source,
check the programs, and set the final version in type — all with the help of a
uniquely flexible operating system called UNIX. K. L. Thompson and D. M. Ritchie
were the principal architects of UNIX; besides reading drafts, they helped us get the
most out of the system while we were working on this book. J. F. Ossanna wrote
the typesetting program and made several modifications for our special needs. We
thank them.

Brian W. Kernighan

P. J. Plauger

THE
ELEMENTS
OF
PROGRAMMING
STYLE

CHAPTER 1: INTRODUCTION

Consider the program fragment

DO 14 I=1,N
DO 14 J=1,N
14 V(I,3)=(I/J)*(J/I)

A modest familiarity with Fortran tells us that this doubly nested DO loop assigns
something to each element of an N by N matrix V. What are the values assigned? I
and J are positive integer variables and, in Fortran, integer division truncates
toward zero. Thus when I is less than J, (I/J) is zero; conversely, when J is less
than I, (J/I) is zero. When I equals J, both factors are one. So (I/J)*(J/I)
is one if and only if I equals J; otherwise it is zero. The program fragment puts
ones on the diagonal of V and zeros everywhere else. (V becomes an identity
matrix.) How clever!
Orisit?
Suppose you encountered this fragment in a larger program. If your knowledge
of Fortran is sufficiently deep, you may have enjoyed the clever use of integer divi-
sion. Possibly you were appalled that two divisions, a multiplication, and a conver-
sion from integer to floating point were invoked when simpler mechanisms are
available. More likely, you were driven to duplicating the reasoning we gave above
to understand what is happening. Far more likely, you formed a vague notion that
something useful is being put into an array and simply moved on. Only if motivated
strongly, perhaps by the need to debug or to alter the program, would you be likely
to go back and puzzle out the precise meaning.
A better version of the fragment is
C MAKE V AN IDENTITY MATRIX
DO 14 I = 1,N
DO 12 J = 1,N
12 v(I,J3) = 0.
14 V(I,I) = 1.0

0

This zeros each row, then changes its diagonal element to one. The intent is now
reasonably clear, and the code even happens to execute faster. Had we been pro-
gramming in PL/I, we could have been more explicit:

2 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

/* MAKE V AN IDENTITY MATRIX =%/
vV =20.0;
DO I =1 TO N;
vV(I,I) =1.0;
END;

In either case, it is more important to make the purpose of the code unmistak-
able than to display virtuosity. Even storage requirements and execution time are
unimportant by comparison, for setting up an identity matrix must surely be but a
small part of the whole program. The problem with obscure code is that debugging
and modification become much more difficult, and these are already the hardest
aspects of computer programming. Besides, there is the added danger that a too-
clever program may not say what you thought it said.

Write clearly — don’t be too clever.

Let’s pause for a moment and look at what we’ve done. We studied part of a
program, taken verbatim from a programming textbook, and discussed what was
good about it and what was bad. Then we made it better. (Not necessarily perfect
— just better.) And then we drew a rule or a general conclusion from our analysis
and improvements, a rule that would have sounded like a sweeping generality in the
abstract, but which makes sense and can be applied once you’ve seen a specific case.

The rest of the book will be much the same thing — an example from a text,
discussion, improvements, and a rule, repeated over and over. When you have
finished reading the book, you should be able to criticize your own code. More
important, you should be able to write it better in the first place, with less need for
criticism.

We have tried to sort the examples into a logical progression, but as you shall
see, real programs are like prose — they often violate simultaneously a number of
rules of good practice. Thus our classification scheme may sometimes seem arbi-
trary and we will often have to digress.

Most of the examples will be bigger than the one we just saw, but not exces-
sively so; with the help of our discussion, you should be able to follow them even if
you’re a beginner. In fact, most of the bigger programs will shrink before your very
eyes as we modify them. Sheer size is often an illusion, reflecting only a need for
improvement.

The examples are all in either Fortran or PL/I, but if one or both of these
languages is unfamiliar, that shouldn’t intimidate you any more than size should.
Although you may not be able to write a PL/I program, say, you will certainly be
able to read one well enough to understand the point we are making, and the prac-
tice in reading will make learning PL/I that much easier.

For example, here is a small part of a PL/I program that we will discuss in
detail in Chapter 4:

CHAPTER 1 INTRODUCTION 3

IF CTR > 45 THEN GO TO OVFLO;
ELSE GO TO RDCARD;
OVFLO:

The first GOTO simply goes around the second GOTO, which seems a bit disorgan-
ized. If we replace > by <=, we can write

IF CTR <= 45 THEN GOTO RDCARD;
OVFLO:

One less statement, simpler logic, and, as it happens, we no longer need the label
OVFLO. The lesson? Don’t branch around branches: turn relational tests around if
it makes the program easier to understand. We will soon see a Fortran example of
exactly the same failing, which brings up an important point: although details vary
from language to language, the principles of style are the same. Branching around
branches is confusing in any language. So even though you program in Cobol or
Basic or assembly language or whatever, the guidelines you find here still apply.

It might seem that we’re making a great fuss about a little thing in this last
example. After all, it’s still pretty obvious what the code says. The trouble is,
although any single weakness causes no great harm, the cumulative effect of several
confusing statements is code that is simply unintelligible.

Our next example is somewhat larger:

The following is a typical program to evaluate the square root (B) of a number (X):

READ (5,1)X

1 FORMAT (F10.5)
A=X/2

2 B=(X/A+A)/2
C=B-A
IF(C.LT.0)C=-C
IF(C.LT.10.E-6)GOTO 3
A=B
GOTO 2

3 WRITE(6,1)B
STOP
END

Because it is bigger, we can study it on several levels and learn something from
each. For instance, before we analyze the code in detail, we might consider whether
this program is truly ‘‘typical.”” It is unlikely that a square root routine would be
packaged as a main program that reads its input from a file — a function with an
argument would be far more useful. Even assuming that we really do want a main
program that computes square roots, is it likely that we would want it to compute
only one before stopping?

This unfortunate tendency to write overly restricted code influences how we
write programs that are supposed to be general. Soon enough we shall meet pro-
grams designed to keep track of exactly seventeen salesmen, to sort precisely 500
numbers, to trace through just one maze. We can only guess at how much of the
program rewriting that goes on every day actually amounts to entering parameters
via the compiler.

4 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

Let us continue with the square root program. It is an implementation of
Newton’s method, which is indeed at the heart of many a library square root routine
(although we need not go into precisely how it works). With proper data, the
method converges rapidly. If X is negative, however, this program can go into an
infinite loop. (Try it.) A good routine would instead provide an error return or a
diagnostic message. And the program blows up in statement 2 if X is zero, a case
that must be treated separately. The square root of zero should be reported as zero.

Even for strictly positive values of X this program can give garbage for an
answer. The problem lies in the convergence test used:

C=B-A
IF(C.LT.0)C=-C
IF(C.LT.10.E-6)GOTO 3

To make effective use of the Fortran language, the second line should read
C = ABS(C)

To avoid having someone misread 10.E-6 as ‘‘10 to the minus sixth power,”’ the
constant in the third line should be 1.0E-5 or even 0.00001. And to say what is
meant without bombast, all three lines should be changed to

IF (ABS(B-A) .LT. 1.0E-5) GOTO 3

The test now reads clearly; it is merely wrong.

If X is large, it is quite possible that the absolute difference between successive
trial roots will never be less than the arbitrary threshold of 1.0E-5 unless it is
exactly zero, because of the finite precision with which computers represent
numbers. It is a delicate question of numerical analysis whether this difference will
always become zero. For small values of X, on the other hand, the criterion will be
met long before a good approximation is attained. But if we replace the absolute
convergence criterion by a test of whether the estimate is close enough relative to the
original data, we should get five place accuracy for most positive arguments:

C COMPUTE SQUARE ROOTS BY NEWTON’S METHOD
100 READ(5,110) X

110 FORMAT (F10.0)
c

IF (X .LT. 0.0) WRITE(6,120) X
120 FORMAT (1X, ’'SQRT(’, 1PE12.4, ') UNDEFINED')
c

IF (X .EQ. 0.0) WRITE(6,130) X, X
130 FORMAT (1X, 'SQRT(’, 1PE12.4, ') = ', 1PE12.4)
c

IF (X .LE. 0.0) GOTO 100
B = X/2.0
200 IF (ABS(X/B - B) .LT. 1.0E-5 % B) GOTO 300
B = (X/B + B) / 2.0
GOTO 200
300 WRITE(6,130) X, B
GOTO 100
END

The modified program is still not a typical square root routine, nor do we wish
to go into the detailed treatment of floating point arithmetic needed to make it one.
The original example is, however, typical of programs in general: it profits from

CHAPTER 1 INTRODUCTION 5

criticism and revision.

Let us conclude the chapter with another example that illustrates several fail-
ings. This program is a sorting routine.
DIMENSION N(500)
WRITE (6,6)
6 FORMAT (1H1,26HNUMBERS IN ALGEBRAIC ORDER)
DO 8 I=1,500
8 READ (5,7) N(I)
7 FORMAT (I4)
DO 10 K=1,1999
J=K-1000
DO 10 I-1,500
IF(N(I)-J3)10,9,10
10 CONTINUE
STOP
9 WRITE (6,95) N(I)
95 FORMAT (1H ,I4)
GO TO 10
END

The code suffers not only from lack of generality, but from an ill-advised algorithm,
some dubious coding practices, and even a typographical error. The line

Do 10 I-1,500

is wrong: the ‘="’ should be ‘‘=". The program was contrived in part to illustrate
that the range of a DO loop can be extended by a transfer outside and back, even
though in this case the inner DO loop and the code of the extended range can all be
better written in line as

DO 10 I = 1, 500

IF (N(I) .EQ. J) WRITE (6,95) N(I)
95 FORMAT (1X, I4)
10 CONTINUE

More to the point is the question of whether programmers should be
encouraged to use extended ranges in the first place. Jumping around unnecessarily
in a computer program has proved to be a fruitful source of errors, and usually indi-
cates that the programmer is not entirely in control of the code. The apparently ran-
dom statement numbers in this example are often a symptom of the same disorder.

The program has other flaws. It reads in 500 numbers, one per card, and sorts
them about as inefficiently as possible — by comparing each number with all
integers between —999 and +999. It does this once, for only one set of numbers,
then stops.

But wait. With an I4 input format, it is possible to read positive numbers as
large as 9999, since we can leave out the plus sign; the program as it stands will fail
to list four-digit numbers. To correct the oversight will slow the algorithm by a fac-
tor of more than five, without extending its generality in the least. Extending this
method to handle larger integers would slow it by orders of magnitude, and to ask it
to handle floating point numbers would be unthinkable.

We will not attempt to rewrite this code, since we disagree with its basic
approach. (Chapter 7 contains several better sorting programs.) We just want to

6 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

show that the same program can be viewed from different perspectives, and that the
job of critical reading doesn’t end when you find a typo or even a poor coding prac-
tice. In the chapters to come we will explore the issues touched on here and several
others that strongly affect programming style.

We begin, in Chapter 2, with a study of how to express individual statements
clearly. Writing arithmetic expressions and conditional (IF) statements is usually
the first aspect of computer programming that is taught. It is important to master
these fundamentals before becoming too involved with other language features.

Chapter 3 treats the control-flow structure of computer programs, that is, how
flow of control is specified through looping and decision-making statements. It also
shows how data can be represented to make programming as easy as possible, and
how data structure can be used to derive a clean control flow. Program structure is
covered in Chapter 4, how to break up a program into manageable pieces. Consid-
erable emphasis is given in these chapters to proper use of structured programming
and sound design techniques.

Chapter 5 examines input and output: how to render programs less vulnerable
to bad input data and what to output to obtain maximum benefit from a run. A
number of common blunders are studied in Chapter 6, and tips are given on how to
spot such errors and correct them.

Contrary to popular practice, efficiency and documentation are reserved for the
last two chapters, 7 and 8. While both of these topics are important and warrant
study, we feel they have received proportionately too much attention — particularly
in introductory courses — at the expense of clarity and general good style.

A few words on the ground rules we have used in criticizing programs:

(1) Programs are presented in a form as close to the original as our typescript per-
mits. Formatting, typographical errors, and syntax errors are as in the original.
(Exception: three PL/I programs have been translated from the 48-character set
into the 60-character set.)

(2) We regularly abstract parts of programs to focus better on the essential points.
We believe that the failings we discuss are inherent in the code shown, and not
caused or aggravated by abstracting. We have tried not to quote out of context.
We have tried throughout to solve essentially the same problem as the original
version did, so comparisons may be made fairly, even though this sometimes
means that we do not make all possible improvements in programs.

(3) We will not fault an example for using non-standard language features (for
example, mixed mode arithmetic in Fortran) unless the use is quite unusual or
dangerous. Most compilers accept non-standard constructions, and standards
themselves change with time. Remember, though, that unusual features are
rarely portable, and are the least resistant to changes in their environment.

Our own Fortran hews closely to the 1966 American National Standards Insti-
tute (ANSI) version, except for our use of quoted Hollerith strings (we refuse
to count characters). PL/I programs meet the standard set by IBM’s checkout
compiler, version 1, release 3.0. Although there are new versions of Fortran
and PL/I in sight which will make better programming possible in both of these

CHAPTER 1 INTRODUCTION 7

4)

&)

languages, they are not yet widespread, so we have not written any examples in
the newer dialects.

In our discussions of numerical algorithms (like the square root routine above)
we will not try to treat all possible pathological cases; the defenses needed
against overflow, significance loss, and other numerical pitfalls are beyond the
scope of this book. But we do insist that at least the rudimentary precautions
be taken, like using relative tests instead of absolute and avoiding division by
zero, to ensure good results for reasonable inputs.

Every line of code in this book has been compiled, directly from the text, which
is in machine-readable form. All of our programs have been tested (Fortran on
a Honeywell 6070, PL/I on an IBM 370/168). Our Fortran programs have also
been run through a verifier to monitor compliance with the ANSI standard.

Nevertheless, mistakes can occur. We encourage you to view with suspicion
anything we say that looks peculiar. Test it, try it out. Don’t treat computer
output as gospel. If you learn to be wary of everyone else’s programs, you will
be better able to check your own.

8 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 1

POINTS TO PONDER

1.1 A matrix with n rows and » columns has n? elements. So to initialize such a
matrix requires n? assignments. To multiply two » by n matrices together, or to
solve n linear equations in n unknowns, involves on the order of n’® operations by
classical methods. (These are the sorts of things that matrix manipulation programs
do.) Give arguments to support the following conjectures:

If 210, the time required to initialize a matrix is not very important.

If n<10, the time required to initialize a matrix is not very important. (Hint:
input and output conversions are more time consuming than arithmetic.)

1.2 In the first edition of this book, we wrote the square root routine this way:

c COMPUTE SQUARE ROOTS BY NEWTON'S METHOD
10 READ(5,11) X
11 FORMAT (F10.0)
IF (X .GE. 0.0) GOTO 20
WRITE(6,13) X
13 FORMAT (’ SQRT(', 1PE12.5, ') UNDEFINED’)

GOTO 10
20 IF (X .GT. 0.0) GOTO 30
B =10.0
GOTO 50
30 B=1.0
40 A =B
B = (X/A + A)/2.0

IF (ABS((X/B)/B - 1.0) .GE. 1.0E-5) GOTO 40
50 WRITE(6,51) X, B
51 FORMAT(’ SQRT(’, 1PE12.5, ’) = ', 1PE12.5)
GOTO 10
END

This is ‘‘more efficient’ because there are no repeated tests. Which version do you
prefer, and why? How much time and space difference does the change make?
What deficiencies of the Fortran language are illustrated by both versions?

1.3 In the square root routine, we saw that testing for convergence against an
absolute threshold like 1.0E-5 is perilous. We recommended testing instead
against some sort of relative standard. How can the function

REAL FUNCTION RELDIF (X, Y)

RELDIF = ABS(X - Y) / AMAX1 (ABS(X), ABS(Y))

RETURN
END

be used in the example? (AMAX1 is the Fortran function that returns the maximum
of two or more floating point numbers as floating point.) This function is relatively
well-behaved for values that might be encountered in the square-root routine. In
more general applications, are there any values of X and Y that might cause trouble?

CHAPTER 2. EXPRESSION

Writing a computer program eventually boils down to writing a sequence of
statements in the language at hand. How each of those statements is expressed
determines in large measure the intelligibility of the whole; no amount of comment-
ing, formatting, or supplementary documentation can entirely replace well expressed
statements. After all, they determine what the program actually does.

It is easy to mistake a sequence of overly-simple expressions for profundity.
An extreme example of this is

IF(X .LT. Y) GO TO 30
IF (Y .LT. 2) GO TO 50

SMALL = 2Z
GO TO 70
30 IF (X .LT. Z) GO TO 60
SMALL = 2
GO TO 70
50 SMALL = Y
GO TO 70
60 SMALL = X

70 ...

Ten lines, with four statement numbers and six GOTO’s; surely something is happen-
ing. Before reading further, test yourself. What does this program do?
The mnemonic SMALL is a giveaway — the sequence sets SMALL to the smallest
of X, ¥, and 2.
There are a number of ways to do this computation. If our purpose is to teach
how to compute the minimum, we write
SMALL = X
IF (Y .LT. SMALL) SMALL
IF (2 .LT. SMALL) SMALL

Y
Z

which is direct and to the point. Labels and GOTO’s are not needed. And the gen-
eralization to computing the minimum of many elements is obvious.

Say what you mean, simply and directly.

But if we are just trying to get the job done, we use the Fortran built-in func-
tion AMIN1, which computes the minimum of two or more floating point numbers:

9

10 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

SMALL = AMIN1(X, Y, Z)

One line replaces ten. How can a piece of code that is an order of magnitude too
large be considered reliable? There is that much greater chance for confusion, and
hence for the introduction of bugs. There is that much more that must be under-
stood in order to make changes.

Library functions like AMIN1 are one way to reduce the apparent complexity of
a program; they help to keep program size manageable, and they let you build on
the work of others, instead of starting from scratch each time.

Use library functions.

Code that is excessively clever is at least as hard to understand as code that is
too simple-minded. For example,

DCL TEXT CHAR(200)VAR;
GET LIST(TEXT);

N=0;

START: A=INDEX (TEXT,’' ');
IF A=0 THEN GO TO FINISH;
N=N+1;

TEXT=SUBSTR (TEXT,A+1) ;
GO TO START;
FINISH: PUT LIST(N);

Even though this uses PL/I’s built-in functions INDEX and SUBSTR, it is hardly
clear. INDEX (TEXT,’ ') returns the position of the first blank in TEXT, or zero if
there is no blank. SUBSTR (TEXT,A+1) produces the substring of TEXT that begins
at position A+1; this is re-assigned to TEXT, thus disposing of characters up to and
including the leftmost remaining blank. So after a bit of thought, we can see that
this program counts the number of blanks in TEXT.

Suppose that you were trying to teach a novice programmer how to count the
blanks in a character string? How would you do it? Surely not by this elegant but
mystifying method — instead you would say ‘‘Look at each character, and if it’s a
blank, count it.”” Or, in PL/I,

DECLARE TEXT CHARACTER (200) VARYING;
GET LIST (TEXT);
N = 0;
DO I = 1 TO LENGTH (TEXT);
IF SUBSTR(TEXT, I, 1) = ' ' THEN
N=N+1;
END;
PUT LIST (N);

This too uses the built-in functions that PL/I provides, but it uses them in a way
that clarifies the method of solution, rather than obscuring it. Everyone knows that
debugging is twice as hard as writing a program in the first place. So if you’re as
clever as you can be when you write it, how will you ever debug it?

Peculiar modes of expression often arise out of attempts to write ‘‘efficient”
code. The programmer has some knowledge about how a particular compiler

CHAPTER 2 EXPRESSION 11

generates code, and so uses only those expressions ‘‘known’’ to be ‘‘better.”” For
instance
10 F1=X1-X2%X2
F2=1.0-X2
FX=F1%F1+F2+F2
C NOTE THAT IT IS MORE EFFICIENT TO COMPUTE
C F1%xF1 THAN TO COMPUTE F1##2.

Whether ‘‘efficient”> means ‘‘takes less time’ or ‘‘takes fewer machine instruc-
tions,”’ the comment is not always true. Many compilers recognize the special case
F1x%2 and generate the same code as for F1*xF1. Some compilers would, in fact,
generate shorter and faster code for

10 FX = (X1 — X2#%2)#%%2 + (1.0 - X2)*%2

than for the original version. (Ours produced 15 instructions for the original ver-
sion, 13 for the revision.)

This rendition also happens to be more readable and eliminates the temporary
variables F1 and F2, which have little mnemonic value. The fewer temporary vari-
ables in a program, the less chance there is that one will not be properly initialized,
or that one will be altered unexpectedly before it is used. ‘‘Temporary’’ is a dirty
word in programming — it suggests that a variable can be used with less thought
than a ‘“‘normal’’ (permanent?) one, and it encourages the use of one variable for
several unrelated calculations. Both are dangerous practices.

Avoid temporary variables.

Even if the comment about efficiency were true in a particular environment,
there is still little justification for using the more obscure mode of expression. We
shall discuss the question of efficiency further in Chapter 7. For now, we observe
simply that a program usually has to be read several times in the process of getting
it debugged. The harder it is for people to grasp the intent of any given section, the
longer it will be before the program becomes operational. Trying to outsmart a
compiler defeats much of the purpose of using one.

Write clearly — don’t sacrifice clarity for ‘“‘efficiency.’’

A variation of this is

/%* NOTE THAT ‘110010’ IN BINARY IS ‘50’ IN DECIMAL */
/* THIS WILL BE USED FOR LINE COUNTING */

IF NO>101111B THEN DO ; PUT PAGE; NO=0B;
END;

The programmei evidently hopes to avoid a run-time type-conversion by using
FIXED BINARY constants in expressions involving FIXED BINARY variables. The

12 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

comment underlines the fact that human beings are not likely to know the binary
representation of 50. Yet we are expected to recognize a binary 47 on the basis of
this one hint. One of the first services to be automated in early computer languages
was the conversion of decimal to binary. It would be a shame if we were forced to
think in binary, after all these years, by misinformed considerations of ‘‘efficiency.”
(Most compilers will convert ‘47"’ to binary at compile time, by the way. Those
that will not must certainly provide worse inefficiencies to worry about.)

The proper thing to do here is to introduce a parameter, such as MAXLINES,
and initialize it to 47 once and for all at the top of the program. The code becomes
much more readable and easier to change. And if there happens to be an expensive
conversion, it will occur only once.

Let the machine do the dirty work.

Repeated patterns of code catch the eye when scanning listings. Since the com-
puter is a tool for handling repetitious operations, we should be alerted by such pat-
terns to look for oversights — why didn’t the programmer let the computer do the
repeating? In the middle of a program for manipulating triangles we see the frag-
ment

C COMPUTE LENGTHS OF SIDES
AB = SQRT((X2 = X1)#*%*2 + (Y2 — Y1)*%x2)
AC = SQRT((X3 - X1)*%2 + (Y3 - Y1)*x2)
BC = SQRT((X3 - X2)**2 + (Y3 - Y2)%x2)

C COMPUTE AREA
S = (AB + BC + AC) / 2.0
AREA = SQRT(S * (S-BC) * (S-AC) » (S-AB)

C COMPUTE ANGLES
ALPHA = ATANF((4.0%xAREA) / (AC*%*2 + AB*x*2 — BCx%x2))
BETA = ATANF((4.0%AREA) / (AB**2 + BC*x%2 — ACx%2))
GAMMA = ATANF((4.0%AREA) / (AC**2 + BC*%2 — AB%%2))

We can see immediately the advantage of defining two arithmetic statement
functions:

SIDE (XA, YA, XB, YB) = SQRT((XA-XB)**2 + (YA-YB)#*%2)
ANGLE (SAREA, SA, SB, SC) = ATAN2(4.0%SAREA, SA%x%2 + SB**2 — SCx%2)

so that we can write

AB
AC
BC

SIDE (X1, Y1, X2, Y2)
SIDE(X1, Y1, X3, Y3)
SIDE (X2, Y2, X3, Y3)

ALPHA
BETA
GAMMA

ANGLE (AREA, AC, AB, BC)
ANGLE (AREA, AB, BC, AC)
ANGLE (AREA, AC, BC, AB)

This is not only easier to write but also easier to modify. For instance the For-
tran Il name ATANF should be changed whenever possible to the Fortran IV stan-
dard ATAN. In fact, the form

CHAPTER 2 EXPRESSION 13

ATAN (Y/X)

should always be changed to
ATAN2 (Y, X)

which correctly handles right-angled triangles instead of causing a division by zero
when Y/X is evaluated. Only one change was needed in the function definition to
correct all three calculations; we were more likely to get it right. (The program also
contains a typographical error:

AREA = SQRT(S * (S-BC) * (S-AC) * (S-AB)

needs a balancing right parenthesis on the end.)

Fortran’s arithmetic statement function is unfortunately restricted to one-line
expressions, and is thus of limited usefulness. When the operation to be done is
more complex, write a separate subroutine or function. The ease of later
comprehending, debugging, and changing the program will more than compensate
for any overhead caused by adding the extra modules.

Replace repetitive expressions by calls
to a common function.

Another eye-catching repeat appears in

R = 12.

AL = 24.

TIME = 0.

THETA = 0.

DELTH = 2. * 3.1416 / 100.
DO 18 I = 1,100

X = R*¥(1. — COS(THETA)) + L - L*SQRT(1. - (R*SIN(THETA)/L)*2)
THETA = THETA + DELTH
XNEW= R * (1. - COS(THETA)) + L - L*SQRT(1. - (R*SIN(THETA)/L)%*%2)

VEL = (XNEW - X) / 0.01

TIME = TIME + 0.01
18 WRITE (2,8) TIME, THETA, XNEW, VEL
8 FORMAT (4F9.2)

STOP

END

Our first impulse is to define another arithmetic statement function for the gangling
expression that appears twice, but closer inspection shows a more fundamental over-
sight.

The program computes X and its first derivative VEL at each of 100 successive
points. Two adjacent values of X must be known to find VEL, so the program duti-
fully computes both on each iteration, even though one value is already known from
the previous iteration. The elaborate expression is computed twice as often as
necessary. Worse, it is written twice, which increases the risk that one occurrence
will be modified and the other overlooked.

There is also an error: L is used in both expressions where AL is certainly
intended. Less serious, but potentially troublesome, is the practice of incrementing
a floating point variable many times (see Chapter 6). To keep arithmetic errors

14 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

from piling up and to make the code clearer, we are better off computing TIME and
THETA from I on each iteration. Putting everything together gives:

REAL L
R = 12.0
L = 24.0
X = 0.0
DO 20 I =1, 100
TIME = FLOAT(I)/100.0

THETA = 2.0 * 3.141593 % TIME
XNEW = R * (1.0 — COS(THETA)) + L -
$ L * SQRT(1.0 — (R*SIN(THETA)/L)#**2)
VEL = (XNEW - X)/0.01
WRITE(2,10) TIME, THETA, XNEW, VEL
10 FORMAT (4F9.2)

X = XNEW
20 CONTINUE
STOP
END

(We have used $ as the continuation character, because it is the only standard For-
tran character without any other syntactic meaning. It minimizes the chance for
confusion, and is likely to cause a visible error if used in the wrong column.)

Since we have saved a hundred function evaluations, we will not worry about
computing 27 inside the loop. We also decided to stick with the identifier L, instead
of changing all occurrences to AL. The original problem was stated in terms of R
and L; it is usually safer to remain consistent with this notation than to try to
remember the translation all the time. This is one of those unfortunate occasions
when standard Fortran notation is at odds with the usage desired. You can argue it
either way, but we decided in this case that adding the statement

REAL L

is better than renaming the variable. If you get into the habit of declaring all vari-
ables, the problem doesn’t arise at all.

Arithmetic expressions in Fortran and PL/I also differ sometimes from the way
we intuitively tend to write them. We are accustomed, in writing algebra, to bind
multiplication tighter than division. That is, we assume that if we write

AxB/2.0xC

it means
(A*B)/ (2.0%C) /* WRONG */

But in Fortran and PL/I the interpretation is

((A*B)/2.0)=*C
Only by using parentheses or rearranging the computation can we avoid potential
confusion.

A more insidious operator ambiguity occurs in this expression from an
arctangent routine:

TERM = TERM# (-X#+2)/DENOM

CHAPTER 2 EXPRESSION 15

Is X negated and then squared, or is it squared and then negated? Fortran reference
manuals seldom treat such fine points in detail; this may be a hard question to
answer without running a test program. As a matter of fact the ANSI standard for
Fortran calls for the latter interpretation (fortunate in this case) — the variable X is
squared and then negated — but the line should still be rewritten as:

TERM = —TERM * X##%2 / DENOM
The first form invites misunderstanding on the part of the reader, if not the com-

piler. Unless reader and compiler both understand the writer, the program is not
communicating properly.

Parenthesize to avoid ambiguity.

Variable names can also be either safe or dangerous:
8 NO5S = NO5S + 1

Now was that ‘‘N, letter O, five, S,” or ‘‘N, zero, five, S,”’ or even ‘““NOSS’’? The
possibilities for error are numerous. Would you trust someone else to type correc-
tions for this program? Mixtures of similar characters (letter 0 and digit 0, letter I
and digit 1, etc.) are unsafe, as are long identifiers that differ only at the end. Use
XPOS and YPOS, not POSITIONX and POSITIONY. When abbreviating, always
keep first letters, favor ‘‘pronounceable’ forms (XPOS, not XPSTN), and above all
be consistent.

Similar identifiers are dangerous in general. One program contains the improb-
able sequence

N = K
N = Kxx2
NNN = K#*3

It is only when, much further down, we read
WRITE (6,60)N,NN,NNN,

that the typographical error in the second line becomes clear. A better choice of
names here is N, NSQ, NCUBE. Try to choose names that differ widely; typos and
misspellings are less likely to be disguised. Of course, choose names that mean
something as well, so the intent of the code is clearer. (We will discuss this more in
Chapter 8.)

Choose variable names that won’t be confused.

We have discussed arithmetic expressions quite a bit, but conditional expres-
sions are at least as important in writing programs. In either PL/I or Fortran, condi-
tional expressions nearly always involve at least one IF statement, which controls
whether or not another statement is executed, on the basis of some condition. PL/I

16 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

allows the controlled statement to be compound, and therefore arbitrarily complex,
but we will save more complicated examples for Chapter 3. Some of the worst
examples of misused conditional expressions are in Fortran, since the limited facili-
ties of that language encourage greater atrocities.

Part of the reason for this is historical. Fortran Il had only the arithmetic IF
statement, which does not perform as we suggested in the previous paragraph.
Instead it causes a branch to one of three statement numbers, depending on
whether an arithmetic expression is negative, zero, or positive. The logical IF was
added to Fortran IV as a cleaner way of expressing conditionals. It should always be
used instead of the arithmetic IF, especially since two of the three labels are almost
always the same in practice.

One of the most productive ways to make a program easier to understand is to
reduce the degree of interdependence between statements, so that each part can be
studied and understood in relative isolation. One of the major liabilities of the For-
tran arithmetic IF is that it increases the connections between statements:

50 IF(C-COMMA) 55,70,55
55 IF(C-SCOL) 60,70,60
60 IF(C-DASH) 65,70,65

65 NC=NC+1
70

The wall-to-wall statement numbers are the first thing to strike the eye. The first
line says that if C—~COMMA is negative or positive, control transfers to statement 55; if
it is zero, control goes to 70. In other words, if C equals COMMA, branch to 70; if
not, fall through to the next statement, 55. Similar reasoning applies at statements
55 and 60.

Putting everything together, if C is not a comma and C is not a semicolon and C
is not a dash, the statement NC=NC+1 is executed. Or, in Fortran,

50 IF (C.NE.COMMA .AND. C.NE.SCOL .AND. C.NE.DASH) NC = NC + 1

Most people ‘‘understand’’ an arithmetic IF by mentally translating it into a logical
IF, just as we did here. There is little reason ever to use an arithmetic IF.

There is another difficulty with the arithmetic IF version of this program. All
those labels in the left margin represent potential targets for branches from other
parts of the program. Without reading through al/l of the program from which this
excerpt comes, you can’t be certain that no other statement branches into the mid-
dle of the construction. But when the group of statements is collapsed into a single
IF, there is no doubt about how to get to it — it is entered at the beginning and
exited at the end, and it has no other connections with the rest of the program. The
logical IF reduces the apparent complexity of the program.

Occasionally the third branch of an arithmetic IF can serve to direct an ‘‘impos-
sible’” condition to error-handling code. It is always good practice to think through
such conditions and deal with them properly. Even when all three branches of the
arithmetic IF are distinct, however, readability is better served by substituting two
logical IF’s and a GOTO.

CHAPTER 2 EXPRESSION 17

Avoid the Fortran arithmetic IF.

The influence of the arithmetic IF often extends into misuse of the logical IF.
For example,

IF((X(I) - X(N)) .LE. 0.) GO TO 300

is a literal translation of an arithmetic into a logical IF, which should be written
IF (X(I) .LE. X(N)) GOTO 300

(‘‘Say what you mean.”’) And

IF (MOD(K,N1).NE.0) GO TO 9
WRITE (6,4) K,X
9 ...

is better rendered as
IF (MOD(K,N1) .EQ. 0) WRITE (6,4) K, X

The same observation holds for PL/I:

GROSSPAY = BASERATE
TOTALHRS ;
IF TOTALHRS <= 40 THEN GO TO
NOVT;
GROSSPAY = GROSSPAY + 0.5 =
BASERATE * (TOTALHRS - 40);
NOVT:

Since the GOTO branches around only a single statement, it is clearly unnecessary.
Rewriting gives
GROSSPAY = BASERATE * TOTALHRS;

IF TOTALHRS > 40 THEN
GROSSPAY = GROSSPAY + 0.5 % BASERATE * (TOTALHRS-40);

A conditional expression can also be disguised by using a Fortran computed
GOTO:
GOTO (65,70) , PRNT

65 WRITE(6,105) X
70

The computed GOTO has a definite place, but this is not it. Since labels 65 and 70
appear nowhere else in the program, this code is certainly better written as

IF (PRNT .NE. 2) WRITE (6,105) X

to eliminate the two statement numbers. Now we can tell at a glance that there is
only one way to reach the WRITE statement.

These last three examples show a tendency to follow all IF’s with branches,
even when they do not have to be. Such usage eventually leads to circumlocutions
like

18 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

GRVAL = A(1)
DO 25 I = 2,10
IF (A(I).GT.GRVAL) GO TO 30
GO TO 25
30 GRVAL = A(I)
25 CONTINUE

The IF controls a branch that branches around the branch that branches around the
statement we wanted to do in the first place! Turning things right side up gives

GRVAL = A(1)
DO 25 I = 2,10
IF (A(I) .GT. GRVAL) GRVAL = A(I)
25 CONTINUE

We leave it to the reader to decide whether the IF statement should be replaced by
GRVAL = AMAX1 (GRVAL, A(I))

when we are finding the larger of just two elements.

Avoid unnecessary branches.

Even though PL/I has adequate facilities for writing programs without any
branches at all, they are often neglected, in a style of coding called ‘‘Fortran with
semicolons.”” Abuse of PL/I ultimately leads to code like this sorting routine:

DO M =1 TO N;

K = N-1;

DO J = 1 TO K;

IF ARAY(J) - ARAY(J+1) >= 0
THEN GO TO RETRN;

ELSE;

SAVE = ARAY(J);

ARAY (J) = ARAY(J+1);

ARAY (J+1) = SAVE;

RETRN : END;
END;

The construction THEN GOTO might be an early exit from a loop, but more
often is a tipoff that something is amiss. Here it only branches around three state-
ments, not out of the loop. Why not turn the test around so no GOTO or label is
required? (The ELSE with no statement after it, a ‘‘null ELSE,”’ serves no purpose
whatsoever; it only confuses the issue.) Subtraction and comparison against zero is a
bad idea because of the danger of overflow or underflow; a direct comparison would
be safer and far easier to understand. The outer loop need only be done N-1 times,
and the inner N-M times. Of course PL/I allows expressions in the limits of DO
loops, so there is no need for the temporary variable K. And the erratic indentation
should be changed so it tells how the statements are related to each other. Putting
these improvements all together gives

CHAPTER 2 EXPRESSION 19

DOM=1 TO N-1;
DO J = 1 TO N-M;
IF ARAY(J) < ARAY(J+1) THEN DO;
SAVE = ARAY(J);
ARAY (J) = ARAY(J+1);
ARAY (J+1) = SAVE;
END;
END;
END;

Use the good features of a language;
avoid the bad ones.

A failure to state clearly the underlying logic can lead to tangled control flow, as
in this program for a rudimentary computer dating service:

LOGICAL FEM(8),MALE (8)
READ (5,6) IGIRL, (FEM(I) ,I=1,8)
9 READ (5,6)IBOY, (MALE(I),I=1,8)
DO 8I= 1,8
IF (FEM(I)) GO TO 7
IF (.NOT.MALE(I)) GO TO 8
GO TO 9
7 IF(.NOT.MALE(I)) GO TO 9
8 CONTINUE
WRITE(2,10) IBOY
6 FORMAT (I5,8L1)
10 FORMAT (10X,I5)
GO TO 9
STOP
END

We have to look long and hard at this jungle of IF’s and GOTO’s before the light
dawns. The program is supposed to write IBOY only if each of the MALE (I) has
the same truth value as the corresponding FEM(I). Standard Fortran does not
allow us to ask directly if two LOGICAL variables are equal or not, but we can still
improve readability by using .AND. and .OR.:

LOGICAL FEM(8), MALE(8)
READ (5,10) IGIRL, FEM
10 FORMAT (I5, 8L1)
20 READ (5,10) IBOY, MALE
DO 30 I =1, 8
IF ((FEM(I) .AND. .NOT.MALE(I)) .OR.
$ (MALE(I) .AND. .NOT.FEM(I))) GOTO 20
30 CONTINUE
WRITE (2,40) IBOY
40 FORMAT (10X, IS)
GOTO 20
END

This tells us directly that the program will go on to read the next input line, without
printing IBOY, if any one of the FEM(I) differs from its corresponding MALE (I).

20 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

We also deleted the inaccessible STOP statement and the explicit indexing in the
READ statements, indented the code, and numbered the statements systematically.

Don'’t use conditional branches as a substitute for a logical expression.

As an aside, the dating program provides a simple example of how an appropri-
ate data representation can make programming easier. With INTEGER variables
instead of LOGICAL, we can make the desired comparison directly:

INTEGER FEM(8), MALE(8)
READ (5,10) IGIRL, FEM
10 FORMAT (15, 8I1)
20 READ (5,10) IBOY, MALE
DO 30 I =1, 8
IF (FEM(I) .NE. MALE(I)) GOTO 20
30 CONTINUE

The data will also have to be changed, from T’s and F’s to ones and zeros, but this
is a simple mechanical operation. We will discuss data structure at more length in
Chapter 3.

The expression in parentheses in a logical IF statement is of type LOGICAL; its
value is either .TRUE. or .FALSE.. Most of the time we use just a relational
operator, such as .LE. or .EQ., to determine the truth value of the condition. But
we can, if we wish, use the Boolean operators .AND., .OR., and .NOT. to make
arbitrarily complex logical expressions. Boolean algebra is not used nearly as widely
as ordinary arithmetic, so we must write logical expressions more carefully lest we
confuse the reader.

Consider the sequence

6 IF(X1.GE.ARRAY(I)) GO TO 2

IF (ARRAY (I) .LT.X2) ICOUNT=ICOUNT+1
2 ...

It takes a while to realize that ICOUNT is incremented only if ARRAY(I) lies
between X1 and X2. Inversions and GOTO’s slow down reading comprehension and
should be avoided. Rewriting gives:

6 IF (ARRAY(I).GT.X1 .AND. ARRAY(I).LT.X2) ICOUNT = ICOUNT + 1
It is much easier to tell at a glance what the logic implies.

Logical conditions can often be combined ifthey are all related, and if they are
combined with only a single type of operator. For example,

CHAPTER 2 EXPRESSION 21

IF (NUM.LT.0000000)GO TO 500
IF (NUM.GT.9999999)GO TO 500
IF (AMON.LT.00000000)GO TO 500
IF (AMON.GT.99999999)GO TO 500
IF (ITEM.LT.0000)GO TO 500
IF (ITEM.GT.9999)GO TO 500
GO TO 150
500 WRITE(6,80)NUM,CUST,AMON,ITEM,IMM,IDD,IYY
GO TO 150

Leaving aside the redundant zeros (after all, zero is zero, so adding more digits
won’t make it more precise), there is a suspicious regularity to the code: everything
heads for statement 500.
Combining the logical conditions gives us the following version:

IF (NUM .LT. 0 .OR. NUM .GT. 9999999

$.OR. AMON .LT. 0 .OR. AMON .GT. 99999999

$.OR. ITEM .LT. 0 .OR. ITEM .GT. 9999)

$ WRITE (6,80) NUM, CUST, AMON, ITEM, IMM, IDD, IYY

GO TO 150

This is still quite a mouthful, but since each part of the test has the same structure,
and the parts are all combined with the same operator, it can be readily understood.

It is simpler to write good logical expressions in PL/I, but that is no guarantee
that all expressions will be written as clearly as they can be:

IF K=0 | (~(PRINT='YES’ | PRINT='NO’)) THEN DO;

The inversion and double parentheses slow comprehension. It seems better to dis-
tribute the ‘‘not” operation through the parenthesized expression. De Morgan’s
rules

~(A | B) <=> =A & -B
~(A & B) <=> ~-A | =B

tell us how:
IF K = 0 | (PRINT ~= 'YES’ & PRINT == ’'NO’) THEN DO;

The expression is still not simple, but it is now in a form that more closely resem-
bles how we speak. Note that we elected to keep the parentheses, even though
none are necessary here, to make the operator binding unambiguous to the reader
as well as the compiler.

A useful way to decide if some piece of code is clear or not is the ‘‘telephone
test.”” If someone could understand your code when read aloud over the telephone,
it’s clear enough. If not, then it needs rewriting.

Use the ‘‘telephone test’’ for readability.

Judicious use of De Morgan’s rules often improves the readability of programs
by simplifying logical expressions. But care should be exercised in how they are
applied. An example of the pitfalls of inverting logic comes from this routine to
access a sparse matrix stored as a linear table. The function is supposed to return a

22 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

table value if it finds a matching row and column; otherwise it returns zero.

FUNCTION SPARSE(I,J)
COMMON /SP/ N,NROW(500),NCOL (500) ,VALUE (500)
DO 10 K = 1,N
IF (NROW(K).NE.I .AND. NCOL(K).NE.J) GO TO 10
SPARSE = VALUE (K)
GO TO 999

10 CONTINUE
SPARSE = 0.0

999 RETURN

END

By definition the sparse array has a value stored at VALUE (K) for (I,J) if
NROW(K) .EQ.I .AND. NCOL(K).EQ.J

Negating this for the IF statement gives
.NOT. (NROW(K) .EQ.I) .OR. .NOT. (NCOL (K).EQ.J)

which in turn is
NROW(K) .NE.I .OR. NCOL (K).NE.J

Compare this line with the IF statement in the function. The function SPARSE is
wrong; it will return the first value where either I or J is matched. The .AND. must
be changed to .OR.. (This error has been corrected in later printings of the text
from which it was taken.) Actually, the code would be more direct if it were written
with the test stated the way a human reader would say it:

FUNCTION SPARSE (I, J)

COMMON /SP/ N, NROW(500), NCOL(500), VALUE(500)

DO 10 K = 1,N

IF (NROW(K).EQ.I .AND. NCOL (K).EQ.J) GOTO 20
10 CONTINUE

SPARSE = 0.0
RETURN

20 SPARSE = VALUE (K)
RETURN
END

We have discussed a number of small examples where expressions were either
hard to read, misleading, or downright incorrect. Let us conclude this chapter with
a larger example, to show how quickly a program can get out of hand when you fail
to look after the little things. (This is the first big PL/I program we have looked at
— don’t let it frighten you.) The program finds the area under the parabola y=x?
between x=0 and x=1, using a trapezoidal rule, for several different step sizes.

CHAPTER 2 EXPRESSION 23

TRAPZ: PROCEDURE OPTIONS (MAIN);
DECLARE MSSG1 CHARACTER (20);
MSSG1 = ’'AREA UNDER THE CURVE';
DECLARE MSSG2 CHARACTER (23);
MSSG2 = 'BY THE TRAPAZOIDAL RULE’;
DECLARE MSSG3 CHARACTER (16);

MSSG3 = 'FOR DELTA X = 1/';
DECLARE I FIXED DECIMAL (2);
DECLARE J FIXED DECIMAL (2);
DECLARE L FIXED DECIMAL (7,6);
DECLARE M FIXED DECIMAL (7,6);
DECLARE N FIXED DECIMAL (2);

DECLARE AREA1 FIXED DECIMAL (8,6);
DECLARE AREA FIXED DECIMAL (8,6);
DECLARE LMTS FIXED DECIMAL (5,4);
PUT SKIP EDIT (MSSG1) (X(9), A(20));
PUT SKIP EDIT (MSSG2) (X(7), A(23));
PUT SKIP EDIT (’ ') (A(1));
AREA = 0;
DO K = 4 TO 10;
/ K

;
1;

LMTS =

HOZZ

no* o

I
DO J =1 TO N;
L (I / K) %% 2;
AREA1 = .5 M* (2 * L);
AREA = AREA + AREA1;
IF I = N THEN CALL OUT;
ELSE I =1 + 1;
END;
END;
OUT: PROCEDURE;
AREA = AREA + LMTS;
PUT SKIP EDIT (MSSG3,K,AREA) (X(2),A(16),F(2),X(6),
F(9,6));
AREA = 0;
RETURN;
END;
END;

* 0l

Held at arm’s length, this program looks pretty impressive. There is a large
assortment of data declarations, followed by a computation that is evidently complex
enough to warrant a sub-procedure. Declarations are neatly aligned, and the execut-
able statements are staggered so as to indicate several levels of control nesting.
There are text strings to suggest the intent of the program, and mnemonic
identifiers to give hints about how the results are obtained. The general impression
conveyed is that this is a moderately complicated problem that has been carefully
coded and is now well under control.

Closer inspection, however, shows quite the opposite.

Each output message is used only once, and would be better placed in the PUT
statement that uses it instead of being separately declared and initialized by an
assignment. (One message is even misspelled.) The first two PUT statements can be
combined into

24 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

PUT SKIP EDIT (’AREA UNDER THE CURVE’,
'BY THE TRAPEZOIDAL RULE’)
(X(9), A, SKIP, X(7), A);

and the bizarre
PUT SKIP EDIT(’ ') (A(1));

changed into a simple PUT SKIP. And there is no reason to specify character-string
lengths in the A format items; computers count much better than people do.
The purpose of the assignment

M=1/K;

is unclear. Does it defend against some mysterious conversion? Is it to convey
geometrical insight? Or does the programmer worry that computers divide more
slowly than they multiply? It is a rare program that can be speeded up significantly
by changing divisions into multiplications, and this is not one of them — M appears
only twice. Efficiency cannot be of grave importance anyway, not when the code
contains the statement

AREA1 = .5 * M » (2 = L);

which has two superfluous multiplications (but no divisions!). M can be eliminated.
Similarly, N, LMTS, L and AREA1 vanish as the obvious substitutions are made.

We can now remove all those declarations with the strang: precisions needed
for intermediate results. The remaining declarations consist of just two different
types. A close look reveals that K is not declared, even though all other arithmetic
variables are. By default K will be FIXED BINARY so a number of type conversions
will occur, to no advantage. K should be included in the declarations.

With all the extraneous assignments removed, it is easier to see the underlying
structure. It is also easy to see that the indentations reflect little of what is going on.
But what is the purpose of the variable I? It is laboriously kept equal to J so that
OUT can be called at the end of the last iteration. Clearly I is not needed, for J
could be used for the test. But the test is not needed; OUT could be called just after
the inner DO loop has terminated. But OUT need not be called at all, for its code
could just as well appear in the one place it is invoked. The structure simplifies
remarkably.

Now we can see that the summing variable AREA is supposed to be initialized at
the beginning of each loop on K. This is much better practice than clearing it before
entering the loop and again at the end of each iteration — in a remote procedure at
that. Our major criticism of the procedure OUT is not its existence, since it was
there for pedagogical reasons, but that it changes AREA and uses LMTS when it does
not have to. Destroying modularity in this fashion, referring to seemingly local vari-
ables in unexpected places, is an invitation to future bugs. When code is
rearranged, or the use of such non-local variables is changed, errors are almost cer-
tain to be introduced.

Putting all our improvements together gives:

CHAPTER 2 EXPRESSION 25

TRAPZ: PROCEDURE OPTIONS (MAIN);
DECLARE (J,K) FIXED DECIMAL (2),
AREA FIXED DECIMAL (8,6);

PUT SKIP EDIT (’'AREA UNDER THE CURVE’,
'BY THE TRAPEZOIDAL RULE’)
(X(9), A, SKIP, X(7), A);
PUT SKIP;

DO K = 4 TO 10;
AREA = 0.5/K;

DO J =1 TO K-1;
AREA = AREA + ((J/K)*%2)/K;
END;

PUT SKIP EDIT (’'FOR DELTA X=1/', K, AREA)
(x(2), A, F(2), X(6), F(9,6));
END;
END;

The program now reflects how straightforward the calculation really is. (Both the
original and our version are quite specialized. See problem 2.4.)

The original program gave correct answers, yet we were able to improve upon it
considerably. It is clear that successful operation is no guarantee of a good program.
The changes we made were not designed to decrease execution time (which is too
short to measure reliably) or to decrease storage utilization (which improved by
thirty percent). Had we been concerned with optimization in the usual sense, we
would have factored 1/K? out of the AREA calculation.

What then did we improve? Readability, principally, but also locality and simpli-
city of structure. AREA is initialized just before it is used, not in two widely
separated and illogical places. The calculation now proceeds from top to bottom
without the pointless excursion to a sub-procedure. The original program was
puffed up with needless declarations and expressions, with over-simple computations
and over-complex control structure.

Programs are not used once and discarded, nor are they run forever without
change. They evolve. The new version of the integration program has a greater
likelihood of surviving changes later without acquiring bugs. It assists instead of
intimidating those who must maintain it. This will be the goal of all our revisions.

To summarize some of the specific points of this chapter:

(1) Write clearly. If you find your code branching around branches or around sin-
gle statements, turn relational tests around. For each GOTO, ask if it could be
cleanly eliminated. Avoid constructions like Fortran’s arithmetic IF that force
GOTO’s and labels upon you.

(2) Be sparing with temporary variables. The clutter from too many temporaries
confuses readers (including you), and may well thwart an optimizing compiler.

26 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

(3) Be unambiguous. Add parentheses and alter too-similar identifiers to avoid any
possibility of misunderstanding.

(4) Don’t build all of your own tools: use standard library functions like ABS and
AMIN1. If no function exists, write your own as a separate function, and add it
to your library. Be sufficiently general that your routine can be used in future
applications and by other people.

(5) Make sure conditional tests read clearly. Try speaking them aloud; rearrange
unwieldy tests.

CHAPTER 2 EXPRESSION 27

POINTS TO PONDER

2.1 In case you think the examples in this chapter are rare, here are a few more
fragments for you to practice on. Decide what each does, then improve it.

IF A>B THEN DO;

LARGE=A;

GO TO CHECK;

END;

LARGE=B;

CHECK: IF LARGE>C THEN GO TO OUTPUT;
LARGE=C;

OUTPUT:

IF(ITEM1 .LE. ITEM2)GO TO 3
IHIGH1=ITEM1

GO TO 4
3 IHIGH1=ITEM2
4 IF(IHIGH1 .GE. ITEM3)GO TO 5
IHIGH2=ITEM3
GO TO 6
5 IHIGH2=IHIGH1
6
DCL A(8);
GET LIST(A);

DO I=1 TO 8;
IF ABS(A(I))<ABS(A(I+1)) THEN;
ELSE BEGIN;

STORE=A(I);
A(I)=A(I+1);
A(I+1)=STORE;
END;

END;

PUT LIST(A);

(Find the bug too.)

IF A = 0 THEN GO TO TESTB;
GO TO CHECK;
TESTB: IF B = 0 THEN GO TO TESTC;
GO TO CHECK;
TESTC: IF C = 0 THEN GO TO NOMORE;
/*HERE WE TEST FOR COMPLEX ROOTS. */
CHECK:

28 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

DIMENSION F (46)
INTEGER F

Q=FLOAT (F (I))/FLOAT (J)
QTRUNC=FLOAT (F (I) /J)
IF ((Q-QTRUNC).EQ.0.) GO TO 4

(Does it even work on your machine?)

DO 10 K=KK,N
IF (NAME (I) .EQ.NAME (K))GO TO 5
GO TO 10

5 WRITE (6,3)NAME (I)

3 FORMAT (' ' ,A4)

10 CONTINUE

2.2 How long do you think it would take you to make the following Fortran
expression for the root of a quadratic syntactically and semantically correct?

ROOT1 = (-B + SQRT(Bx**x2 - 4AC)/2A

Six characters have to be added, counting decimal points after floating point literals.
Did you use eight on your first try? Which version is easier to read? Do you think
knowing the quadratic formula by heart helps or hinders proofreading?

2.3 In the trapezoidal integration program discussed above, suppose you had been
assigned the job of writing procedure OUT, while someone else wrote the main pro-
cedure. How many things do the two of you have to agree on — names of vari-
ables, who initializes what — before you can write OUT as it stands? If each initial-
ized his own variables, and the values to be printed were passed as parameters as in

CALL OUT (K, AREA);
how many things do you then have to agree on?

2.4 Consider the effort needed to change both versions of the trapezoidal integra-
tion program to deal with an arbitrary function F (X) between arbitrary limits A and
B. Which conversion represents an easier task and why?

CHAPTER 2

2.5 The following program counts sentences, words and characters in a text. A
slash marks the end of the text. Rewrite it using logical IF’s instead of arithmetic
IF's. How many labels are now necessary?

101
102
103
104

10

2.6 In the preceding program, what happens if a period occurs in column 71 or 72
of an input card? What happens if more than one blank separates two words? What
happens if there are leading or trailing blanks on a line? What happens if a sen-
tence ends with a question mark? What else happens? Rewrite the program to make

INTEGER C,KT,BUFR(72) ,BLANK,COMMA,SCOL,DASH, SLSH,PEROD,NW,NC,NS

REAL AWS,ASW

DATA BLANK,COMMA,SCOL,DASH,SLSH,PEROD/
* NW,NC,NS,KT,C/0,0,0,73,"
FORMAT (1H1,35X, ' INPUT TEXT')

FORMAT (72A1)
FORMAT (4X, 72A1)

FORMAT (///,26X, '"NUMBER OF SENTENCES=',I8,/,19X,'AVERAGE NUMBER OF
*WORDS/SENTENCE=',F8.2, /20X, 'AVERAGE NUMBER OF SYMBOLS/WORD=',F8.2)

WRITE(6,101)

READ (5,102) BUFR
WRITE(6,103) BUFR
KT=KT-72

IF (C-PEROD) 20,35,20
C=BUFR (KT)

IF (C-PEROD) 40,30,40
NS=NS+1

NW=NW+1

KT=KT+3

IF (KT-72) 35,35,10
C=BUFR (KT)
IF(C-SLSH) 25,75,25
IF (C-BLANK) 50,45,50
NW=NW+1

GO TO 70

IF(C-COMMA) 55,70,55
IF(C-SCOL) 60,70,60
IF (C-DASH) 65,70,65
NC=NC+1

KT=KT+1

IF(KT-72) 20,20,10
AWS=FLOAT (NW) /NS
ASW=FLOAT (NC) /NW
WRITE (6,104) NS,AWS,ASW
CALL EXIT

END

it less vulnerable.

P Y I A B Y)
[I])/"

CHAPTER 3: CONTROL STRUCTURE

A computer program is shaped by its data representation and the statements
that determine its flow of control. These define the structure of a program. There is
no sharp distinction between expression and organization; it is more a question of
scope. In the previous chapter we were concerned with the details of expressing
each statement well. In this chapter and in the next we will concentrate on matters
of style that affect the program as a whole.

The control structures of a language provide the framework of a program.
These include decision-making with IF and ELSE; looping with DO and WHILE;
statement grouping; and procedures or subroutines and functions. The care with
which they are used determines how easy it will be to understand the program in the
large — in what order things happen, and what controls what. The transformations
we made in Chapter 2, such as removing obviously unnecessary GOTO’s and state-
ment labels, are simple examples of the proper use of control flow. In this chapter
we will go much further.

The easiest construction is the group of statements — a set of operations that
are always done together and in sequence. PL/I provides DO-END and BEGIN-END
to delimit groups of statements that belong together. In PL/I, branching around a
group of statements with THEN GOTO is a sign of ‘‘Fortran-think,”” a clue that
rearrangement is called for.

IF PRICE(J) > LOT THEN GO TO X;

/* REDEFINE LOT IF LOWER PRICE IS FOUND */

LOT = PRICE(J);

/* STORE LOCATION OF THE LOWEST PRICE */

LOCATION = J;

X:
Since PL/I’s DO-END permits a group of statements to follow an IF, there is never
any need to branch around them. And so there is never any need to invent a label,
nor to try and figure out where a GOTO is going, nor to wonder how many ways one
can get to a label. Turning ‘‘greater than’ into ‘‘less than or equal to’’ here lets us
introduce a DO-END and eliminate the label and the GOTO. At the same time, we
indent to emphasize that the IF controls the two indented lines, and omit the
repetitive comments, which obscure the code without conveying information.

31

32 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

IF PRICE(J) <= LOT THEN DO;
LOT = PRICE(J);
LOCATION = J;

END;

Fortran provides nothing analogous to DO-END; this is one of its major failings.
There is no way to treat a block of statements as a group (after an IF, for instance),
except by putting them into a subroutine or branching around them. This leads to
tortuous code indeed if the program is at all complicated. Even so, some usages are
clearer than others.

IF (TABLE (NO) .GT. HICOM) GO TO 50
GO TO 20

50 HICOM = TABLE (NO)
NUMBER = NO

20 CONTINUE

This should be replaced by

IF (TABLE(NO) .LE. HICOM) GOTO 20
HICOM = TABLE (NO)
NUMBER = NO
20 CONTINUE

Again we indent the statements that are skipped over, to show that they are con-
trolled by the IF. Within the limitations of Fortran, this is about the best we can
do.

Use DO-END and indenting
to delimit groups of statements.

In PL/I, an IF may be followed by an ELSE part, to express the action to be
taken if the condition is not true. But consider

IF SWFSTCTL = ‘1’
THEN GOTO CONTINUE ;
ELSE DO ;
DIVCTL = DIV ; /% INITIALIZE CONTROL #*/
SWFSTCTL = '1’ ;
END ;
CONTINUE

The ELSE is a red herring, serving no purpose here. It should be used only when
there are two distinct and mutually exclusive actions depending on one test. If there
is only one action, it belongs after the THEN, so that the reason for the action can be
stated directly:

IF SWFSTCTL -= ’1’ THEN DO;

DIVCTL = DIV; /% INITIALIZE CONTROL #/
SWFSTCTL = '1';
END;

On the other hand, when there really are two cases, an ELSE should be used:

CHAPTER 3 CONTROL STRUCTURE 33

IF DISCRIM<0 THEN DO;
PUT EDIT(’'COMPLEX ROOTS’) (SKIP,A);
PUT DATA(A,B,C);
GOTO MISS;
END;
ROOT=SQRT (DISCRIM) ;
ROOT1 = (~B+ROOT) / (2#A) ;
ROOT2= (-B-ROOT) / (2#A) ;
PUT SKIP DATA(A,B,C,ROOT1,RO0T2);
MISS:

The actions after the DO-END are done if and only if the DO-END block is not
done; they should be part of an ELSE:
IF DISCRIM < 0 THEN DO;
PUT EDIT (’COMPLEX ROOTS’) (SKIP, A);
PUT DATA (A, B, C);
END;
ELSE DO;
ROOT = SQRT (DISCRIM);
ROOT1 = (-B+ROOT) / (2%A);
ROOT2 = (-B-ROOT) / (2%A);
PUT SKIP DATA (A, B, C, ROOT1, ROOT2);
END;

In Fortran, it is hard to make the structure of an IF-ELSE explicit, since there
is no ELSE, and only a single (restricted) statement can follow the IF. For even
more complicated combinations, things get tough indeed. Consider this fragment
for keeping track of the largest and smallest A (I):

IF(A(I).LE.BIG) GO TO 100
BIG=A(I)
GO TO 49

100 IF(A(I).GE.SMAL) GO TO 49
SMAL=A(I)

49 CONTINUE

This is an essentially mechanical translation of the algorithm into Fortran, and as
such is hard to fault. It is possible, however, to write the code rather more clearly
in this special case:

IF (A(I) .GT. BIG) BIG = A(I)
IF (A(I) .LT. SMAL) SMAL = A(I)

If the first test succeeds, the second presumably cannot, but an occasional redundant
test is a small price to pay for improved readability.
By the way, it is necessary to be quite careful when tests might overlap. Avoid
situations like this one:
IF HRS_WORKED<=40
THEN CALL REGPAY;

IF HRS_WORKED>=40
THEN CALL OTPAY;

People who work exactly forty hours are rewarded with a double paycheck! An
IF-ELSE divides things into two separate pieces, only one of which is done. It also
ensures that someone reading the code can see that only one thing is done. Thus:

34 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

IF HRS_WORKED <= 40 THEN
CALL REGPAY;

ELSE
CALL OTPAY;

Use IF-ELSE to emphasize that
only one of two actions is to be performed.

Another major aspect of control flow is looping. We are already familiar with
the indexed loop, the

DOI =1 TON

of PL/I and the

DO 10 I =1, N
of Fortran. But even more frequent are loops which are not arithmetic progres-
sions, as in this sorting procedure:

SORT: PROCEDURE OPTIONS (MAIN);
DECLARE (NAMES (50) ,SPARE)CHARACTER (10) ,
SWITCH BIT(1), (I,N) FIXED BINARY;

/*READ IN ALL 50 NAMES */

GET LIST (NAMES);

N=50;

AGAIN:SWITCH='0'B; /*CLEAR THE SWITCH=*/
DO I=1 TO N-1; /*SET THE NUMBER OF COMPARISONS*/
IF NAMES (I)>NAMES (I+1) THEN /*SWAP THE PAIR */
DO; /*USING SPARE,AND */
SWITCH='1'B; /* SET THE SWITCH=x/

SPARE=NAMES (I) ;
NAMES (I)=NAMES (I+1) ;
NAMES (I+1) =SPARE;
END;
END;
N=N-1; /*DECREASE NUMBER OF COMPARISONS*/
IF SWITCH THEN GOTO AGAIN; /*REPEAT IF SWAP WAS MADE*/
PUT LIST(NAMES);
END;

There are actually two loops here, although it takes a bit of work to find that out.
The inner loop is clear enough; it runs from 1 to N-1. The outer loop is executed
so long as an interchange has been made during a pass through the list of items.
This is recorded by SWITCH, which is ’1'B if an exchange has been made, and
0 ' B otherwise.

The PL/I DO-WHILE statement provides a way to write this loop that makes it
instantly obvious to the reader that there isa loop, and what controls it.

CHAPTER 3 CONTROL STRUCTURE 35

SORT: PROCEDURE OPTIONS (MAIN);
DECLARE (NAMES (50), SPARE) CHARACTER(10);
DECLARE SWITCH BIT(1);
DECLARE YES BIT(1) INITIAL (’1’B), NO BIT(1) INITIAL ('0’'B);
DECLARE (I, N) FIXED BINARY;

GET LIST (NAMES);
SWITCH = YES;
DO N = 50 TO 2 BY -1 WHILE (SWITCH = YES);
SWITCH = NO;
DO I =1 TO N-1;
IF NAMES(I) > NAMES(I+1) THEN DO;
SWITCH = YES;
SPARE = NAMES (I);

NAMES (I) = NAMES (I+1);
NAMES (I+1) = SPARE;
END;
END;
END;
PUT LIST (NAMES);

END;

The original version used a label and an IF-GOTO to build the outer loop, and a
DO for the inner; it was hard to see at a glance that there are truly two loops or
where each begins. Now the two loops are explicitly marked as such.

We have also used the variables YES and NO instead of the literals ’1’'B and
'0'B, to make the code read a bit more clearly.

As much as possible, a program should be written so the control flow structures
lead the reader quickly and directly to an understanding of what the program does.
For example, in

A: IF COUNT(RANK) < 4 THEN
BEGIN;
PUT LIST(RECONVERT (RANK));
COUNT (RANK) = COUNT (RANK) + 1;
GOTO A;
END;

the construction
IF ... THEN BEGIN ... END

is a clear signal that the group of statements between BEGIN and END is to be done
exactly once if the condition is true, or not at all if it is false; then, in either case,
execution will resume after the END. But look carefully, and you will find that the
last statement of the group is a branch back to the test. Although the code claims to
be merely an IF, thatis a lie — it is actually a loop.
A DO-WHILE provides an honest way to say what the code does:
DO WHILE (COUNT(RANK) < 4);
PUT LIST (RECONVERT (RANK));

COUNT (RANK) = COUNT (RANK) + 1;
END;

The advantage is not that the second version is smaller, but that it is explicit. The
DO-WHILE says ‘‘This is a loop,”” and is that much easier to understand. The first
version forces the reader to ferret out the control flow.

36 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

The WHILE statement, which specifies a loop with an arbitrary termination con-
dition (tested at the top), is not available in Fortran. This means that loops in For-
tran are often contorted into DO loops, which makes them hard to understand and
prone to errors. Alternatively, loops are written with IF’s and GOTO’s, which con-
ceal the structure of code, again making it hard to understand and prone to errors.
Newer languages have better control-flow constructs, like PL/I’s DO-WHILE. But the
DO-WHILE is seldom used, and PL/I programmers often write much as their Fortran
colleagues do.

Use DO and DO-WHILE fto emphasize
the presence of loops.

Things get more complicated when several fundamental structures are
intertwined and built with spare parts instead of being spelled out explicitly, as in
this excerpt from a procedure that computes bowling scores.

Y=0; L=1; FRM=1;
CYCLE: IF X(L) = 10 THEN STRK: DO;
Y=Y+10+X (L+1) +X (L+2) ;
L=L+1;
GO TO NEXT;
END STRK;
IF X(L) + X(L+1) = 10 THEN SPR: DO;
Y=Y+10+4X (L+1);
L=L+2;
GO TO NEXT;
END SPR;
ELSE REG: DO;
Y=Y+X (L) +X(L+1);
L=L+2;
GO TO NEXT;
END REG;
NEXT: IF FRM=10 THEN RETURN(Y);
FRM=FRM+1; GO TO CYCLE;

There are actually two structures here, both built with IF’s and GOTO’s instead of
with the higher-level facilities provided by PL/I. The outer part is an indexed loop,
represented by

FRM=1;
CYCLE:

NEXT: IF FRM=10 THEN RETURN(Y);
FRM=FRM+1; GO TO CYCLE;

and the interior is a three-way decision: strike, spare, or regular frame.

Rewritten with explicit control structures, it becomes much clearer. Bowlers
will appreciate the correction of the computation for a spare; non-bowlers may be
less interested.

CHAPTER 3 CONTROL STRUCTURE 37

Y =0;
L =1;
DO FRM = 1 TO 10;
IF X(L) = 10 THEN DO; /* STRIKE */
Y=Y+ 10 + X(L+1) + X(L+2);
L=L+1;
END;
ELSE IF X(L) + X(L+1) = 10 THEN DO; /%* SPARE =/
Y Y + 10 + X(L+2);
L L + 2;
END;
ELSE DO; /% REGULAR =*/
Y=Y + X(L) + X(L+1);
L=L+ 2;
END;
END;
RETURN (Y) ;

(There is another version of this program in Chapter 8.)

As a fringe benefit, the RETURN statement now occurs at the end, where one
would normally expect it, instead of being buried inside. It is a good rule of thumb
that a program should read from top to bottom in the order that it will be executed;
if this is not true, watch out for the bugs that often accompany poor structure.

Make your programs read from top to bottom.

The code we used to express the three-way decision in the bowling program is
an example of an important control construction, the multi-way decision, sometimes
called a CASE statement. Some languages provide a separate statement for writing
such branches; in PL/I, multi-way decisions are usually best expressed as a chain of
IF ... ELSE IF ... ELSE, like this:

IF condition-I THEN
statement-1

ELSE IF condition-2 THEN
statement-2

ELSE IF condition-n THEN
statement-n

ELSE
default-statement

The condition’s are read from top to bottom; at the first condition that is satisfied,
the statement that follows is executed, and then the entire construct is exited. The
statement parts may be single statements, or (as above) a group of statements
enclosed in DO-END. The last ELSE handles the ‘‘default’’ situation, i.e., where
none of the other alternatives was chosen. This trailing ELSE part may be omitted
if the program logic requires no action for the default, although leaving it in with an
error message may help to catch ‘‘impossible’’ conditions.
We will return in a moment to how to handle the CASE statement in Fortran.

38 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

Note that we align all of the ELSE’s in a CASE, rather than lining up each ELSE
with the corresponding IF. This emphasizes that all the legs of the CASE have
equal status and keeps them from marching off the right side of the page.

Use IF ... ELSE IF ... ELSE IF ... ELSE ...
to implement multi-way branches.

The CASE statement is often recognizable in a sequence of related decisions,
where only minor rearrangement is needed to bring things into the proper form:

IF AMT_OF_SALES <= 50.00 THEN COMM = 00.00;

IF AMT_OF_SALES > 50.00 THEN IF AMT_OF_SALES <= 100.00
THEN COMM = .02 * AMT_OF_SALES;

IF AMT_OF_SALES > 100.00 THEN
COMM = .03 * AMT_OF_SALES;

The two IF’s in the second line can certainly be compressed into a single test with
the logical operator & So an improved version might read
IF AMT_OF_SALES <= 50.00 THEN
COMM = 00.00;
IF AMT_OF_SALES > 50.00 & AMT_OF_SALES <= 100.00 THEN
COMM = 0.02 % AMT_OF_SALES;
IF AMT_OF_SALES > 100.00 THEN
COMM = 0.03 % AMT_OF_SALES;

But the tests in an ELSE-IF chain are done in the prescribed order, and this fact
may be used to advantage. If it fails the first test, AMT_OF_SALES is greater than
50; if it fails the second, it is greater than 100. Neither test need be repeated if an
ELSE-IF is used:
IF AMT_OF_SALES <= 50.00 THEN
COMM = 00.00;
ELSE IF AMT_OF_SALES <= 100.00 THEN
COMM = 0.02 * AMT_OF_SALES;

ELSE
COMM = 0.03 = AMT_OF_SALES;

Peeling off cases in numerical order in this way is also highly readable and easy to
change.
We have now mentioned several control flow constructions:
statement grouping with, for example, DO-END or BEGIN-END;
decision making with IF-ELSE;
looping with DO and DO-WHILE,
subroutines, functions, or procedures.

The DO loop comes in at least two flavors in PL/I, indexed and DO-WHILE, and the
IF-ELSE can be extended into the CASE or multi-way decision.

CHAPTER 3 CONTROL STRUCTURE 39

Taken together, this set of constructions is generally adequate for comfortably
expressing any sequencing operations in a program. The term ‘‘structured program-
ming’’ is sometimes used (at least in a narrow sense) to refer to the process of pro-
gramming with nothing but proper nests of these basic operations.

The advantage of this discipline is that since there are no GOTO statements, it is
generally easier to follow the flow of control; for the most part such a program reads
directly from top to bottom, so the reader doesn’t have to follow paths with his
fingers all over the listing. And no GOTO’s means no labels — there is only one way
to reach each statement.

On the other hand, structured programming in this limited sense certainly will
not solve all your programming problems. We will see in the rest of this chapter
plenty of code that contains only the basic constructions in properly nested combina-
tions, yet which is hard to understand and even incorrect.

Use the fundamental control flow constructs.

Bare Fortran doesn’t have any of these fundamental structures. What can you
do to cope? We have several suggestions. For the long term, the 1977 Fortran
Standard provides an ELSE and a way to group statements after IF and ELSE; it
looks like:

IF (condition) THEN
Sstatements
ELSE

statements
ENDIF

These can be nested, and there can be an ELSE IF. Regrettably, Fortran 77 does
not have a WHILE statement. There is also a version of the debugging compiler
WATFIV, called WATFIV-S, which supports statement grouping, ELSE, and WHILE.

A second possibility, which may be more accessible in the short run, is to use
one of the host of Fortran preprocessors which have been developed in the past few
years. A preprocessor is a program which translates a Fortran dialect with adequate
control flow statements into pure Fortran; ideally you never need to look at the gen-
erated Fortran. (The ‘‘pseudo-code’ that we will present in the next sections is
based on Ratfor, a language implemented by one such Fortran preprocessor. It is
described in Software Tools, by Brian W. Kernighan and P. J. Plauger, Addison-
Wesley, 1976.)

A third possibility is to think out your code in a decent language, then translate
into Fortran when it comes time to start transcribing the code into machine-readable
form. This requires no software, just discipline. To see how it works in practice,
consider the following quadratic equation solver, in which IF statements come so
thick and fast as to baffle the reader.

40 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

C OBTAINS SOLUTIONS OF THE EQUATION AxX*%2 + B*X + C = 0

10 READ(5,8000) A,B,C
8000 FORMAT (3F10.5)
c A IN COLUMNS 1-10, B IN COLUMNS 11-20, C IN COLUMNS 21-30
WRITE (6,9000) A,B,C
9000 FCRMAT (4HOA = F12.5,3X,3HB = ,F12.5,3X,3HC = ,F12.5)
c TEST FOR TWO ZEROS
IF(B.EQ.0..AND.C.EQ.0.) GO TO 15

C AT THIS POINT EITHER B, OR C, OR BOTH MAY BE NONZERO
IF(B.NE.O..AND.C.NE.O.) GO TO 50
C AT THIS POINT EITHER B IS 0 OR C IS ZERO

IF(A) 30,20,30

15 IF(A.EQ.0.) STOP

20 WRITE(6,9010)

9010 FORMAT (33H TRIVIAL CASE. TWO OR MORE ZEROS.)
GO TO 10
c NOW TEST FOR C = 0 CASE.
30 IF(C) 60,40,60
40 XA = B/A

XB = 0.
GO TO 100
50 IF(A.NE.0O.) GO TO 60
XA = -C/B
XB = 0.
GO TO 100
C START OF MAIN COMPUTATION

60 Q = BxB-4.%xAxC
XX = -B/(2.%A)
IF(Q) 80,70,80

70 XA = XX
XB = XX
GO TO 100

80 QA = ABS(Q)
XS = SQRT(QA)/ (2.%A)
IF(Q) 110,110,90
90 XA = XX + XS
XB = XX - XS
100 WRITE(6,9020) XA,XB
9020 FORMAT (5H X1 = ,F12.5,3X,4HX2 = ,F12.5)

GO TO 10
110 XA = XS
XB = -XS

WRITE (6,9030) XX,XA,XX,XB
9030 FORMAT(S5H X1 = ,F12.5,2H + ,F12.5,2H I,5X,4HX2 = ,F12.5,2H +,
1 F12.5,2H I)
GO TO 10
END

A painful trace through the logic reveals several small errors. The most
significant is statement 40, the case where only C is zero, which should have a
minus sign:

40 XA = -B/A
Statement 20 writes ‘“TRIVIAL CASE. TWO OR MORE ZEROS.”, even though the

case where all three coefficients are zero is eliminated by the STOP at statement 15.
Worse, the same message is delivered for the equations

CHAPTER 3 CONTROL STRUCTURE 41

AxX*x%x2 = 0, a valid equation with a double root at zero.
BxX = 0, which has a single root at zero.
C = 0, which is true only when C is zero.

Trivial they may be, but all are different and two out of the three are legitimate.
Finally, for the case where only A is zero, the program prints out two roots, ~C/B
and 0.0, even though the equation has only one root.

A useful way to write a complex program in any language, not just Fortran, is
to code it first in a convenient, expressive pseudo-language (typically not Fortran or
PL/I) and then, when it appears correct, to translate it into the language at hand
(Fortran in this case). At the highest level, we might even write something like

REPEAT
read and print coefficients A, B and C
solve quadratic Ax2 + Bx + C

REPEAT implies an indefinitely repeated loop. On each iteration we fetch a new set
of coefficients and solve the corresponding quadratic.

The next step is to fill in some details, a process sometimes called ‘‘top-down
design™ or ‘‘successive refinement.”” (We will have more to say about this in
Chapter 4.) Solving the quadratic is a multi-way decision, to decide what specific
kind of quadratic must be dealt with. Thus the second version is

REPEAT
read and print A, B, C
IF (A=0&B=0&C=0)
stop
ELSE IF (A =0 &
equation is C
ELSE IF (A = 0)
only root is -C/B
ELSE IF (C = 0)
roots are -B/A and 0
ELSE
Realpart = -B/ (2A)
Discrim = B**2 - 4AC
Imagpart = sqgrt(abs(Discrim))/ (23)
IF (Discrim >= 0)
roots are Realpart+Imagpart and Realpart-Imagpart
ELSE
roots are (Realpart, Imagpart) and (Realpart, -Imagpart)

B 0)

0

Indeed this is no language in particular, but it is sufficiently precise for our
needs, and readily understood. There is no need for more formality. Not only is
the pseudo-code readable and precise, but it is sufficiently close to normal program-
ming languages that we can apply principles of programming style to it just as if it
were executable. We can even check that it works, in the sense of doing the right
things at the right times.

Once we are satisfied, we translate. Since most Fortrans do not allow grouping
of statements, let alone a PL/I-like IF-ELSE, we must link up the pieces of the
IF-ELSE structures by GOTO’s. At the same time we can fix minor details like out-
put formats and statement labels, and make the variable names more mnemonic.

42 THE ELEMENTS OF PROGRAMMING STYLE

The resulting code is:

C OBTAINS SOLUTIONS OF THE EQUATION AxXx%2 + BxX + C = 0
c
10 READ(5,11) A, B, C
11 FORMAT (3F10.0)
WRITE(6,12) A, B, C
12 FORMAT (’0A =', 1PE16.6, ', B =', 1PE16.6, ', C ="
IF (A .EQ. 0.0 .AND. B .EQ. 0.0 .AND. C .EQ. 0) STOP
IF (A .NE. 0.0 .OR. B .NE. 0.0) GOTO 20
WRITE (6,13) C

13 FORMAT (' EQUATION SAYS’, 1PE16.6,' = 0')
GOTO 90
20 IF (A .NE. 0.0) GOTO 30
R1 = -C/B
WRITE (6,21) R1
21 FORMAT (' ONE ROOT. R =', 1PE16.6)
GOTO 90

C A IS NOT ZERO
30 IF (C .NE. 0.0) GOTO 40

R1 = -B/A
R2 = 0.0
WRITE (6,31) R1, R2

31 FORMAT (' R1 =', 1PE16.6, ', R2 =’, 1PE16.6)
GOTO 90

C GENERAL CASE: A, C NON-ZERO
40 RREAL = -B/(2.0%A)

DISC = B**x2 — 4.0%AxC

RIMAG = SQRT(ABS(DISC))/(2.0%A)

IF (DISC .LT. 0.0) GOTO 50
R1 = RREAL + RIMAG
R2 = RREAL - RIMAG
WRITE(6,31) R1, R2

GOTO 90
50 R1 = -RIMAG
WRITE (6,51) RREAL, RIMAG, RREAL, R1
51 FORMAT (' R1 = (', 1PE16.6, ',’, 1PE16.6, '),
$ ', R2 = (', 1PE16.6, ',’, 1PE16.6, ')’)
90 GOTO 10
END

CHAPTER 3

, 1PE16.6)

Two roots are printed only when there are two, one is printed when and only when
there is one, and an imaginary part is printed only when called for. More important,
it is easy to determine how the program gets to each separate case. (This program is
still far from being a general-purpose quadratic-equation solver; the defenses needed
against every conceivable numerical hazard require more analysis than we can go

into here.)

Write first in an easy-to-understand pseudo-language;
then translate into whatever language you have to use.

IF-ELSE constructions formed the framework of our quadratic routine, as they
do in most programs. But mere use of IF-ELSE does not guarantee that the result

CHAPTER 3 CONTROL STRUCTURE 43

will stand up. Consider this fragment, which computes the effective weight of an
airplane, based on its true weight, length, and wingspan.

IF LENGTH >= 30 & LENGTH <= 50 THEN

IF WING < .6*LENGTH THEN WEIGHT1 =
(1+.08-.037) *WEIGHT;

ELSE WEIGHT1=(1+.08+.045)*WEIGHT;
ELSE IF LENGTH > 50 & LENGTH < 60 THEN

IF WING < .6%LENGTH THEN
WEIGHT1=(14+.09-.037) %
WEIGHT;

ELSE WEIGHT1=(1+.09+.045)*
WEIGHT;

ELSE IF LENGTH > 60 & LENGTH
< 80 THEN

IF WING < .6%LENGTH THEN
WEIGHT1=(1+.105-.037)*
WEIGHT;

ELSE WEIGHT1=(1+.105+.045)*
WEIGHT;

ELSE IF WING < .6*xLENGTH
THEN

WEIGHT1=(1+.122-
.037) *WEIGHT;

ELSE WEIGHT1=(1+
.122+.045) *WEIGHT;

When a program is well-structured, its layout can be made clean. For instance,
programs that avoid labels and undisciplined branches should use indentation to
emphasize the logical structure. (This program was originally displayed with vertical
bars joining IF’s with their corresponding ELSE’s.) But indentation is no substitute
for organization; tasteful formatting and top-to-bottom flow is no guarantee that the
code cannot be improved.

Look at all the repetitions. The entire structure is turned inside out. If the test
on WING is done first and the result saved for later use, and if we remove all the
redundant tests, the code simplifies remarkably. Rearrangement also reveals the
oversight in the original: the case where LENGTH is exactly 60 has been lumped in
with the case for 80 and larger.

44 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

IF WING < 0.6 * LENGTH THEN
CORR 1.0 - 0.037;

ELSE
CORR = 1.0 + 0.045;

IF LENGTH >= 80 THEN

WEIGHT1 = (CORR+0.122) * WEIGHT;
ELSE IF LENGTH > 60 THEN

WEIGHT1 = (CORR+0.105) * WEIGHT;
ELSE IF LENGTH > 50 THEN

WEIGHT1 = (CORR+0.09) * WEIGHT;
ELSE IF LENGTH >= 30 THEN

WEIGHT1 = (CORR+0.08) * WEIGHT;

Both versions use a nest of IF-ELSE’s, but ours uses it in a special way: we
never use an IF immediately after a THEN, but only after an ELSE. The result is
much easier to understand, because we know that exactly one case is done (if
LENGTH exceeds 30), and it is clear how we get to it: it is the first condition satisfied
as we read down the list of ELSE IF’s. After one of these has been done, execution
resumes after the entire statement. Of course this is just a CASE statement.

The construction THEN IF is often a warning that trouble looms ahead.

IF QTY > 10 THEN / %A%/
IF QTY > 200 THEN /*Bx/
IF QTY >= 500 THEN BILL_A BILL_A + 1.00; /#*Cx/

ELSE BILL_A BILL_A + .50; /#*Cx/

ELSE; /*Bx*/

ELSE BILL_A = .00; / %A/

Those letters down the right hand side are designed to help you figure out what is
going on, but as usual, no amount of commenting can rescue bad code. The
sequence of THEN-IF’s requires you to maintain a mental pushdown stack of what
tests were made, so that at the appropriate point you can pop them until you deter-
mine the corresponding action (if you can still remember). You might time yourself
as you determine what this code does when QTY equals 350. How about 150?

Since at most one of a set of actions is ever called for here, what we really want
is some form of CASE statement. Changing the order in which the decisions are
made leads to a clearer version:

IF QTY >= 500 THEN
BILL_A = BILL_A + 1.00;
ELSE IF QTY > 200 THEN
BILL_A = BILL_A + 0.50;

ELSE IF QTY <= 10 THEN
BILL_A = 0.0;

Now all we need do is read down the list of tests until we find one that is met, read
across to the corresponding action, and continue after the last ELSE.
In Fortran, this could be rendered as
IF (QTY .GE. 500.0) BILLA = BILLA + 1.0

IF (QTY .LT. 500.0 .AND. QTY .GT. 200.0) BILLA = BILLA + 0.5
IF (QTY .LE. 10.0) BILLA = 0.0

which is best if the tests are mutually exclusive and if the relations and actions are

CHAPTER 3 CONTROL STRUCTURE 45

simple enough to write one per line. Don’t let anyone tell you this is not efficient —
it doesn’t take all that much time to make the whole set of tests, and you’re more
likely to get the code right the first time. If it does take too much time, and you
have measurements that prove it, then and only then should you re-write it with
GOTO’s.

The THEN-IF was the culprit in this example, but there is another symptom of
the same problem. Note the null ELSE clause in the original, required to make the
unstacking of the nested IF’s come out right when one of the conditions has no
corresponding action. These seemingly useless statements cauterize the stumps of
any ill-thought-out THEN-IF’s buried in the code. A program containing null ELSE
clauses is suspect, if for no other reason than that it was written by someone burned
by THEN-IF’s often enough to sprinkle null ELSE’s around for insurance.

The THEN-IF does have its uses. It is often the only way to ensure that tests
are performed in the proper order, as in

IF I > 0 THEN
IF A(I) = B(I) THEN ...

which checks that I is in range before it is used as an index. Some languages pro-
vide special AND’s and OR’s which guarantee left-to-right evaluation and early exit as
soon as the truth value of the expression is determined. But if you are not for-
tunate enough to be able to program with these useful tools, wrap a DO-END around
the inner IF so you don’t have to worry about trailing ELSE’s.

Avoid THEN-IF and null ELSE.

Consider this procedure for finding the largest of a set of positive numbers:

FINDNUM: PROC OPTIONS (MAIN);
DCL NEWIN DEC FLOAT (4);
LARGE DEC FLOAT (4) INIT (.0E1);
/* .0 x 10*%*1 = .0 x 10 = 0.0 */
NEXT_C: GET LIST (NEWIN);
IF NEWIN >=0
THEN IF NEWIN > LARGE
THEN LARGE = NEWIN;
ELSE GO TO NEXT_C;
ELSE GO TO FINISH;
GO TO NEXT_C;
FINISH: PUT LIST (LARGE);
END;

Change the illegal semicolon into a comma in the second line. Ignore the curious
zero in the INIT attribute, and the equally curious explanatory comment. Now, try
to trace the flow of control. This is not a trivial exercise. How does one get to that
last GO TO NEXT_C, for example? Why, from the innermost THEN clause, of
course.

An ELSE GOTO tells you where you went if you didn’t do the THEN, leaving you
momentarily at a loss in finding the successor to the THEN clause. And when ELSE
GOTO’s are used one after the other, as here, the mind boggles. Needless to say,

46 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

ELSE RETURN is no better.
Such convolutions are almost never necessary if decisions are made in the right
order.

FINDNUM: PROCEDURE OPTIONS (MAIN);
DECLARE (NEWIN, LARGE) DECIMAL FLOAT (4);
NEWIN = 0;

LARGE = 0;

DO WHILE (NEWIN >= 0);
GET LIST (NEWIN);
IF NEWIN > LARGE THEN

LARGE = NEWIN;
END;
PUT LIST (LARGE);
END;

What we have here is a simple DO-WHILE, done while the number read is not
negative, controlling a simple IF-THEN. Of course we have rearranged the order of
testing, but the end-of-data marker chosen was a convenient one and does not inter-
fere with the principal work of the routine. True, our version makes one extra test,
comparing the marker against LARGE, but that will hardly affect the overall efficiency
of the sequence. Readability is certainly improved by avoiding the ELSE GOTO’s.

Avoid ELSE GOTO and ELSE RETURN.

Most of the IF-ELSE examples we have shown so far have a characteristic in
common. Each approximates, as closely as the programmer could manage, a
minimum depth decision tree for the problem at hand. If all outcomes have equal
probability, such a tree arrives at the appropriate action with the minimum number
of tests on the average, so it might seem desirable to lay out programs accordingly.
But a program is a one-dimensional construct, which obscures any two-dimensional
connectedness it may have. The minimum depth tree is not the best structure for a
readable program.

Recall the program for finding the minimum of three numbers which we
showed at the beginning of Chapter 2. Let us rewrite that program in PL/I, adher-
ing to the spirit of the original Fortran, but using only IF-ELSE’s:

IF X >= Y THEN
IF Y >= Z THEN

SMALL = Z;
ELSE

SMALL = Y;

ELSE

IF X >= Z THEN

SMALL = Z;
ELSE

SMALL = X;

Even though neatly laid out and systematically indented, it is still not easy to grasp.
Not all the confusion of the original can be attributed to the welter of GOTO’s and
statement numbers. What we have here is a ‘“‘bushy’ tree, needlessly complex in

CHAPTER 3 CONTROL STRUCTURE 47

any event, but still hard to read simply because it is conceptually short and fat.

The ELSE-IF sequence, on the other hand, is long and skinny as trees go; it
seems to more closely reflect how we think. (Note that our revised minimum func-
tion was also linear.) It is easier to read down a list of items, considering them one
at a time, than to remember the complete path to some interior part of a tree, even
if the path has only two or three links. Seldom is it actually necessary to repeat tests
in the process of stringing out a tree into a list; often it is just a matter of perform-
ing the tests in a judicious order. Yet too often programmers tend to build a thicket
of logic where a series of signposts are called for.

Let us summarize our discussion of IF-ELSE. The most important principle is
to avoid bushy decision trees like

IF ... THEN
IF ... THEN
ELSE ...
ELSE
IF ... THEN
ELSE ...

The bushy tree should almost always be reorganized into a CASE statement, which is
implemented as a string of ELSE-IF’s in P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>