
Community Page

Best Practices for Scientific Computing
Greg Wilson1*, D. A. Aruliah2, C. Titus Brown3, Neil P. Chue Hong4, Matt Davis5, Richard T. Guy6¤,

Steven H. D. Haddock7, Kathryn D. Huff8, Ian M. Mitchell9, Mark D. Plumbley10, Ben Waugh11,

Ethan P. White12, Paul Wilson13

1 Mozilla Foundation, Toronto, Ontario, Canada, 2 University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 3 Michigan State University, East Lansing,

Michigan, United States of America, 4 Software Sustainability Institute, Edinburgh, United Kingdom, 5 Space Telescope Science Institute, Baltimore, Maryland, United

States of America, 6 University of Toronto, Toronto, Ontario, Canada, 7 Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America,

8 University of California Berkeley, Berkeley, California, United States of America, 9 University of British Columbia, Vancouver, British Columbia, Canada, 10 Queen Mary

University of London, London, United Kingdom, 11 University College London, London, United Kingdom, 12 Utah State University, Logan, Utah, United States of America,

13 University of Wisconsin, Madison, Wisconsin, United States of America

Introduction

Scientists spend an increasing amount of time building and

using software. However, most scientists are never taught how to

do this efficiently. As a result, many are unaware of tools and

practices that would allow them to write more reliable and

maintainable code with less effort. We describe a set of best

practices for scientific software development that have solid

foundations in research and experience, and that improve

scientists’ productivity and the reliability of their software.

Software is as important to modern scientific research as

telescopes and test tubes. From groups that work exclusively on

computational problems, to traditional laboratory and field

scientists, more and more of the daily operation of science revolves

around developing new algorithms, managing and analyzing the

large amounts of data that are generated in single research

projects, combining disparate datasets to assess synthetic problems,

and other computational tasks.

Scientists typically develop their own software for these purposes

because doing so requires substantial domain-specific knowledge.

As a result, recent studies have found that scientists typically spend

30% or more of their time developing software [1,2]. However,

90% or more of them are primarily self-taught [1,2], and therefore

lack exposure to basic software development practices such as

writing maintainable code, using version control and issue

trackers, code reviews, unit testing, and task automation.

We believe that software is just another kind of experimental

apparatus [3] and should be built, checked, and used as carefully

as any physical apparatus. However, while most scientists are

careful to validate their laboratory and field equipment, most do

not know how reliable their software is [4,5]. This can lead to

serious errors impacting the central conclusions of published

research [6]: recent high-profile retractions, technical comments,

and corrections because of errors in computational methods

include papers in Science [7,8], PNAS [9], the Journal of Molecular

Biology [10], Ecology Letters [11,12], the Journal of Mammalogy [13],

Journal of the American College of Cardiology [14], Hypertension [15], and

The American Economic Review [16].

In addition, because software is often used for more than a single

project, and is often reused by other scientists, computing errors can

have disproportionate impacts on the scientific process. This type of

cascading impact caused several prominent retractions when an

error from another group’s code was not discovered until after

publication [6]. As with bench experiments, not everything must be

done to the most exacting standards; however, scientists need to be

aware of best practices both to improve their own approaches and

for reviewing computational work by others.

This paper describes a set of practices that are easy to adopt and

have proven effective in many research settings. Our recommenda-

tions are based on several decades of collective experience both

building scientific software and teaching computing to scientists

[17,18], reports from many other groups [19–25], guidelines for

commercial and open source software development [26,27], and on

empirical studies of scientific computing [28–31] and software

development in general (summarized in [32]). None of these practices

will guarantee efficient, error-free software development, but used in

concert they will reduce the number of errors in scientific software,

make it easier to reuse, and save the authors of the software time and

effort that can used for focusing on the underlying scientific questions.

Our practices are summarized in Box 1; labels in the main text

such as ‘‘(1a)’’ refer to items in that summary. For reasons of space,

we do not discuss the equally important (but independent) issues of

reproducible research, publication and citation of code and data,

and open science. We do believe, however, that all of these will be

much easier to implement if scientists have the skills we describe.

The Community Page is a forum for organizations and societies to highlight their
efforts to enhance the dissemination and value of scientific knowledge.

Citation: Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, et
al. (2014) Best Practices for Scientific Computing. PLoS Biol 12(1): e1001745.
doi:10.1371/journal.pbio.1001745

Academic Editor: Jonathan A. Eisen, University of California Davis, United States
of America

Published January 7, 2014

Copyright: � 2014 Wilson et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: Neil Chue Hong was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) Grant EP/H043160/1 for the UK Software
Sustainability Institute. Ian M. Mitchell was supported by NSERC Discovery Grant
#298211. Mark Plumbley was supported by EPSRC through a Leadership
Fellowship (EP/G007144/1) and a grant (EP/H043101/1) for SoundSoftware.ac.uk.
Ethan White was supported by a CAREER grant from the US National Science
Foundation (DEB 0953694). Greg Wilson was supported by a grant from the Sloan
Foundation. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The lead author (GVW) is involved in a pilot study of code
review in scientific computing with PLOS Computational Biology.

* E-mail: gvwilson@software-carpentry.org

¤ Current address: Microsoft, Inc., Seattle, Washington, United States of
America

PLOS Biology | www.plosbiology.org 1 January 2014 | Volume 12 | Issue 1 | e1001745

Write Programs for People, Not Computers

Scientists writing software need to write code that both executes

correctly and can be easily read and understood by other

programmers (especially the author’s future self). If software

cannot be easily read and understood, it is much more difficult to

know that it is actually doing what it is intended to do. To be

productive, software developers must therefore take several aspects

of human cognition into account: in particular, that human

working memory is limited, human pattern matching abilities are

finely tuned, and human attention span is short [33–37].

First, a program should not require its readers to hold
more than a handful of facts in memory at once (1a).
Human working memory can hold only a handful of items at a

time, where each item is either a single fact or a ‘‘chunk’’

aggregating several facts [33,34], so programs should limit the total

number of items to be remembered to accomplish a task. The

primary way to accomplish this is to break programs up into easily

understood functions, each of which conducts a single, easily

understood, task. This serves to make each piece of the program

easier to understand in the same way that breaking up a scientific

paper using sections and paragraphs makes it easier to read.

Second, scientists should make names consistent, distinc-
tive, and meaningful (1b). For example, using non-descriptive

names, like a and foo, or names that are very similar, like results and

results2, is likely to cause confusion.

Third, scientists should make code style and formatting
consistent (1c). If different parts of a scientific paper used

different formatting and capitalization, it would make that paper

more difficult to read. Likewise, if different parts of a program are

indented differently, or if programmers mix CamelCaseNaming

and pothole_case_naming, code takes longer to read and readers

make more mistakes [35,36].

Let the Computer Do the Work

Science often involves repetition of computational tasks such as

processing large numbers of data files in the same way or

regenerating figures each time new data are added to an existing

analysis. Computers were invented to do these kinds of repetitive

tasks but, even today, many scientists type the same commands in

over and over again or click the same buttons repeatedly [17]. In

addition to wasting time, sooner or later even the most careful

researcher will lose focus while doing this and make mistakes.

Scientists should therefore make the computer repeat tasks
(2a) and save recent commands in a file for re-use (2b).
For example, most command-line tools have a ‘‘history’’ option

that lets users display and re-execute recent commands, with

minor edits to filenames or parameters. This is often cited as one

reason command-line interfaces remain popular [38,39]: ‘‘do this

again’’ saves time and reduces errors.

A file containing commands for an interactive system is often

called a script, though there is real no difference between this and

a program. When these scripts are repeatedly used in the same

way, or in combination, a workflow management tool can be

used. The paradigmatic example is compiling and linking

programs in languages such as Fortran, C++, Java, and C#
[40]. The most widely used tool for this task is probably Make

(http://www.gnu.org/software/make), although many alterna-

tives are now available [41]. All of these allow people to express

dependencies between files, i.e., to say that if A or B has changed,

then C needs to be updated using a specific set of commands.

These tools have been successfully adopted for scientific work-

flows as well [42].

To avoid errors and inefficiencies from repeating commands

manually, we recommend that scientists use a build tool to
automate workflows (2c), e.g., specify the ways in which

intermediate data files and final results depend on each other, and

on the programs that create them, so that a single command will

regenerate anything that needs to be regenerated.

Box 1. Summary of Best Practices

1. Write programs for people, not computers.

(a) A program should not require its readers to hold more

than a handful of facts in memory at once.

(b) Make names consistent, distinctive, and meaningful.

(c) Make code style and formatting consistent.

2. Let the computer do the work.

(a) Make the computer repeat tasks.

(b) Save recent commands in a file for re-use.

(c) Use a build tool to automate workflows.

3. Make incremental changes.

(a) Work in small steps with frequent feedback and course

correction.

(b) Use a version control system.

(c) Put everything that has been created manually in version

control.

4. Don’t repeat yourself (or others).

(a) Every piece of data must have a single authoritative

representation in the system.

(b) Modularize code rather than copying and pasting.

(c) Re-use code instead of rewriting it.

5. Plan for mistakes.

(a) Add assertions to programs to check their operation.

(b) Use an off-the-shelf unit testing library.

(c) Turn bugs into test cases.

(d) Use a symbolic debugger.

6. Optimize software only after it works correctly.

(a) Use a profiler to identify bottlenecks.

(b) Write code in the highest-level language possible.

7. Document design and purpose, not mechanics.

(a) Document interfaces and reasons, not implementations.

(b) Refactor code in preference to explaining how it works.

(c) Embed the documentation for a piece of software in that

software.

8. Collaborate.

(a) Use pre-merge code reviews.

(b) Use pair programming when bringing someone new up to

speed and when tackling particularly tricky problems.

(c) Use an issue tracking tool.

PLOS Biology | www.plosbiology.org 2 January 2014 | Volume 12 | Issue 1 | e1001745

In order to maximize reproducibility, everything needed to re-

create the output should be recorded automatically in a format

that other programs can read. (Borrowing a term from

archaeology and forensics, this is often called the provenance of

data.) There have been some initiatives to automate the collection

of this information, and standardize its format [43], but it is

already possible to record the following without additional tools:

N unique identifiers and version numbers for raw data records

(which scientists may need to create themselves);

N unique identifiers and version numbers for programs and

libraries;

N the values of parameters used to generate any given output;

and

N the names and version numbers of programs (however small)

used to generate those outputs.

Make Incremental Changes

Unlike traditional commercial software developers, but very

much like developers in open source projects or startups, scientific

programmers usually don’t get their requirements from custom-

ers, and their requirements are rarely frozen [31,44]. In fact,

scientists often can’t know what their programs should do next

until the current version has produced some results. This

challenges design approaches that rely on specifying requirements

in advance.

Programmers are most productive when they work in small
steps with frequent feedback and course correction (3a)
rather than trying to plan months or years of work in advance.

While the details vary from team to team, these developers

typically work in steps that are sized to be about an hour long, and

these steps are often grouped in iterations that last roughly one

week. This accommodates the cognitive constraints discussed in

the first section, and acknowledges the reality that real-world

requirements are constantly changing. The goal is to produce

working (if incomplete) code after each iteration. While these

practices have been around for decades, they gained prominence

starting in the late 1990s under the banner of agile development

[45,46].

Two of the biggest challenges scientists and other programmers

face when working with code and data are keeping track of

changes (and being able to revert them if things go wrong), and

collaborating on a program or dataset [23]. Typical solutions are

to email software to colleagues or to copy successive versions of it

to a shared folder, e.g., Dropbox (http://www.dropbox.com).

However, both approaches are fragile and can lead to confusion

and lost work when important changes are overwritten or out-of-

date files are used. It’s also difficult to find out which changes are

in which versions or to say exactly how particular results were

computed at a later date.

The standard solution in both industry and open source is to

use a version control system (3b) (VCS) [27,47]. A VCS

stores snapshots of a project’s files in a repository (or a set of

repositories). Programmers can modify their working copy of the

project at will, then commit changes to the repository when they are

satisfied with the results to share them with colleagues.

Crucially, if several people have edited files simultaneously, the

VCS highlights the differences and requires them to resolve any

conflicts before accepting the changes. The VCS also stores the

entire history of those files, allowing arbitrary versions to be

retrieved and compared, together with metadata such as

comments on what was changed and the author of the changes.

All of this information can be extracted to provide provenance for

both code and data.

Many good VCSes are open source and freely available,

including Git (http://git-scm.com), Subversion (http://subversion.

apache.org), and Mercurial (http://mercurial.selenic.com). Many

free hosting services are available as well, with GitHub (https://

github.com), BitBucket (https://bitbucket.org), SourceForge

(http://sourceforge.net), and Google Code (http://code.google.

com) being the most popular. As with coding style, the best one to

use is almost always whatever your colleagues are already using

[27].

Reproducibility is maximized when scientists put everything
that has been created manually in version control (3c),
including programs, original field observations, and the source files

for papers. Automated output and intermediate files can be

regenerated as needed. Binary files (e.g., images and audio clips)

may be stored in version control, but it is often more sensible to

use an archiving system for them, and store the metadata

describing their contents in version control instead [48].

Don’t Repeat Yourself (or Others)

Anything that is repeated in two or more places is more difficult

to maintain. Every time a change or correction is made, multiple

locations must be updated, which increases the chance of errors

and inconsistencies. To avoid this, programmers follow the DRY

Principle [49], for ‘‘don’t repeat yourself,’’ which applies to both

data and code.

For data, this maxim holds that every piece of data must
have a single authoritative representation in the system
(4a). Physical constants ought to be defined exactly once to ensure

that the entire program is using the same value; raw data files

should have a single canonical version, every geographic location

from which data has been collected should be given an ID that can

be used to look up its latitude and longitude, and so on.

The DRY Principle applies to code at two scales. At small

scales, modularize code rather than copying and pasting
(4b). Avoiding ‘‘code clones’’ has been shown to reduce error rates

[50]: when a change is made or a bug is fixed, that change or fix

takes effect everywhere, and people’s mental model of the program

(i.e., their belief that ‘‘this one’s been fixed’’) remains accurate. As

a side effect, modularizing code allows people to remember its

functionality as a single mental chunk, which in turn makes code

easier to understand. Modularized code can also be more easily

repurposed for other projects.

At larger scales, it is vital that scientific programmers re-use
code instead of rewriting it (4c). Tens of millions of lines of

high-quality open source software are freely available on the web,

and at least as much is available commercially. It is typically better

to find an established library or package that solves a problem than

to attempt to write one’s own routines for well established problems

(e.g., numerical integration, matrix inversions, etc.).

Plan for Mistakes

Mistakes are inevitable, so verifying and maintaining the validity

of code over time is immensely challenging [51]. While no single

practice has been shown to catch or prevent all mistakes, several

are very effective when used in combination [47,52,53].

The first line of defense is defensive programming. Experienced

programmers add assertions to programs to check their
operation (5a) because experience has taught them that

everyone (including their future self) makes mistakes. An assertion

is simply a statement that something holds true at a particular

point in a program; as the example below shows, assertions can be

PLOS Biology | www.plosbiology.org 3 January 2014 | Volume 12 | Issue 1 | e1001745

used to ensure that inputs are valid, outputs are consistent, and so

on.

def bradford transfer (grid, point, smoothing) :

assert grid:contains (point),

0Point is not located in grid 0

assert grid:is local maximum(point),

0Point is not a local maximum in grid 0

assert len(smoothing) w FILTER LENGTH,

0Not enough smoothing parameters 0

. . . do calculations:::

assert 0:0 v result v~ 1:0,

0Bradford transfer value out of legal range 0

return result

Assertions can make up a sizeable fraction of the code in well-

written applications, just as tools for calibrating scientific

instruments can make up a sizeable fraction of the equipment in

a lab. These assertions serve two purposes. First, they ensure that if

something does go wrong, the program will halt immediately,

which simplifies debugging. Second, assertions are executable

documentation, i.e., they explain the program as well as checking

its behavior. This makes them more useful in many cases than

comments since the reader can be sure that they are accurate and

up to date.

The second layer of defense is automated testing. Automated tests

can check to make sure that a single unit of code is returning

correct results (unit tests), that pieces of code work correctly when

combined (integration tests), and that the behavior of a program

doesn’t change when the details are modified (regression tests). These

tests are conducted by the computer, so that they are easy to rerun

every time the program is modified. Creating and managing tests

is easier if programmers use an off-the-shelf unit testing
library (5b) to initialize inputs, run tests, and report their results

in a uniform way. These libraries are available for all major

programming languages including those commonly used in

scientific computing [54–56].

Tests check to see whether the code matches the researcher’s

expectations of its behavior, which depends on the researcher’s

understanding of the problem at hand [57–59]. For example, in

scientific computing, tests are often conducted by comparing

output to simplified cases, experimental data, or the results of

earlier programs that are trusted. Another approach for

generating tests is to turn bugs into test cases (5c) by

writing tests that trigger a bug that has been found in the code

and (once fixed) will prevent the bug from reappearing

unnoticed. In combination these kinds of testing can improve

our confidence that scientific code is operating properly and that

the results it produces are valid. An additional benefit of testing

is that it encourages programmers to design and build code that

is testable (i.e., self-contained functions and classes that can run

more or less independently of one another). Code that is

designed this way is also easier to understand and more

reusable.

No matter how good one’s computational practice is, reason-

ably complex code will always initially contain bugs. Fixing bugs

that have been identified is often easier if you use a symbolic

debugger (5d) to track them down. A better name for this kind of

tool would be ‘‘interactive program inspector’’ since a debugger

allows users to pause a program at any line (or when some

condition is true), inspect the values of variables, and walk up and

down active function calls to figure out why things are behaving

the way they are. Debuggers are usually more productive than

adding and removing print statements or scrolling through

hundreds of lines of log output [60], because they allow the user

to see exactly how the code is executing rather than just snapshots

of state of the program at a few moments in time. In other words,

the debugger allows the scientist to witness what is going wrong

directly, rather than having to anticipate the error or infer the

problem using indirect evidence.

Optimize Software Only after It Works Correctly

Today’s computers and software are so complex that even

experts find it hard to predict which parts of any particular

program will be performance bottlenecks [61]. The most

productive way to make code fast is therefore to make it work

correctly, determine whether it’s actually worth speeding it up,

and—in those cases where it is—to use a profiler to identify
bottlenecks (6a).

This strategy also has interesting implications for choice of

programming language. Research has confirmed that most

programmers write roughly the same number of lines of code

per unit time regardless of the language they use [62]. Since faster,

lower level, languages require more lines of code to accomplish the

same task, scientists are most productive when they write code in
the highest-level language possible (6b), and shift to low-

level languages like C and Fortran only when they are sure the

performance boost is needed. (Using higher-level languages also

helps program comprehensibility, since such languages have, in a

sense, ‘‘pre-chunked’’ the facts that programmers need to have in

short-term memory.)

Taking this approach allows more code to be written (and

tested) in the same amount of time. Even when it is known

before coding begins that a low-level language will ultimately be

necessary, rapid prototyping in a high-level language helps

programmers make and evaluate design decisions quickly.

Programmers can also use a high-level prototype as a test

oracle for a high-performance low-level reimplementation, i.e.,

compare the output of the optimized (and usually more

complex) program against the output from its unoptimized

(but usually simpler) predecessor in order to check its

correctness.

Document Design and Purpose, Not Mechanics

In the same way that a well documented experimental

protocol makes research methods easier to reproduce, good

documentation helps people understand code. This makes the

code more reusable and lowers maintenance costs [47]. As a

result, code that is well documented makes it easier to transition

when the graduate students and postdocs who have been writing

code in a lab transition to the next career phase. Reference

documentation and descriptions of design decisions are key for

improving the understandability of code. However, inline

documentation that recapitulates code is not useful. Therefore

we recommend that scientific programmers document inter-
faces and reasons, not implementations (7a). For

example, a clear description like this at the beginning of a

function that describes what it does and its inputs and outputs is

useful:

PLOS Biology | www.plosbiology.org 4 January 2014 | Volume 12 | Issue 1 | e1001745

def scan op, values, seed~Noneð Þ:
Apply a binary operator cumulatively to the values given

from lowest to highest, returning a list of results:

For example, if 0op 0 is 0add 0 and 0values 0 is 0 1,3,5½ � 0 ,
the result is 0 1, 4, 9½ � 0 (i:e:, the running total of the

given values): The result always has the same length as

the input:

If 0 seed 0 is given, the result is initialized with that

value instead of with the first item in 0values 0 , and

the final item is omitted from the result:
Ex : scan add, 1, 3, 5½ �, seed~10ð Þ
produces 10, 11, 14½ �
:::implementation:::

In contrast, the comment in the code fragment below does

nothing to aid comprehension:

i~iz1 # Increment the variable 0 i 0 by one:

If a substantial description of the implementation of a piece of

software is needed, it is better to refactor code in preference
to explaining how it works (7b), i.e., rather than write a

paragraph to explain a complex piece of code, reorganize the

code itself so that it doesn’t need such an explanation. This may

not always be possible—some pieces of code are intrinsically

difficult—but the onus should always be on the author to

convince his or her peers of that.

The best way to create and maintain reference documentation is

to embed the documentation for a piece of software in that
software (7c). Doing this increases the probability that when

programmers change the code, they will update the documentation

at the same time.

Embedded documentation usually takes the form of specially-

formatted and placed comments. Typically, a documentation generator

such as Javadoc, Doxygen, or Sphinx extracts these comments and

generates well-formatted web pages and other human-friendly

documents (http://en.wikipedia.org/wiki/Comparison_of_docu

mentation_generators). Alternatively, code can be embedded in

a larger document that includes information about what the

code is doing (i.e., literate programming). Common approaches

to this include this use of knitr [63] and IPython Notebooks

[64].

Collaborate

In the same way that having manuscripts reviewed by other

scientists can reduce errors and make research easier to

understand, reviews of source code can eliminate bugs and

improve readability. A large body of research has shown that code

reviews are the most cost-effective way of finding bugs in code

[65,66]. They are also a good way to spread knowledge and good

practices around a team. In projects with shifting membership,

such as most academic labs, code reviews help ensure that critical

knowledge isn’t lost when a student or postdoc leaves the lab.

Code can be reviewed either before or after it has been

committed to a shared version control repository. Experience

shows that if reviews don’t have to be done in order to get code

into the repository, they will soon not be done at all [27]. We

therefore recommend that projects use pre-merge code
reviews (8a).

An extreme form of code review is pair programming, in which two

developers sit together while writing code. One (the driver)

actually writes the code; the other (the navigator) provides real-

time feedback and is free to track larger issues of design and

consistency. Several studies have found that pair programming

improves productivity [67], but many programmers find it

intrusive. We therefore recommend that teams use pair
programming when bringing someone new up to speed
and when tackling particularly tricky problems (8b).

Once a team grows beyond a certain size, it becomes difficult to

keep track of what needs to be reviewed, or of who’s doing what.

Teams can avoid a lot of duplicated effort and dropped balls if

they use an issue tracking tool (8c) to maintain a list of tasks

to be performed and bugs to be fixed [68]. This helps avoid

duplicated work and makes it easier for tasks to be transferred to

different people. Free repository hosting services like GitHub

include issue tracking tools, and many good standalone tools exist

as well, such as Trac (http://trac.edgewall.org).

Conclusion

We have outlined a series of recommended best practices for

scientific computing based on extensive research, as well as our

collective experience. These practices can be applied to individual

work as readily as group work; separately and together, they

improve the productivity of scientific programming and the

reliability of the resulting code, and therefore the speed with which

we produce results and our confidence in them. They are also, we

believe, prerequisites for reproducible computational research: if

software is not version controlled, readable, and tested, the

chances of its authors (much less anyone else) being able to re-

create results are remote.

Our 24 recommendations are a beginning, not an end.

Individuals and groups who have incorporated them into their

work will find links to more advanced practices at Software

Carpentry (http://software-carpentry.org).

Research suggests that the time cost of implementing these kinds

of tools and approaches in scientific computing is almost

immediately offset by the gains in productivity of the programmers

involved [17]. Even so, the recommendations described above

may seem intimidating to implement. Fortunately, the different

practices reinforce and support one another, so the effort required

is less than the sum of adding each component separately.

Nevertheless, we do not recommend that research groups attempt

to implement all of these recommendations at once, but instead

suggest that these tools be introduced incrementally over a period

of time.

How to implement the recommended practices can be learned

from many excellent tutorials available online or through

workshops and classes organized by groups like Software

Carpentry. This type of training has proven effective at driving

adoption of these tools in scientific settings [17,69].

For computing to achieve the level of rigor that is expected

throughout other parts of science, it is necessary for scientists to

begin to adopt the tools and approaches that are known to

improve both the quality of software and the efficiency with which

it is produced. To facilitate this adoption, universities and funding

agencies need to support the training of scientists in the use of

these tools and the investment of time and money in building

better scientific software. Investment in these approaches by both

individuals and institutions will improve our confidence in the

PLOS Biology | www.plosbiology.org 5 January 2014 | Volume 12 | Issue 1 | e1001745

results of computational science and will allow us to make more

rapid progress on important scientific questions than would

otherwise be possible.

Acknowledgments

We are grateful to Joel Adamson, Aron Ahmadia, Roscoe Bartlett, Erik

Bray, Stephen Crouch, Michael Jackson, Justin Kitzes, Adam Obeng,

Karthik Ram, Yoav Ram, and Tracy Teal for feedback on this paper.

Author Contributions

The author(s) have made the following declarations about their

contributions: Wrote the paper: GVW DAA CTB NPCH MD RTG

SHDH KH IMM MDP BW EPW PW.

References

1. Hannay JE, Langtangen HP, MacLeod C, Pfahl D, Singer J, et al. (2009) How

do scientists develop and use scientific software? In: Proceedings Second

International Workshop on Software Engineering for Computational Science
and Engineering. pp. 1–8. doi:10.1109/SECSE.2009.5069155.

2. Prabhu P, Jablin TB, Raman A, Zhang Y, Huang J, et al. (2011) A survey of the

practice of computational science. In: Proceedings 24th ACM/IEEE Conference
on High Performance Computing, Networking, Storage and Analysis. pp. 19:1–

19:12. doi:10.1145/2063348.2063374.

3. Vardi M (2010) Science has only two legs. Communications of the ACM 53: 5.

4. Hatton L, Roberts A (1994) How accurate is scientific software? IEEE T Software

Eng 20: 785–797.

5. Hatton L (1997) The T experiments: errors in scientific software. Computational

Science & Engineering 4: 27–38.

6. Merali Z (2010) Error: why scientific programming does not compute. Nature
467: 775–777.

7. Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, et al. (2006) Retraction.

Science 314: 1875.

8. Ferrari F, Jung YL, Kharchenko PV, Plachetka A, Alekseyenko AA, et al. (2013)

Comment on ‘‘Drosophila dosage compensation involves enhanced Pol II
recruitment to male X-Linked promoters’’. Science 340: 273.

9. Ma C, Chang G (2007) Retraction for Ma and Chang, structure of the multidrug

resistance efflux transporter EmrE from Escherichia coli. Proc Natl Acad Sci U S A
104: 3668.

10. Chang G (2007) Retraction of ‘Structure of MsbA from Vibrio cholera: A
Multidrug Resistance ABC Transporter Homolog in a Closed Conformation’ [J.

Mol. Biol. (2003) 330 419430]. Journal of Molecular Biology 369: 596.

11. Lees DC, Colwell RK (2007) A strong Madagascan rainforest MDE and no
equatorward increase in species richness: re-analysis of ‘The Missing

Madagascan Mid-Domain Effect’, by Kerr JT, Perring M, Currie DJ (Ecol

Lett 9:149159, 2006). Ecol Lett 10: E4–E8.

12. Currie D, Kerr J (2007) Testing, as opposed to supporting, the mid-domain
hypothesis: a response to lees and colwell. Ecol Lett 10: E9–E10.

13. Kelt DA, Wilson JA, Konno ES, Braswell JD, Deutschman D (2008) Differential

responses of two species of kangaroo rat (Dipodomys) to heavy rains: a humbling

reappraisal. J Mammal 89: 252–254.

14. Anon (2013) Retraction notice to ‘‘Plasma PCSK9 levels and clinical outcomes
in the TNT (Treating to New Targets) Trial’’ [J Am Coll Cardiol

2012;59:17781784]. J Am Coll Cardiol 61: 1751.

15. (2012) Hypertension 60: e29. Retraction. Implications of new hypertension

guidelines in the United States. Retraction of Bertoia ML, Waring ME, Gupta
PS, Roberts MB, Eaton CB. Hypertension (2011) 58: 361–366.

16. Herndon T, Ash M, Pollin R (2013). Does high public debt consistently stifle

economic growth? A critique of Reinhart and Rogoff. Working paper, Political
Economy Research Institute. Available: http://www.peri.umass.edu/fileadmin/

pdf/working papers/working papers 301-350/WP322.pdf.

17. Aranda J (2012). Software carpentry assessment report. Available: http://

software-carpentry.org/papers/arandaassessment-2012-07.pdf.

18. Wilson G (2006) Software carpentry: getting scientists to write better code by
making them more productive. Comput Sci Eng: 66–69.

19. Heroux MA, Willenbring JM (2009) Barely-sufficient software engineering: 10
practices to improve your CSE software. In: Proceedings Second International

Workshop on Software Engineering for Computational Science and Engineer-
ing. pp. 15–21. 10.1109/SECSE.2009.5069157.

20. Kane D (2003) Introducing agile development into bioinformatics: an experience

report. In: Proceedings of the Conference on Agile Development, IEEE

Computer Society, Washington (D.C.); 2003, 0-7695-2013-8, pp. 132–139,
10.1109/ADC.2003.1231463.

21. Kane D, Hohman M, Cerami E, McCormick M, Kuhlmman K, et al. (2006)

Agile methods in biomedical software development: a multi-site experience
report. BMC Bioinformatics 7: 273.

22. Killcoyne S, Boyle J (2009) Managing chaos: lessons learned developing software
in the life sciences. Comput Sci Eng 11: 20–29.

23. Matthews D, Wilson G, Easterbrook S (2008) Configuration management for

large-scale scientific computing at the UK Met office. Comput Sci Eng: 56–64.

24. Pitt-Francis J, Bernabeu MO, Cooper J, Garny A, Momtahan L, et al. (2008)

Chaste: using agile programming techniques to develop computational biology
software. Philos Trans A Math Phys Eng Sci 366: 3111–3136.

25. Pouillon Y, Beuken JM, Deutsch T, Torrent M, Gonze X (2011) Organizing

software growth and distributed development: the case of abinit. Comput Sci
Eng 13: 62–69.

26. Spolsky J (2000). The Joel test: 12 steps to better code. Available: http://

www.joelonsoftware.com/articles/fog0000000043.html. Accessed September

2013.

27. Fogel K (2005) Producing open source software: how to run a successful free
software project. Sepastopol (California): O’Reilly. Available: http://

producingoss.com.

28. Carver JC, Kendall RP, Squires SE, Post DE (2007) Software development
environments for scientific and engineering software: a series of case studies. In:

Proceedings 29th International Conference on Software Engineering. pp. 550–

559. 10.1109/ICSE.2007.77.

29. Kelly D, Hook D, Sanders R (2009) Five recommended practices for
computational scientists who write software. Comput Sci Eng 11: 48–53.

30. Segal J (2005) When software engineers met research scientists: a case study.

Empir Softw Eng 10: 517–536.

31. Segal J (2008) Models of scientific software development. In: Proceedings First
International Workshop on Software Engineering for Computational Science

and Engineering. Available: http://secse08.cs.ua.edu/Papers/Segal.pdf.

32. Oram A, Wilson G, editors(2010) Making software: what really works, and why

we believe it. Sepastopol (California): O’Reilly.

33. Baddeley A, Eysenck MW, Anderson MC (2009) Memory. New York:
Psychology Press.

34. Hock RR (2008) Forty studies that changed psychology: explorations into the

history of psychological research, 6th edition. Upper Saddle River (New Jersey):

Prentice Hall.

35. Letovsky S (1986) Cognitive processes in program comprehension. In:
Proceedings First Workshop on Empirical Studies of Programmers. pp. 58–79.

10.1016/0164-1212(87)90032-X.

36. Binkley D, Davis M, Lawrie D, Morrell C (2009) To CamelCase or under_score.
In: Proceedings 2009 IEEE International Conference on Program Comprehen-

sion. pp. 158–167. 10.1109/ICPC.2009.5090039.

37. Robinson E (2005) Why crunch mode doesn’t work: six lessons. Available:

http://www.igda.org/why-crunch-modes-doesnt-work-six-lessons. Accessed:
September 2013.

38. Ray DS, Ray EJ (2009) Unix and Linux: visual quickstart guide. 4th edition. San

Francisco: Peachpit Press.

39. Haddock S, Dunn C (2010) Practical computing for biologists. Sunderland

(Massachusetts): Sinauer Associates.

40. Dubois PF, Epperly T, Kumfert G (2003) Why Johnny can’t build (portable
scientific software). Comput Sci Eng 5: 83–88.

41. Smith P (2011) Software build systems: principles and experience. Boston:

Addison-Wesley.

42. Fomel S, Hennenfent G (2007) Reproducible computational experiments using
SCons. In: Proceedings 32nd International Conference on Acoustics, Speech,

and Signal Processing. volume IV, pp. 1257–1260. 10.1109/ICASSP.2007.

367305.

43. Moreau L, Freire J, Futrelle J, McGrath RE, Myers J, et al. (2007) The open
provenance model (v1.00). Technical report, University of Southampton.

Accessed September 2013.

44. Segal J, Morris C (2008) Developing scientific software. IEEE Software 25: 18–
20.

45. Martin RC (2002) Agile software development, principles, patterns, and
practices. Upper Saddle River (New Jersey): Prentice Hall.

46. Kniberg H (2007) Scrum and XP from the trenches. C4Media, 978-1-4303-

2264-1, Available from http://www.infoq.com/minibooks/scrum-xp-from-the-
trenches.

47. McConnell S (2004) Code complete: a practical handbook of software

construction, 2nd edition. Seattle: Microsoft Press.

48. Noble WS (2009) A quick guide to organizing computational biology projects.

PLoS Comput Biol 5: e1000424. doi:10.1371/journal.pcbi.1000424

49. Hunt A, Thomas D (1999) The pragmatic programmer: from journeyman to
master. Boston: Addison-Wesley.

50. Juergens E, Deissenboeck F, Hummel B, Wagner S (2009) Do code clones

matter? In: Proceedings 31st International Conference on Software Engineering.
pp. 485–495. 10.1109/ICSE.2009.5070547.

51. Grubb P, Takang AA (2003) Software maintenance: concepts and practice, 2nd
edition. Singapore: World Scientific.

52. Dubois PF (2005) Maintaining correctness in scientific programs. Comput Sci

Eng 7: 80–85.

53. Sanders R, Kelly D (2008) Dealing with risk in scientific software development.
IEEE Software 25: 21–28.

PLOS Biology | www.plosbiology.org 6 January 2014 | Volume 12 | Issue 1 | e1001745

54. List of unit testing frameworks. Available: http://en.wikipedia.org/wiki/List of

unit testing frameworks. Accessed September 2013.
55. Meszaros G (2007) xUnit test patterns: refactoring test code. Boston: Addison-

Wesley.

56. Osherove R (2009) The art of unit testing: with examples in.NET. Greenwich
(Connecticut): Manning.

57. Hook D, Kelly D (2009) Testing for trustworthiness in scientific software. In:
Proceedings Second International Workshop on Software Engineering for

Computational Science and Engineering. pp. 59–64. 10.1109/SECSE.

2009.5069163.
58. Kelly D, Sanders R (2008) Assessing the quality of scientific software. In:

Proceedings First International Workshop on Software Engineering for
Computational Science and Engineering. Available: http://secse08.cs.ua.edu/

Papers/Kelly.pdf.
59. Oberkampf WL, Roy CJ (2010) Verification and validation in scientific

computing. Cambridge: Cambridge University Press.

60. Zeller A (2009) Why programs fail: a guide to systematic debugging. Burlington
(Massachusetts): Morgan Kaufmann.

61. Jones MB, Regehr J (1999) The problems you’re having may not be the
problems you think you’re having: results from a latency study of Windows NT.

In: Proceedings 7th Workshop on Hot Topics in Operating Systems. pp. 96–

101. 10.1109/RTTAS.1999.777681.
62. Prechelt L (2010) Two comparisons of programming languages. Oram A,

Wilson G, editors. Making software: what really works, and why we believe it.

Sepastopol (California): O’Reilly. pp. 239–258.
63. Xie Y (2013). knitr: A general-purpose tool for dynamic report generation in r. R

package version 0.9. Available: http://yihui.name/knitr/.
64. Pérez F, Granger BE (2007) IPython: a system for interactive scientific

computing. Comput Sci Eng 9: 21–29.

65. Fagan ME (1976) Design and code inspections to reduce errors in program
development. IBM Syst J 15: 182–211.

66. Cohen J (2010) Modern code review. Oram A, Wilson G, editors. Making
software: what really works, and why we believe it. Sepastopol (California):

O’Reilly. pp. 329–336.
67. Williams L (2010) Pair programming. Oram A, Wilson G, editors. Making

software: what really works, and why we believe it. Sepastopol (California):

O’Reilly. pp. 311–322.
68. Dubois P, Johnson J (2003) Issue tracking. Comput Sci Eng 5: 71–77.

69. Wilson G (2013). Software carpentry: lessons learned. arXiv:1307.5448.
Available: http://arxiv.org/abs/1307.5448.

PLOS Biology | www.plosbiology.org 7 January 2014 | Volume 12 | Issue 1 | e1001745

