Introduction

Valgrind can detect common errors such as:

* Reading/writing freed memory or incorrect stack
areas.

* Using values before they have been initialised

*Incorrect freeing of memory, such as double freeing
heap blocks.

* Misuse of functions for memory allocations: new(),
malloc(), free(), deallocate(), etc.

* Memory leaks - unintentional memory consumption
often related to program logic flaws which lead to
loss of memory pointers prior to deallocation.

* Overlapping source and destination pointers in
memcpy() and related functions.

Valgrind also provides different profiling tools:
Cachegrind, Callgrind and Massif. This tutorial discusses
only the Memcheck tool. For full documentation make
reference to the Valgrind User Manual.

Program Compilation

When testing for memory problems It is recommended
to compile the code with both the debugging options -O0
(no optimization) and -g (debugging information). Using
Valgrind with code that has been compiled with optimisation
options could give incorrect results.

o F ¥V ¥F [

- - .- - - *

T e e aw e aw : w

Ty

S 111

Stoney Compute Node
Bull Novascale R422-E2

Using Valgrind :: detecting memory errors

Valgrind is a suite of command line tools both for debugging and profiling
codes on Linux system. Memcheck is Valgrind’s heavyweight memory checking
tool. All reads and writes of memory are checked, and calls to malloc/new/
free/delete are intercepted.

Introduction

Program Compilation
Using Valgrind
Parallel Version

Out of Bounds Error
Segfaults & gdb
Useful Options

Stack Error

1
1
2
K]
4
7
8
9

C:
$(CcC) filecode.c —-g -00 -o fileprog.x

F90:
$(FC) filecode.f90 -g -00 -o fileprog.x

EilztE
$ (CXX) filecode.cpp —g -00 —-fno-inline -o
fileprog.x

The -fno-inline flag avoids the inlining of functions into
the main program and makes it easier to see the function-call
chain. These examples can also be applied using the MPI
compiler wrappers.

Using Valgrind

On both Stokes and Stoney ICHEC provides a module file for Valgrind which you should load first. When you are ready
to begin, just run your application as you would normally, but place valgrind -tool=memcheck in front of your usual
command-line invocation.

Load the Valgrind module and call nameprog.x using Valgrind:

Memcheck is the default, so if you want to use it you can omit the -tool flag. Valgrind executes the memcheck of the
UNIX system call Is and prints to the standard output memory check information and some suggestions about how to get
more information. This output can be redirect to a file with the option -log-file=filename.

Sample output for the Is command:

Valgrind can also be used for debugging parallel
programs. Debugging POSIX pthreads is supported
through the tool Heldgrind (see Valgrind User Manual).
Debugging of distributed-memory applications which use
the MPI message passing standard as is common in high
performance computing environments is aslo possible. This
support consists of a library of wrapper functions for the
PMPI_* interface. When incorporated into the
application’s address space, either by direct linking or by
LD_PRELOAD, the wrappers intercept calls to
PMPI_Send(), PMPI_Recv(), etc. They then use client
requests to inform Valgrind of memory state changes
caused by the function being wrapped. This reduces the

#!/bin/bash

#PBS -1 walltime=00:05:00
#PBS -1 nodes=1l:ppn=8
#PBS -A sci_test

#PBS -o test valg.out
#PBS -e test valg.err

module load intel-fc intel-cc
module load mvapich2-intel

module load valgrind/3.4.0

cd $HOME/Example

number of false positives that Memcheck would otherwise
typically report for MPI applications.

The wrappers also take the opportunity to carefully
check the size and defined-ness of buffers passed as
arguments to MPI functions, hence detecting errors such as
passing undefined data to PMPI_Send(), or receiving data
into a buffer which is too small.

To use Valgrind in parallel like this requires us to use a
pbs script so the execution can be orchestrated by the
batch processing system.

%p is replaced with the current process ID. This is very
useful for programs that invoke multiple processes.

You need to compile your application with the same
compiler and mpi module that is used the script. Using a
different MPI-library will generate a lot of false messages
in your output file.

export LD PRELOAD=/ichec/packages/valgrind/3.4.0/1lib/valgrind/amdé64-1linux/

libmpiwrap.so

mpiexec valgrind -v --log-file=Valgrind.%p ./mpi_hello.x

Thanks to the Memcheck feature Valgrind is excellent
free software for code debugging. It is suitable for making
quality control checks of code. It is able to detect two kinds
of errors: access at bad memory address and find
uninitialised values. We will now show how Valgrind error
messages of can be interpreted and some common
program errors that can be tracked easily.

It is easy to see the presence of the errors in the
following code. There are two incorrect instructions for

accessing at memory. The instructions make refer to 4 bytes
beyond the space allocated for the buffer a. Valgrind
checks them and print a message on the standard output. It
is not so easy understood the Valgrind message. With a
little bit of patience it is possible find some important errors
present into the code. To make it easier to read the output
you may wish to suppress some errors. This is possible but
requires a little work, for more information see the Valgrind
user manual. When Valgrind finds an error it tells you what
kind of error it is and below the stack traces tells you
where the problem occurred.

Find further information on the the Valgrind Project Homepage: hitp://www.valgrind.org

http://www.valgrind.org
http://www.valgrind.org

Example 1 - Can you spot the error?

Resulting Valgrind Output:

Example 2 - And this time?

Resulting Valgrind Output:

Here you can see that Valgrind tracks the bytes of memory lost. It keeps trace of all the data allocated at runtime and at
the end it checks which haven’t been correctly freed. In this case the function f() has been called only once and it wasn't
dangerous. Usually a memory leak is a tedious problem that simply grows the memory requirement unnecessarily. If a code
has memory leak increasing the problem size at some point may well trigger a crash.

Example 3 - And this time?

The output below comes from the execution of the code above. The difference between the two executions is that in the
second one we are simulating what is commonly done when a code segfaults. It is natural to set some printf() in the code to
see if a portion of the code runs (line 13). In this case this rudimental technique doesn’t work. If you put a printf() ofter the
malloc() the code works fine, or so it seems.

Curious Results:

Add printf ()

This doesn’t means that the printf() solved the problem but only that it has hidden it and maybe our result is wrong! In
this case checking the quality of the code with Valgrind could make a difference. As shown below Valgrind detects the
incorrect write out of the bound of the array (line 21) and prints it to output.

Curious Results:

Using gdb it is easy to show what is happening. In the first case when we try to read the value of a[j+1000] we get an
error message, because we attempted to access a memory location that it is not allowed. In the second case where the code
has been compiled with line 13 uncomment the memory mapping is changed and we are able to access at the value of afj
+1000]. This behaviour is inline with what we have already seen.

gdb continued:

Useful Valgrind Options

-help-debug Print Valgrind help command plus debugging option.
-q Show only the error message and ignore the others (-quite).
-version Print Valgrind software version.

- -leak-check = <no|summary | full>

exec memory-leak analysis. A detected memory-leak means a
block of allocated memory has not been freed and to which all
references have been lost. So the block can now not be
deallocated. This flags shows how many memory leak have been
matched. The option full shows a lot of detail.

When doing leak detection Valgrind trakces all memory block
allocations. When the program finishes it prints which blocks have
not been freed.

- show-reachble=<no | yes> [default: no]

Print some information about blocks of memory not deallocated
but which have references.

-show-resolution=<low | med | high> [default: low]

If the option low is enabled each single message will print only
the first time it will be matched. High prints the same message for
each occurrence.

Stack Error

The following example shows a very common error in
code. The example is in Fortran but the same thing could
be happen in C using static allocation (e.g float
array[9000]). Here on a stokes compute node you can see
the stack limit is set to 2GB. This code that appears correct

gives SIGSEV or Segmentation Fault.
As discussed the common approach is to put print
statements into the code but it is not so useful. It seems that

Example 3 - And this time?

Crash & Core Dump:

at runtime the program is blocked on the function call. Even
the core file is not so useful because it could point to
unrelated instructions which are trying to access another
area of the stack. Valgrind typically gives some information
about the stack problem. It suggests to increasing the stack
frame size as it knows that the stack size is not sufficient.

If you have to use this flag, you may wish to consider
rewriting your code to allocate on the heap rather than on
the stack. As discussed further in Valgrind’s description of -
max-stackframe, a requirement for a large stack is a sign of
potential portability problems. You are best advised to
place all large data in heap-allocated memory.

And now with Valgrind:

Valgrind Core Dump:

If your program dies as a result of a fatal core-
dumping signal, Valgrind will generate its own core file
(vgcore.NNNNN) containing your program’s state. You
may use this core file for post-mortem debugging with gdb
or similar.

In general, allocating large structures on the stack is a
bad idea, because you can easily run out of stack space,
especially on systems with limited memory or which expect
to support large numbers of threads each with a small
stack.

Warning: client switching stacks?: Valgrind spotted
such a large change in the stack pointer that it guesses the
client is switching to a different stack. At this point it makes
a best effort guess where the base of the new stack is, and
sets memory permissions accordingly.

You may get many bogus error messages following
this, if Valgrind guesses incorrectly. At the moment "large
change" is defined as a change of more that 2000000 in
the value of the stack pointer register.

