
Quantifying the Performance Isolation Properties of Virtualization Systems

Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd Deshane,
Demetrios Dimatos, Gary Hamilton, Michael McCabe, James Owens

Clarkson University

{jnm, huwj, hapuarmg, deshantm, dimatosd, hamiltgr, mccabemt, owensjp}@clarkson.edu

ABSTRACT

In this paper, we present the design of a performance
isolation benchmark that quantifies the degree to which
a virtualization system limits the impact of a misbehav-
ing virtual machine on other well-behaving virtual ma-
chines running on the same physical machine. Our test
suite includes six different stress tests - a CPU intensive
test, a memory intensive test, a disk intensive test, two
network intensive tests (send and receive) and a fork
bomb. We describe the design of our benchmark suite
and present results of testing three flavors of virtualiza-
tion systems –an example of full virtualization
(VMware Workstation), an example of paravirtualiza-
tion (Xen) and two examples of operating system level
virtualization (Solaris Containers and OpenVZ). We
find that the full virtualization system offers complete
isolation in all cases and that the paravirtualization sys-
tem offers nearly the same benefits – no degradation in
many cases with at most 1.7% degradation in the disk
intensive test. The results for operating system level
virtualization systems are varied – illustrating the com-
plexity of achieving isolation of all resources in a
tightly coupled system. Our results highlight the differ-
ence between these classes of virtualization systems as
well as the importance of considering multiple catego-
ries of resource consumption when evaluating the per-
formance isolation properties of a virtualization system.

Categories and Subject Descriptors
C.4 [Performance of Systems]
General Terms
Measurement, Performance, Experimentation
Keywords
Virtualization, Performance Isolation

1. Introduction

Virtualization environments can be used for many dif-
ferent purposes. For example, virtualization can be used
to maintain multiple software environments on the
same host for testing or simply to allow a desktop user
to run multiple operating systems on the same physical
host. Virtualization environments have long been used
in commercial server environments on platforms such
as IBM’s VM/370 [1] or z/OS [2]. Increasingly, virtual-
ization environments for x86 platforms are targeting
commercial server environments as well. [3, 4,15]

In recent years, there have been a number of papers
comparing the performance of different virtualization
environments for x86 such as Xen, VMware Work-
station and UML [5] [6] [7]. These comparisons have
typically quantified the overhead of virtualization for
one VM compared to a base OS. It has also been com-
mon to present data on the scalability of the system.
This might be measured in terms of how many identi-
cally configured virtual machines can be run on a single
physical machine or the performance degradation ex-
perienced when multiple VMs are running the same
workload.

Scalability is an especially relevant metric when deter-
mining a systems’ suitability for supporting commercial
hosting environments– a key target environment for
many virtualization systems. In such an environment, a
provider may allow multiple customers to administer
virtual machines on the same physical host. It is natural
for these mutually untrusting customers to want a cer-
tain guaranteed level of performance regardless of the
actions taken by other VMs on the same physical host.

There is another important aspect to the comparison
that has received less attention – how well do different
virtualization environments protect or isolate one vir-
tual machine from another? Certainly, running in paral-
lel with other web server VMs is quite different than
running in parallel with a fork bomb or other resource
hogs. Protecting well-behaved VMs from misbehaving

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ExpCS’07, 13–14 June, 2007, San Diego, CA.
Copyright 2007 ACM 978-1-59593-751-3…$5.00.

VMs is an important feature of virtualization systems,
especially when used in a commercial hosting envi-
ronment. The degree of performance isolation can also
vary substantially with the type of “misbehavior”. A
virtualization system may isolate the impact of a CPU
hog but not isolate the impact of a network hog.

There are several major types of virtualization systems
including full virtualization, paravirtualization and op-
erating system level virtualization. In full virtualization,
the interface provided by the virtualization system is
the same as the actual physical hardware. This allows
unmodified operating system binaries to run as guests
in a virtual machine. In paravirtualization, targeted
changes are made in the hardware interface presented
to a virtual machine to avoid some features that are
difficult or expensive to virtualize. This requires that
modifications be made in the operating system to deal
with this modified hardware interface. In operating
system level virtualization, guest virtual machines are
actually processes running within a general-purpose
operating system that has been modified to provide
separate name spaces such that guests appear to be
separate machines.

In operating system level virtualization, all guests share
the same operating system as the base machine. Thus
by definition, operating system level virtualization sys-
tems do not support the ability to run virtual machines
with many different operating systems on the same
physical machine. In many environments, this support
for software heterogeneity is a key motivation to use a
virtualization system. For example, maintaining a Win-
dows XP VM and a Windows Vista VM and a RedHat
Linux VM and a SUSE Linux VM to reduce the hard-
ware requirements for testing software that runs on
many platforms.

In this paper, we present the design of a performance
isolation benchmark and use it to examine three virtual-
ization environments – an example of full virtualization
(VMware Workstation), an example of paravirtualiza-
tion (Xen) and two examples of operating system level
virtualization (Solaris Containers and OpenVZ). In
Section 2, we describe our performance isolation
benchmark suite and in Section 3, we describe the re-
sults we obtain using our benchmark suite to test the
performance isolation characteristics of Xen, VMware
Workstation, OpenVZ and Solaris Containers.

2. A Performance Isolation Benchmark
Suite

To quantify the performance isolation of a virtualiza-
tion system, we designed a test suite including six dif-
ferent stress tests – a CPU intensive test, a memory
intensive test, a disk intensive test, two network inten-
sive tests (send and receive) and a fork bomb.

To perform each test, we start a set of well-behaving
virtual machines on the same physical machine. In our
testing, we used web server virtual machines as an ex-
ample of an important class of service VMs that might
typically be deployed in a production environment.

We establish a baseline response time for this baseline
configuration and then we introduce a stress test into
one of the virtual machines. We quantify the perform-
ance degradation on both the misbehaving and well-
behaved VMs.

In our testing, we used response time as reported by the
SPECweb benchmark as the performance metric of
interest. However, our stress test suite could be used in
any production environment to assess the impact on
other metrics of interest for the services running in the
systems’ virtual machines.

We are providing the source code for each of our stress
tests along with instructions for compiling and running
each one at http://www.clarkson.edu/class/cs644/isola-
tion/. The archive file containing the test suite also
contains a variety of scripts we found useful in running
the tests.

Table 1 summarizes the actions taken by each test.

Test Description

Memory Intensive Loops constantly allocat-
ing and touching memory
without freeing it.

Fork Bomb Loops creating new child
processes.

CPU Intensive Tight loop containing
integer arithmetic opera-
tions.

Disk Intensive Running 10 threads of
Iozone each running an
alternating read and write
pattern (iozone –i0 –i1 –r
4 -s 100M -t 10 -Rb).

Network Intensive

(Transmit)

4 threads each constantly
sending 60K sized packets
over UDP to external re-
ceivers.

Network Intensive

(Receive)

4 threads which each con-
stantly read 60K packets
over UDP from external
senders

Table 1: Description of Individual Stress Tests

3. Experience With Our Performance Isola-
tion Benchmark Suite

In this section, we describe our experience with using
our benchmark suite to test the performance isolation
characteristics of Xen, VMware Workstation, OpenVZ
and Solaris Containers.

3.1. Baseline Data

Before beginning our stress testing, we established
some baseline data. Specifically, we ran SPECweb
2005 with 4 Apache web servers each in their own vir-
tual machine. The server VMs were all hosted on a sin-
gle IBM ThinkCentre with Pentium 4 processor, 1 GB
of memory and a gigabit Ethernet card.

We used five different virtualization environments -
Xen 3.0 stable, VMware Workstation 5.5, OpenVZ
2.6.18, an early release of OpenSolaris without addi-

tional resource controls configured in each container
and a more recent build (build 62) with additional re-
source controls in each container. With Xen and
VMware Workstation, we used the same Linux server
image with Linux (2.6.12 kernel). With OpenVZ, the
Linux kernel version is 2.6.18, which all the guests
share. In Xen, VMware Workstation, we assigned each
virtual machine 128 MB of memory. In OpenVZ, each
guest was configured with the vzsplit tool that attempts
to divide the machine’s resources evenly among a given
number of guests and each of the four guests received
roughly a quarter of the 1 GB memory or 256 MB.

In SPECweb, additional machines are used as clients.
The machines serving as clients in our testing were also
IBM Thinkcentres. We used a different physical client
to connect to each server virtual machine. Unless oth-
erwise noted, each of our physical clients presented a
load of 5 simulated clients.

At this load, all web server instances provided 100%
good response time as reported by the SPECweb clients
over 3 iterations. These baseline numbers illustrate that
the machine is well configured to handle the SPECweb
requests. In other words, we are not taxing the system
with this load and any degradation in performance seen
in the stress tests can be attributed to the stress test it-
self.

We emphasize that our benchmark suite could be used
to quantify the impact on any set of virtual machines
not just web servers and not just using SPECweb as the
performance metric of interest.

We recommend that a system be configured as would
be appropriate for a production environment using
whatever number and types of virtual machines give
good common case performance. The stress tests can
then be run in one of the virtual machines to quantify
the degree of performance isolation provided by the
system. We report results as a percentage degradation
from the baseline configuration. For web servers, using
SPEC to report the percentage of requests that receive a
response in an acceptable amount of time is an appro-
priate performance metric. However, other metrics such
as throughput or total run time may be appropriate for
other types of services.

3.2 Stress Tests

After completing the baseline measurements, we ran a
series of tests that stress a variety of system sources
including memory, process creation, CPU, disk I/O and
network I/O. In these tests, we started web servers in all

four virtual machines, as in the baseline tests, and then
in addition ran the stress test in one of the server virtual
machines.

3.2.1. Memory Consumption

The memory stress test loops constantly allocating and
touching additional memory. In both Xen and OpenVZ
cases, the misbehaving VM did not report results, but
all others continued to report nearly 100% good results
as before. In the VMware Workstation case, the mis-
behaving VM survived to report significantly degraded
performance (8.7% average good responses) and the
other three servers continued to report 100% good re-
sponse time, as in the baseline.

We ran two configurations of Solaris Containers. First,
an installation in which no resource control options
were added to the container configurations. Second, an
installation in which the following limits were added to
the container configurations:

add capped-memory
 set physical=128M
 set swap=512M
 set locked=64M
end

This sets the container’s physical memory to 128 MB,
its maximum swap space to 512MB and the total
amount of locked memory to 64 MB.

Without the resource limits in place, none of the Solaris
Containers survived to report results. The test effec-
tively shut down all virtual machines – misbehaving
and well behaved.

With the resource limits in place, we experienced two
different situations that together illustrate the nature of
the resource limits nicely. In both situations, the well-
behaved VMs reports a trivial degradation of 0.06%,
but the results for the misbehaving VM depends on a
slight difference in timing whether we start the memory
bomb first or the SPECweb test first. (Note: In general,
we tried to start them at approximately the same time.)
If we start the memory bomb first, no results will be
produced because the web server’s memory require-
ments will be denied. If we start the SPECweb test first,
it will report little degradation (0.03%) similar to the
well-behaved VMs. In this case, the web server‘s mem-
ory requests are satisfied, but the memory bomb will
report insufficient memory errors. We examined the
memory bomb program in this second case and found

that its virtual memory consumption was capped at 382
MB.

3.2.2. Fork Bomb

We used a classic fork bomb test that loops creating
new child processes. Under both Xen and VMware
Workstation, the misbehaving virtual machine pre-
sented no results, but the other three well-behaved con-
tainers continued to report 100% (or near 100%) good
response time. Under OpenVZ, the well-behaved
guests were also protected and even the misbehaving
guest survived to report results, but only 12.2% good
response times.

For Solaris, we once again tested in two configurations.
Without resource controls, results were not reported for
any of the four containers. In the second case, we added
the following limits to the container1 configurations:

set max-lwps=175
set scheduling-class=FSS
add capped-cpu
 set ncpus=0.25
end
set cpu-shares=10

This sets the scheduler to the fair share scheduler (FSS)
and the number of shares for this container to 10. It sets
the maximum number of lightweight processes (LWPs)
in simultaneous use to 175 and gives this container
25% of the CPU.

As is suggested by this list, one disadvantage of re-
source controls is the complexity of configuring them
properly. For example, we found that if the number of
threads (max-lwps) is not set high enough the container
would fail to boot. Sun is actively working on making
these resource controls easier to use and more inte-
grated with containers [17] [18] [19][20]. More infor-
mation on available resource control options is avail-
able online [21].

With the resource limits in place, the misbehaving VM
was still completely unresponsive, but the well-behaved
VMs experienced only 0.04% degradation on average.

3.2.3. CPU Intensive Test

Our third test stresses CPU usage with a tight loop con-
taining integer arithmetic operations. All four of our

1 The term zone is sometimes used instead of container.

virtualization systems performed well on this test –
even the misbehaving VMs. We verified on all plat-
forms that the CPU load on the misbehaving server
does rise to nearly 100%. We suspect that the normal
OS CPU scheduling algorithms are already sufficient to
allow the web server sufficient CPU time.

For Solaris, we ran without resource controls and with
the same resource controls described in previous sec-
tions. With resource controls, there is no degradation
for any of the VMs. Interestingly, there was slight deg-
radation in the case with resource controls of 0.06% for
the well-behaved VMs and 0.07% for the misbehaving
VM.

3.2.4. Disk Intensive Test

For a disk intensive stress test, we chose not to write
our own, but rather to use IOzone [9]. Specifically, we
ran 10 threads of IOzone each running an alternating
read and write pattern (iozone -i0 -i1 -r 4 -s 100M -t 10
-Rb). The results of this test were quite interesting.

On VMware Workstation, 100% good performance
was maintained on the three well-behaved VMs. How-
ever, the misbehaving VM saw a degradation of 40%.

For Open VZ, the well-behaved and misbehaving VMs
saw similar degradation of 2.52% and 2.63% respec-
tively. Although the degradation is relatively minor,
there is no evidence of isolation on this test. The situa-
tion is similar for Solaris. With and without resource
controls, all VMs experience a slight degradation of
1.13 – 1.59%. We are unaware of any configuration
options for disk resources in Solaris.

On Xen, the situation was mixed. The misbehaving VM
saw a degradation of 12% and the other three VMs
were also impacted, showing an average degradation of
1-2%. With Xen’s proposed hardware access model, a
specialized device driver VM could be written to en-
sure quality of service guarantees for each client VM
[10].

3.2.5. Network I/O Intensive Test

Our last set of stress tests involved a high level of net-
work I/O. We examined both server transmitting and
server receiving. For both sets of tests, we used other
machines (not the SPECweb servers or clients) as the
source or sink of the data.

3.2.5.1. Server Transmits Data

For the transmitting stress test, we started 4 threads
which each constantly sent 60K sized packets over
UDP to external receivers. For this test, the results were
once again mixed.

Under VMware Workstation, the well-behaved VMs
continue to show 100% good response, but the misbe-
having VM shows substantial degradation of 53%. For
Xen, the well-behaved VMs also show no degradation
and the misbehaving VMs shows a slight but repeatable
degradation of less than 1%.

For OpenVZ, all VMs experience significant degrada-
tion. The misbehaving VM experiences almost 29%
degradation, while the well-behaved VMs fare almost
as poorly with an average degradation of 21.3%. Once
again, this is evidence of weak isolation.

On Solaris with no resource controls, a degradation of
3.53% to 4.2% is reported for all VMs. We then used
the resource controls described in other sections, but no
network specific controls. Here the overall degradation
is quite low (1.0% for the well-behaved VMs and
0.93% for the misbehaving VM), but no evidence of
isolation.

3.2.5.2. Server Receives Data

Finally, for the receiving stress test, we started 4
threads that each constantly read 60K packets over
UDP from external senders.

The results for this test are the most varied. For
OpenVZ, none of the 4 VMs survived to report any
results. While on VMware Workstation, the opposite
occurred - all four VMs retained 100% good response.
We did not even see degradation on the misbehaving
VM as we did in the sender transmit case. One hy-
pothesis is that for VMware workstation, in the face of
network contention, the incoming packets are simply
dropped before they impact any of the four web serv-
ers. We did not collect additional data to prove or dis-
prove this hypothesis. In the OpenVZ case, however, it
is clear that the incoming packets are indeed creating
interference.

For Xen, the misbehaving VM and the well-behaving
VMs are similarly affected with a very slight degrada-
tion of 0.03-0.04%.

Solaris presents the most surprising results. With no
resource controls, a degradation of 1.24% to 1.67%

degradation is reported for all VMs. We then used a
later build of Solaris with the resource controls
described in other sections, but no network specific
controls. In this case, the results for the misbehaving
and well-behaved VMs are once again similar to each
other. However, this time a very high degradation of
about 92% is reported for all VMs. In discussions with
engineers at Sun, we were unable to find the root of
cause this difference in time for the publication of this
paper.

In addition, we tried using some network controls using
a tool called ipqosconf. However, after adding the
desired rules, the system became unstable (a continual
loop of crashing and automatically rebooting). One
hypothesis is that the recent work on IP instances may
have caused a bug in the ipqos module. We were using
a pre-release version of Open Solaris (build 62) to get
the most up-to-date resource controls and this problem
may be fixed in later releases.

3.3 Summary of Results

We collect our results in Tables 2 and 3. Table 2 re-
ports the results for VMware Workstation, Xen and
OpenVZ. Table 3 reports results for the two Solaris

configurations. For each test, we report the percent deg-
radation in good response rate for both the misbehaving
or bad VM and the average for the three well-behaving
or good VMs.

Both tables illustrate is the importance of considering
multiple types of “misbehavior” when evaluating the
performance isolation properties of a virtualization sys-
tem. If we looked only at the CPU intensive test results,
our conclusions would be different than if we consid-
ered the disk and network intensive tests or the memory
intensive and fork bomb tests.

From the first column of Table 2, it is clear that
VMware Workstation completely protects the well-
behaved VMs under all stress tests. Its performance is
sometimes substantially lower for the misbehaving VM.
This is likely due to the architectural differences be-
tween Xen and VMware Workstation. The virtual ma-
chine monitor in the VMware Workstation runs hosted
on top of a general-purpose operating system, while the
virtual machine monitor in Xen runs directly on the
hardware with no intervening software layer. We
would expect degradation for the misbehaving VM to
be lower using a non-hosted version of VMware such
as VMware ESX Server.

 VMware
Workstation Xen OpenVZ

 Good Bad Good Bad Good Bad

Memory 0 91.30 0.03 DNR 0 DNR

Fork 0 DNR 0.04 DNR 0.01 87.80

CPU 0 0 0.01 0 0 0

Disk
Intensive 0 39.80 1.67 11.53 2.52 2.63

Network
Server

Transmits
0 52.9 0 0.33 21.3 28.97

Network
Server

Receives
0 0 0.04 0.03 DNR DNR

Table 2: Summary of Stress Test Results Percent of degradation in good response rate. For each test, the percent
degradation for both the bad or misbehaving VM is shown, as well as, the average degradation across the three good
or well-behaving VMs. DNR indicates the SPECweb client reported only an error and no actual results because of
the unresponsiveness of the server it was testing.

Xen also protects the well-behaved VMs very well. The
average degradation for the disk intensive case is the
worst at 1.67%. One thing that this table highlights,
however, is a slight but consistent degradation on most
tests.

OpenVZ has a mixed record. It clearly demonstrates
isolation on the memory intensive test and the fork
bomb test. In the CPU test, no VM showed any degra-
dation. In the other tests, however, the well-behaving
VMs suffered the same degradation in performance as
the misbehaving VM.

Solaris also has somewhat of a mixed record. Without
resource controls, there is no evidence of isolation on
any test, although overall degradation is quite low in
many cases (<= 5% degradation on 4 of the 6 tests).
With resource controls, there is clear isolation for the
fork bomb test. Similarly, for the memory intensive
tests, isolation of the well-behaved VMs is achieved.
However for the disk intensive and network intensive
tests, the results continue to demonstrate poor isolation
and in the case of the network server receive test, the
degradation is substantial. Resource controls also con-
tinue to be somewhat confusing and difficult to config-
ure properly. Work is on-going to develop new re-
source controls and to make them easier to use. . How-
ever, our experiences suggest that it takes longer to

retrofit isolation of all resources -- disk, network (in-
coming and outgoing), memory, CPU, etc. -- into a
general purpose OS than to add it in clearly defined
virtualization layers.

Operating system level virtualization has advantages
that appear in other situations, like ease of creating a
new VM and the ability to create more VMs than would
be possible with Xen or VMware Workstation (e.g.
8192 VMs on the same system). However, this may in
part lead to the resource isolation problem. If resources
are committed when a VM is created, it is easier to
guarantee those resources despite the actions of others.
However, committing resources at creation time also
limits the number of VMs that can be created. In an
environment where all VMs are under the same admin-
istrative control, this may be a reasonable trade-off.

4. Future Work

We would like to evaluate other virtualization systems
with our benchmark suite especially VMware ESX
Server. Similarly, we would like to continue to track
resource controls that are added to Solaris and
OpenVZ. For example, evaluating network and disk
resource controls as they become more widely avail-
able. We would like to evaluate some other isolation
methods that are more appropriate to larger systems

 Solaris
 (Without resource controls)

Solaris
(With resource controls)

 Good Bad Good Bad

Memory DNR DNR 0.06 0.03 / DNR

Fork DNR DNR 0.04 DNR

CPU 0 0 0.06 0.07

Disk
Intensive 1.48 1.23 1.59 1.13

Network
Server

Transmits
4.20 3.53 1.00 0.93

Network
Server

Receives
1.24 1.67 92.73 92.43

Table 3: Summary of Stress Test Results Percent of degradation in good response rate. For each test, the percent
degradation for both the bad or misbehaving VM is shown, as well as, the average degradation across the three good
or well-behaving VMs. DNR indicates the SPECweb client reported only an error and no actual results because of
the unresponsiveness of the server it was testing.

such as assigning dedicated processors or network in-
terfaces to each guest VM. We will continue to post
new results to
http://www.clarkson.edu/class/cs644/isolation as we
have them and welcome suggestions for additional ex-
periments using this infrastructure.

5. Conclusions

As virtualization systems for commodity platforms be-
come more and more common, the importance of
benchmarks that compare virtualization environments
increases. The issue of isolation from misbehaving
VMs is an important one to consider, especially for a
commercial hosting environment.

We have demonstrated the importance of having a per-
formance benchmark suite that considers multiple types
of “misbehavior”. We have designed such as suite and
present results we obtained from using it to compare
VMware Workstation, Xen, OpenVZ and Solaris Con-
tainers.

Our results highlight differences between major classes
of virtualization systems – full virtualization like
VMware Workstation, paravirtualization like Xen and
operating system level virtualization like Solaris Con-
tainers and OpenVZ. Full virtualization completely
protected the well-behaved VMs in all of our stress
tests. Paravirtualization offers excellent resource isola-
tion as well. In our Xen tests, the well-behaved VMs
suffered at most a 1.7% degradation for the disk inten-
sive test with many other tests showing only slight, but
repeatable degradation.

With operating system level virtualization the need for
resource controls, either as a default or through proper
configuration, was clear. Without them, well-behaved
and misbehaving workloads both suffered. Strong re-
source isolation clearly can be added to operating sys-
tem level virtualization. As in the case of Solaris and
OpenVZ, the operating system can be modified to im-
plement new resource scheduling algorithms that en-
force resource isolation across VMs. When resource
controls were available and used properly, only slight
degradation, not significant enough to cause noticeable
changes in response time or usability, was observed.

Our benchmark suite is available at
http://www.clarkson.edu/class/cs644/isolation/.

6. Acknowledgements

We would like to thank Jeff Victor at Sun who went
out of his way to help us identify appropriate resource
control settings to use when configuring Solaris Con-
tainers. Thanks also to Sean Hogan, Jerry Jelinek,
Tariq Magdon-Ismail, and Todd Clayton from Sun for
their suggestions and comments. We would also like to
thank Hermant Gaidhani from VMware for helping to
obtain permission to publish the VMware results.

7. References

[1] R. Creasy IBM Journal of Research and Develop-
ment. Vol. 25, Number 5. Page 483. Published 1981.
The Origin of the VM/370 Time-Sharing System.

[2] IBM’s zOS Operating System, http://www-
03.ibm.com/servers/eserver/zseries/zos/, Accessed
April 2007.

[3] K. Fraser, S. Hand, T. Harris, I. Leslie, and I. Pratt.
The Xenoserver Computing Infrastructure. Technical
Report UCAM-CL-TR-552, University ofCambridge,
Computer Laboratory, Jan. 2003.

[4] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt.
Controlling the XenoServer Open Platform, April 2003.

[5] A. Whitaker, M. Shaw, S. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation (OSDI 2002), , pages 195-210, Boston,
MA, USA, December 2002.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield.
Xen and the Art of Virtualization. Proceedings of the
19th ACM symposium on Operating Systems Princi-
ples, pp 164-177, Bolton Landing, NY, USA, 2003

[7] B. Clark, T. Deshane, E. Dow, S. Evanchik, M.
Finlayson, J. Herne and J. Matthews. Xen and the Art
of Repeated Research. Proceedings of the USENIX
2004 Annual Technical Conference, FREENIX Track,
pp. 135-144, June 2004.

 [8] SPECweb 2005, http://www.spec.org/web2005,
Accessed January 2007.

 [9] IOzone, http://www.iozone.org, Accessed January
2007.

[10] K.Fraser, S.Hand, R. Neugebauer, I. Pratt, A. War-
field, and M. Williamson. Safe Hardware Access with
the Xen Virtual Machine Monitor, 1st Workshop on
Operating System and Architectural Support for the
On-Demand IT Infrastructure (OASIS-1), October
2004.

[11] Solaris Forums. Zoneadm- Why not action=deny
in rctl?.URL
http://forum.sun.com/thread.jspa?threadID=21712&tsta
rt=0, Accessed January 2007.

[12] Sun Microsystems. Solaris Containers – Server
Virtualization and Manageability, p. 5, September
2004.

[13] P.Galvin. Solaris 10 Containers, USENIX login,
pp.11-14, October 2005.

[14] Sun Microsystems. Resource Control Concepts,
URL http://docs.sun.com/app/docs/doc/817-
1592/6mhahuoiq?l=en&a=view, Accessed May 2007.

[15] VMware Workstation,
http://www.vmware.com/products/ws/, Accessed May
2007.

[16] OpenVZ – Server Virtualization Open Source Pro-
ject, http://openvz.org, Accessed May 2007.

[17] G. Jelinek, “Containers in SX build 56”,
http://blogs.sun.com/jerrysblog/entry/containers_in_sx_
build_56, Accessed May 2007.

[18] G. Jelinek, “Improved Zones/RM Integration”,
http://www.opensolaris.org/jive/thread.jspa?threadID=
10451&tstart=0, Accessed May 2007.

[19] G. Jelinek, “Improved Zones/RM Integration”,
http://www.opensolaris.org/os/community/arc/caselog/
2006/496/, August 21 1996.

[20] G. Jelinek, “Swap Resource Control; Locked
Memory RM”,
http://www.opensolaris.org/os/community/arc/caselog/
2006/598/, Accessed May 2007.

[21] Sun Microsystems. Configuring Resource Controls
and Attributes, URL
http://docs.sun.com/app/docs/doc/819-
2450/6n4o5md6p?a=view#rmctrls-tbl-5, Accessed May
2007.

