
A prerequisite before we dive into the difference of measuring time in Python is to understand

various types of time in the computing world. The first type of time is called CPU or execution

time, which measures how much time a CPU spent on executing a program. The second type

of  time  is  called  wall-clock  time,  which  measures  the  total  time  to  execute  a  program  in  a

computer.  The wall-clock time is  also called elapsed or  running time.  Compared to  the CPU

time,  the  wall-clock  time is  often  longer  because the  CPU executing  the  measured program

may also be executing other program's instructions at the same time.

Another  important  concept  is  the  so-called  system  time,  which  is  measured  by  the  system

clock. System time represents a computer system's notion of the passing of time. One should

remember  that  the  system clock  could  be  modified  by  the  operating  system,  thus  modifying

the system time.

Python's  time  module  provides  various  time-related  functions.  Since  most  of  the  time

functions call platform-specific C library functions with the same name, the semantics of these

functions are platform-dependent.

time.time vs time.clock

Two  useful  functions  for  time  measurement  are  time.time  and  time.clock.  time.time

returns  the  time  in  seconds  since  the  epoch,  i.e.,  the  point  where  the  time  starts.  For  any

operatin  system,  you can always  run  time.gmtime(0)  to  find  out  what  epoch is  on  the  given

system.  For  Unix,  the  epoch  is  January  1,  1970.  For  Windows,  the  epoch  is  January  1,

1601.  time.time  is  often  used  to  benchmark  a  program  on  Windows.  While  time.time

behaves  the  same on  Unix  and  on  Windows,  time.clock  has  different  meanings.  On  Unix,

time.clock  returns  the  current  processor  time  expressed  in  seconds,  i.e.,  the  CPU time  it

takes to  execute  the current  thread so far.  While  on Windows,  it  returns  the wall-clock  time

expressed in seconds elapsed since the first call to this function, based on the Win32 function

QueryPerformanceCounter.  Another  difference  between  time.time  and  time.clock  is  that

time.time  could  return  a  lower-value than a  previous call  if  the  system clock has been set

back between the two calls while time.clock always return non-decreasing values.

Here is an example of running time.time and time.clock on a Unix machine:

# On a Unix-based OS

Measure Time in Python – time.time() vs time.clock()

Measure Time in Python - time.time() vs time.cloc... https://www.pythoncentral.io/measure-time-in-py...

1 of 4 1/20/20, 8:29 AM



time.time()  shows  that  the  wall-clock  time  has  passed  approximately  one  second  while

time.clock()  shows the CPU time spent on the current process is less than 1 microsecond.

time.clock() has a much higher precision than time.time().

Running the same program under Windows gives back completely different results:

On Windows

Both time.time() and time.clock() show that the wall-clock time passed approximately one

second. Unlike Unix, time.clock() does not return the CPU time, instead it returns the wall-

clock time with a higher precision than time.time().

Given the platform-dependent behavior of time.time() and time.clock(), which one should

we use to measure the "exact" performance of a program? Well, it depends. If the program is

expected  to  run  in  a  system  that  almost  dedicates  more  than  enough  resources  to  the

program,  i.e.,  a  dedicated  web  server  running  a  Python-based  web  application,  then

measuring the program using time.clock() makes sense since the web application probably

will be the major program running on the server. If the program is expected to run in a system

that  also  runs  lots  of  other  programs  at  the  same  time,  then  measuring  the  program using

time.time()  makes sense.  Most  often  than not,  we should  use a  wall-clock-based timer  to

measure a program's performance since it often reflects the productions environment.

The timeit module

Instead of dealing with the different behaviors of time.time() and time.clock() on different

platforms,  which  is  often  error-prone,  Python's  timeit  module  provides  a  simple  way  for

timing. Besides calling it directly from code, you can also call it from the command-line.

For example:

On a Unix-based OS

1
2

>>> import time
>>> print(time.time(), time.clock())

1
2
3
4
5
6

>>> import time
>>> print(time.time(), time.clock())
1359147763.02 4.95873078841e-06
>>> time.sleep(1)
>>> print(time.time(), time.clock())
1359147764.04 1.01088769662

Measure Time in Python - time.time() vs time.cloc... https://www.pythoncentral.io/measure-time-in-py...

2 of 4 1/20/20, 8:29 AM



# On Windows

In IDLE

Which  timer  is  timeit  using?  According  to  timeit’s  source  code,  it  uses  the  best  timer

available:

Another  important  mechanism  of  timeit  is  that  it  disables  the  garbage  collector  during

execution, as shown in the following code:

If  garbage  collection  should  be  enabled  to  measure  the  program's  performance  more

1
2
3
4

% python -m timeit -n 10000 '[v for v in range(10000)]'
10000 loops, best of 3: 365 usec per loop
% python -m timeit -n 10000 'map(lambda x: x^2, range(1000))'
10000 loops, best of 3: 145 usec per loop

1
2
3
4

C:\Python27>python.exe -m timeit -n 10000 "[v for v in range(10000)]"
10000 loops, best of 3: 299 usec per loop
C:\Python27>python.exe -m timeit -n 10000 "map(lambda x: x^2, range(1000))"
10000 loops, best of 3: 109 usec per loop

1
2
3
4
5
6
7
8
9
10
11

>>> import timeit
>>> total_time = timeit.timeit('[v for v in range(10000)]', number=10000)
>>> print(total_time)
3.60528302192688  # total wall-clock time to execute the statement 10000 times
>>> print(total_time / 10000)
0.00036052830219268796  # average time per loop
>>> total_time = timeit.timeit('[v for v in range(10000)]', number=10000)
>>> print(total_time)
3.786295175552368  # total wall-lock time to execute the statement 10000 times
>>> print(total_time / 10000)
0.0003786295175552368  # average time per loop

1
2
3
4
5
6
7
8

import sys

if sys.platform == 'win32':
    # On Windows, the best timer is time.clock
    default_timer = time.clock
else:
    # On most other platforms the best timer is time.time
    default_timer = time.time

1
2
3
4
5
6
7
8
9

import gc

gcold = gc.isenabled()
gc.disable()
try:
    timing = self.inner(it, self.timer)
finally:
    if gcold:
        gc.enable()

Measure Time in Python - time.time() vs time.cloc... https://www.pythoncentral.io/measure-time-in-py...

3 of 4 1/20/20, 8:29 AM



accurately, i.e., when the program allocates and de-allocates lots of objects, then you should

enable it during the setup:

Except  for  very  special  cases,  you  should  always  use  the  module  timeit  to  benchmark  a

program. In addition, it is valuable to remember that measuring the performance of a program

is  always  context-dependent  since  no  program  is  executing  in  a  system  with  boundless

computing resources and an average time measured from a number of loops is always better

than one time measured in one execution.

1
2

>>> timeit.timeit("[v for v in range(10000)]", setup="gc.enable()", number=10000)
3.6051759719848633

Measure Time in Python - time.time() vs time.cloc... https://www.pythoncentral.io/measure-time-in-py...

4 of 4 1/20/20, 8:29 AM


