# Ejemplos de solución de sistemas lineales import numpy as np A = np.matrix([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.matrix([[24], [20], [-24]]) if np.linalg.det(A) == 0: x = None print("No se puede resolver") else: x = (A**-1) * b print(x) print(np.dot(A, x)) print((np.dot(A, x) == b).all()) import numpy as np A = np.matrix([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.matrix([[24], [20], [-24]]) # Solucion [[3], [4], [-5]] if np.linalg.det(A) == 0: x = None print("No se puede resolver") else: x = (A**-1) * b print(x) import numpy as np A = np.array([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.array([[24], [20], [-24]]) x = np.linalg.solve(A, b) print(x) import numpy as np A = np.array([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.array([[24], [20], [-24]]) x = np.linalg.inv(A).dot(b) print(x) import numpy as np A = np.array([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.array([[24], [20], [-24]]) x = np.linalg.pinv(A).dot(b) print(x) import numpy as np A = np.array([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = np.array([[24], [20], [-24]]) x = np.linalg.solve(A, b) # qr descomposicion de A Q, R = np.linalg.qr(A) # Resolver Ax = b usando Q y R y = np.dot(Q.T, b) xQR = np.linalg.solve(R, y) print("\nSolucion comparada") print(x.T, "Ax=b") print(xQR.T, "Rx=y") from sympy import symbols, Matrix, linsolve x, y, z = symbols("x, y, z") A = Matrix([[4, 3, 0], [3, 4, 1], [0, -1, 4]]) b = Matrix([[24], [20], [-24]]) xx = linsolve((A, b), [x, y, z]) print(xx)