
1

GPU Computing with MATLAB

Loren Dean
Director of Engineering, MATLAB Products
MathWorks

2

Spectrogram shows 50x speedup in a
GPU cluster

50x

3

Agenda

 Background
 Leveraging the desktop

– Basic GPU capabilities
– Multiple GPUs on a single machine

 Moving to the cluster
– Multiple GPUs on multiple machines

 Q&A

4

How many people are using…

 MATLAB
 MATLAB with GPUs
 Parallel Computing Toolbox

– R2010b prerelease

 MATLAB Distributed Computing Server

5

Why GPUs and why now?

 Operations are IEEE Compliant
 Cross-platform support now available
 Single/double performance inline with

expectations

6

Desktop Computer

Parallel Computing Toolbox™Parallel Computing Toolbox™

Computer ClusterComputer Cluster

MATLAB Distributed Computing Server™MATLAB Distributed Computing Server™

Scheduler

Parallel Computing with MATLAB
Tools and Terminology

7

Parallel Capabilities
Task Parallel Data Parallel Environment

Built-in support with
Simulink, toolboxes,
and blocksets

matlabpool

Local workers

parfor
distributed array

>200 functions

Configurations

batch

MathWorks job
manager

job/task

spmd

co-distributed array

MPI interface

third-party
schedulers

job/task

Ea
se

 o
f U

se

G
reater C

ontrol

8

Single
processor

Multicore Multiprocessor Cluster
Grid,
Cloud

GPU

Evolving With Technology Changes

9

What’s new in R2010b?

 Parallel Computing Toolbox
– GPU support
– Broader algorithm support (QR, rectangular \)

 MATLAB Distributed Computing Server
– GPU support
– Run as user with MathWorks job manager
– Non-shared file system support

 Simulink®

– Real-Time Workshop® support with PCT and MDCS

10

GPU Functionality

 Call GPU(s) from MATLAB or toolbox/server worker
 Support for CUDA 1.3 enabled devices
 GPU array data type

– Store arrays in GPU device memory
– Algorithm support for over 100 functions
– Integer and double support

 GPU functions
– Invoke element-wise MATLAB functions on the GPU

 CUDA kernel interface
– Invoke CUDA kernels directly from MATLAB
– No MEX programming necessary

10

11

Demo hardware

12

Example:

GPU Arrays

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Push to GPU memory
…
>> F = fft(G);
>> x = G\b;
…
>> z = gather(x); % Bring back into MATLAB

12

13

GPUArray Function Support

 >100 functions supported
– fft, fft2, ifft, ifft2

– Matrix multiplication (A*B)
– Matrix left division (A\b)
– LU factorization
– ‘ .’

– abs, acos, …, minus, …, plus, …, sin, …

 Key functions not supported
– conv, conv2, filter

– indexing

13

14

GPU Array benchmarks

* Results in Gflops, matrix size 8192x8192. Limited by card memory.
Computational capabilities not saturated.

A\b* Tesla
C1060

Tesla
C2050
(Fermi)

Quad‐core
Intel CPU

Ratio
(Fermi:CPU)

Single 191 250 48 5:1
Double 63.1 128 25 5:1

Ratio 3:1 2:1 2:1

15

GPU Array benchmarks

MTIMES Tesla
C1060

Tesla
C2050
(Fermi)

Quad‐core
Intel CPU

Ratio
(Fermi:CPU)

Single 365 409 59 7:1
Double 75 175 29 6:1

Ratio 4.8:1 2.3:1 2:1

FFT
Tesla
C1060

Tesla
C2050
(Fermi)

Quad‐core
Intel CPU

Ratio
(Fermi:CPU)

Single 50 99 2.29 43:1
Double 22.5 44 1.47 30:1

Ratio 2.2:1 2.2:1 1.5:1

16

Example:

arrayfun: Element-Wise Operations

>> y = arrayfun(@foo, x); % Execute on GPU

16

function y = foo(x)
y = 1 + x.*(1 + x.*(1 + x.*(1 + ...
x.*(1 + x.*(1 + x.*(1 + x.*(1 + ...
x.*(1 + x./9)./8)./7)./6)./5)./4)./3)./2);

17

Some arrayfun benchmarks

CPU[4] = multhithreading enabled
CPU[1] = multhithreading disabled

Note: Due to memory constraints, a
different approach is used at N=16 and
above.

18

Example:

Invoking CUDA Kernels

% Setup
kern = parallel.gpu.CUDAKernel(‘myKern.ptx’, cFcnSig)

% Configure
kern.ThreadBlockSize=[512 1];
kern.GridSize=[1024 1024];

% Run
[c, d] = feval(kern, a, b);

18

19

Options for scaling up

 Leverage matlabpool
– Enables desktop or cluster cleanly
– Can be done either interactively or in batch

 Decide how to manage your data
– Task parallel

 Use parfor
 Same operation with different inputs
 No interdependencies between operations

– Data parallel
 Use spmd
 Allows for interdependency between operations at the CPU level

20

Worker Worker

Worker

Worker

Worker
Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

MATLAB Pool Extends Desktop MATLAB

21

Example:

Spectrogram on the desktop
(CPU only)

D = data;
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: …

(min(numel(x)-W, i*stride)-1);

% Move the data efficiently into a matrix
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = abs(fft(X));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

22

Example:

Spectrogram on the desktop
(CPU to GPU)

D = data;
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: …

(min(numel(x)-W, i*stride)-1);

% Move the data efficiently into a matrix
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = abs(fft(X));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

23

Example:

Spectrogram on the desktop
(GPU to parallel GPU)

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

parfor i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

24

Spectrogram shows 50x speedup in a
GPU cluster

50x

25

But…Speedup is 5x with data transfer
(Remember we have to transfer data of GigE and then the PCIe bus)

5x

26

GPU can go well beyond the CPU

~ 6 seconds

CPU ~ 10-15 seconds

~16 seconds

65x

27

Summary of Options for Targeting GPUs

1) Use GPU array interface with
MATLAB built-in functions

2) Execute custom functions on
elements of the GPU array

3) Create kernels from existing
CUDA code and PTX files

Ea
se

 o
f U

se

G
reater C

ontrol

Across one or more GPUs
on one or more machines:

28

29

What hardware is supported?

 NVIDIA hardware meeting the CUDA 1.3
hardware spec.

 A listing can be found at:
http://www.nvidia.com/object/cuda_gpus.html

29

30

How come function_xyz is not GPU-
accelerated?

 The accelerated functions available in this first
release were gated by available resources.

 We will add capabilities with coming releases
based on requirements and feedback.

30

31

Why did we adopt CUDA and not
OpenCL?

 CUDA has the only ecosystem with all of the
libraries necessary for technical computing

31

32

Why are CUDA 1.1 and CUDA 1.2 not
supported?

As mentioned earlier, CUDA 1.3 offers the
following capabilities that earlier releases of
CUDA do not

– Support for doubles. The base data type in MATLAB
is double.

– IEEE compliance. We want to insure we get the
correct answer.

– Cross-platform support.

32

33

What benchmarks are available?

 Some benchmarks are available in the product
and at www.mathworks.com/products/parallel-
computing/

 More will be added over time

33

