
Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 1 of 12

Virtualization is Coming to a Platform Near You

The ARM® Architecture Virtualization Extensions and the importance of System MMU
for virtualized solutions and beyond

Roberto Mijat
Software Solutions Architect

Andy Nightingale
Product Manager – ARM Processor Division

Synopsis

Virtualization in the PC and server markets has provided measurable benefits over the last few decades with
advanced virtualized server systems now achieving 60% or more capacity utilization with a corresponding ROI of
769%1

Virtualization in the mobile and embedded space can similarly enable hardware to run with less memory 2and
fewer chips, reducing BOM3 costs and further increasing energy efficiency 4. Virtualization also helps to address
safety and security challenges, and reduces software development and porting costs by man years.

Hardware and software design teams from many of ARM’s leading silicon partners and OEMs are already
planning virtualization support into their 2011 design starts – are you?

Implementing efficient virtualized systems cost effectively requires hardware support. In particular memory
management can provide great challenges and have severe repercussions on system reliability and performance.
To address this ARM is introducing the Virtualization Extensions to its ARM v7 architecture and the System
Memory Management Unit (SMMU) Architecture. This paper examines the rationale behind this, and explores
how SMMU will enable vast reductions in software costs and complexity, and at the same time aligning with the
ARM’s ethos of low power, high performance designs.

1 http://h18000.www1.hp.com/products/servers/management/vse/Biz_Virtualization_White_Paper.pdf
2 For example: Dedicated linear memory regions for H/W access outside of the OS managed space are no longer required
3 http://www.ok-labs.com/_assets/white_paper_motorola_evoke_teardown.pdf
4 http://www.businessweek.com/technology/content/apr2008/tc20080421_235517.htm

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 2 of 12

Introduction

Every new generation of consumer devices has to satisfy the end user’s expectation for efficient energy usage,
richer applications and multimedia, faster performance and an overall secure user experience. Consider an
imaginary world where in 2013 embedded and mobile platforms have no provision for hardware virtualization:

News headlines: “Car manufacturers set to recall 3.7 million units worldwide: ‘Recent automobile engine
management failures are linked to software bugs in factory-fitted entertainment systems’ said a spokesperson,
‘one such bug has been traced to cause a glitch that can pervade into a critical control system’”

News headlines: “Consumer woes with internet enabled TVs: 1000’s loose control of their DTVs through hackers
exploiting security flaws in integrated web-browsing software”

Blog site entry: “My employer has just replaced my mobile hand-set and most of my favourite apps aren’t
supported on this device. They also tell me I can’t mix my personal contacts list, calendar and e-mail on their
equipment because of security risks…”

Another downside of increasing system complexity materialises in rising software costs and overheads currently
running at 50% of the cost of new 32nm and 28nm designs5. Virtualization technologies are being employed to
address this and the problem scenarios mentioned above. Virtualization also enables to make a more efficient use
of the hardware, to reduce software porting overheads by consolidating newer and legacy designs, in addition to
enabling IP isolation and enhancing security, safety and reliability. Such benefits form an implicit guarantee that
virtualization will play an important part as the underlying technology of choice for many OEMs and
semiconductor suppliers for consumer products based on future SoC designs.

The Rise of Embedded Virtualization

Virtualization is a proven technology that enables the abstraction – or virtualization – of computing resources. A
relatively small control program called Virtual Machine Monitor (VMM) or Hypervisor is placed between the
OS and the hardware. Typically the VMM executes in privileged mode and can host one or more operating
systems – Guest OSs – in a sandbox6 called Virtual Machine: a controlled construct of the underlying hardware.
Each Guest OS operates under the illusion of exclusive access to the processors, peripherals, memory and I/O.
The VMM arbitrates access to all shared resources in a similar way to how a traditional operating system enables
the concurrent executions of user processes.

Virtualization in the server market

For many decades virtualization has been instrumental in improving efficiency and reducing costs in the
enterprise and home entertainment arenas. The ability to run multiple operating systems concurrently on
otherwise underutilised hardware resources has enabled server consolidation (improved utilization of a single
computer) and aggregation (improved utilization of many computers). IBM pioneered this in the 1960s to more

5 http://chipdesignmag.com/display.php?articleId=1252&issueId=22
6 http://en.wikipedia.org/wiki/Sandbox_(computer_security)

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 3 of 12

efficiently utilize expensive mainframe stations, by logically partitioning them into virtual machines, and making
the multitasking of many applications possible. Similar dilemmas were faced by IT departments in the 1980s and
1990s where virtualization was eventually applied to the x86 Architecture in order to address issues such as high
maintenance and management costs, high infrastructure costs, and insufficient failure and disaster protection.
Key features of server virtualization technologies, such as the ability to perform live migration of entire
execution environments in case of faults or failures make for a more robust and reliable system solution. Secure
sandboxing of un-trusted software enables system designers to efficiently address the strictest security, legal or
safety design concerns. Costs associated with portability inherent to large quantities of legacy software are
dramatically reduced. Non-existent hardware can be simulated. Virtualization enables rapid migration to new
hardware, freeing developers to focus on differentiating features and functionality. It is no surprise that IDC
predicts that virtualization technologies will command a massive $11.7 Billion market by 20117.

The appeal of the above mentioned applications and benefits has prompted major technology providers to put
virtualization into mobile and embedded devices8. Motorola, Intel and Texas Instruments have recently joined
Cisco Systems as financial backers of VirtualLogix. Seeing great opportunities in this new market, Red Bend
Software, market leader in Mobile Software Management solutions, acquired VirtualLogix in 2010. In late 2008
VMware acquired TRANGO Virtual Processors, who then announced the availability of their Mobile
Virtualization Platform (MVP)9. 2009 has seen the launch of the first commercially available, fully virtualized
handset in the Motorola Evoke™ QA410, followed in 2010 by the Motorola ATRIXTM 4G11 dual-core hyper-
phone. Open Kernel Labs’ technologies shipments to have exceeded a billion devices to date12. Established
embedded OS providers such as Wind River Systems and Green Hills Software have also made further significant
investments in their embedded hypervisor offerings. This corroborating evidence confirms that embedded
virtualization is soon to gain critical mass.

Exciting new Opportunities in Mobile

Virtualization technologies can be very valuable to
a wide variety of mobile applications:

On a mobile device it is possible to consolidate the
baseband processor with the application processor,
in order to reduce BOM and shortening design and
integration cycles. Unfortunately high level
operating systems do not cater very well for the
real time necessity of traditional communication
software stacks generally found on baseband
processors. For this reason it is desirable to keep
the real time execution environment. This can be
hosted on a virtual machine, with minimal or no
porting overhead, and transparently and
concurrently execute on the application processor.

7 http://www.virtualization.info/2007/07/idc-predicts-virtualization-services.html
8 http://www.businessweek.com/technology/content/apr2008/tc20080421_235517.htm
9 http://www.vmware.com/products/mobile/
10 www.ok-labs.com/_assets/evoke.pdf Evoke is a trademark of Motorola Inc.
11 ATRIX is a trademark of Motorola Inc.
12 http://www.ok-labs.com/releases/release/open-kernel-labs-okl4-now-deployed-in-more-than-one-billion-devices

Figure 1 – Example using Open Kernel
Labs’ OKL4 Microvisor solution

Source: OK-labs (www.ok-labs.com)

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 4 of 12

The VMM can be configured to guarantee that real time obligations are met.
Many mobile users own a personal phone as well as a work phone. This can be by choice or convenience, but
more often it is dictated by restrictions imposed by corporate IT departments. With mobile virtualization it will be
possible to host two (or more) Operating Systems on the same handset, simultaneously addressing the security
restrictions and limitations aimed at safeguarding the integrity of the corporate network, as well as isolating the IP
of open source OSs (for example Google Android) from proprietary offerings (for example Windows Mobile).

Users typically replace their handset every 18 months, motivated by the expiration of minimal contractual
obligations from mobile network operators (MNOs) and the availability of newer models. In fact, sometimes a
handset upgrade is the only venue to access the latest consumable technologies: for example a more powerful
graphics accelerator may be needed to play the latest 3D games, or a newer modem, multimedia processor and
larger screen to deliver the proper connected high-definition video experience. Having purchased many
applications from one proprietary application store service, many individuals will want to move them to their new
device, but this is currently not possible. Also some applications may not be available on an alternative
handset/operator offering. With mobile virtualization it will be feasible to support all necessary non-native
operating environments on the handset of choice, and run non-native applications on any Operating System. In
addition, network operators, handset OEMs and semiconductor suppliers will be able to deploy a single software
stack across multiple hardware platforms, and software programmers will not have to port applications for each
operating system or platform.

The list of actual and potential use cases for virtualization in embedded systems expands further.

Figure 2 – Examples of mobile virtualization applications using VMWare MVP
Source: VMWare (www.vmware.com)

®

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 5 of 12

Hardware support for Virtualization

Modern computer architectures provide multiple operational modes, each with a different level of authority (or
privilege) in respect to the system’s hardware resources, configurability and the execution of special instructions.
The ARM architecture traditionally distinguishes between User mode and Supervisor mode13. The x86
architecture provides four so called Rings: from Ring-0, higher-privilege mode, to Ring-3, the lowest.

Operating Systems are generally designed to run on native hardware. The OS expects to be executing in the most
privileged mode (Supervisor mode, or Ring-0) and assumes total control over the whole system. In a virtualized
environment, it is the VMM that runs in privileged mode, whilst the OS will be executing at a lower privilege
level (for example User mode or Ring-3).

When booting, a typical OS will try to configure the processor, memories, I/O devices and peripherals. When
executing, it will expect exclusive access to such devices, including changing peripherals’ configuration
dynamically, directly managing the interrupt controller, replacing MMU Page Table Entries (PTEs), initiating
DMA transfers, for example. There is a critical issue with this: When running de-privileged inside a Virtual
Machine, the Guest OS will not be able to execute the privileged instructions necessary to configure and drive the
hardware directly14. The VMM must handle this. In addition, the VMM may be hosting multiple Guest OSs,
therefore direct modification of shared devices and memory requires cautious arbitration schemes.

Full Virtualization and Paravirtualization

The level of abstraction required to address this, and the inherent software complexity and performance overhead,
are specific to the characteristics of the architecture, the hardware and the guest operating systems. The main
approaches can be broadly categorized in two groups: Full Virtualization and Paravirtualization15.
With Full Virtualization the guest OS is not aware of being virtualized, and it does not require any modification.
The VMM traps and handles all privileged and sensitive instruction sequences, while user level instructions run
unmodified at native speed (assuming ISA compatibility – otherwise emulation by binary translation is required).
Full Virtualization offers the best isolation and security for virtual machines, and simplifies migration and
portability as the same guest OS instance can run virtualized or on native hardware. The trade-off is in
performance and complexity of the VMM. Examples of Full Virtualization include Green Hills Software’s
INTEGRITY® OS Secure Virtualization (ISV) solutions.

13 Version v6kz of the ARM Architecture introduced the Security Extensions, commercially known as the TrustZone®

technology. Trustzone enables system wide security via an additional execution mode, the Secure Monitor Mode. Effectively
this can be used to implement a form of full virtualization, allowing for a single guest OS, and it is supported as such in
commercial offerings like Green Hills Software’s INTEGRITY® Secure Virtualization (ISV) solutions.
14 On ARM this includes: MMU instructions, SWIs, MSR and MRS instructions that read and modify the Program Status
Register, MRC and MCR instructions that move values to and from a coprocessor etc.
15 VMMs are often further categorized as Type-1 Hypervisors if they have native control of the hardware (like Green Hills
Software INTEGRITY® OS, Open Kernel Labs OKL4, VMWare VMP for example), or Type-2 Hypervisors if they operate
within the context of a host OS (like VMware Server, Parallels Workstation, QEMU for example). INTEGRITY® is a
registered trademark of Green Hills Software Inc.

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 6 of 12

Figure 3 - Green Hills Software INTEGRITY Secure Virtualization (ISV) solutions
Source: Green Hills Software (http://www.ghs.com/)

A workaround to such overheads is Paravirtualization. The Guest OS is modified to have direct access to the
VMM via so called hyper-calls or hypervisor calls. A special API is exposed by the VMM in order to allow Guest
OSs to execute privileged and sensitive instruction sequences. This approach is endorsed by solutions such as
Xen, WindRiver Hypervisor, VMware and Open Kernel Labs products, for example. Open Kernel Labs provides
a Hypervisor (OKL4 Microvisor) and paravirtualized ports of popular operating Systems such as Linux, Android™

OS16, Symbian OS™17 and Windows Mobile™ OS18.

The ARM Virtualization Extensions

In an ideal world neither binary translation nor Paravirtualization would be necessary and Full Virtualization
would enable Guest OSs to run at near native speed. For this to happen, hardware assistance and possibly
extensions to the ISA are necessary. Hardware virtualization extensions simplify existing software-only solutions
by reducing and sometimes eliminating the burden of trapping and emulating instructions executed within a Guest
OS. The VMM can then efficiently virtualize the entire instruction set by handling sensitive instructions using a
classic trap-and-emulate model in hardware, as opposed to software. Intel® and AMD came with distinct
implementations of hardware-assisted x86 virtualization: Intel® VT19 and AMD-V™20, respectively. ARM® is
introducing virtualization support extension to its Architecture with the ARM v7 Virtualization Extensions.

The ARM Virtualization Extensions enhance the ARM v7-A Architecture to support the development of
virtualized systems. The fundamental elements of these extensions are:

16 Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions
(http://www.google.com/permissions/index.html)
17 Symbian OS is a trademark of Nokia.
18 Windows and Windows Mobile are trademarks of Microsoft Corporation in the U.S. and other countries.
19 Intel and Intel VT are trademarks of Intel Corporation in the U.S. and other countries.
20 AMD and AMD-V are trademarks of Advanced Micro Devices Inc.

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 7 of 12

 The introduction of a new Hypervisor execution mode, of higher priority than Supervisor mode21. This will
enable the VMM to execute at a higher privilege than the Guest OSs, and the Guest OSs to execute with
traditional operating system privileges, removing the need to employ Paravirtualization techniques.

 The provision of mechanisms to aid interrupt handling, with native distinction of interrupt destined to secure
monitor, hypervisors, currently active Guest OSs or non-currently-active Guest OSs. This will dramatically
reduce the complexity of handling interrupts using software emulation techniques and shadow structures
inside the VMM.

 The provision of a System MMU to aid memory management, supporting: multiple translation contexts for
multiple DMA capable masters, two levels of address translation and hardware acceleration and abstraction.

 Debug functionality aimed at enabling debugger access to individual Guest OSs.

Memory management challenges in virtualized systems

In a virtualized system, the subject of memory management is very important and can lead to substantial
complexity.

One of the key functions of most operating systems is to support a stage of virtual memory management to
partition the physical memory controlled by the operating system across multiple processes. In a system where
each Guest OS is running inside a Virtual Machine, the memory that is being allocated by the Guest OS is not the
true physical memory of the system, but instead it is an intermediate physical memory. The VMM directly
controls the allocation of the actual physical memory, thereby fulfilling its role of arbiter of the shared physical
resources.

Figure 4 - Address translation stages in traditional and virtualized systems

There are two approaches to handling the two stage of address translation (VA to IPA and IPA to PA). In current
systems where only one stage of memory address space translation is provided in hardware, for example using the
MMU in the CPU, the hypervisor must manage the relationship between VA, IPA and PA directly. This is
generally done by the hypervisor maintaining its own translation tables (called shadow translation tables), which
are derived by interpreting each Guest OS translation tables. The hypervisor must ensure that all changes to the
Guest OS translation tables are reflected in the shadow structures, as well as enforcing protection and redirecting
access faults to the appropriate stage. The required mechanism can be complex and add performance overhead.
The alternative is to use hardware assistance for both stages of translation, and this is what the ARM SMMU
enables.

21 TrustZone’s Secure Monitor mode is still available as the highest priority mode in the system, and can be dedicated to
perform its function as a secure execution mode for sensitive software.

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 8 of 12

Memory fragmentation

Depending on how the VMM is implemented and how the Guest OS is modified, there is a range of plausible
relationships between the Intermediate Physical Address (IPA) and the Physical Address (PA) memory spaces.
The IPA and the PA can be flat-mapped (removing the need for translation) or offset by a constant, with the
VMM managing memory protection. This allows each OS to own a proportion of contiguous physical memory. In
reality memory is expensive; therefore it is more common that any block (typically a page) of physical memory is
allowed to be mapped independently to each Guest OS. This is referred to as a fragmented relationship. The
ARM Virtualization Extensions allow for a fragmented relationship between the IPA and the PA spaces.

As the number of Guest OSs increase, the relationship between the IPA memory of a Guest OS and the PA
memory can become complex. Some systems may envisage the runtime creation and destruction of Guest OSs, or
regions of physical memory may be shared between multiple Guest OSs. The fragmentation of physical memory
can be a real issue in systems where the use of large sections of contiguous physical memory is important.

Multiple DMA capable masters

The introduction of a new level of address translation has important implications on other data processors and
peripherals in the system that may be sharing the same physical memory medium.

Generally peripheral devices are owned by the OS and programmed in PA space. Also, all devices that are
capable of direct memory access (DMA) generate addresses in the PA space. In a virtualized environment these
physical addresses are in fact IPAs, and therefore require further translation. Currently this would be handled by
the VMM, either by software emulation or by direct device assignment techniques (native access to the device by
Guest OSs arbitrated by the VMM). Either solution requires device driver porting, applicable to each Guest OS,
and can add considerable complexity to the VMM as well as causing significant performance overheads22.

This is a significant issue: Consumer electronics platforms are complex heterogeneous systems, where a wide
variety of processors with direct access to the memory system co-exist. For example a typical mobile computing
platform like NVIDIA®’s Tegra 2™23, Texas Instruments®’ OMAP4™ platform 24 or ST-Ericsson®’s U8500™

platform 25, includes a multi-core ARM application processor with integrated MMU for each core, an OpenGL ES
2®26 capable Graphics Processing Unit (GPU) with its own integrated MMU, a Digital Signal Processing (DSP)
unit, an Image Signal Processor (ISP), a Power Manager (PM) microcontroller and a Direct Memory Access
Controller (DMAC). In the not too distant future it can be envisaged that heterogeneous distributed computing
models such as OpenCL-driven General Purpose GPU (GPGPU) will be common place. In addition to the
aforementioned complexity and performance overheads associated to the address translation process, there isn’t a
fail-proof mechanism to stop any of the DMA capable devices or processors from erroneously corrupting physical
memory utilized by another Guest OS.

22 Some VMM implementation such as Open Kernel Labs’ OKL4 embedded hypervisor, mitigate these overheads by providing a flexible
approach to device drivers where no additional porting is required (although for certain incremental benefits extra driver porting may be
desirable) and without adding much complexity or performance overheads to the VMM.
23 Tegra 2 is a trademark of Nvidia Corporation in the U.S. and other countries.
24 OMAP4 is a trademark of Texas Instruments Corporation in the U.S. and other countries.
25 U8500 is a trademark of ST-Ericsson.
26 OpenGL is a registered trademark and the OpenGL ES logo is a trademark of Silicon Graphics Inc. used by permission by Khronos.

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 9 of 12

Guaranteeing system integrity

Another major issue can be exposed when considering virtualization
for hardware consolidation in systems where one Virtual Machine is
dedicated to safety or security critical purposes. For example, in an
automotive subsystem, virtualization can enable the strict isolation of
driving-related applications (rear-view camera, automatic parking
system) and driver authentication from less critical applications
associated with the infotainment and comfort systems (Head Unit,
Front Electronic Module, Rear Seat Entertainment Unit etc).
Malfunctions, faults or hacks in a non-critical runtime environment
cannot be allowed to compromise other parts of the system.

The System MMU (SMMU)

In order to address all of the
aforementioned issues and limitations, the
ARM Architecture Virtualization
Extensions introduce the System Memory
Management Unit (SMMU) concept to the
ARM Architecture.
A System MMU is a hardware device
designed to provide address translation
services and protection functionalities to
any DMA capable agent in the system other
than the main CPU. This includes hardware
accelerators such as GPUs and Video
Engines (VEs), simple DMA controllers as
well as complete sub-systems. The SMMU
can be implemented as a standalone device
or integrated with an existing DMA
capable processing unit. The diagram gives
a few examples of where the SMMU could
locate in the system.

The SMMU is designed for use in a virtualized system where multiple Guest OSs are managed by a VMM. To
this purpose two separate address translation stages are supported. The first stage, or Stage 1, implements Virtual
Address (VA) to Intermediate Physical Address (IPA) translation and is designed for use by the Guest Operating
System. The second stage, or Stage 2, translates Intermediate Physical Address (IPA) to Physical Address (PA)
bringing a host of benefits to the VMM. The properties and benefits of the SMMU also extend to non-virtualized
systems.

The system designer has the option of implementing either stage 1 or stage 2 address translation stages for each
SMMU. For example the SMMU can be placed in front of a DMA capable device that does not already have a
MMU, and configured to provide Stage 1 translation to enable such device to view fragment physical memory as
contiguous. The SMMU can also be configured to provide Stage 2 translations only, for example to enable a
device that already has an MMU to be managed by a system hypervisor.

Figure 5 – VirtualLogix (now RedBend) VLX
Hypervisor used to isolate critical tasks

Source: VirtualLogix (http://www.redbend.com/)

Figure 6 - Examples of where a System Memory Management
Unit (SMMU) could locate in the system. Coherent interconnects

ensure cache coherency between masters

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 10 of 12

Stage 1 SMMU Translation

Stage 1 translation is intended to assist Operating Systems, both when running natively or inside a VM. The
SMMU provides multiple benefits and addresses several issues associated with implementing otherwise costly
software workarounds – as described previously in this document.

Stage 1 translation works similarly to a traditional CPU MMU. The following diagram summarises the
application and functionality of Stage 1 Address Translation.

Figure 7 - Application and functionality of the Stage 1 Address Translation

Characteristically, Operating Systems cause much fragmentation of physical memory by continuously allocating
and freeing space on the heap, both for kernel and applications. A system that implements a fragmented model
between IPA and PA spaces, where multiple Guest OSs
are sharing the same physical medium, will suffer even
more because of this issue. A typical consumer device
hosts applications that by nature require large amounts
of contiguous memory to work efficiently. For example,
a digital camera needs a large space to quickly dump
pictures that have just been taken; a Smartphone device
may need to play back some video content, therefore
necessitating a large working buffer for the video
decoder. It is very common for large contiguous blocks
of physical memory not to be available for dynamic
allocation due to physical memory fragmentation. A
typical solution is to pre-allocate such buffers. This is
very inefficient since the buffer is only required at runtime,
and the additional amount of physical memory that is
reserved for this purpose (and is not usable by general purpose OS activities) directly adds to the Bill of Materials
(BOM). Also, in a virtualized configuration, this solution will require direct modifications to the VMM.

When a DMA capable device needs to operate on fragmented physical memory, the typical solution is the
adoption of software techniques such as DMA Scatter-Gather. This has complexity and performance overheads.
With a SMMU this overheads can be avoided by enabling a further level of address translation, where smaller
blocks of memory (down to a granularity of 4kb) in Physical Address space can be virtually gathered to expose a

Figure 8 – Using the SMMU to avoid bounce buffers

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 11 of 12

contiguous block of memory at Virtual Address space (if used in a non-virtualized model) or from Intermediate
Physical Address space to Virtual Address space (if used in a virtualized model)27.

Another major issue is uncovered when some devices in the system cannot access the full range of memory
available to the CPU, such as 16 or 24 bit devices on 32 bit architectures, or 32 bit devices on 64 bit architectures.
Traditionally the solution has been to provide an intermediate area of memory at a low address to act as a bridge.
This is known as a bounce buffer. The operating system allocates pages in an address space visible to the device
and uses them as buffer pages for DMA to and from it. Once I/O completes, the content of these pages is copied
by the kernel into its destination, outside of the addressable range of the I/O device. There is significant overhead
to this operation as at the very least it involves copying a full page. Bounce buffers can be totally avoided by
using a SMMU. Stage 1 translation can enable any DMA agent to access any address in the system without
limitations associated to its bus width28.

Stage 2 SMMU Translation

Stage 2 translation is intended to benefit Virtual Machine Monitors. The following diagram summarises the
application and functionality of Stage 2 Address Translation.

Figure 9 - Application and functionality of the Stage 2 Address Translation

27 This is similar in principle to using a GART (Graphics Address Remapping Table). The GART was designed to allow
graphics processors to read textures directly from system memory, using address translation to gather them into a contiguous
region mapped to an address visible to the graphics processor (known as the graphics aperture). The GART is fixed to the
size of the graphics aperture and provides no memory protection mechanisms. The SMMU can translate all addresses and in
addition it also provides protection mechanisms.
28 To address physical memory larger than 4Gbytes the second stage translation system can be used instead.

Copyright © 2010-2011 ARM Limited. All rights reserved.
The ARM® logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners

Page 12 of 12

Adding a SMMU device for Stage 2 translation removes the need for the hypervisor to manage shadow translation
tables totally in software. Hardware assisted address space translation has clear performance benefits.

With Stage 2 address translation, the SMMU enables any Guest OS to directly configure all DMA capable
devices in the system whilst sharing with them the same address space at IPA level.

The SMMU can also be configured to ensure that devices operating on behalf of one Guest OS are prevented from
corrupting memory of another Guest OS.

The Stage 2 address translation system is based on a translation scheme with a 64-bit descriptor to allow it to
address a physical memory larger than 4GBytes.

Providing hardware separation between the two stages of address translation enables to clearly define the
ownership of the different stages between the Guest OS (Stage 1) and the VMM (Stage 2). Translation faults can
therefore be routed by hardware to the appropriate level of software, allowing management functions (TLB
management, MMU enabling, register configurations) to be handled at the appropriate stage of the translation
process. This can improve performance by greatly reducing the number of entries into the VMM.

Conclusion

This paper discusses just some of the compelling roles of virtualization in the mobile and embedded computing
space, building on the current success of virtualization in the server market. Many market leaders in hardware and
software development for the ARM architecture are investing now in virtualization technologies, opening up
several exciting opportunities for the ARM ecosystem.

By introducing the Virtualization Extensions to its architecture, and in particular the System Memory
Management Unit Architecture, ARM delivers a cohesive solution that enables vast reductions in software costs
and complexity with the following benefits:

 Reduction in software porting overheads by consolidating new and legacy designs
 Hardware assisted protection of devices for enhancing security
 Promoting system robustness and reliability for safety critical systems
 Reduced BOM costs, more efficient use of the hardware and memory resources

The ARM Architecture is synonymous with low power and efficiency. The Virtualization Extensions are no
exception to this, and further enable ARM to address markets where the benefits of virtualization have been well
understood, for example the server market. Hardware and software design teams from many leading ARM silicon
partners and OEMs are already planning virtualization support into their 2011 design starts – are you?

For more information on how you can integrate SMMU into your 2011 design starts, please contact:
andy.nightingale@arm.com

