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ABSTRACT
Network virtualization has long been a goal of of the
network research community. With it, multiple iso-
lated logical networks each with potentially different
addressing and forwarding mechanisms can share the
same physical infrastructure. Typically this is achieved
by taking advantage of the flexibility of software (e.g.
[20, 23]) or by duplicating components in (often spe-
cialized) hardware[19].

In this paper we present a new approach to switch
virtualization in which the same hardware forwarding
plane can be shared among multiple logical networks,
each with distinct forwarding logic. We use this switch-
level virtualization to build a research platform which
allows multiple network experiments to run side-by-side
with production traffic while still providing isolation
and hardware forwarding speeds. We also show that
this approach is compatible with commodity switching
chipsets and does not require the use of programmable
hardware such as FPGAs or network processors.

We build and deploy this virtualization platform on
our own production network and demonstrate its use
in practice by running five experiments simultaneously
within a campus network. Further, we quantify the over-
head of our approach and evaluate the completeness of
the isolation between virtual slices.

1. INTRODUCTION
This paper explores how to virtualize a network, and

describes a particular system that we prototyped - called
FlowVisor - that we have deployed to slice1 our own
production network. Similar to computer virtualiza-
tion [22, 1, 21, 17], network virtualization promises to
improve resource allocation, permits operators to check-
point their network before changes, and allows compet-
ing customers to share the same equipment in a con-
trolled and isolated fashion. Critically, virtual networks
also promise to provide a safe and realistic environment
1Borrowing from the GENI [4] literature, we call an instance
of a virtual network a slice, and two distinct virtual networks
on the same physical hardware slices.

to deploy and evaluate experimental “clean slate” pro-
tocols in production networks.

To better understand virtual networking, we first look
closely at computer virtualization. Computer virtualiza-
tion’s success can be linked to a clean abstraction of the
underlying hardware. That is, the computer virtualiza-
tion layer has a hardware abstraction that permits slicing
and sharing of resources among the guest operating sys-
tems. The effect is that each OS believes it has its own
private hardware. A well defined hardware abstraction
enables rapid innovation both above and below the vir-
tualization layer. Above, the ability to build on a con-
sistent hardware abstraction has allowed operating sys-
tems to flourish (e.g., UNIX, MacOS, several flavors of
Linux, and Windows) and even encouraged entirely new
approaches [24, 28]. Below, different hardware can be
used (e.g., Intel, AMD, PPC, Arm, even Nvidia’s GPU),
so long as it can be mapped to the hardware abstraction
layer. This allows different hardware to have different
instruction sets optimized for higher performance, lower
power, graphics, etc. Allowing choice above and below
the virtualization layer means a proliferation of options,
and a more competitive, innovative and efficient mar-
ketplace.

Our goal is to achieve the same benefits in the net-
work. Thus, by analogy, the network itself should
have a hardware abstraction layer. This layer should
be easy to slice so that multiple wildly different net-
works can run simultaneously on top without interfer-
ing with each other, on a variety of different hardware,
including switches, routers, access points, and so on.
Above the hardware abstraction layer, we want new pro-
tocols and addressing formats to run independently in
their own isolated slice of the same physical network,
enabling networks optimized for the applications run-
ning on them, or customized for the operator who owns
them. Below the virtualization layer, new hardware can
be developed for different environments with different
speed, media (wireline and wireless), power or fanout
requirements.

The equipment currently deployed in our networks
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was not designed for virtualization and has no common
hardware abstraction layer. While individual technolo-
gies can slice particular hardware resources (e.g., MPLS
can virtualize forwarding tables) and layers (e.g., WDM
slices the physical layer, VLANs slices the link layer),
there is currently no one single technology or clean ab-
straction that will virtualize the network as a whole.
Further, it’s not clear how—or if it’s even possible—to
virtualize the equipment already deployed in our net-
works. Commodity switches and routers typically have
proprietary architectures—equipment manufacturers do
not publish their full design—with limited mechanisms
to change and control the equipment’s software, e.g.,
operators can only change a limited set of configuration
parameters via the command-line interface.

The specific system described in this paper builds on
OpenFlow [13] as an abstraction of the underlying hard-
ware. As we describe later, OpenFlow offers most of
what we need for a hardware abstraction layer. In prin-
ciple, other abstraction layers could be used, although
we’re not aware of any available today that meets our
needs.

In this paper, we describe FlowVisor: A network vir-
tualization layer that we built and deployed in our net-
work. Much as a hypervisor resides between software
and hardware on a PC, the FlowVisor uses OpenFlow
as a hardware abstraction layer to sit logically between
control and forwarding paths on a network device. To
get hands-on experience in running virtual networks,
we deployed FlowVisor into our own production net-
work and use it to create experimental and production
virtual slices of our campus wireline and wireless net-
work. The resulting virtual network runs on existing or
new low-cost hardware, runs at line-rate, and is back-
wardly compatible with our current legacy network. We
have gained some experience using it as our every-day
network, and we believe the same approach might be
used to virtualize networks in data centers, enterprises,
homes, WANs and so on.

Our goal is not to claim that our system is perfect - as
we will see, there are several open questions. Rather, we
are trying to understand what is easy and what is hard,
and to guide the evolution of our hardware abstraction
to make it easier in future to virtualize the network.

Our roadmap for the rest of the paper is as follows.
We first describe our specific vision of network virtual-
ization in § 2. In §3 we describe the FlowVisor’s design
and architecture, and how we implement strong isola-
tion (§4) between virtual instances. We validate(§5) the
FlowVisor’s isolation capabilities and quantify its over-
head. In §6 we describe the FlowVisor’s deployment in
our production network and our experience using it to
run network experiments in distinct virtual networks on
the same physical network. We finish with some con-

cluding remarks.

2. NETWORK VIRTUALIZATION
In order to virtualize a network, we need to know

what resources we are trying to slice. We argue that
there are five primary slicing dimensions:

Bandwidth. It should be possible to give each slice its
own fraction of bandwidth on a link. This requires
a basic primitive to divide link bandwidth. There
are well-known ways to do this, and the hardware
abstraction can provide some choice as to how it
is implemented (e.g. WDM in a optical network,
emulated circuits in a packet-switched network).
All elements on the forwarding path that limit the
forwarding rate need to sliced too. For example, if
forwarding takes place in software, then the CPU
needs to be virtualized too.

Topology. Each slice should have its own view of net-
work nodes (e.g., switches and routers) and the
connectivity between them. In this way, slices can
experience virtual network events such as link fail-
ure and forwarding loops.

Traffic. It should be possible to associate a specific set
of traffic to one (or more) virtual networks so that
one set of traffic can be cleanly isolated from an-
other. Here, traffic is defined broadly. It could be
all packets to/from a set of addresses; it could be
all traffic belonging to a group of users. It could be
quite specific, such as all http traffic, or all traffic
with even number Ethernet addresses; or very gen-
eral such as a specific user’s experiment. In gen-
eral we believe the hardware abstraction should
work with – but not be in any way constrained
by – the specific layering structures in use today.
It should provide a way to slice the forwarding
plane even as new protocols and address formats
are defined at any layer. This suggests a very flex-
ible way to define and slice the header space (or
“flowspace” as we will call it later).

Device CPU. Switches and routers have computational
resources that must be sliced. Without proper
CPU slicing, switches will stop forwarding slow-
path packets (e.g., packets with IP options, IGMP
join/leave messages), updating statistic counters
(e.g., SNMP) and, more importantly, will stop pro-
cessing updates to the forwarding table (e.g., route
changes).

Forwarding Tables. Network devices typically sup-
port a finite number of forwarding rules (e.g.,
TCAM entries). Failure to isolate forwarding en-
tries between slices might allow one slice to pre-
vent another from forwarding packets.
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Figure 1: Similar to computer virtualization, FlowVisor is a network virtualization layer that resides between
the hardware and software architectural components. OpenRoads, PlugNServe, and OpenPipes are examples
of virtual network controllers built on NOX(§ 6).

3. FLOWVISOR ARCHITECTURE
Like the virtualization layer on a computer, FlowVi-

sor sits between the underlying physical hardware and
the software that controls it (Figure 1). And like an op-
erating system uses an instruction set to control the un-
derlying hardware, FlowVisor uses the OpenFlow pro-
tocol to control the underlying physical network. Open-
Flow exposes forwarding control of a switch’s packets
to a programmable entity, i.e., the OpenFlow controller.
OpenFlow is further described elsewhere [13, 15], and
for the purposes of this paper a brief appendix sum-
marizes its main characteristics (Appendix A). FlowVi-
sor hosts multiple guest OpenFlow controllers, one con-
troller per slice, making sure that a controller can ob-
serve and control its own slice, while isolating one slice
from another (both the datapath traffic belonging to the
slice, and the control of the slice).

Broadly speaking–and in a way we make concrete
later–OpenFlow provides an abstraction of the network-
ing forwarding path that allows FlowVisor to slice the
network along the five required dimensions, and with
the following main characteristics:

• FlowVisor defines a slice as a set of flows running on
a topology of switches.2

• FlowVisor sits between each OpenFlow controller
and the switches, to make sure that a guest con-
troller can only observe and control the switches it
is supposed to.

2OpenFlow can in principle be added to Ethernet switches,
routers, circuit switches, access points and base stations. For
brevity, we refer to any OpenFlow-enabled forwarding ele-
ment as a “switch”.

• FlowVisor partitions the link bandwidth by assigning
a minimum data rate to the set of flows that make
up a slice.

• FlowVisor partitions the flow-table in each switch by
keeping track of which flow-entries belong to each
guest controller.

FlowVisor is implemented as an OpenFlow proxy
that intercepts messages between OpenFlow-enabled
switches and OpenFlow controllers (Figure 2).

3.1 Flowspace
The set of flows that make up a slice can be thought

of constituting a well-defined subspace of the entire ge-
ometric space of possible packet headers. For example,
the current version of OpenFlow3 supports forwarding
rules, called flow entries, that match on any subset of
bits in 10 fields of the packet header (from the physical
port the packet arrived on, the MAC addresses, through
to the TCP port numbers). The 10 fields are 256 bits
long in total. If we specify a flow as a match on a
specific 256 bit string, then we are defining one point
(out of 2256) in a 256-dimensional geometric space. Us-
ing wild cards (or bit masks), we can define any region
within the space. For example, if we describe a flow
with 256− k ’0’ or ’1’ bits, and k wildcard or ’X’ bits,
then we are defining a k-dimensional region. This is a
simple generalization of the commonly used geometric
representation of access control lists (ACLs) for packet
classification [11].

Because FlowVisor defines a slice as a set of flows,
we can think of a slice as being defined by a set of
(possibly non-contiguous) regions; which we call the

3Version 0.90 is the latest.
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Figure 2: The FlowVisor intercepts OpenFlow mes-
sages from guest controllers (1) and, using the user’s
slicing policy (2), transparently rewrites (3) the mes-
sage to control only a slice of the network. Messages
from switches (4) are forwarded only to guests if it
matches their slice policy.

slice’s “flowspace”. In general, we say that FlowVisor
slices traffic using flowspaces. Given a packet header
(a single ”point”), FlowVisor can decide which flows-
pace contains it, and therefore which slice (or slices) it
belongs to. FlowVisor can isolate two slices by mak-
ing sure their flowspaces don’t overlap anywhere in the
topology; or it can decide which switches can be used
to communicate from one slice to another. It can also
allow a packet to belong to two or more slices; for ex-
ample, if one slice is used to monitor other slices.

3.2 FlowVisor Design Goals
FlowVisor was designed with the following goals: (1)

the virtualization should be transparent to the network
controller, (2) there should be strong isolation between
network slices, and (3) the slice definition policy should
be rich and extensible. We discuss the rationale for each
of these choices below.

Transparency. The virtualization layer should be
transparent to both the network hardware and the con-
trollers managing the virtual networks. The reasons for
this are two-fold. First, an important motivation of vir-
tual networks is the ability to prototype and debug pro-
tocols on realistic topologies. If the controller must be
actively aware of the virtualization layer, it is possible to
design a controller that functions in the virtual environ-
ment but not the real network. Second, it’s important to
decouple network virtualization technology from con-
troller design so that they can be updated and improved
independently. In our design, neither switch nor guest

OpenFlow controller need be modified to interoperate
with FlowVisor.

Isolation. The virtualization layer must enforce
strong isolation between slices—even under adversarial
conditions. The promises of virtualization break down
if one slice is able to exhaust the resources of another.
We describe the details of the isolation mechanisms in
§4 and evaluate their effectiveness in §5.

Extensible Slice Definition. Because we have lim-
ited experience in operating virtual networks, it is im-
portant to have a slicing policy that is flexible, extensi-
ble, and modular. Much like an operating system sched-
uler allocates CPU resources among many processes,
the slicing policy must allocate networking resources
(§2) among network slices. We believe resource alloca-
tion among slices will be an active area of research. In
FlowVisor, the slicing policy is implemented as a sepa-
rate logical module for ease of development.

3.3 System Description
FlowVisor is a specialized OpenFlow controller.

FlowVisor acts as a transparent proxy between
OpenFlow-enabled network devices and multiple guest
OpenFlow controllers (Figure 2). All OpenFlow mes-
sages, both from switch to guest and vice versa, are sent
through FlowVisor. FlowVisor uses the OpenFlow pro-
tocol to communicate with both guests and switches.
The guest controllers require no modification and be-
lieve they are communicating directly with the network
devices.

We illustrate the FlowVisor’s operation with the fol-
lowing simple example (Figure 2)—§6 describes more
compelling use-cases. Imagine an experimenter (Bob)
builds a guest controller that is an HTTP load-balancer
designed to spread all HTTP traffic over a set of servers.
While the controller will work on any HTTP traffic,
Bob’s FlowVisor policy slices the network so that he
only sees traffic from one particular IP source address.
His guest controller doesn’t know the network has been
sliced, so doesn’t realize it only sees a subset of the
HTTP traffic. The guest controller thinks it can con-
trol, i.e., insert flow entries for, all HTTP traffic from
any source address. When Bob’s controller sends a flow
entry to the switches (e.g., to redirect HTTP traffic to
a particular server), FlowVisor intercepts it (Figure 2-
1), examines Bob’s slice policy (Figure 2-2), and re-
writes the entry to include only traffic from the allowed
source (Figure 2-3). Hence the controller is controlling
only the flows it is allowed to, without knowing that
the FlowVisor is slicing the network underneath. Sim-
ilarly, messages that are sourced from the switch (e.g.,
a new flow event—Figure 2-4) are only forwarded to
guest controllers whose flowspace match the message.

Thus, FlowVisor enforces transparency and isolation
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between slices by inspecting, rewriting, and policing
OpenFlow messages as they pass. Depending on the
resource allocation policy, message type, destination,
and content, the FlowVisor will forward a given mes-
sage unchanged, translate it to a suitable message and
forward, or “bounce” the message back to its sender in
the form of an OpenFlow error message. For a message
sent from guest controller to switch, FlowVisor ensures
that the message acts only on traffic within the resources
assigned to the guest. For a message in the opposite di-
rection (switch to controller), the FlowVisor examines
the message content to infer the corresponding guest(s)
to which the message should be forwarded. Guest con-
trollers only receive messages that are relevant to their
network slice. Thus, from a guest controller’s perspec-
tive, FlowVisor appears as a switch (or a network of
switches); from a switch’s perspective, FlowVisor ap-
pears as a controller.

FlowVisor does not require a 1-to-1 mapping be-
tween FlowVisor instances and physical switches.
One FlowVisor instance can control multiple physical
switches, and even virtualize another virtual network
(Figure 3).

Switch Switch Switch Switch Switch

FlowVisor FlowVisor

FlowVisor
NOX

Alice

NOX

Bob

NOX

Cathy

NOX

Doug

x4 x4

x5 x5

OpenFlow
Connection

Key:

Figure 3: A single FlowVisor instance can virtual-
ize many switches in parallel. Additionally, because
of the transparent design, FlowVisor can trivially re-
cursively slice a virtual slice, creating hierarchies of
FlowVisors.

We implement FlowVisor in approximately 7000
lines of C and the code is publicly available for down-
load.

3.4 Slice Definition Policy
Slices are defined in FlowVisor in a pluggable mod-

ule. Each policy is described by a text configuration

file—one per slice. For bandwidth allocation, all traffic
for a slice is mapped to a single QoS class (§4.1). Each
slice has a fixed, constant budget for switch CPU and
forwarding table entries. Network topology is specified
as a list of network nodes and ports.

The flowspace for each slice is defined by an ordered
list of tuples similar to firewall rules. Each rule descrip-
tion has an associated action, e.g., allow, read-only, or
deny, and is parsed in the specified order, acting on the
first matching rule. Rules are combined to carve out sec-
tions of the flowspace and control delegated a particular
slice. The read-only rules allow slices to receive Open-
Flow control messages and query switch statistics, but
not to insert entries into the forwarding table. Rules are
allowed to overlap, as described in the example below.

Continuing the example from above, Alice, the net-
work administrator, wants to allow Bob to conduct a
cooperative HTTP load-balancing experiment. Bob has
convinced a set of his fellow researchers to participate in
his experiment. Alice wants to delegate control to Bob
of just the HTTP traffic of users who have opted into the
experiment, and keep the rest for her production traf-
fic. Additionally, Alice wants to run a passive slice that
monitors the performance of the whole network. This
example would have the following flowspace rules.

Bob’s Experimental Network is defined as the HTTP
traffic for the set of users that have opted into his
experiment. Thus, his network description would
have one rule per user of the form:
Allow: tcp port:80 and
ip=user ip. OpenFlow messages from
the switch matching any of these rules are for-
warded to Bob’s controller. Any flow entries that
Bob tries to insert are rewritten to match these
rules.

Alice’s Production Network is the complement of
Bob’s network. For each user in Bob’s ex-
periment, the production traffic network has a
negative rule of the form:
Deny: tcp port:80 and ip=user ip.
The production network would have a final rule
that matches all flows: Allow: all.
Thus, only OpenFlow messages that do not go to
Bob’s network are sent to the production network
controller. The production controller is allowed
to insert forwarding entries so long as they do not
match Bob’s traffic.

Alice’s Monitoring Network is allowed to see all traf-
fic in all networks. It has one rule, Read-only:
all. This read-only rule ensures that the Al-
ice’s monitoring network is completely passive
and does not interfere with the normal operation
of her production network.
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This rules-based policy, though simple, suffices for
the experiments and deployment described in this pa-
per. We expect that future FlowVisor deployments will
have more specialized policy needs, and that researchers
and virtual network operators will their own custom re-
source allocation policies.

4. ISOLATION MECHANISMS
A critical component of virtualization is isolation be-

tween slices. Because isolation mechanisms vary by re-
source, we describe each resource in turn. In addition to
resources common to virtual networking(§2), our choice
of OpenFlow as a hardware abstraction platform causes
us to virtualize one additional resource: the OpenFlow
control channel.

4.1 Bandwidth Isolation
Typically, even relatively modest commodity network

hardware has some capability for basic bandwidth isola-
tion [8]. While OpenFlow does not yet expose control of
quality of service (QoS) queues, FlowVisor is still able
to leverage existing switch bandwidth isolation features
by marking the VLAN priority bits in packets. VLAN
tags have a three bit field, the VLAN Priority Code Point
(PCP), that are a standard mechanism to map a packet
to one of eight priority queues. The OpenFlow protocol
does expose the ability to manage VLAN tags and the
priority bits, so it’s possible to mark all packets in a flow
with a certain priority.

Thus, to enforce bandwidth isolation, the FlowVisor
rewrites all slice forwarding table additions to include a
“set VLAN priority” action, setting the priority to one
of eight priority queues. All traffic from a given slice is
mapped to the traffic class specified by the resource al-
location policy. The exact meaning of each traffic class
must be configured out-of-band by the network admin-
istrator at the switch CLI.

Note that the use of VLAN PCP bits is not inher-
ent to FlowVisor’s design, but rather a short-term work-
around to interoperate with commodity hardware. More
direct control over QoS features and queues definitions
is expected in the upcoming OpenFlow version 1.0 and
will allow for more fine-grained QoS control. Also, IP’s
ToS bits can also be used in this same manner to map
traffic to existing traffic queues.

We evaluate the effectiveness of bandwidth isolation
in § 5.

4.2 Topology Isolation
Controllers discover the network’s nodes and links

via the OpenFlow protocol. In a non-virtual setting, a
controller discover a network device when the device
actively connects to the controller’s listening TCP port.
Since the FlowVisor acts as a proxy between switch and

controller, it only proxies connections to a guest con-
troller for the switches in the guest’s virtual topology.
Also, in OpenFlow there is a message to list the avail-
able physical ports on a switch. The FlowVisor simply
edits the message response to report only ports that ap-
pear in the virtual topology.

Finally, special care is taken to handle link layer dis-
covery protocol (LLDP) messages. In NOX [6], a popu-
lar OpenFlow controller development platform, LLDP
messages are sent out each switch port to do neigh-
bor discovery. When the messages are received by the
neighboring switch, they do not match any forwarding
rules, and are thus sent back to the controller. By not-
ing the sending and receiving switches, NOX can in-
fer neighbor connectivity. Since the messages have a
specific, well-known form, the FlowVisor intercepts and
tags the message with the sending slices ID, so that they
are sent back to the correct slice when they are received
again.

4.3 Switch CPU Isolation
CPU’s on commodity network hardware are typically

low-power embedded processors and are thus an easily
over-loaded resource. The problem is that in most hard-
ware, a highly-loaded switch CPU will result is signif-
icant network disruption. If, for example, a CPU be-
comes overloaded, hardware forwarding will continue,
but switches will stop responding to OpenFlow requests,
which causes the LLDP neighbor discovery protocol to
timeout, which causes the controller to believe there is
network-wide link flapping, and then for all intents and
purposes the network become unusable.

There are four main sources of load on a switch CPU:
(1) generating new flow setup messages, (2) handing re-
quests from controller, (3) forwarding “slow path” pack-
ets, and (4) internal state keeping. Each of these sources
of load requires a different isolation mechanism.

New Flow Messages. In OpenFlow, when a packet
arrives at a switch that does not match an entry in the
flow table, a new flow message is sent to the controller.
This process consumes processing resources on a switch
and if message generation occurs too frequently, the
CPU resources can be exhausted. To prevent starva-
tion, the FlowVisor tracks the new flow message arrival
rate for each slice, and if it exceeds some threshold, the
FlowVisor will insert a forwarding rule to drop the of-
fending packets for a short period. Thus, FlowVisor
uses the OpenFlow protocol to rate limit the incoming
new flow messages. We discuss the effectiveness of this
technique in §5.2.3.

Controller Requests. The requests an OpenFlow
controller sends to the switch, e.g., to edit the forward-
ing table or query statistics, consume CPU resources.
For each slice, the FlowVisor limits CPU consumption
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by throttling the OpenFlow message rate to a maximum
rate per second. Because the amount of CPU resources
consumed vary by message type and by hardware im-
plementation, it is future work to dynamically infer the
cost of each OpenFlow message for each hardware plat-
form.

Slow-Path Forwarding. Packets that traverse the
“slow” path—i.e., not the “fast” dedicated hardware
forwarding path—consume CPU resources. Thus, an
OpenFlow rule that forwards packets via the slow path
can consume arbitrary CPU resources. FlowVisor pre-
vents guest controllers from inserting slow-path for-
warding rules by rewriting them as one-time packet for-
warding events, i.e., an OpenFlow “packet out” mes-
sage. As a result, the slow-path packets are rate limited
by the above two isolation mechanisms: new flow mes-
sages and controller request rate limiting.

Internal Bookkeeping. All network devices use
CPU to update their internal counters, process events,
update counters, etc. So, care must be taken to ensure
that there are sufficient CPU available for the switch’s
bookkeeping. The FlowVisor accounts for this by ensur-
ing that the above rate limits are tuned to leave sufficient
CPU resources for the switches internal function.

As with bandwidth isolation, these CPU-isolation
mechanisms are not inherent to FlowVisor’s design, but
rather a work-around to deal with the existing hard-
ware abstraction. A better long-term solution would
be to expose the switch’s existing process scheduling
and rate-limiting features via the hardware abstraction.
Some architectures, e.g., the HP ProCurve 5400, already
use these rate-limiters to implement switch CPU isola-
tion between the OpenFlow and non-OpenFlow enabled
VLANs. Adding these features to OpenFlow is an active
point of future work.

4.4 FlowSpace Isolation
Each slices must be restricted to only affecting flows

in their flowspace. The FlowVisor performs message
rewriting to transparently ensure that a slice only has
control over its own flows and cannot affect other slices
flows. Not all rules can be rewritten to fit to a slice: the
FlowVisor will only make rules more specific. So, using
the previous slicing example (§3.4), if Bob’s controller
tried to create a rule affecting all traffic, the FlowVi-
sor would rewrite the rule to only affect TCP traffic to
port 80. However, the FlowVisor will not, for example,
rewrite a rule that affects port 22 traffic to only affect
port 80 traffic. In the case of rules that cannot be rewrit-
ten, the FlowVisor sends an error message back to the
controller indicating that the flow entry cannot be added.

4.5 Flow Entries Isolation
The FlowVisor counts the number of flow entries

used per slice and ensures that each slice does not ex-
ceed a preset limit. The FlowVisor increments a counter
for each rule a guest controller inserts into the switch
and then decrements the counter when a rule expires.
Due to hardware limitations, certain switches will inter-
nally expand rules that match multiple input ports, so
the FlowVisor needs to handle this case specially. The
OpenFlow protocol also provides a mechanism for the
FlowVisor to explicitly list the flow entries in a switch.
When a guest controller exceeds its flow entry limit, any
new rule insertions received a “table full” error message.

4.6 OpenFlow Control Isolation
In addition to physical resources, the OpenFlow con-

trol channel itself must be virtualized and isolated. For
example, all messages in OpenFlow include a unique
transaction identifier; the FlowVisor must rewrite the
transaction IDs to ensure that messages from different
guest controllers do not use the same ID. Similarly,
OpenFlow uses a 32-bit integer to identify the buffer
where a packet is queued while its forwarding decision
is pushed up to the controller. The FlowVisor needs to
ensure that each guest controller can only access its own
buffers. Status messages, e.g., link-down on a port, have
to be duplicated to all of the affected slices. Vitalizing
the control channel is made easier because the Open-
Flow protocol only defines 16 message types.

5. EVALUATION
To motivate the efficiency and robustness of the de-

sign, in this section we evaluate both the FlowVisor’s
performance and isolation properties.

5.1 Performance Overhead
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Figure 4: CDF of virtualization overhead for Open-
Flow new flow messages.

Adding an additional layer between control and data
paths adds overhead to the system. However, as a re-
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Figure 5: CDF of virtualization overhead for Open-
Flow port status requests.

sult of our design, the FlowVisor does not add overhead
to the data path. That is, with FlowVisor, packets are
forwarded at full line rate. Nor does the FlowVisor add
overhead to the control plane: control-level calculations
like route selection proceed at their unvirtualized rate.
FlowVisor only adds overhead to actions that cross be-
tween the control and data path layers.

To quantify this cross-layer overhead, we measure
the increased response time for guest controller requests
with and without the FlowVisor. Specifically, we con-
sider the response time of the OpenFlow messages most
commonly used in our network and by our monitoring
software [25]: the new flow and the port status request
messages.

In OpenFlow, a switch sends the controller a new flow
message when a packet arrives that does not match any
existing forwarding rules. We examine the overhead
of the new flow message to better understand how the
FlowVisor increases connection setup latency. In our
experiment, we connect a machine with two interfaces
to a switch. One interface sends 51 packets per second
to the switch and the other interface is the OpenFlow
control channel. We measure the time between sending
the packet and receiving the new flow message using
libpcap. Our results (Figure 4) show that the FlowVisor
increases new flow message latency, i.e., the additional
time from switch to controller, by 16ms on average. For
latency sensitive applications, e.g., web services in large
data centers, 16ms may be too much overhead. How-
ever, new flow messages add 12ms latency on average
even without the FlowVisor, so we believe that guest
controllers in those environments will likely proactively
insert flow entries into switches, avoiding this latency
all together. Additionally, the algorithm the FlowVisor
uses to process new flow messages is naive, and runs
in time relative to the number of flowspace rules. Our

future work is to optimize this lookup process using a
trie [10].

A port status request is a message sent by the con-
troller to the switch to query the byte and packet coun-
ters for a specific port. The switch returns the coun-
ters in a corresponding port status reply message. We
choose to study the ports status request because we be-
lieve it to be a worst case for FlowVisor overhead: the
message is very cheap to process at the switch and con-
troller, and the FlowVisor has to edit the message per
slice to remove statistics for ports that do not appear in
a slices virtual topology.

We wrote a special-purpose controller that sent port
status requests at approximately 200 requests per sec-
ond and measured the response times. The rate was cho-
sen to approximate the maximum request rate supported
by the hardware. The controller, switch, and FlowVisor
were all on the same local area network, but controller
and FlowVisor were hosted on separate PCs. Obviously,
the overhead can be increased by moving the FlowVisor
arbitrarily far away from the controller, but we design
this experiment to quantify the FlowVisor’s processing
overhead. Our results show that adding the FlowVisor
causes an average overhead for port status responses of
0.48 milliseconds(Figure 5). We believe that port sta-
tus response time being faster than new flow processing
time is not inherent, but simply a matter of better opti-
mization for port status requests handling.

5.2 Isolation

5.2.1 Bandwidth
To validate the FlowVisor’s bandwidth isolation

properties, we run an experiment where two slices com-
pete for bandwidth on a shared link. We consider the
worst case for bandwidth isolation: the first slice sends
TCP-friendly traffic and the other slice sends constant-
bit-rate (CBR) traffic at full link speed (1Gbps). We
believe these traffic patterns are representative of a sce-
nario where production slice (TCP) shares a link with,
for example, a slice running a DDoS experiment (CBR).

This experiment uses 3 machines—two sources and a
common sink—all connected via the same HP ProCurve
5400 switch, i.e., the switch found in our wiring closet.
The traffic is generated by iperf [9] in TCP mode for the
TCP traffic and UDP mode at 1Gbps for the CBR traffic.
We repeat the experiment twice: with and without the
FlowVisor’s bandwidth isolation features enabled (Fig-
ure 6). With the bandwidth isolation disabled (“without
QoS”), the CBR traffic consumes nearly all the band-
width and the TCP traffic averages 1.2% of the link
bandwidth. With the traffic isolation features enabled,
the FlowVisor maps the TCP slice to a QoS class that
guarantees at least 70% of link bandwidth and maps
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the CBR slice to a class that guarantees at least 30%.
Note that theses are minimum bandwidth guarantees, not
maximum. With the bandwidth isolation features en-
abled, the TCP slice achieves an average of 64.2% of
the total bandwidth and the CBR an average of 28.5%.
Note that the event at 20 seconds where the CBR with
QoS jumps and the TCP with QoS experiences a cor-
responding dip . We believe this to be the result of a
TCP congestion event that allowed the CBR traffic to
temporarily take advantage of additional available band-
width, exactly as the minimum bandwidth QoS class is
designed.
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Figure 6: Effect of FlowVisor bandwidth isolation on
competing TCP and CBR traffic

5.2.2 FlowSpace
To validate the correctness of the FlowSpace isolation

algorithm, we design 21 distinct experiments. These ex-
periments verify that slices cannot affect traffic that is
not their own, that their flow entries are correctly rewrit-
ten to affect only their traffic, and that flow entry expi-
ration messages only go to the correct slices. These test
cases have been incorporated into the FlowVisor’s auto-
mated testing suite.

5.2.3 Switch CPU
To quantify our ability to isolate the switch CPU re-

source, we show two experiments that monitor CPU-
usage overtime of a switch with and without iso-
lation enabled. In the first experiment (Figure 7),
the OpenFlow controller maliciously sends port stats
request messages (as above) at increasing speeds
(2,4,8,. . .,1024 requests per second). In our second ex-
periment (Figure 8), the switch generates new flow mes-
sages faster than its CPU can handle and a faulty con-
troller does not add a new rule to match them. In both
experiments, we show the 1-second-average switch’s
CPU utilization over time, and the FlowVisor’s isola-
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Figure 7: FlowVisor’s message throttling isola-
tion prevents a malicious controller from saturating
switch CPU.
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Figure 8: FlowVisor’s new flow messages throttling
prevents a faulty controller from saturating switch
CPU.

tion features reduce the switch utilization from 100% to
a configurable amount. In the first experiment, we note
that the switch could handle less than 256 port status re-
quests without appreciable CPU load, but immediately
goes to 100% load when the request rate hits 256 re-
quests per second. In the second experiment, the bursts
of CPU activity in Figure 8 is a direct result of using null
forwarding rules (§4.3) to rate limit incoming new flow
messages. We expect that future versions of OpenFlow
will better expose the hardware CPU limiting features
already in switches today.

6. DEPLOYMENT EXPERIENCE
To gain experience with running, administering, and

debugging virtual networks, we deploy FlowVisor on
our production networks. By “production” network, we
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mean the network that the authors used daily to read
their email, surf the web, etc. Upon this same network,
we in parallel ran four distinct network experiments—
each in their own slice. In this section, we describe our
experiences in deploying FlowVisor, how each experi-
ment stressed the FlowVisor, and some preliminary re-
sults to quantity the FlowVisor’s scalability.

6.1 Deployment Description
We have been running FlowVisor continuously on our

production network since June 4th, 2009. Our network
consists of 20 users, five NEC IP8800 switches, two HP
ProCurve 5400s, 30 wireless access points, five NetF-
PGA [12] cards acting as OpenFlow switches, and a
WiMAX base station. All network devices are pointed
to a single FlowVisor instance, running on a 3.0GHz
quad-core Intel Xeon with 2 GB of ram. For maximum
uptime, we ran FlowVisor from a wrapper script that in-
stantly restarts it if it should crash. The FlowVisor was
able to handle restarts seamlessly because it does not
maintain any hard state in the network. In our produc-
tion slice, we ran NOX’s routing model to perform MAC
address learning and basic forwarding in the network.
For future work, we hope to continue to develop and
publish our virtual network tools and debugging tech-
niques.

6.2 Experiments
On the same network, we also ran four networking

experiments in parallel on our network [18]. All four
experiments were built on top of NOX [6].

OpenPipes demonstrates [5] how hardware designs
can be partitions over a physical network. In
this experiment, the traffic consisted of video
frames encapsulated in raw ethernet and was piped
through various video filters running on nodes dis-
tributed through the network. OpenPipe’s traffic
stressed the FlowVisor flexible FlowSpace slicing
in terms of its ability to slice by ethernet type.

OpenRoads experiments [27, 26] with loss-less han-
dover between the WiMAX and wifi wireless
nodes. By dynamically re-directing how traf-
fic flows through the network, OpenRoads is
able to provide finer-grained control of mobility
policies, e.g., make-before-break or break-before-
make connections. OpenRoads made heavy use
of “read-only” FlowSpace, testing the FlowVisor’s
traffic isolation capabilities.

Aggregation demonstrates OpenFlow’s ability to de-
fine flows as groups of TCP sessions. In the exper-
iment, hundreds of TCP flows are “bundled” into
a single flow table entry. The aggregation exper-
iment’s slice definition had 512 rules, testing the
FlowVisor’s processing and rewriting capabilities.

Plug-N-Serve tested [7] various algorithms for load-
balancing web requests in unstructured networks.
In this experiment, web queries arrive at a config-
urable rate and are load-balanced both by path and
by server. The Plug-N-Serve experiment’s query
generator tested FlowVisor’s new flow switch
CPU isolation features.

6.3 Preliminary Scaling Evaluation
FlowVisor trivially scales to the size of our current

deployment. In terms of computation, the FlowVisor
uses at most 5% CPU on a 3.0GHz Xeon. In terms of
bandwidth, our busiest switch in the middle of the day
(i.e., the busiest time) averaged 8.6 KB/s of control traf-
fic with a peak of 137KB/s (0.01% of a 1 Gbps link),
as measured by the sum of control traffic over all slices
over 3 hours.

A larger deployment is required to properly evalu-
ate the scaling limits of a single FlowVisor instance.
That said, if we assume that the FlowVisor’s CPU and
bandwidth consumption scale linearly with the num-
ber of controllers and input the above peak-utilization
performance numbers, it is possible infer the scaling
limits. Using the 5% peak CPU-utilization measure-
ment, the number of slices could grow by a factor of
20 before the FlowVisor became CPU bound. The cur-
rent version of FlowVisor runs in a single thread, so
a multi-threaded FlowVisor would allow even further
scaling. Assuming 137KB/s of control traffic per switch
across 5 controllers (four experimental controllers and
one production controller), then the FlowVisor could in
theory handle on the order of thousands of controllers
concurrently before becoming bandwidth bottle-necked.
Adding more and faster interfaces would further in-
crease the FlowVisor’s bandwidth scaling.

7. RELATED WORK
VLANs [2] are widely used for segmentation and iso-

lation in networks today. VLANs virtualize standard
Ethernet L2 broadcast domains by decoupling the vir-
tual links from the physical ports. This allows multiple
virtual links to be multiplexed over a single virtual port
(trunk mode), and it allows a single switch to be seg-
mented into multiple, L2 broadcast networks. However,
VLANs differ from FlowVisor in that rather than vir-
tualizing the network control layer generally, they vir-
tualize a specific forwarding algorithm (L2 learning).
FlowVisor, on the other hand, not only supports a much
more flexible method of defining networks over flow
space, it provides a model for virtualizing any forward-
ing logic which conforms to the basic flow model.

Orphal [14] is, a low-level API for implementing for-
warding and control logic within a production switch.
Significantly, Orphal provides isolation between distinct
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forwarding applications (switchlets) within the same
switch. Orphal differs from our work in two ways. First,
it defines an interface to a single switch rather than a
network of switches. In fact, because Orphal has been
used to implement OpenFlow, it could participate on a
FlowVisor managed network. Second, Orphal was de-
sign to provide low-level access to programmable hard-
ware such as on-board ASICs. In contrast, FlowVisor
maintains the OpenFlow interface of providing a flow-
level interface to the control software.

There is a vast array of work related to network ex-
perimentation in both controlled and operational envi-
ronments. Here we merely scratch the surface by dis-
cussing some of the more recent highlights.

The community has benefited from a number of
testbeds for performing large-scale network experi-
ments. Two of the most widely used are PlanetLab [16]
and EmuLab [23]. PlanetLab’s primary function has
been that of an overlay testbed, hosting software ser-
vices on nodes deployed around the globe. EmuLab
is targeted more at localized and controlled experi-
ments run from arbitrary switch-level topologies con-
nected by PCs. VINI [20], a testbed closely affiliated
with PlanetLab, further provides the ability for multi-
ple researchers to construct arbitrary topologies of soft-
ware routers while sharing the same physical infrastruc-
ture. Similarly, software virtual routers offer both pro-
grammability, reconfigurability, and have been shown to
manage impressive throughput on commodity hardware
(e.g., [3]).

In the spirit of these and other testbed technologies,
FlowVisor is designed to aid research by allowing multi-
ple projects to operate simultaneously, and in isolation,
in realistic network environments. What distinguishes
our approach is that our focus is on providing segmen-
tation and isolation of the hardware forwarding paths
of real commercial networking gear. We also explore
how to run experiments while sharing switch-level in-
frastructure of operational networks.

Supercharging PlanetLab [19] and GENI [4] propose
network experimentation platforms designed around
network processors. These have the advantage of both
providing extremely high performance and isolation
while allowing for sophisticated per-packet processing.
In contrast, our work concedes the ability to perform ar-
bitrary per-packet computation in order achieve broad
cross-vendor support. We believe our work to be com-
plimentary and well-suited for integration with network
processor-based platforms.

8. FUTURE WORK
Our experience in deploying FlowVisor has exposed

many unanswered questions. Optimal, general, or even
practical solutions to virtual network resource alloca-

tion, management, and debugging have potential to be
fruitful areas of research. More concretely, the cur-
rent FlowVisor implementation only virtualizes switch
forwarding logic, the traffic’s flowspace, and associ-
ated hardware resources (e.g., bandwidth/queues, topol-
ogy/ports). However, there are other resources on a net-
work that could also be virtualized. Here we outline
three such resources and describe how they might be
virtualized.

Virtual Device Configuration. FlowVisor does not al-
low slices to affect the configuration of switches.
That is, users cannot change or, for example, en-
able a low-power transmission mode. We ex-
pect device configuration to be a critical feature in
virtualizing wireless networks, where users may
want to set transmission power, change the ad-
vertised ESSID, etc. We are currently drafting a
simple device configuration protocol for the Open-
Flow protocol, with the intent of then virtualizing
it.

Virtual Links. FlowVisor’s virtual topologies are re-
stricted to subsets of the physical topology. The
ability to create complex virtual topologies com-
pletely decouple from the underlying physical
connectivity is likely of use to clean slate Internet
design. We expect that support for tunneling will
be added to the OpenFlow protocol in the near fu-
ture.

Virtual Address Space. Currently, FlowVisor has no
way for two slices to share flowspace and simul-
taneously prevent them from interfering with each
other’s traffic. This is potentially problematic, as
two slices might want control over the same de-
sirable flowspace, e.g., the 10.0.0.0/8 IP netblock.
Similar to virtual memory, it is possible to use
packet rewriting to virtually allocate each slice
the same flowspace, and transparently rewrite it to
non-overlapping regions.

9. CONCLUSION
We originally set out to answer a specific problem:

How can we slice our campus production network so
that every student in a projects class can each run their
own network experiment to control forwarding deci-
sions, all at the same time? We concluded early on that
if we want to slice a network built from different types
of network device (Ethernet switches, routers, APs, etc),
then we need a way to abstract the forwarding plane that
is common across all network devices, and is not spe-
cific or confined to one protocol layer. In order to slice
the forwarding plane, we concluded that we need: (1)
For each packet, a way to determine and enforce which
slice (or slices) it belongs to, (2) To isolate the band-
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width of one slice from another, and (3) To allow the
forwarding decisions for each slice to be controlled in-
dependently by its own control logic.

There are several ways to determine and enforce
which slice a packet belongs to: For example, any com-
monly agreed upon header field could be used to multi-
plex and de-multiplex packets into the set of flows that
make up a slice. But to give us most flexibility in the
definition of a flow (and hence a slice), we wanted flow
definitions that include legacy packet formats (for back-
ward compatibility), can work across multiple protocol
layers (to allow for experiments at different layers, and
to allow for different definitions of a flow in different
parts of the network - for example bigger flows on ag-
gregated links), and allow the protocol to be changed in
any layer.

We came to the conclusion that flow space is a critical
property when virtualizing a network. The more free-
dom the forwarding plane gives us to express flow space
- with as many headers and as few constraints as possi-
ble - then the richer the slices we can create, and the
easier it is to define and use new protocols. We have al-
ready seen much richer slice descriptions in FlowVisor
than we expected; slice definitions have included multi-
ple new header fields, the time of day, and the identity
of the user. It is hard to imagine any other way to ac-
complish the same expressibility.

We used OpenFlow in our prototype because it comes
closest to meeting our requirements. However, in its
current version, OpenFlow matches on specific head-
ers (L2-L4). In future versions, motivated in part by
our work on slicing, we expect OpenFlow will match
on many more bits in packet headers, as well as allow
control of layer-1 transport networks.

There are several ways to isolate the bandwidth of one
slice from another. FlowVisor does this by assigning
bandwidth to the flows in each slice. This prompted us
to extend OpenFlow so that a flow (or set of flows) can
be assigned a minimum data rate.

We have deployed FlowVisor in our production net-
work at Stanford, and we are currently extending it to
three buildings in the school of engineering. In 2010
we will work with researchers and IT staff on seven US
college campuses - as well as the Internet2 and NLR
backbones - to help deploy FlowVisor in their networks
too.
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APPENDIX
A. BRIEF OPENFLOW DESCRIPTION
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Figure 9: Relative to traditional hardware, the
OpenFlow protocol moves the control path to an ex-
ternal controller.

A thin and efficient virtualization layer requires a
clean hardware interface. In this capacity, FlowVisor
is built on top of OpenFlow. While OpenFlow was
originally designed as an open interface for controlling
how packets are forwarded, it has the secondary effect
of abstracting the underlying hardware. In this Ap-
pendix, we briefly describe OpenFlow’s functionality. It
is worth noting that the FlowVisor’s architecture is not
inhierently tied to OpenFlow: FlowVisor could in the-
ory leverage another hardware abstraction were it avail-
able. However, to the best of our knowledge, OpenFlow
is the only cross-vendor hardware abstraction protocol
available today.

OpenFlow [13, 15] is an open standard that allows re-
searchers to directly control the way packets are routed
in the network. In a classical network architecture, the
control logic and the data path are co-located on the
same device and communicate via an internal propri-
etary bus. In OpenFlow, the control logic is moved to
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an external controller (typically a commodity PC); the
controller talks to the datapath (over the network itself)
using the OpenFlow protocol (Figure 9). The Open-
Flow protocol abstracts forwarding/routing directives as
“flow entries”. A flow entry consists of a bit pattern, a
list of actions, and a set of counters. Each flow entry
states “perform this list of actions on all packets in this
flow” where a typical action is “forward the packet out
port X” and the flow is defined as the set of packets that
match the given bit pattern. The collection of flow en-
tries on a network device is called the “flow table”.

When a packet arrives at a switch or router, the de-
vice looks up the packet in the flow table and performs
the corresponding set of actions. When a packet does
not have an entry in the flow table (i.e., it does not match
any existing bit patterns) the packet is queued and a new
flow event is sent to the external controller. The con-
troller responds with a flow modification message which
adds a new rule to the flow table to handle the queued
packet. The new flow entry is cached in the flow table
and subsequent packets in the same flow will be handled
by it. Thus, the external controller is only contacted for
the first packet in a flow and the subsequent packets are
forwards at the switch’s full line rate.

Architecturally, OpenFlow exploits the fact that mod-
ern switches and routers already logically implement
flow entries and flow tables—typically in hardware as
TCAMs. As such, a network device can be made
OpenFlow-compliant via firmware upgrade, i.e., with-
out additional hardware support.
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