
Linux is a registered trademark of Linus Torvalds. 

KVM Limits
Arbitrary or Architectural?

Ryan Harper – Open Virtualization – ryanh@us.ibm.com
Karl Rister – Performance – krister@us.ibm.com
IBM Linux Technology Center

June 11, 2008

mailto:ryanh@us.ibm.com
mailto:krister@us.ibm.com


Outline
● Goals
● Virtual Resources
● IO Subsystem
● Future Work



Goals
● Determine for any resources (physical or 

virtual) whether the limit is arbitrary, or limited 
in some way by the architecture.

● X86-centric view
● Examine current limits
● Extend arbitrary limits
● Identify true architectural limits which inhibit 

scalability



Testing Platform
● 2 x3950 M2 servers

– 2 node configuration
● 64G per node

– 128G total
● 4 Intel Quad Core

– 4 sockets per node
– 32 cores total

● 2 Qlogic 4Gb Fiber
● 2 DS3400 trays

– 24 * 300G 15k SAS

IBM System x3950 M2 

IBM System Storage DS3400



Virtual Resources
● VCPUs per guest
● Guest max memory
● System devices

– Emulated or Paravirtual



VCPU Limitations
● Current limit at 16 VCPUs

– Hard-coded array sizes
● kernel/include/asm/kvm_host.h (KVM_MAX_VCPUS)
● libkvm/kvm­common.h (MAX_VCPUS)
● bios/rombios.h (MAX_CPUS)

● Change limit to 255
– Max for x86-64 in Linux

● Guest now boots up to 32-way
– X86 defconfig sets NR_CPUS to 32

● Recompile kernel with NR_CPUS=64
– Guest boots as 64-way
– Oops on >64 in cpu_to_node()
– X86 defconfig sets NODE_SHIFT to 6 limiting 

CPUS to 64.



VCPU Limitations cont.
● Changing NODES_SHIFT to 8 supports up to 256 

CPUs
– Guests now boot up to 128-way
– > 128way exits with: 
bios_table_end_addr_overflow!

● MADT, MPTABLE, and SMBIOS tables generate per-
cpu data
– While some portion of the tables must be in low 

memory, the majority of the data can be 
relocated to high memory

– Update BIOS to locate per-cpu data in 
ACPI_DATA e820 region

● Guest now boots 255-way -- partially
– Guest wedges after starting up userspace



VCPU Limitations Cont.



Memory Limitations
● Host VA hardware limits

– X86 64-bit processors support up to 48-bits
● QEMU imposed limit of 4TB(42 bits) for 64-bit builds
● Bochs BIOS e820 table writes 48-bit values
● KVM pages in memory on-demand 

(get_user_pages())
● For large memory guests, (1-3%) of total guest 

memory will be consumed by OS frame table.
– Booted 256G guest, ran test to consume all memory

● Consumed 140G (128G of RAM, 12 of swap) and host 
swapper process started to OOM

– Booted guest with 2TB of allocated memory
● Linux detected about 1.4TB

– Potentially a Host issue with very large swap (4TB)



Frame Table Consumption

1TB Guest – 19G RSS



PCI Device Limitations
● PCI Specification defines up to 32 slots
● Standard PC guests use 5 slots for typical guests

– 1 disk, 1 nic, 1 vga, 1 isa, 1 pci host bridge
● Users requesting large disk and nic count support
● Two current approaches

– Use multi-function devices
– Add additional emulated PCI bridges

● Existing patch for virtio multi-function
– Guest boots with 220 disks or nics
– OSes aren't well tested with 220 PCI devices

● Additional PCI bridges patch
– Extra bridges failed to work (IRQ delivery)



KVM IO Architecture



IO Microbenchmarks
● 50/50 Mix of read/write ops randomized
● Varying request sizes from 512b to 64k



IO Throughput – Cache off



IO Throughput – Cache on



IO OP Rate – Cache off



IO OP Rate – Cache on



IO Latency – Cache off



IO Latency – Cache on



IO Host CPU Load – Cache off



IO Host CPU Load – Cache on



System Scaling
● Idle guest scaling

– Mildly interesting and useful for finding scaling 
issues

– Booted 500 KVM guests
● ~200 responsive

– CPU-bound on the Host
● Oprofile points to time code (hrtimer/jiffies 

updates)
– Lockstat output

class name con-bounces contentions acquisitions
7468921 7482457 3.47 22231.72 868397199.73 13417786.16 2093.8
1217066 1477064 10.43 1042.04 2535049.05 2380528.81 469.62

713840 734493 5.18 534.51 745288.65 7499089.63 928.08
152367 159743 4.63 1288.21 657369.39 1336917.18 1179.79
126642 133424 4.63 1503.75 586686.21 1243939.17 1276.63
121815 129158 5.22 1028.95 530599.21 1177768.17 1108.34
121646 127047 3.77 1428.16 533693.92 1180284.17 1172.43
117988 123783 3.59 1163.07 543945.53 1204265.17 1477.89

waittime-min waittime-max waittime-total.acq-bounces
xtime_lock
tty_ldisc_lock
&sem->wait_lock
&rq->rq_lock_key#2
&rq->rq_lock_key#1
&rq->rq_lock_key#2
&rq->rq_lock_key#1
&rq->rq_lock_key#1



System Scaling cont.
● xtime_lock in high contention

– Called from ktime_get_ts()
– When KVM_CLOCK is enabled each vcpu_load() 

invokes kvm_write_guest_time() which calls 
ktime_get_ts().



Future Work
● Submit patches bumping KVM VCPU limit to 64
● KVM Tasklet patches
● Run System-wide Scaling with new KVM Tasklet 

patches
● Examine NUMA affects with cpusets/cgroup and 

page migration
● Run Large # of guest test w/o KVM_CLOCK
● Run System-wide scaling on large NPT/EPT 

systems when available.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

