
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D	

 Slide 1

Valgrind

David Gunter

High Performance Computing Division

Los Alamos National Laboratory

LA-UR xx-xxxx

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Valgrind is an instrumentation framework for building
dynamic analysis tools.

  Includes a set of production-quality tools
—  Memcheck – memory error detector
—  Cachegrind – cache and branch-prediction profiler
—  Callgrind – call-graph generating extension to Cachegrind
—  Massif – heap profiler
—  Helgrind – thread error detector

  You can also use Valgrind to build new tools.
—  Most are in experimental state, others in limbo
—  http://valgrind.org/downloads/variants.html
—  You can also use Valgrind to build new tools.

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D Slide 3

Why you should use it

Dynamic memory allocation and errors associated with it are arguably the most
frustrating issues to deal with. Valgrind can help:

  Automatically detect many memory management and threading bugs, saving
hours of debugging time.

  Valgrind tools allow very detailed profiling to help find bottlenecks in your
programs, often resulting in program speed-up.

  Ease of use: Valgrind uses dynamic binary instrumentation – no need to modify,
recompile or relink your applications. Simply prefix your command line with
valgrind and everything works.

  Valgrind works with programs written in any language.

  Valgrind works with MPI: Open-MPI and MVAPICH/MVAPICH2

  Valgrind is extensible.

  Valgrind is actively maintained and has a large user-base

 http://valgrind.org/gallery/users.html

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D Slide 4

Common Errors

 Use of uninitialized memory

 Reading/writing memory after it has been freed

 Reading/writing off the end of allocated blocks

 Reading/writing inappropriate areas on the stack

 Memory leaks – where pointers to allocated blocks become lost

 Mismatched use of malloc/new/new[] vs free/delete/delete[]

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

The catch?

Slide 5

Valgrind simulates the hardware of your target platform and runs your

code inside this measurement-enhanced simulation

 Large overhead

Programs run significantly more slowly under Valgrind. Depending on

which tool you use, the slowdown factor can range from 5 – 100.

 Measurements may not be absolutely accurate – but they are close!

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Memcheck: Memory Error Checker

  Aimed primarily at Fortran, C and C++ programs.

  All reads and writes of memory are checked, and calls to malloc/new/
free/delete are intercepted. Will report if:
̶  Accesses memory it shouldn't (not yet allocated, freed, past the end of heap blocks,

inaccessible areas of the stack).
̶  Uses uninitialized values in dangerous ways.
̶  Leaks memory.
̶  Does bad frees of heap blocks (double frees, mismatched frees).
̶  Passes overlapping source and destination memory blocks to memcpy() and related functions.

  Memcheck reports these errors as they occur, giving the source line number,
and also a stack trace of the functions called to reach that line.

  Memcheck tracks addressability at the byte-level, and initialization of values at
the bit-level. It can detect the use of single uninitialized bits, and does not report
spurious errors on bitfield operations.

  Memcheck runs programs about 10–30× slower than normal.

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Cachegrind: Cache profiler

  Performs detailed simulation of I, I1, L2, and D caches

  Can accurately pinpoint the sources of cache misses in your code. It
identifies for each line of source code the number of:
—  Cache misses
—  Memory references
—  Instructions executed

  Provides per-function, per-module and whole-program summaries.

  Useful for programs written in any language.

  Performance hit is about a 20—100× slowdown.

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Callgrind: Callgraphs + Cachegrind Info

  Is an extension that provides all the info Cachegrind yields

  Provides callgraph information.

  Kcachegrind is a separately available tool for visualisation for both
Callgrind and Cachegrind output data

  Created by Josef Weidendorfer (Weidendorfer@in.tum.de)
but included with the basic Valgrind distribution.

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Massif: Heap Profiler

  Performs detailed profiling by taking regular snapshots of a program's
heap.

  Produces a graph showing heap usage over time
—  including information about which parts of the program are responsible for most

memory allocations
—  The graph is supplemented by a text or HTML file that includes more information

for determining where the most memory is being allocated.

  Massif runs programs about 20× slower than normal.

Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Helgrind: Thread Debugger

  Finds data races in multithreaded programs.

  Looks for memory locations which are accessed by more than one
[POSIX p-]thread, but for which no consistently used [pthread_mutex_]
lock can be found.
—  Indicative of missing synchronization between threads, and could cause hard-to-

find timing-dependent problems.

  It is useful for any program that uses pthreads.

  Experimental tool, developer welcomes feedback

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Valgrind Availability

Platform Version Usage Documentation POC
LANL/Lobo 3.5.0 module load friendly-testing

module load valgrind-ompi/3.5.0 -or-
module load valgrind-mvapich/3.5.0

Valgrind website
man valgrind

David Gunter
dog@lanl.gov

LANL/RR-Dev 3.5.0 module load friendly-testing valgrind/
3.2.0

Valgrind website
man valgrind

David Gunter
dog@lanl.gov

LANL/YR 3.2.0 module load hpc-tool valgrind/3.2.0 Valgrind website
man valgrind

David Gunter
dog@lanl.gov

SNL TBD N/A Valgrind website
man valgrind

TBD

LLNL TBD TBD TBD TBD

Slide 11

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Uninitialized Memory
1 #include <stdlib.h>
2 int main() {
3
4 int p, t;
5
6 if (p == 5) /* Error */
7 t = p + 1;
8 return 0;
9 }

Slide 12

$ gcc -g -o uninit_memory uninit_memory.c
$ uninit_memory
$ valgrind --tool=memcheck uninit_memory
==18385== Memcheck, a memory error detector
==18385== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==18385== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==18385== Command: uninit_memory
==18385==
==18385== Conditional jump or move depends on uninitialised value(s)
==18385== at 0x400450: main (uninit_memory.c:6)
==18385==
==18385==
==18385== HEAP SUMMARY:
==18385== in use at exit: 0 bytes in 0 blocks
==18385== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==18385==
==18385== All heap blocks were freed -- no leaks are possible
==18385==
==18385== For counts of detected and suppressed errors, rerun with: -v
==18385== Use --track-origins=yes to see where uninitialised values come
from
==18385== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 7 from 7)

p is uninitialized and
may contain garbage,
resulting in an error if
used to determine
branch-outcome or
memory address
(ex: a[p] = y)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Invalid Read/Write
1 #include <stdlib.h>
2 int main() {
3
4 int *p, i, a;
5
6 p = malloc(10*sizeof

(int));
7 p[11] = 1; /* write */
8 a = p[11]; /* read */
9 free(p);
10 return 0;
11 }

Slide 13

$ gcc -g -o invalid_read_write invalid_read_write.c
$ invalid_read_write
invalid_read_write
*** glibc detected *** invalid_read_write: free(): invalid next size
(fast): 0x000000001a2b8010 ***
======= Backtrace: =========
/lib64/libc.so.6[0x2b68eb106ce2]

/lib64/libc.so.6(cfree+0x8c)[0x2b68eb10a90c]
invalid_read_write[0x400512]

/lib64/libc.so.6(__libc_start_main+0xf4)[0x2b68eb0b2974]
invalid_read_write[0x400429]
======= Memory map: ========

00400000-00401000 r-xp 00000000 00:1d 5484383 invalid_read_write
00600000-00601000 rw-p 00000000 00:1d 5484383 invalid_read_write

1a2b8000-1a2d9000 rw-p 1a2b8000 00:00 0 [heap]
2b68eae78000-2b68eae94000 r-xp 00000000 08:02 137003070 /lib64/ld-2.5.so
2b68eae94000-2b68eae95000 rw-p 2b68eae94000 00:00 0

2b68eaeab000-2b68eaeac000 rw-p 2b68eaeab000 00:00 0
2b68eb093000-2b68eb094000 r--p 0001b000 08:02 137003070 /lib64/ld-2.5.so

2b68eb094000-2b68eb095000 rw-p 0001c000 08:02 137003070 /lib64/ld-2.5.so
2b68eb095000-2b68eb1e1000 r-xp 00000000 08:02 137003018 /lib64/libc-2.5.so
2b68eb1e1000-2b68eb3e1000 ---p 0014c000 08:02 137003018 /lib64/libc-2.5.so

2b68eb3e1000-2b68eb3e5000 r--p 0014c000 08:02 137003018 /lib64/libc-2.5.so
2b68eb3e5000-2b68eb3e6000 rw-p 00150000 08:02 137003018 /lib64/libc-2.5.so

2b68eb3e6000-2b68eb3ec000 rw-p 2b68eb3e6000 00:00 0
2b68eb3ec000-2b68eb3f9000 r-xp 00000000 08:02 137003048 /lib64/libgcc_s-4.1.2-20080825.so.1
2b68eb3f9000-2b68eb5f9000 ---p 0000d000 08:02 137003048 /lib64/libgcc_s-4.1.2-20080825.so.1

2b68eb5f9000-2b68eb5fa000 rw-p 0000d000 08:02 137003048 /lib64/libgcc_s-4.1.2-20080825.so.1
2b68ec000000-2b68ec021000 rw-p 2b68ec000000 00:00 0

2b68ec021000-2b68f0000000 ---p 2b68ec021000 00:00 0
7fffdb5b5000-7fffdb5ca000 rw-p 7ffffffea000 00:00 0 [stack]
ffffffffff600000-ffffffffffe00000 ---p 00000000 00:00 0 [vdso]

Abort

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Invalid Read/Write (cont’d)
1 #include <stdlib.h>
2 int main() {
3
4 int *p, i, a;
5
6 p = malloc(10*sizeof

(int));
7 p[11] = 1; /* write */
8 a = p[11]; /* read */
9 free(p);
10 return 0;
11 }

Slide 14

$ valgrind --tool=memcheck invalid_read_write
==19490== Memcheck, a memory error detector
==19490== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==19490== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==19490== Command: invalid_read_write
==19490==
==19490== Invalid write of size 4
==19490== at 0x4004F6: main (invalid_read_write.c:7)
==19490== Address 0x517b06c is 4 bytes after a block of size 40 alloc'd
==19490== at 0x4C20E27: malloc (vg_replace_malloc.c:195)
==19490== by 0x4004E9: main (invalid_read_write.c:6)
==19490==
==19490== Invalid read of size 4
==19490== at 0x400504: main (invalid_read_write.c:8)
==19490== Address 0x517b06c is 4 bytes after a block of size 40 alloc'd
==19490== at 0x4C20E27: malloc (vg_replace_malloc.c:195)
==19490== by 0x4004E9: main (invalid_read_write.c:6)
==19490==
==19490==
==19490== HEAP SUMMARY:
==19490== in use at exit: 0 bytes in 0 blocks
==19490== total heap usage: 1 allocs, 1 frees, 40 bytes allocated
==19490==
==19490== All heap blocks were freed -- no leaks are possible
==19490==
==19490== For counts of detected and suppressed errors, rerun with: -v
==19490== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 7 from 7)

Attempting to read/write
from address
(p+sizeof(int)*11)
which has not been
allocated.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Invalid Free
1 #include <stdlib.h>
2
3 int main() {
4
5 int *p, i;
6 p = malloc(10*sizeof int));
7 for(i = 0;i < 10;i++)
8 p[i] = i;
9 free(p);
10 free(p); /* Error */
11 return 0;
12 }

Slide 15

$ valgrind --tool=memcheck invalid_free
==26808== Memcheck, a memory error detector
==26808== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==26808== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright
info
==26808== Command: invalid_free
==26808==
==26808== Invalid free() / delete / delete[]
==26808== at 0x4C20A3C: free (vg_replace_malloc.c:325)
==26808== by 0x400527: main (invalid_free.c:10)
==26808== Address 0x517b040 is 0 bytes inside a block of size 40 free'd
==26808== at 0x4C20A3C: free (vg_replace_malloc.c:325)
==26808== by 0x40051E: main (invalid_free.c:9)
==26808==
==26808==
==26808== HEAP SUMMARY:
==26808== in use at exit: 0 bytes in 0 blocks
==26808== total heap usage: 1 allocs, 2 frees, 40 bytes allocated
==26808==
==26808== All heap blocks were freed -- no leaks are possible
==26808==
==26808== For counts of detected and suppressed errors, rerun with: -v
==26808== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 7 from 7)

Valgrind checks the
address passed to the
free() call and sees
that it has already been
freed.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Invalid Call Parameter
1 #include <stdlib.h>
2 #include <unistd.h>
3
4 int main() {
5 int *p;
6
7 p = malloc(10);
8 read(0, p, 100); /* err */
9 free(p);
10 return 0;
11 }

Slide 16

$ valgrind --tool=memcheck invalid_call_param
==27095== Memcheck, a memory error detector
==27095== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et
al.
==27095== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright
info
==27095== Command: invalid_call_param
==27095==
==27095== Syscall param read(buf) points to unaddressable byte(s)
==27095== at 0x4EEA620: __read_nocancel (in /lib64/libc-2.5.so)
==27095== by 0x400550: main (invalid_call_param.c:8)
==27095== Address 0x517b04a is 0 bytes after a block of size 10
alloc'd
==27095== at 0x4C20E27: malloc (vg_replace_malloc.c:195)
==27095== by 0x400539: main (invalid_call_param.c:7)
==27095==
12345678901234567890
==27095==
==27095== HEAP SUMMARY:
==27095== in use at exit: 0 bytes in 0 blocks
==27095== total heap usage: 1 allocs, 1 frees, 10 bytes allocated
==27095==
==27095== All heap blocks were freed -- no leaks are possible
==27095==
==27095== For counts of detected and suppressed errors, rerun with: -v
==27095== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 7 from
7)

read() tries to read 100
bytes from stdin and
place the results in p but
the bytes after the firs 10
are unaddressable.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Memcheck – Leak Detection
1 #include <stdlib.h>
2
3 int main() {
4 int *p, i;
5 p = malloc(5*sizeof(int));
6 for(i = 0;i < 5;i++)
7 p[i] = i;
8 return 0;
9 }

Slide 17

$ valgrind --leak-check=yes --tool=memcheck memory_leak
==27664== Memcheck, a memory error detector
==27664== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et
al.
==27664== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright
info
==27664== Command: memory_leak
==27664==
==27664==
==27664== HEAP SUMMARY:
==27664== in use at exit: 20 bytes in 1 blocks
==27664== total heap usage: 1 allocs, 0 frees, 20 bytes allocated
==27664==
==27664== 20 bytes in 1 blocks are definitely lost in loss record 1 of
1
==27664== at 0x4C20E27: malloc (vg_replace_malloc.c:195)
==27664== by 0x4004A9: main (memory_leak.c:5)
==27664==
==27664== LEAK SUMMARY:
==27664== definitely lost: 20 bytes in 1 blocks
==27664== indirectly lost: 0 bytes in 0 blocks
==27664== possibly lost: 0 bytes in 0 blocks
==27664== still reachable: 0 bytes in 0 blocks
==27664== suppressed: 0 bytes in 0 blocks
==27664==
==27664== For counts of detected and suppressed errors, rerun with: -v
==27664== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 7 from
7)

20 unfreed blocks at
routine exit – memory
leak.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Cachegrind
1 #include <stdio.h>
2 #define N 1000
3
4 double array_sum(double a[][N]);
5
6 int main(int argc, char **argv) {
7
8 double a[N][N];
9 int i,j;
10
11 for (i=0;i<N;i++) {
12 for (j=0;j<N;j++) {
13 a[i][j] = 0.01;
14 }
15 }
16
17 printf("sum = %10.3f\n", array_sum(a));
18
19 return 0;
20 }

21
22 double array_sum(double a[][N]) {
23
24 int i,j;
25 double s;
26
27 s=0;
28 for (i=0;i<N;i++)
29 for (j=0;j<N;j++)
30 s += a[i][j];
31
32 return s;
33 }

Slide 18

Fill 2D
 Array

Read 2D
 Array

  Array size is 1,000 x 1000 x 8 bytes = 8Mb

  64kB L1i and 64kB L1d

  512kB L2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Cachegrind (cont’d)

==7796== Cachegrind, a cache and branch-prediction profiler
==7796== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==7796== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==7796== Command: ./loops-fast
==7796==
sum = 10000.000
==7796==
==7796== I refs: 10,151,445
==7796== I1 misses: 845
==7796== L2i misses: 842
==7796== I1 miss rate: 0.00%
==7796== L2i miss rate: 0.00%
==7796==
==7796== D refs: 2,053,226 (1,038,866 rd + 1,014,360 wr)
==7796== D1 misses: 251,804 (126,329 rd + 125,475 wr)
==7796== L2d misses: 251,679 (126,213 rd + 125,466 wr)
==7796== D1 miss rate: 12.2% (12.1% + 12.3%)
==7796== L2d miss rate: 12.2% (12.1% + 12.3%)
==7796==
==7796== L2 refs: 252,649 (127,174 rd + 125,475 wr)
==7796== L2 misses: 252,521 (127,055 rd + 125,466 wr)
==7796== L2 miss rate: 2.0% (1.1% + 12.3%)

Slide 19

$ gcc -O2 -g -o loops-fast loops-fast.c
$ valgrind --tool=cachegrind ./loops-fast

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Callgrind (extension to cachegrind)
valgrind --tool=callgrind --simulate-cache=yes ./loops-fast
==29254== Callgrind, a call-graph generating cache profiler
==29254== Copyright (C) 2002-2009, and GNU GPL'd, by Josef Weidendorfer et al.
==29254== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==29254== Command: ./loops-fast
==29254==
==29254== For interactive control, run 'callgrind_control -h'.
sum = 10000.000
==29254==
==29254== Events : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
==29254== Collected : 10151442 1038367 1014859 845 126321 125483 842 126206 125473
==29254==
==29254== I refs: 10,151,442
==29254== I1 misses: 845
==29254== L2i misses: 842
==29254== I1 miss rate: 0.0%
==29254== L2i miss rate: 0.0%
==29254==
==29254== D refs: 2,053,226 (1,038,367 rd + 1,014,859 wr)
==29254== D1 misses: 251,804 (126,321 rd + 125,483 wr)
==29254== L2d misses: 251,679 (126,206 rd + 125,473 wr)
==29254== D1 miss rate: 12.2% (12.1% + 12.3%)
==29254== L2d miss rate: 12.2% (12.1% + 12.3%)
==29254==
==29254== L2 refs: 252,649 (127,166 rd + 125,483 wr)
==29254== L2 misses: 252,521 (127,048 rd + 125,473 wr)
==29254== L2 miss rate: 2.0% (1.1% + 12.3%)

Slide 20

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Callgrind (cont’d)

Slide 21

==29254== Events : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
==29254== Collected : 10151442 1038367 1014859 845 126321 125483 842 126206 125473

 Ir = number if instructions executed

 Dr = number of memory (data) reads

 Dw = number of memory (data) writes

 I1mr = I1 cache read misses

 D1mr = D1 cache read misses

 D1mw = D1 cache write misses

 I2mr = I2 cache read misses

 D2mr = D2 cache read misses

 D2mw = D2 cache write misses

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Callgrind (cont’d)

$ callgrind_annotate callgrind.out.29254
--
Profile data file 'callgrind.out.29254' (creator: callgrind-3.5.0)
--
I1 cache: 65536 B, 64 B, 2-way associative
D1 cache: 65536 B, 64 B, 2-way associative
L2 cache: 524288 B, 64 B, 8-way associative
Timerange: Basic block 0 - 2028047
Trigger: Program termination
Profiled target: ./loops-fast (PID 29254, part 1)
Events recorded: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Events shown: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Event sort order: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Thresholds: 99 0 0 0 0 0 0 0 0
Include dirs:
User annotated:
Auto-annotation: off

Slide 22

 Cachegrind saves output to a file ‘callgrind.out.<pid> by default

 Use callgrind_annotate to parse this file for detailed information

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Callgrind (cont’d)
--
 Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
--
10,151,445 1,038,367 1,014,859 845 126,321 125,483 842 126,206 125,473 PROGRAM TOTALS

--
 Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw file:function
--
6,007,017 4 1,000,004 2 1 125,002 2 1 125,002 loops-fast.c:main
4,005,003 1,000,001 0 0 125,001 0 0 125,001 . loops-fast.c:array_sum
 28,082 9,818 4,106 13 182 5 13 156 4 /…/glibc-2.5-20061008T1257/

elf/do-lookup.h:do_lookup_x [/lib64/ld-2.5.so]
 19,764 3,860 2,472 13 96 9 13 91 8 /…/glibc-2.5-20061008T1257/

elf/dl-lookup.c:_dl_lookup_symbol_x [/lib64/ld-2.5.so]

Slide 23

Callgrind can be used to find performance problems that are not
related to CPU cache

 What lines eat up most instructions (CPU cycles, time)

 What system/math/lib functions are called and what is
their cost?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Usage Case: Massif
 1 #include <stdlib.h>
 2
 3 void g(void) {
 4 malloc(4000);
 5 }
 6
 7 void f(void) {
 8 malloc(2000);
 9 g();
10 }
11
12 int main(void) {
13
14 int i;
15 int* a[10];

16
17 for (i = 0; i < 10; i++) {
18 a[i] = malloc(1000);
19 }
20
21 f();
22
23 g();
24
25 for (i = 0; i < 10; i++) {
26 free(a[i]);
27 }
28
29 return 0;
30 }

Slide 24

valgrind --tool=massif massif_demo
==11496== Massif, a heap profiler
==11496== Copyright (C) 2003-2009, and GNU GPL'd,

by Nicholas Nethercote
==11496== Using Valgrind-3.5.0 and LibVEX; rerun

with -h for copyright info
==11496== Command: massif_demo
==11496==
==11496==
$ ms_print massif.out.11496

 Massif outputs to file

 ms_print generates

— graph showing mem consumption
over time

— Detailed info about allocation sites
including peak allocation points

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

--
Command: massif_demo
Massif arguments: (none)
ms_print arguments: massif.out.11496
--

 KB
19.71^ #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 0 +--->ki
 0 155.4

Number of snapshots: 25
 Detailed snapshots: [9, 14 (peak), 24]

Usage Case: Massif (cont’d)

Slide 25

Mostly empty – Massif uses
“instructions executed” as unit of
time. For this short run program
most of these are the loading
linking of the program. main(),
g(), and f() are only run at
the end.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

$ valgrind --tool=massif --time-unit=B massif_demo
$ ms_print massif.out.29949
--
Command: massif_demo
Massif arguments: --time-unit=B
ms_print arguments: massif.out.29949
--

 KB
19.71^ ###
 | #
 | # ::
 | # : :::
 | :::::::::# : : ::
 | : # : : : ::
 | : # : : : : :::
 | : # : : : : : ::
 | ::::::::::: # : : : : : : :::
 | : : # : : : : : : : ::
 | ::::: : # : : : : : : : : ::
 | @@@: : : # : : : : : : : : : @
 | ::@ : : : # : : : : : : : : : @
 | :::: @ : : : # : : : : : : : : : @
 | ::: : @ : : : # : : : : : : : : : @
 | ::: : : @ : : : # : : : : : : : : : @
 | :::: : : : @ : : : # : : : : : : : : : @
 | ::: : : : : @ : : : # : : : : : : : : : @
 | :::: : : : : : @ : : : # : : : : : : : : : @
 | ::: : : : : : : @ : : : # : : : : : : : : : @
 0 +--->KB
 0 29.63

Number of snapshots: 25
 Detailed snapshots: [9, 14 (peak), 24]

Usage Case: Massif (cont’d)

Slide 26

--time-unit=B sets “time”
units to be bytes alloc/dealloc.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

--
 n time(B) total(B) useful-heap(B) extra-heap(B) stacks(B)
--
 0 0 0 0 0 0
 1 1,016 1,016 1,000 16 0
 2 2,032 2,032 2,000 32 0
 3 3,048 3,048 3,000 48 0
 4 4,064 4,064 4,000 64 0
 5 5,080 5,080 5,000 80 0
 6 6,096 6,096 6,000 96 0
 7 7,112 7,112 7,000 112 0
 8 8,128 8,128 8,000 128 0

Usage Case: Massif (cont’d)

Slide 27

Detailed information by snapshot. Each shows

  Snapshot number
  “time” taken (bytes in this example)
  Total memory consumption
  Number of useful heap bytes allocated at that point
  Number of extra heap bytes allocated (admin bytes and bytes due to round-up/alignment)
  Size of the stack (stack profiling off by default for performance, thus the zeroes here)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

 9 9,144 9,144 9,000 144 0
98.43% (9,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->98.43% (9,000B) 0x40051A: main (massif_demo.c:18)

Usage Case: Massif (cont’d)

Slide 28

Snapshot 9 contains further detail. It gives an allocation tree (read from top down)

  First line indicates all heap allocation functions (malloc/new/new[]) and the percentage of
allocations using them

  Second line indicates where these allocations were called: At this point in the program execution
all allocations have been done from line 18, a[i] = malloc(1000);

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

--
 n time(B) total(B) useful-heap(B) extra-heap(B) stacks(B)
--
 10 10,160 10,160 10,000 160 0
 11 12,168 12,168 12,000 168 0
 12 16,176 16,176 16,000 176 0
 13 20,184 20,184 20,000 184 0
 14 20,184 20,184 20,000 184 0
99.09% (20,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->49.54% (10,000B) 0x40051A: main (massif_demo.c:18)
|
->39.64% (8,000B) 0x4004E4: g (massif_demo.c:4)
| ->19.82% (4,000B) 0x4004F9: f (massif_demo.c:9)
| | ->19.82% (4,000B) 0x400534: main (massif_demo.c:21)
| |
| ->19.82% (4,000B) 0x400539: main (massif_demo.c:23)
|
->09.91% (2,000B) 0x4004F4: f (massif_demo.c:8)
 ->09.91% (2,000B) 0x400534: main (massif_demo.c:21)

Usage Case: Massif (cont’d)

Slide 29

Next detailed snapshot at 14, point of maximum allocation peak

  Allocations are occurring in 3 areas of the code with percentage numbers for each
  Of the 8,000B requested in line 4, half were due to calls in line 9 while the other half were due to

the calls in line 21

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

--
 n time(B) total(B) useful-heap(B) extra-heap(B) stacks(B)
--
 15 21,200 19,168 19,000 168 0
 16 22,216 18,152 18,000 152 0
 17 23,232 17,136 17,000 136 0
 18 24,248 16,120 16,000 120 0
 19 25,264 15,104 15,000 104 0
 20 26,280 14,088 14,000 88 0
 21 27,296 13,072 13,000 72 0
 22 28,312 12,056 12,000 56 0
 23 29,328 11,040 11,000 40 0
 24 30,344 10,024 10,000 24 0
99.76% (10,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->79.81% (8,000B) 0x4004E4: g (massif_demo.c:4)
| ->39.90% (4,000B) 0x4004F9: f (massif_demo.c:9)
| | ->39.90% (4,000B) 0x400534: main (massif_demo.c:21)
| |
| ->39.90% (4,000B) 0x400539: main (massif_demo.c:23)
|
->19.95% (2,000B) 0x4004F4: f (massif_demo.c:8)
| ->19.95% (2,000B) 0x400534: main (massif_demo.c:21)
|

Usage Case: Massif (cont’d)

Slide 30

Final snapshot reveals how the heap looked at program termination.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

[long output of stuff deleted]
==31283== HEAP SUMMARY:
==31283== in use at exit: 511,683 bytes in 2,434 blocks
==31283== total heap usage: 686,989 allocs, 684,555 frees, 1,666,080,129 bytes allocated
==31283==
==31282==
==31282== HEAP SUMMARY:
==31282== in use at exit: 511,683 bytes in 2,434 blocks
==31282== total heap usage: 687,044 allocs, 684,610 frees, 1,679,493,193 bytes allocated
==31282==
==31280==
==31280== HEAP SUMMARY:
==31280== in use at exit: 316,027 bytes in 2,488 blocks
==31280== total heap usage: 937,234 allocs, 934,746 frees, 2,985,419,267 bytes allocated
==31280==
==31281==
==31281== HEAP SUMMARY:
==31281== in use at exit: 511,683 bytes in 2,434 blocks
==31281== total heap usage: 923,980 allocs, 921,546 frees, 2,997,587,345 bytes allocated
==31281==

Usage Case: Parallel run using Open-MPI and IMB

Slide 31

$ mpirun –n 4 valgrind ./IMB-MPI1

Output report for each MPI process

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

==31280== LEAK SUMMARY:
==31280== definitely lost: 15,068 bytes in 102 blocks
==31280== indirectly lost: 19,628 bytes in 77 blocks
==31280== possibly lost: 0 bytes in 0 blocks
==31280== still reachable: 281,331 bytes in 2,309 blocks
==31280== suppressed: 0 bytes in 0 blocks
==31280== Rerun with --leak-check=full to see details of leaked memory
==31280==
==31280== For counts of detected and suppressed errors, rerun with: -v
==31280== Use --track-origins=yes to see where uninitialised values come from
==31280== ERROR SUMMARY: 165 errors from 58 contexts (suppressed: 13 from 10)
==31280==
==31283== LEAK SUMMARY:
==31283== definitely lost: 12,764 bytes in 70 blocks
==31283== indirectly lost: 18,684 bytes in 41 blocks
==31283== possibly lost: 215,456 bytes in 14 blocks
==31283== still reachable: 264,779 bytes in 2,309 blocks
==31283== suppressed: 0 bytes in 0 blocks
==31283== Rerun with --leak-check=full to see details of leaked memory
==31283==
==31282== LEAK SUMMARY:
==31282== definitely lost: 12,764 bytes in 70 blocks
==31282== indirectly lost: 18,684 bytes in 41 blocks
==31282== possibly lost: 198,888 bytes in 13 blocks
==31282== still reachable: 281,347 bytes in 2,310 blocks
==31282== suppressed: 0 bytes in 0 blocks
==31282== Rerun with --leak-check=full to see details of leaked memory
==31282==
==31282== For counts of detected and suppressed errors, rerun with: -v
==31282== Use --track-origins=yes to see where uninitialised values come from
==31282== ERROR SUMMARY: 189 errors from 57 contexts (suppressed: 13 from 10)
==31283== For counts of detected and suppressed errors, rerun with: -v
==31283== Use --track-origins=yes to see where uninitialised values come from
==31283== ERROR SUMMARY: 189 errors from 57 contexts (suppressed: 13 from 10)
==31281== LEAK SUMMARY:…

Usage Case: Parallel run using Open-MPI and IMB

Slide 32

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

References

  Valgrind is freely available from:

 http://www.valgrind.org

  Valgrind is maintained by a network of developers
—  Julian Seward, original creator and lead developer

julian@valgrind.org
—  http://www.valgrind.org/info/developers.html

  There is a tri-lab contract in place to support development of features
of interest to DOE.

Slide 33

