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Spectrogram shows 50x speedup in a 
GPU cluster

50x
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Agenda

 Background
 Leveraging the desktop

– Basic GPU capabilities 
– Multiple GPUs on a single machine

 Moving to the cluster
– Multiple GPUs on multiple machines

 Q&A
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How many people are using…

 MATLAB
 MATLAB with GPUs
 Parallel Computing Toolbox

– R2010b prerelease

 MATLAB Distributed Computing Server
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Why GPUs and why now?

 Operations are IEEE Compliant
 Cross-platform support now available
 Single/double performance inline with 

expectations
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Desktop Computer

Parallel Computing Toolbox™Parallel Computing Toolbox™

Computer ClusterComputer Cluster

MATLAB Distributed Computing Server™MATLAB Distributed Computing Server™

Scheduler

Parallel Computing with MATLAB
Tools and Terminology
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Parallel Capabilities
Task Parallel Data Parallel Environment

Built-in support with 
Simulink, toolboxes, 
and blocksets

matlabpool

Local workers

parfor
distributed array

>200 functions

Configurations

batch

MathWorks job 
manager

job/task

spmd

co-distributed array

MPI interface

third-party 
schedulers

job/task
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Single 
processor

Multicore Multiprocessor Cluster
Grid,
Cloud

GPU

Evolving With Technology Changes
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What’s new in R2010b?

 Parallel Computing Toolbox
– GPU support
– Broader algorithm support (QR, rectangular \)

 MATLAB Distributed Computing Server
– GPU support
– Run as user with MathWorks job manager
– Non-shared file system support

 Simulink®

– Real-Time Workshop® support with PCT and MDCS
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GPU Functionality

 Call GPU(s) from MATLAB or toolbox/server worker
 Support for CUDA 1.3 enabled devices
 GPU array data type

– Store arrays in GPU device memory
– Algorithm support for over 100 functions
– Integer and double support

 GPU functions
– Invoke element-wise MATLAB functions on the GPU

 CUDA kernel interface
– Invoke CUDA kernels directly from MATLAB
– No MEX programming necessary

10
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Demo hardware
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Example:

GPU Arrays

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Push to GPU memory
…
>> F = fft(G);   
>> x = G\b;    
…
>> z = gather(x); % Bring back into MATLAB

12
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GPUArray Function Support

 >100 functions supported
– fft, fft2, ifft, ifft2

– Matrix multiplication (A*B)
– Matrix left division (A\b)
– LU factorization
– ‘  .’

– abs, acos, …, minus, …, plus, …, sin, …

 Key functions not supported
– conv, conv2, filter

– indexing

13
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GPU Array benchmarks

* Results in Gflops, matrix size 8192x8192. Limited by card memory. 
Computational capabilities not saturated.

A\b* Tesla
C1060

Tesla
C2050 
(Fermi)

Quad‐core 
Intel CPU

Ratio 
(Fermi:CPU)

Single 191 250 48 5:1
Double 63.1 128 25 5:1

Ratio 3:1 2:1 2:1
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GPU Array benchmarks

MTIMES Tesla
C1060

Tesla
C2050 
(Fermi)

Quad‐core 
Intel CPU

Ratio 
(Fermi:CPU)

Single 365 409 59 7:1
Double 75 175 29 6:1

Ratio 4.8:1 2.3:1 2:1

FFT
Tesla
C1060

Tesla
C2050 
(Fermi)

Quad‐core 
Intel CPU

Ratio 
(Fermi:CPU)

Single 50 99 2.29 43:1
Double 22.5 44 1.47 30:1

Ratio 2.2:1 2.2:1 1.5:1
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Example: 

arrayfun: Element-Wise Operations

>> y = arrayfun(@foo, x); % Execute on GPU

16

function y = foo(x)
y =  1 + x.*(1 + x.*(1 + x.*(1 + ...
x.*(1 + x.*(1 + x.*(1 + x.*(1 + ...
x.*(1 + x./9)./8)./7)./6)./5)./4)./3)./2);
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Some arrayfun benchmarks

CPU[4] = multhithreading enabled
CPU[1] = multhithreading disabled

Note: Due to memory constraints, a 
different approach is used at N=16 and 
above.
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Example:

Invoking CUDA Kernels

% Setup
kern = parallel.gpu.CUDAKernel(‘myKern.ptx’, cFcnSig)

% Configure
kern.ThreadBlockSize=[512 1];
kern.GridSize=[1024 1024];

% Run
[c, d] = feval(kern, a, b);

18
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Options for scaling up

 Leverage matlabpool
– Enables desktop or cluster cleanly
– Can be done either interactively or in batch

 Decide how to manage your data
– Task parallel

 Use parfor
 Same operation with different inputs
 No interdependencies between operations

– Data parallel
 Use spmd
 Allows for interdependency between operations at the CPU level
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Worker Worker

Worker

Worker

Worker
Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

MATLAB Pool Extends Desktop MATLAB
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Example: 

Spectrogram on the desktop
(CPU only)

D = data;
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop 

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: …

(min(numel(x)-W, i*stride)-1);

% Move the data efficiently into a matrix 
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = abs(fft(X));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end
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Example: 

Spectrogram on the desktop 
(CPU to GPU)

D = data;
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop 

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: …

(min(numel(x)-W, i*stride)-1);

% Move the data efficiently into a matrix 
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = abs(fft(X));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop 

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix 
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end



23

Example: 

Spectrogram on the desktop 
(GPU to parallel GPU)

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop 

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

for i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix 
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end

D = gpuArray(data);
iterations = 2000; % # of parallel iterations
stride = iterations*step; %stride of outer loop 

M = ceil((numel(x)-W)/stride);%iterations needed
o = cell(M, 1); % preallocate output

parfor i = 1:M
% What are the start points
thisSP = (i-1)*stride:step: ...

(min(numel(D)-W, i*stride)-1);

% Move the data efficiently into a matrix 
X = copyAndWindowInput(D, window, thisSP);

% Take lots of fft's down the colmuns
X = gather(abs(fft(X)));

% Return only the first part to MATLAB
o{i} = X(1:E, 1:ratio:end);

end
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Spectrogram shows 50x speedup in a 
GPU cluster

50x
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But…Speedup is 5x with data transfer
(Remember we have to transfer data of GigE and then the PCIe bus)

5x



26

GPU can go well beyond the CPU

~ 6 seconds

CPU ~ 10-15 seconds

~16 seconds

65x
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Summary of Options for Targeting GPUs

1) Use GPU array interface with 
MATLAB built-in functions

2) Execute custom functions on 
elements of the GPU array

3) Create kernels from existing 
CUDA code and PTX files
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Across one or more GPUs 
on one or more machines:
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What hardware is supported?

 NVIDIA hardware meeting the CUDA 1.3 
hardware spec. 

 A listing can be found at: 
http://www.nvidia.com/object/cuda_gpus.html
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How come function_xyz is not GPU-
accelerated?

 The accelerated functions available in this first 
release were gated by available resources.

 We will add capabilities with coming releases 
based on requirements and feedback. 

30
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Why did we adopt CUDA and not 
OpenCL?

 CUDA has the only ecosystem with all of the 
libraries necessary for technical computing

31
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Why are CUDA 1.1  and CUDA 1.2 not 
supported?

As mentioned earlier, CUDA 1.3 offers the 
following capabilities that earlier releases of 
CUDA do not

– Support for doubles. The base data type in MATLAB 
is double.

– IEEE compliance.  We want to insure we get the 
correct answer.

– Cross-platform support.

32
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What benchmarks are available?

 Some benchmarks are available in the product 
and at www.mathworks.com/products/parallel-
computing/

 More will be added over time
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