Java
Code Conventions

September 12, 1997

Copyright Information

0 1997, Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S. patents, foreign patents, or
pending applications.

TRADEMARKS

Sun, Sun Microsystems, Sun Microelectronics, the Sun Logo, SunXTL, JavaSoft, JavaOS, the JavaSoft Logo, Java,
HotJava Views, HotlJavaChips, picoJava, microlava, Ultralava, JDBC, the Java Cup and Steam Logo, “Write Once,
Run Anywhere” and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

UNIX®is aregistered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

Adobe ®is aregistered trademark of Adobe Systems, Inc.

Netscape Navigator™ is a trademark of Netscape Communications Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS
DOCUMENT AT ANY TIME.

&o
Please
Recycle

June 2, 1997

10

INtroduction. i 1
1.1 WhyHaveCodeConventions.covvnenen i 1
12 Acknowledgmentst 1
FileNames. 1
21 FleSUffiXeS . ..o 2
22 CommonFileNamesc i 2
FileOrganization 2
31 JavaSourceFiles 2

311 Beginning Comments.vvvvneineie e eie i 3

312 Packageand Import Statements. 3

3.1.3 Classand Interface Declarations 3
Indentation 4
41 LineLength e 4
42 Wrapping Linest 4
COMMENES . . 6
51 Implementation Comment Formats, 6

511 BlockComments..........oiiiiiiiiii i 6

512 SingleLineCommentsccoviiieieinn, 7

513 TralingComments.ttt 7

514 End-Of-LineComments.ccoiiiiriiinenan... 7
5.2 Documentation CommentS.oviii it 8
Declarations.t e 9
6.1 NumberPerLinet 9
6.2 Placement e 9
6.3 Initidlization 10
6.4 ClassandInterfaceDeclarationst 10
Al EMEN S . . . 10
71 SmpleStatements 10
7.2 Compound Statementst 11
7.3 refurn Statementso 11
74 if,if-esg if-else-if-elseStatements 11
75 for StatementS. 12
7.6 whileStatements. 12
7.7 do-whileStatements.t 12
7.8 SwitCh Statements.i it e e 12
7.9 try-calch Statements. 13
WhiteSpace. 13
8.1 Blank Lines.o 13
82 BlanK SpPates e 14
Naming Conventions.ttt 14
Programming Practices, 15
10.1 Providing Accessto Instance and Class Variables. 15

11

10.2 Referring to Class Variablesand Methods. 16
103 CONStaNtSo 16
104 Variable ASSIgNMEeNtS. oot t 16
105 MiscellaneousPractiCeS. 17
1051 ParentheSes.o 17
1052 ReurningValuest 17
10.5.3 Expressions before‘? in the Conditional Operator. 17
1054 Specid CommentS.ooii i 17
CodeExamples e 18
111 JavaSourceFileExample. 18

June 2, 1997

11

1.2

2 - File Names

Java Code Conventions

Introduction

Why Have Code Conventions

Code conventions are important to programmers for a number of reasons:

80% of the lifetime cost of a piece of software goes to maintenance.
Hardly any software is maintained for its whole life by the original author.

Code conventions improve the readability of the software, allowing engineersto
understand new code more quickly and thoroughly.

If you ship your source code as a product, you need to make sure it is as well packaged
and clean as any other product you create.

Acknowledgments

This document reflects the Java language coding standards presented in the Java Language
Secification, from Sun Microsystems. Major contributions are from Peter King, Patrick
Naughton, Mike DeMoney, Jonni Kanerva, Kathy Walrath, and Scott Hommel.

For questions concerning adaptation, modification, or redistribution of this document, please
read our copyright notice at http://java.sun.com/docs/codeconv/html/Copyright.doc.html.

Comments on this document should be submitted to our feedback form at http://java.sun.com/
docs/forms/sendusmail.html.

File Names

This section lists commonly used file suffixes and names.

2 - File Names

2.1

2.2

3.1

3 - File Organization

File Suffixes

JavaSoft uses the following file suffixes:

File Type | Suffix
Java source .java
Java bytecode .cl ass

Common File Names

Frequently used file names include;

File Name Use
AUnakefil e The preferred name for makefiles.
We use gnunake to build our software.
READVE The preferred name for thefile that summarizesthe

contents of a particular directory.

File Organization

A file consists of sections that should be separated by blank lines and an optional comment
identifying each section.

Files longer than 2000 lines are cumbersome and should be avoided.

For an exampl e of a Java program properly formatted, see“ Java Source File Exampl€’ on page
19.

Java Source Files

Each Java source file contains a single public class or interface. When private classes and
interfaces are associated with a public class, you can put them in the same source file as the
public class. The public class should be the first class or interface in thefile.

Java source files have the following ordering:
* Beginning comments (see “Beginning Comments’ on page 4)
» Package and Import statements; for example:

i mport java. appl et. Appl et ;
import java.awt.*;
i mport java.net.*;

e Classand interface declarations (see “ Class and Interface Declarations’ on page 4)

3 - File Organization

3.1.1

3.1.2

3.1.3

Beginning Comments

All source files should begin with a c-style comment that lists the programmer(s), the date, a
copyright notice, and also a brief description of the purpose of the program. For example:

/
Cl assnane

Version info

Copyright notice
/

* % X X X X X

Package and Import Statements

Thefirst non-comment line of most Java source filesis apackage statement. After that,
i nport statements can follow. For example:

package java. awt;
i mport java. awt. peer. CanvasPeer;
Class and Interface Declarations

The following table describes the parts of a class or interface declaration, in the order that they
should appear. See “ Java Source File Example” on page 19 for an example that includes
comments.

Part of Class/Interface

Declaration Notes
1 | Clasd/interface documentation See “Documentation Comments”’ on page 9 for
comment (/**...*/) information on what should be in this comment.
2 | classorinterface statement
3 | Class/interface implementation This comment should contain any class-wide or

comment (/ *...*/),if necessary interface-wide information that wasn't appropri-
ate for the class/interface documentation com-
ment.

4 | Class(stati c) variables First the publ i ¢ class variables, then the pr o-
t ect ed, and thenthepri vat e.

5 | Instance variables First publ i ¢, then pr ot ect ed, and then pri -
vat e.

6 | Constructors

4.1

4.2

4 - Indentation

Part of Class/Interface
. Notes
Declaration
7 | Methods These methods should be grouped by functional-
ity rather than by scope or accessihility. For
example, a private class method can bein
between two public instance methods. Thegoal is
to make reading and understanding the code eas-
ier.
Indentation

Four spaces should be used as the unit of indentation. The exact construction of the indentation
(spaces vs. tabs) is unspecified. Tabs must be set exactly every 8 spaces (not 4).

Line Length

Avoid lines longer than 80 characters, since they’re not handled well by many terminals and
tools.

Note: Examplesfor usein documentation should have a shorter line length—generally no
more than 70 characters.

Wrapping Lines

When an expression will not fit on asingle line, break it according to these general principles:

» Break after acomma.
» Break before an operator.
» Prefer higher-level breaksto lower-level breaks.

» Align the new line with the beginning of the expression at the same level on the previous
line.

» |If the above ruleslead to confusing code or to code that’s squished up against the right
margin, just indent 8 spaces instead.

Here are some examples of breaking method calls:

function(l ongExpressi onl, |ongExpression2, |ongExpression3,
| ongExpr essi on4, | ongExpressionb);

var = functionl(l ongExpressionl,
function2(l ongExpressi on2,
| ongExpr essi on3));

4 - Indentation

Following are two examples of breaking an arithmetic expression. Thefirst is preferred, since
the break occurs outside the parenthesized expression, which is at a higher level.

| ongNanel = | ongNanme2 * (| ongNane3 + | ongNanme4 - | ongNane5)
+ 4 * |ongnane6; // PREFER

I ongNanel = | ongNane2 * (| ongNane3 + | ongNanme4
- longNane5) + 4 * |ongnane6; // AVA D

Following are two examples of indenting method declarations. Thefirst is the conventional
case. The second would shift the second and third lines to the far right if it used conventional
indentation, so instead it indents only 8 spaces.

/ 1 CONVENTI ONAL | NDENTATI ON
soneMet hod(int anArg, Cbject anotherArg, String yetAnot herArg,
hj ect andStill Anot her) {

}

/1 NDENT 8 SPACES TO AVO D VERY DEEP | NDENTS

private static synchroni zed horki ngLongMet hodNane(i nt anArg,
oj ect anotherArg, String yetAnotherArg,
Ooj ect andStill Another) {

}

Linewrapping for i f statements should generally use the 8-space rule, since conventiona (4
space) indentation makes seeing the body difficult. For example:

//DON'T USE THI S | NDENTATI ON

if ((conditionl && condition2)

|| (condition3 && condition4)

||!'(condition5 & condition6)) { //BAD WRAPS
doS

Sonet hi ngAbout It (); /I MAKE THI S LI NE EASY TO M SS

}
/[USE THI S | NDENTATI ON | NSTEAD
if ((conditionl && condition2)

|| (condition3 && condition4)

||!(condition5 & condition6)) {

doSonet hi ngAbout It ();

}

//OR USE TH S
if ((conditionl & condition2) || (condition3 && condition4)
|]!'(condition5 & condition6)) ({
doSornet hi ngAbout It ();

}

Here are three acceptable ways to format ternary expressions:

al pha = (alLongBool eanExpressi on) ? beta : gamms;

al pha = (aLongBool eanExpression) ? beta
. gamg;

al pha = (alLongBool eanExpr essi on)
? beta
ganmeg;

5.1

511

5-Comments

Comments

Java programs can have two kinds of comments: implementation comments and
documentation comments. Implementation comments are those found in C++, which are
delimitedby / *. .. */,and//. Documentation comments (known as “doc comments’) are
Java-only, and are delimited by /**. .. */. Doc comments can be extracted to HTML files
using the javadoc tool.

Implementation comments are mean for commenting out code or for comments about the
particular implementation. Doc comments are meant to describe the specification of the code,
from an implementation-free perspective. to be read by devel opers who might not necessarily
have the source code at hand.

Comments should be used to give overviews of code and provide additional information that is
not readily available in the code itself. Comments should contain only information that is
relevant to reading and understanding the program. For example, information about how the
corresponding package is built or in what directory it resides should not beincluded as a
comment.

Discussion of nontrivial or nonobvious design decisionsis appropriate, but avoid duplicating
information that is present in (and clear from) the code. It is too easy for redundant comments
to get out of date. In general, avoid any comments that are likely to get out of date as the code
evolves.

Note: The frequency of comments sometimes reflects poor quality of code. When you feel
compelled to add a comment, consider rewriting the code to make it clearer.

Comments should not be enclosed in large boxes drawn with asterisks or other characters.
Comments should never include special characters such as form-feed and backspace.

Implementation Comment Formats

Programs can have four styles of implementation comments: block, single-line, trailing and
end-of-line.

Block Comments

Block comments are used to provide descriptions of files, methods, data structures and
algorithms. Block comments should be used at the beginning of each file and before each
method. They can aso be used in other places, such aswithin methods. Block commentsinside
afunction or method should be indented to the same level as the code they describe.

A block comment should be preceded by ablank lineto set it apart from the rest of the code.
Block comments have an asterisk “*” at the beginning of each line except the first.

/*
* Here is a block coment.
*/

5 - Comments

51.2

513

5.14

Block comments can start with / * -, which is recognized by indent(1) as the beginning of a
block comment that should not reformatted. Example:

/*

* Here is a block comment with sone very speci al
* formatting that | want indent(1l) to ignore

*

* one

* t wo

*

*

t hree
/

Note: If you don't use indent(1), you don't haveto use/ *- in your code or make any other
concessions to the possibility that someone else might run indent(1) on your code.

See also “ Documentation Comments” on page 9.

Single-Line Comments

Short comments can appear on asingle line indented to the level of the code that follows. If a
comment can’'t be written in asingle ling, it should follow the block comment format (see
section 5.1.1). A single-line comment should be preceded by ablank line. Here's an example
of asingle-line comment in Java code (also see “ Documentation Comments’ on page 9):

if (condition) {
/* Handl e the condition. */

Trailing Comments

Very short comments can appear on the same line as the code they describe, but should be
shifted far enough to separate them from the statements. If more than one short comment
appears in a chunk of code, they should all be indented to the same tab setting. Avoid the
assembly language style of commenting every line of executable code with atrailing comment.

Here's an example of atrailing comment in Java code (also see “ Documentation Comments’
on page 9):

if (a==2)
return TRUE; /* special case */
} else {
return isprine(a); /* works only for odd a */

End-Of-Line Comments

The// comment delimiter begins a comment that continues to the newline. It can comment
out acompleteline or only apartia line. 1t shouldn’t be used on consecutive multiple lines for
text comments; however, it can be used in consecutive multiple lines for commenting out
sections of code. Examples of all three stylesfollow:

5.2

5-Comments

if (foo > 1) {
/1 Do a double-flip.

el se
return fal se; /1 Explain why here.

if (bar > 1) {
/1 Do a triple-flip.

| se

/1
/1
/1
/1
/1
/1
/1 return false;

Documentation Comments

Note: See“Java Source File Example” on page 19 for examples of the comment formats
described here.

For further details, see “How to Write Doc Comments for Javadoc” which includes
information on the doc comment tags (@ et ur n, @ar am @Gee):

http://java. sun. coni product s/ j dk/javadoc/witingdoccoments. ht m

For further details about doc comments and javadoc, see the javadoc home page at:

http://java. sun. coni product s/ dk/j avadoc/

Doc comments describe Java classes, interfaces, constructors, methods, and fields. Each doc
comment is set inside the comment delimiters/ **. . . */, with one comment per API. This
comment should appear just before the declaration:

/**
* The Exanple class provides ...

*/

cl ass Exanple {

Notice that classes and interfaces are not indented, while their members are. Thefirst line of
doc comment (/ **) for classes and interfaces is not indented; subsequent doc comment lines
each have 1 space of indentation (to vertically align the asterisks). Members, including
constructors, have 4 spaces for the first doc comment line and 5 spaces thereafter.

If you need to give information about a class, interface, variable, or method that isn’'t
appropriate for documentation, use an implementation block comment (see section 5.1.1) or
single-line (see section 5.1.2) comment immediately after the declaration. For example, details
about the implementation of a class should go in in such an implementation block comment
following the class statement, not in the class doc comment.

Doc comments should not be positioned inside a method or constructor definition block,
because Java associates documentation comments with the first declaration after the comment.

6 - Declarations

6 - Declarations

6.1 Number Per Line
One declaration per line is recommended since it encourages commenting. In other words,

int level; // indentation |evel
int size; [/ size of table

is preferred over
int |evel, size;

In absolutely no case should variables and functions be declared on the same line. Example:
| ong dbaddr, getDbaddr(); // WRONG

Do not put different types on the same line. Example:
int foo, fooarray[]; //WRONG

Note: The examples above use one space between the type and the identifier. Another
acceptable alternative is to use tabs, e.g.:

i nt | evel ; /1 indentation |evel
int si ze; /] size of table
oj ect currentEntry; // currently selected table entry

6.2 Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by curly
braces“{” and “}".) Don’t wait to declare variables until their first use; it can confuse the
unwary programmer and hamper code portability within the scope.

void MyMethod() {
int intl; /1 begi nning of nmethod bl ock

if (condition) {
int int2; /1 beginning of "if" block

}

The one exception to theruleisindexes of f or loops, which in Java can be declared in thef or
statement:

for (int i = 0; i < maxLoops; i++) {

Avoid local declarationsthat hide declarations at higher levels. For example, do not declare the
same variable name in an inner block:

10

7 - Statements

int count;
func() {
if (condition) {
int count; /1 AvdA D!
}
}

6.3 Initialization

Try to initialize local variables where they're declared. The only reason not to initialize a
variable whereit's declared isif theinitial value depends on some computation occurring first.

6.4 Class and Interface Declarations

When coding Java classes and interfaces, the following formatting rules should be followed:

* No space between a method name and the parenthesis “(* starting its parameter list
* Open brace”{” appears at the end of the same line as the declaration statement

* Closing brace“}” starts aline by itself indented to match its corresponding opening
statement, except when it isanull statement the “}” should appear immediately after the

u{u
cl ass Sanpl e extends Object {
int ivarl;
int ivar2;
Sanple(int i, int j) {
ivarl = i;
ivar2 = j;
int enptyMethod() {}
}

* Methods are separated by ablank line

7 - Statements

7.1 Simple Statements
Each line should contain at most one statement. Example:

argv++; argc--; /1 AvA D!

11

7 - Statements

12

7.2

7.3

7.4

Do not use the comma operator to group multiple statements unlessit isfor an obvious reason.
Example:

if (err) {
Format.print(Systemout, “error”), exit(1l); //VERY WRONG
}

Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces
“{ statements }”. Seethefollowing sectionsfor examples.

» The enclosed statements should be indented one more level than the compound statement.

» Theopening brace should be at the end of the line that begins the compound statement; the
closing brace should begin aline and be indented to the beginning of the compound
Statement.

» Bracesare used around all statements, even singletons, when they are part of a control
structure, such asai f - el se or f or statement. This makes it easier to add statements
without accidentally introducing bugs due to forgetting to add braces.

return Statements

A r et ur n statement with avalue should not use parentheses unless they make the return value
more obvious in some way. Example:

return;
return nmyDi sk. size();

return (size ? size : defaultSize);

if, if-else, if-else-if-else Statements
Thei f - el se class of statements should have the following form:

if (condition) {
stat ement s;

if (condition) {
st at enent s;
} else {
st at enent s;

if (condition) {
stat ement s;

} else if (condition) {
st at ement s;

} else if (condition) {
st at ement s;

7.5

7.6

7.7

7.8

7 - Statements

Note: i f statements always use braces{}. Avoid the following error-prone form:

if (condition) //AVOD TH S OM TS THE BRACES {}!
st at enent ;

for Statements
A f or statement should have the following form:

for (initialization; condition; update) {
st at ement s;

Anempty f or statement (oneinwhich al thework isdonein the initialization, condition, and
update clauses) should have the following form:

for (initialization; condition; update);
When using the comma operator in theinitialization or update clause of af or statement, avoid

the complexity of using more than three variables. If needed, use separate statements before
thef or loop (for the initialization clause) or at the end of the loop (for the update clause).

while Statements
A whi | e statement should have the following form:

while (condition) {
st at ement s;
}

An empty whi | e statement should have the following form:

while (condition);

do-while Statements
A do- whi | e statement should have the following form:

do {
st at ement s;
} while (condition);

switch Statements

A swi t ch statement should have the following form:

13

8 - White Space

14

7.9

8.1

switch (condition) {
case ABC.

st at enent s;

/* falls through */
case DEF:

st at enent s;

br eak;

case XYZ:
statenents;
br eak;

defaul t:
st at enent s;
br eak;

}

Every time acasefalls through (doesn’t include abr eak statement), add a comment where the
br eak statement would normally be. Thisis shown in the preceding code example with the
/* falls through */ comment.

Every swi t ch statement should include a default case. The br eak in the default caseis
redundant, but it prevents afall-through error if later another case is added.

try-catch Statements

A try- cat ch statement should have the following format:

try {
st at enent s;

} catch (Exceptiond ass e) {
st at ement s;

White Space

Blank Lines
Blank linesimprove readability by setting off sections of code that are logically related.

Two blank lines should always be used in the following circumstances:

» Between sections of asourcefile
* Between class and interface definitions

One blank line should always be used in the following circumstances:

* Between methods
» Between thelocal variablesin amethod and its first statement
» Beforeablock (see section 5.1.1) or single-line (see section 5.1.2) comment

8.2

9 - Naming Conventions

» Between logical sectionsinside a method to improve readability

Blank Spaces

Blank spaces should be used in the following circumstances:

* A keyword followed by a parenthesis should be separated by a space. Example:

while (true) {
| ce

Note that a blank space should not be used between a method name and its opening
parenthesis. This helpsto distinguish keywords from method calls.

» A blank space should appear after commasin argument lists.

» All binary operators except . should be separated from their operands by spaces. Blank
spaces should never separate unary operators such as unary minus, increment (“++”), and
decrement (*--") from their operands. Example:

a +=c + d;
a=(a+b)/ (c*d;

while (d++ = s++) {
n++;

prints("sizeis " + foo + "\n");
» Theexpressionsinaf or statement should be separated by blank spaces. Example:
for (exprl; expr2; expr3)
* Castsshould be followed by a blank. Examples:

nyMet hod((byte) aNum (Cbject) x);
nyFunc((int) (cp + 5), ((int) (a)+ 3))
+1);

Naming Conventions

Naming conventions make programs more understandable by making them easier to read.
They can also giveinformation about the function of the identifier—for example, whether it'sa
constant, package, or class—which can be helpful in understanding the code.

The conventions given in this section are high level. Further conventions are given at (to be
determined).

15

10 - Programming Practices

Identifier Type

Rules for Naming Examples

Classes

Interfaces

Methods

Variables

Constants

10 -

10.1

16

Class names should be nouns, in mixed case cl ass Raster;

with the first letter of each internal word capi- cl ass | mageSprite;
talized. Try to keep your class names simple

and descriptive. Use whole words—avoid

acronyms and abbreviations (unless the abbre-

viation is much more widely used than the

long form, such as URL or HTML).

Interface names should be capitalized like i nterface RasterDel egat e;
class names. interface Storing;

Methods should be verbs, in mixed case with run();
the first letter lowercase, with thefirst letter of runFast () ;

each internal word capitalized. get Background() ;

Except for variables, all instance, class, and i nt i;

class constants are in mixed case with alower- char *cp;

case first letter. Internal words start with capi- f | oat myW dt h;
tal letters.

Variable names should be short yet meaning-
ful. The choice of avariable name should be
mnemonic— that is, designed to indicate to the
casual observer the intent of its use. One-char-
acter variable names should be avoided except
for temporary “throwaway” variables. Com-
mon names for temporary variablesarei , j , k,
m and n for integers; ¢, d, and e for characters.

The names of variables declared class con- int MN WDTH = 4;
stants and of ANSI constants should be all int MAX WDTH = 999;
uppercase with words separated by under- int GET_THE CPU = 1;

scores (“_"). (ANSI constants should be
avoided, for ease of debugging.)

Programming Practices

Providing Access to Instance and Class Variables

Don’'t make any instance or class variable public without good reason. Often, instance
variables don’'t need to be explicitly set or gotten—often that happens as a side effect of
method calls.

10.2

10.3

10.4

10 - Programming Practices

One example of appropriate public instance variablesisthe case where the classis essentially a
data structure, with no behavior. In other words, if you would have used ast r uct instead of a
class (if Java supported st r uct) , then it's appropriate to make the class's instance variables
public.

Referring to Class Variables and Methods

Avoid using an object to access a class (static) variable or method. Use a class name instead.
For example:

cl assMet hod() ; 11 OK

ACl ass. cl assMet hod() ; 1 OK

anCbj ect . cl assMet hod() ; /1 AvO D!
Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which can
appear in af or loop as counter values.

Variable Assignments

Avoid assigning several variablesto the same value in asingle statement. It is hard to read.
Example:

fooBar.fChar = barFoo.lchar = 'c'; // AVO D

Do not use the assignment operator in a place whereit can be easily confused with the equality
operator. Example:

if (c++ = d++) { /1 AVO D! Java disall ows
} ce
should be written as
if ((c++ = d++) 1= 0) {
} ce

Do not use embedded assignmentsin an attempt to improve run-time performance. Thisisthe
job of the compiler, and besides, it rarely actually helps. Example:

d=(a=b+c) +r; /1 AVO D!
should be written as

a
d

b c;
a+r;

)

+
+

17

10 - Programming Practices

18

10.5

10.5.1

10.5.2

10.5.3

10.5.4

Miscellaneous Practices

Parentheses

Itisgenerally agood ideato use parenthesesliberally in expressionsinvolving mixed operators
to avoid operator precedence problems. Even if the operator precedence seems clear to you, it
might not be to others—you shouldn’t assume that other programmers know precedence as
well asyou do.

if (a==b & c == d) /1 AVO DI

if ((a==b) & (c ==d)) // RIGHT

Returning Values
Try to make the structure of your program match the intent. Example:

i f (bool eanExpression) {
return TRUE;

} else {
return FALSE;

}

should instead be written as
return bool eanExpr essi on;
Similarly,

if (condition) {
return x;
}

return vy;

should be written as

return (condition ? X : y);

Expressions before “?’ in the Conditional Operator

If an expression containing a binary operator appears beforethe ? in theternary ?: operator, it
should be parenthesized. Example:

(x >=0) ? x: -x

Special Comments

Use XXX in acomment to flag something that is bogus but works. Use FI XME to flag something
that is bogus and broken.

11 - Code Examples

11 - Code Examples

11.1 Java Source File Example

The following example shows how to format a Java source file containing asingle public class.
Interfaces are formatted similarly. For more information, see “ Class and Interface
Declarations’ on page 4 and “Documentation Comments’ on page 9

W %EY% Fi r st name Last name
Copyright (c) 1993-1996 Sun M crosystens, Inc. Al Rights Reserved.

This software is the confidential and proprietary information of Sun
M crosystens, Inc. ("Confidential Information"). You shall not

di scl ose such Confidential Information and shall use it only in
accordance with the ternms of the |icense agreement you entered into
with Sun.

SUN MAKES NO REPRESENTATI ONS OR WARRANTI ES ABOUT THE SUI TABI LI TY OF
THE SOFTWARE, ElI THER EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED
TO THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A

PARTI CULAR PURPOSE, CR NON- | NFRI NGEMENT. SUN SHALL NOT BE LI ABLE FOR
ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USING MODI FYI NG OR
DI STRI BUTI NG THI S SOFTWARE COR | TS DERI VATI VES.

F % % X X X X X X X X X X X X X

*

*/
package j ava. bl ah;

i mport java. bl ah. bl ahdy. Bl ahBl ah;

/**
* Class description goes here.
*
* @ersion 1.10 04 Cct 1996
* @ut hor Fi rst nane Last nanme
*/
public class Blah extends Soned ass {
/* A class inplementation comment can go here. */

/** classVarl docunentation comrent */
public static int classVarl;

/**

* classVar2 docunentation coment that happens to be
* more than one line |ong

*/

private static Object classVar?2;

/** instanceVarl docunentation conmrent */
public Onbject instanceVarl;

/** instanceVar2 docunentation conmrent */
protected int instanceVar?2;

/** instanceVar3 docunentation conrent */
private Cbject[] instanceVar3;

19

11 - Code Examples

20

/**

* . ..nmethod Bl ah docunmentation comrent. .

*

/
public Blah() {

/1 ...inplementation goes here...

}
/**

* . ..nmethod doSonet hi ng docunentati on comment. .
*

/
public void doSonething() {

/1 ...inplementation goes here...

}
/**

* .. .nmet hod doSonet hi ngEl se docunentati on conment. ..
* @ar am sonePar am descri ption

*

/
public void doSonet hi ngEl se(Obj ect soneParam {

/1 ...inplenentation goes here..

}

	Java
	Code Conventions
	September 12, 1997

	1 Introduction 1
	1.1 Why Have Code Conventions 1
	1.2 Acknowledgments 1
	2 File Names 1

	2.1 File Suffixes 2
	2.2 Common File Names 2
	3 File Organization 2

	3.1 Java Source Files 2
	3.1.1 Beginning Comments 3
	3.1.2 Package and Import Statements 3
	3.1.3 Class and Interface Declarations 3
	4 Indentation 4

	4.1 Line Length 4
	4.2 Wrapping Lines 4
	5 Comments 6

	5.1 Implementation Comment Formats 6
	5.1.1 Block Comments 6
	5.1.2 Single-Line Comments 7
	5.1.3 Trailing Comments 7
	5.1.4 End-Of-Line Comments 7
	5.2 Documentation Comments 8
	6 Declarations 9

	6.1 Number Per Line 9
	6.2 Placement 9
	6.3 Initialization 10
	6.4 Class and Interface Declarations 10
	7 Statements 10

	7.1 Simple Statements 10
	7.2 Compound Statements 11
	7.3 return Statements 11
	7.4 if, if-else, if-else-if-else Statements 11
	7.5 for Statements 12
	7.6 while Statements 12
	7.7 do-while Statements 12
	7.8 switch Statements 12
	7.9 try-catch Statements 13
	8 White Space 13

	8.1 Blank Lines 13
	8.2 Blank Spaces 14
	9 Naming Conventions 14
	10 Programming Practices 15

	10.1 Providing Access to Instance and Class Variables 15
	10.2 Referring to Class Variables and Methods 16
	10.3 Constants 16
	10.4 Variable Assignments 16
	10.5 Miscellaneous Practices 17
	10.5.1 Parentheses 17
	10.5.2 Returning Values 17
	10.5.3 Expressions before ‘?’ in the Conditional Operator 17
	10.5.4 Special Comments 17
	11 Code Examples 18

	11.1 Java Source File Example 18

	Java Code Conventions
	1 - Introduction
	1.1 Why Have Code Conventions
	1.2 Acknowledgments

	2 - File Names
	2.1 File Suffixes
	2.2 Common File Names

	3 - File Organization
	3.1 Java Source Files
	3.1.1 Beginning Comments
	3.1.2 Package and Import Statements
	3.1.3 Class and Interface Declarations

	4 - Indentation
	4.1 Line Length
	4.2 Wrapping Lines

	5 - Comments
	5.1 Implementation Comment Formats
	5.1.1 Block Comments
	5.1.2 Single-Line Comments
	5.1.3 Trailing Comments
	5.1.4 End-Of-Line Comments

	5.2 Documentation Comments

	6 - Declarations
	6.1 Number Per Line
	6.2 Placement
	6.3 Initialization
	6.4 Class and Interface Declarations

	7 - Statements
	7.1 Simple Statements
	7.2 Compound Statements
	7.3 return Statements
	7.4 if, if-else, if-else-if-else Statements
	7.5 for Statements
	7.6 while Statements
	7.7 do-while Statements
	7.8 switch Statements
	7.9 try-catch Statements

	8 - White Space
	8.1 Blank Lines
	8.2 Blank Spaces

	9 - Naming Conventions
	10 - Programming Practices
	10.1 Providing Access to Instance and Class Variables
	10.2 Referring to Class Variables and Methods
	10.3 Constants
	10.4 Variable Assignments
	10.5 Miscellaneous Practices
	10.5.1 Parentheses
	10.5.2 Returning Values
	10.5.3 Expressions before ‘?’ in the Conditional Operator
	10.5.4 Special Comments

	11 - Code Examples
	11.1 Java Source File Example

