
M A G I C M E T H O D S A N D O P E R AT O R
O V E R L O A D I N G

INTRODUCTION

The so-called magic methods have
nothing to do with wizardry. You have
already seen them in the previous
chapters of our tutorial. They are special
methods with fixed names. They are the
methods with this clumsy syntax, i.e. the
double underscores at the beginning and
the end. They are also hard to talk about.
How do you pronounce or say a method
name like __init__ ? "Underscore
underscore init underscore underscore"
sounds horrible and is almost a tongue
twister. "Double underscore init double
underscore" is a lot better, but the ideal
way is "dunder init dunder" That's why
magic methods methods are sometimes
called dunder methods!

So what's magic about the __init__
method? The answer is, you don't have
to invoke it directly. The invocation is
realized behind the scenes. When you
create an instance x of a class A with the
statement "x = A()", Python will do the necessary calls to __new__ and __init__ .

Towards the end of this chapter of our tutorial we will introduce the __call__ method. It is
overlooked by many beginners and even advanced programmers of Python. It is a functionality which
many programming languages do not have, so programmers generally do not look for it. The
__call__ method enables Python programmers to write classes where the instances behave like

functions. Both functions and the instances of such classes are called callables.

We have encountered the concept of operator overloading many times in the course of this tutorial. We had
used the plus sign to add numerical values, to concatenate strings or to combine lists:

4 + 5

3.8 + 9

Output: 9

Output: 12.8

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

1 of 15 7/15/21, 11:28 PM

"Peter" + " " + "Pan"

[3,6,8] + [7,11,13]

It's even possible to overload the "+" operator as well as all the other
operators for the purposes of your own class. To do this, you need to
understand the underlying mechanism. There is a special (or a "magic")
method for every operator sign. The magic method for the "+" sign is
the __add__ method. For "-" it is __sub__ and so on. We have a
complete listing of all the magic methods a little further down.

The mechanism works like this: If we have an expression "x + y" and x is an instance of class K, then
Python will check the class definition of K. If K has a method __add__ it will be called with
x.__add__(y) , otherwise we will get an error message:

Traceback (most recent call last):
 File "", line 1, in
TypeError: unsupported operand type(s) for +: 'K' and 'K'

Output: 'Peter Pan'

Output: [3, 6, 8, 7, 11, 13]

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

2 of 15 7/15/21, 11:28 PM

OVERVIEW OF MAGIC METHODS

BINARY OPERATORS

Operator Method

+ object.__add__(self, other)

- object.__sub__(self, other)

* object.__mul__(self, other)

// object.__floordiv__(self, other)

/ object.__truediv__(self, other)

% object.__mod__(self, other)

** object.__pow__(self, other[, modulo])

<< object.__lshift__(self, other)

>> object.__rshift__(self, other)

& object.__and__(self, other)

^ object.__xor__(self, other)

| object.__or__(self, other)

EXTENDED ASSIGNMENTS

Operator Method

+= object.__iadd__(self, other)

-= object.__isub__(self, other)

*= object.__imul__(self, other)

/= object.__idiv__(self, other)

//= object.__ifloordiv__(self, other)

%= object.__imod__(self, other)

**= object.__ipow__(self, other[, modulo])

<<= object.__ilshift__(self, other)

>>= object.__irshift__(self, other)

&= object.__iand__(self, other)

^= object.__ixor__(self, other)

|= object.__ior__(self, other)

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

3 of 15 7/15/21, 11:28 PM

UNARY OPERATORS

Operator Method

- object.__neg__(self)

+ object.__pos__(self)

abs() object.__abs__(self)

~ object.__invert__(self)

complex() object.__complex__(self)

int() object.__int__(self)

long() object.__long__(self)

float() object.__float__(self)

oct() object.__oct__(self)

hex() object.__hex__(self

COMPARISON OPERATORS

Operator Method

< object.__lt__(self, other)

<= object.__le__(self, other)

== object.__eq__(self, other)

!= object.__ne__(self, other)

>= object.__ge__(self, other)

EXAMPLE CLASS: LENGTH

We will demonstrate the Length class and how you can overload the "+" operator for your own class. To
do this, we have to overload the __add__ method. Our class contains the __str__ and
__repr__ methods as well. The instances of the class Length contain length or distance information.

The attributes of an instance are self.value and self.unit.

This class allows us to calculate expressions with mixed units like this one:

2.56 m + 3 yd + 7.8 in + 7.03 cm

The class can be used like this:

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

4 of 15 7/15/21, 11:28 PM

from unit_conversions import Length

L = Length
print(L(2.56,"m") + L(3,"yd") + L(7.8,"in") + L(7.03,"cm"))

The listing of the class:

class Length:

__metric = {"mm" : 0.001, "cm" : 0.01, "m" : 1, "km" : 1000,
"in" : 0.0254, "ft" : 0.3048, "yd" : 0.9144,
"mi" : 1609.344 }

def __init__(self, value, unit = "m"):

self.value = value
self.unit = unit

def Converse2Metres(self):

return self.value * Length.__metric[self.unit]

def __add__(self, other):
l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

def __str__(self):

return str(self.Converse2Metres())

def __repr__(self):
return "Length(" + str(self.value) + ", '" + self.unit +

"')"

if __name__ == "__main__":
x = Length(4)
print(x)
y = eval(repr(x))

z = Length(4.5, "yd") + Length(1)
print(repr(z))
print(z)

5.57162

4
Length(5.593613298337708, 'yd')
5.1148

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

5 of 15 7/15/21, 11:28 PM

We use the method __iadd__ to implement the extended assignment:

def __iadd__(self, other):
l = self.Converse2Metres() + other.Converse2Metres()
self.value = l / Length.__metric[self.unit]
return self

Now we are capable of writing the following assignments:

x += Length(1)
x += Length(4, "yd")

We added 1 metre in the example above by writing "x += Length(1))". Most certainly, you will agree with
us that it would be more convenient to simply write "x += 1" instead. We also want to treat expressions
like "Length(5,"yd") + 4.8" similarly. So, if somebody uses a type int or float, our class takes it
automatically for "metre" and converts it into a Length object. It's easy to adapt our __add__ and
__iadd__ method for this task. All we have to do is to check the type of the parameter "other":

def __add__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

def __iadd__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
self.value = l / Length.__metric[self.unit]
return self

It's a safe bet that if somebody works with adding integers and floats from the right side for a while, he or
she will want to have the same from the left side! SWhat will happen, if we execute the following code
line:

x = 5 + Length(3, "yd")

We will get an exception:

AttributeError: 'int' object has no attribute 'Converse2Metres'

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

6 of 15 7/15/21, 11:28 PM

Of course, the left side has to be of type "Length", because otherwise Python tries to apply the
__add__ method from int, which can't cope with Length objects as second arguments!

Python provides a solution for this problem as well. It's the __radd__ method. It works like this:
Python tries to evaluate the expression "5 + Length(3, 'yd')". First it calls int. __add__ (5,Length(3,
'yd')), which will raise an exception. After this it will try to invoke Length. __radd__ (Length(3, "yd"),
5). It's easy to recognize that the implementation of __radd__ is analogue to __add__ :

def __radd__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

It's advisable to make use of the __add__ method in the __radd__ method:

def __radd__(self, other):
return Length.__add__(self,other)

The following diagram illustrates the relationship between __add__ and __radd__ :

STANDARD CLASSES AS BASE CLASSES

It's possible to use standard classes - like int, float, dict or lists - as base classes as well.

We extend the list class by adding a push method:

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

7 of 15 7/15/21, 11:28 PM

class Plist(list):

def __init__(self, l):
list.__init__(self, l)

def push(self, item):
self.append(item)

if __name__ == "__main__":
x = Plist([3,4])
x.push(47)
print(x)

This means that all the previously introduced binary and extended assignment operators exist in the
"reversed" version as well:
__radd__ , __rsub__ , __rmul__ etc.

EXERCISES

[3, 4, 47]

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

8 of 15 7/15/21, 11:28 PM

EXERCISE 1

Write a class with the name Ccy, similar to the previously defined Length class.Ccy should contain values
in various currencies, e.g. "EUR", "GBP" or "USD". An instance should contain the amount and the
currency unit. The class, you are going to design as an exercise, might be best described with the
following example session:

from currencies import Ccy
v1 = Ccy(23.43, "EUR")
v2 = Ccy(19.97, "USD")
print(v1 + v2)
print(v2 + v1)
print(v1 + 3) # an int or a float is considered to be a EUR valu
e
print(3 + v1)

SOLUTIONS TO OUR EXERCISES

SOLUTION TO EXERCISE 1

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

9 of 15 7/15/21, 11:28 PM

"""

 The class "Ccy" can be used to define money values in vario
us currencies. A Ccy instance has the string attributes 'unit'
(e.g. 'CHF', 'CAD' od 'EUR' and the 'value' as a float.
 A currency object consists of a value and the corresponding
unit.
 """

class Ccy:

currencies = {'CHF': 1.0821202355817312,
'CAD': 1.488609845538393,
'GBP': 0.8916546282920325,
'JPY': 114.38826536281809,
'EUR': 1.0,
'USD': 1.11123458162018}

def __init__(self, value, unit="EUR"):

self.value = value
self.unit = unit

def __str__(self):
return "{0:5.2f}".format(self.value) + " " + self.unit

def changeTo(self, new_unit):
"""

 An Ccy object is transformed from the unit "self.un
it" to "new_unit"
 """

self.value = (self.value / Ccy.currencies[self.unit] * Cc
y.currencies[new_unit])

self.unit = new_unit

def __add__(self, other):
"""

 Defines the '+' operator.
 If other is a CCy object the currency values
 are added and the result will be the unit of
 self. If other is an int or a float, other will
 be treated as a Euro value.
 """

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

10 of 15 7/15/21, 11:28 PM

if type(other) == int or type(other) == float:
x = (other * Ccy.currencies[self.unit])

else:
x = (other.value / Ccy.currencies[other.unit] * Ccy.c

urrencies[self.unit])
return Ccy(x + self.value, self.unit)

def __iadd__(self, other):
"""

 Similar to __add__
 """

if type(other) == int or type(other) == float:
x = (other * Ccy.currencies[self.unit])

else:
x = (other.value / Ccy.currencies[other.unit] * Ccy.c

urrencies[self.unit])
self.value += x
return self

def __radd__(self, other):
res = self + other
if self.unit != "EUR":

res.changeTo("EUR")
return res

__sub__, __isub__ and __rsub__ can be defined analogu
e

from currencies import Ccy

x = Ccy(10,"USD")
y = Ccy(11)
z = Ccy(12.34, "JPY")
z = 7.8 + x + y + 255 + z
print(z)

lst = [Ccy(10,"USD"), Ccy(11), Ccy(12.34, "JPY"), Ccy(12.34, "CA
D")]

z = sum(lst)

print(z)

Overwriting currencies.py

282.91 EUR
28.40 EUR

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

11 of 15 7/15/21, 11:28 PM

Another interesting aspect of this currency converter class in Python can be shown, if we add
multiplication. You will easily understand that it makes no sense to allow expressions like "12.4 € *
3.4 USD" (or in prefix notation: "€ 12.4 $ 3.4"), but it makes perfect sense to evaluate "3 4.54 €". You
can find the new currency converter class with the newly added methods for __mul__ , __imul__
and __rmul__ in the following listing:

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

12 of 15 7/15/21, 11:28 PM

"""
 The class "Ccy" can be used to define money values in vario
us currencies. A Ccy instance has the string attributes 'unit'
(e.g. 'CHF', 'CAD' od 'EUR' and the 'value' as a float.
 A currency object consists of a value and the corresponding
unit.
"""

class Ccy:

currencies = {'CHF': 1.0821202355817312,
'CAD': 1.488609845538393,
'GBP': 0.8916546282920325,
'JPY': 114.38826536281809,
'EUR': 1.0,
'USD': 1.11123458162018}

def __init__(self, value, unit="EUR"):

self.value = value
self.unit = unit

def __str__(self):
return "{0:5.2f}".format(self.value) + " " + self.unit

def __repr__(self):
return 'Ccy(' + str(self.value) + ', "' + self.unit +

'")'

def changeTo(self, new_unit):
"""

 An Ccy object is transformed from the unit "self.un
it" to "new_unit"
 """

self.value = (self.value / Ccy.currencies[self.unit] * Cc
y.currencies[new_unit])

self.unit = new_unit

def __add__(self, other):
"""

 Defines the '+' operator.
 If other is a CCy object the currency values
 are added and the result will be the unit of
 self. If other is an int or a float, other will
 be treated as a Euro value.
 """

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

13 of 15 7/15/21, 11:28 PM

if type(other) == int or type(other) == float:
x = (other * Ccy.currencies[self.unit])

else:
x = (other.value / Ccy.currencies[other.unit] * C

cy.currencies[self.unit])
return Ccy(x + self.value, self.unit)

def __iadd__(self, other):
"""

 Similar to __add__
 """

if type(other) == int or type(other) == float:
x = (other * Ccy.currencies[self.unit])

else:
x = (other.value / Ccy.currencies[other.unit] * Ccy.c

urrencies[self.unit])
self.value += x

return self

def __radd__(self, other):
res = self + other
if self.unit != "EUR":

res.changeTo("EUR")
return res

__sub__, __isub__ and __rsub__ can be defined analogu

e

def __mul__(self, other):
"""

 Multiplication is only defined as a scalar multipli
cation,
 i.e. a money value can be multiplied by an int or a
float.
 It is not possible to multiply to money values
 """

if type(other)==int or type(other)==float:
return Ccy(self.value * other, self.unit)

else:
raise TypeError("unsupported operand type(s) for *:

'Ccy' and " + type(other).__name__)

def __rmul__(self, other):
return self.__mul__(other)

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

14 of 15 7/15/21, 11:28 PM

def __imul__(self, other):

if type(other)==int or type(other)==float:
self.value *= other
return self

else:
raise TypeError("unsupported operand type(s) for *:

'Ccy' and " + type(other).__name__)

Assuming that you have saved the class under the name currency_converter, you can use it in the
following way in the command shell:

from currency_converter import Ccy
x = Ccy(10.00, "EUR")
y = Ccy(10.00, "GBP")
x + y

print(x + y)

print(2*x + y*0.9)

FOOTNOTES

as suggested by Mark Jackson

Overwriting currency_converter.py

Output: Ccy(21.215104685942173, "EUR")

21.22 EUR

30.09 EUR

OOP Python Tutorial: Magic Methods https://www.python-course.eu/python3_magic_me...

15 of 15 7/15/21, 11:28 PM

