Foundations for Native C-+ Styles

Andrew Koenig
Bjarne Stroustrup

AT&T Research
Murray Hill, New Jersey 07974, USA

ABSTRACT

Over the past decadet€has become the most commonly used language for intro-
ducing object-oriented programming and other abstraction techniques into production
software. Duringhis period, @+ has evolved to meet the challenges of production sys-
tems. Inthis, G-+ differs radically from languages that come primarily from academic or
research environments, and from less widely used languédg®ugh C++ has also
been extensively used in academia and for research, its evolution was driven primarily by
feedback from its use in industrial applications.

In this paper, we focus on three design areas key to successfus€ In doing so, we
explore fundamental43- concepts and facilities and present distinctiver @esign and
programming styles that have evolved to cope with the stringent demands of everyday
systems building Firstwe explore €+'s support for concrete data types and containers
and give examples of how the-€generic programming facilities, together with well-
designed libraries, can yield flexibility and economy of expressidextwe examine

some uses of class hierarchies, touching on issues including encapsulation, interface
design, efficiency, and maintainabilityzinally, we note that languages succeed for rea-
sons that are not entirely technical and review the background#&s €uccess.

This paper is not a3 tutorial. Howeverjt does include enough code examples and
supporting commentary that readers familiar with programming languages in general but
unfamiliar with G-+ can grasp the keyt@ language constructs and programming tech-
nigues.

1 Introduction

C++ was designed to combine the strengths of C as a systems progralangingge with Simula’s facili-

ties for organizing programsDuring the 60’s and0’s, the key concepts, techniques, and language features
for what came to be known as “object-oriented programming” ‘émigject-oriented design” had devel-
oped in connection witthe Simula languageDuring the 80’s, C’s close-to-the-machine semantics gave it
the edge imun-time and space efficiency, portability, and flexibility that established C as the dominant sys-
tems programming language.

Thus G+ started from a sound theoretical and practical bastedbackrom widespreadise guided its
further evolution. C++ supports the design and efficient implementation of elegant programstdgom
examples to very large systems.

Over the years, distinctt@ styles ofdesign and programming have evolverhis evolution has pro-
gressed to the point where we can identify and explore key notions and techniques.

2 Extending C's Model of Systems Programming

A fundamental property of computers in widespreigé has remained remarkably constant: memory is a
sequence of wordsr bytes, indexed by integers called addresdsdernmachines—say, designed during
the last 20years—have in addition tended to support directly the notion of a function call skadkher-
more, all popular machines have some imporacitities, such as input-output, that do not fit well into the
conventional byte- or word-oriented model of memory or computafitresefacilities may requirespecial
machine instructions or access to “memory” locations wikculiar addressesEither way, from a
higher-level language point of view the use of these faciliseSmessy” and machine-architecture-
specific.

C is by far the most successful language designed to exploitsugbuters by providing the program-
mer with aprogramming model that closely matches the machine mddeirectly provides language-
level and machine-architecture-independent nottbas directly map to the key hardware notions: charac-
ters for usingoytes, integers for using words, pointers to use the addressing mechanisms, functions for pro-
gram abstraction, and an absence of constraining language feattinas th@ programmer can manipulate
the inevitable messy hardware-specific detailbe net effect has been that C is relatively easy to learn and
use inareas where some knowledge of the real machine is a must or simply a Hdoedibver,C is easy
enough to implement that it has become available virtually everywhere.

The other main trend in programming languaggsirticularly in theacademic community-has been
to try to define a machine-independent semantica fanguage Thegoal is to get the language away from
the messy details of computer hardware such as bytes and pointers, angrafjrammers to operate in a
provably sound antbgically simple universe. Sometimes, this is expressed as providing an ideal virtual
machine for the programmet.isp is the most prominent of these languages, but almost all high-level lan-
guage designs aim to hide the fundamentals of the underlying machine from the programmer.

The results from this idealistic school of language design have notupdermly encouraging.The
semantic bases of such languages are cleaner and simpler than that of languageS.sHolwaser,each
language family has a different semartése, which means that a systems programmer in one of these lan-
guages mudearn both the high-level semantic base of the programming language and the low-level one of
the machine.Consequentlyeven if learning the higher-level languageasier than learning C, learning C
has for manyroven easier than learning the higher-level language plus the machine iodatend has
been amplified where operating systems add their own layer of interfaces and converitiersetamf con-
cepts to be masteredraditionally, these interfaces and conventions are clogkdanachine in the way C
is. Indeed,operating systems sometimes describe their interfaces only in C terms, leaving the machine
model unspecified beyond that.

Generating code for a language with semantics that areloge to the traditional bytes-and-pointers
machine architectures has been a constant probleis.not unusual to pay a factor of threeten in run-
time for a higher-level semantics, especially when those semamtiasle the notion that the type of an
expression is not knowable until that expression is evaluated during program execution.

If C gainsits advantages from a match with traditional machine architectures, perhaps it is reasonable to
try to design new machine architectures to fit higher-level langua§es result, there has been a steady
stream of high-level machine architectures for particular families of languaddsfortunately, this
approach has repeatedly run aground on two ro&ach higher-level language family has a different
semantic base so that machine optimized for one such language base becomes -usmiesis least
uneconomical-fer all other such languages as well as for traditional languages suchaad Fortran.

Also, as the semantic base of a higher-level language is extended to deal with the various forms of messi-
ness necessary to deal with a complete computer system (e.g. multiple users, /0O devices, security, hard-
ware diagnostics) some of that messiness leaks into the semantic basehtselby diluting its appeal.

Worse yet, almost everybody who pays for computisess traditional languages and all large hardware
manufacturers have strong financial interest in traditional architecturdherefore,the best tools, the
largest number of hardware designers, the newest hardware technologies, the best pradilitigsn and
the most money is spent on bytes-and-pointers architect@eassequentlyhigh-level machine architec-
tures tend to be a generation or two behind the state of the art and never become cost effective.

C++ was designedo dodge the dilemma that machine-level language semantics, as in C, had a funda-
mental advantage, yet the programming model offered by languages sGchoastrained the kinds of
applications that could be successfully builthe solution chosen for £ was to augment the low-level

language features with powerful, yet affordable abstraction mechanisms [Stroustrup,1985]:
“A programming language serves two related purposegrovides a vehicle for the programmer to
specify actions to be executed amdet of concepts for the programmer to use when thinking about
what can be doneThefirst aspecideally requires a language that is “close to the machine,” so that all
important aspects of a machine are handled simply and efficiently in a wagy tbasonably obvious to
the programmer.The C language was primarily designed with this in mifithe secondaspect ideally
requires a language that is “close to the problem to be solved” so that the concepts of a sollden can
expressed directly and conciselyhefacilities added to C to create+€ were primarily designed with
this in mind.”
Given bothmachine-level facilities and abstraction mechanisms, there is a danger of opening a semantic
gap between the two sets of facilitieBhatis, a language might offer the programmer the choice between
writing efficient code (using machine-level facilities) or elegant code (using abstracTiois)vas notcon-
sidered an acceptable choice to offér-@rogrammers. lwasessential to provide abstraction facilities
that could be used to write user-definggdes with little or no overhead compared to C or even assembly
code. Tabe useful in this context a mechanism can't just be elegant, it must also be affordable.

3 Efficient User-defined Types

Small heavily used abstractions are common in many applicatibrenplesarecharacters, integers, float-
ing point numbers, complex numbers, points, pointers, coordineaasforms, gointer,offset pairs, dates,
times, ranges, links, associationsdes, Yalue,uni} pairs, disc locations, source code locati@tx) char-
acters, currencies, lines, rectangles, scaled fixed point numbers, numbefietitns, character strings,
vectors, and arraysEvery applicationuses several of these; a few use them heailyypical application
uses a few directly and many more indirectly from libraries.

C and other programming languages directly support a fethesfe abstractionddowevermost are
not, and cannot be, supported directly because there are too many ofrimehermorethe designer of a
general-purpose programming language cannot foresee the detailed needs aipplieation. Conse-
guently, mechanisms must be provided for the useefime such small concrete typds.was an explicit
aim of G+ to support the definition and efficient use of such user-defined data types veryrhejiwere
seen as the foundation of elegant programmidgusual,the simple and mundane is statistically far more
significant than the complicated and sophisticated.

Here is a declaration ofate class:

class Date {
public: 1 public interface:

enum Month { jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec };

Date(int d, Month m, int y); /I constructor

/I functions for examining the Date:

int day() const;

Month month() const;

int year() const;

string string_rep() const; /I return string representation

void char_rep(char s[]) const; // place C-style string represen-
// tation in C-style array s

/l functions for changing the Date:

Date& add_year(int n); /I add nyears

Date& add_month(int n); /l add n months

Date& add_day(int n); /" add n days
private:

intd, m, y; /I representation

I3
Ct++uses} to delimitscopes anfl to start comments:Class” is the G+ term for a user-defined type.
In declarations, a suffi§ is used to specify a function, and a sulimmeans “reference to."Thus,

Date& add_year(int n);

declares a function taking an integer argument and returning a referexibat® The typevoid is used
to specify that a function doesn't return a value.

The set of operations is fairly typical for a user-defined type:

[1] A constructor specifying how objects/variables of the typaabe initialized. In this case, ®ate
can be created given three integers representing the year, month, and day.

[2] A set of functions allowing a user to examinBate . In this casefunctions returning integers rep-
resenting the year, month, and day are provided, and also two functions returning a chiagter
representations of thBate . Thechar[] is a C-style array of characterstring is the G+
standard library string typeThesefunctions are markedonst to indicate that thegon’t modify
the state of the object/variable they are called for.

[3] A set of functions allowing the usén manipulateDate s without actually having to know the
details of the representation or fiddle with the intricacies of the semantics.

[4] In addition to the explicitly declared operatioBste s can be freely copied.

Declared properties are checked at compile time. For example, if a function not decldesdDate tries
to use gorivate member, that function wikkause the compiler to issue an error mess&gmilarly, the
const member functions do not modify the state, etc.

Here is a smaland contrived-example of hovDate s can be used:

void f(Date& today)

{ Date Ivb_day = Date(16,dec,today.year());
if (today.day()==29 && today.month()==feb) {
} ...
if (midnight()) today.add_day(1);

} cout << "Today’s date:" << today << \n’;

This assumes that the output operatothas been declared fbate s, which we will do in §3.3.
Why is it worthwhile to define aabstract type for something as simple as a datér all, we could
define a structure:

struct Date {
int day, month, year;

I8

and let programmers decide what to do with tHatwe didthat, though, every user would either have to
manipulate the components Date s directly or provide separate functiofts doing so. In effect, the
abstraction would be scatterttoughout the system, which would make it hard to understand, document,
or change.Inevitably, providing a concept as only a simple structure causes extra work for every user of
the structure.

Also, eventhough theDate type seems simple, it takes some thought to get rigbtexample, incre-
menting aDate must deal with leap years, with tfigct that months are of different lengths, and so on.

Also, if we ever need to change the representatidbaté it is useful that the representation be used only
by a designated set of functionSor example, if we decided to try representinBate as the number of
days before or after January 1 ydaA.D. then only the functions declared in the declaratioDatke
would need changing.

3.1 DefiningMember Functions

Naturally, an implementation for each member function must be provided somewesxample, here is
the definition ofDate 's constructor:

Date::Date(int dd, Month mm, int yy)

{

Y=Yy,

m=mm;

d =dd;

int max;

switch (mm) {

case feb:
max = 28+leapyear(yy);
break;

case apr: case jun: case sep: case nov.
max = 30;
break;

case jan: case mar: case may: case jul

case aug: case oct: case dec:
max = 31,
break;

}

if (d<1 || max<d) throw "bad day";

}
The constructor checks that the data supplied denote a valid dHte.not, say for
Date(30,Date::feb,1994) , it throws anexceptionwhich indicates ira way that cannot be ignored

that something went wrong-or more informationabout exception handling, see [Stroustrup,1991§9].
the data supplied are acceptable, the obvious initializatidiorie. Note that initialization is a relatively
complicated operation because it involves data validat@@nthe other hand, oncel@ate has been cre-
ated, it carbe used and copied without further checkirig.other words, the constructor establishes the
invariant for the class (in this case, that it denotes a valid d@ermember functions can rely on that
invariant and must maintain it.This design technique can simplify codenmensely [Strous-
trup,1991812.2.7.1] [Stroustrup,1994813.2.4].

Most functions are trivial or almost trivial:

int Date::day() const

return d;
}
Date& Date::add_year(int n)
{
if (d==29 && m==feb && !leapyear(y+n)) {
d=1;
m = mar;
}
y+=n
return *this;
}

The notation*this refers to the objector which a member function is invokedt is equivalent to
Simula’s THIS and Smalltalk’sself . Returninga self-reference is a usefabnvention that allows

chaining of operationskFor example:
someday.add_day(1).add_month(1).add_year(1);

adds a day, a month, and a yeasdmeday .

As is common for such simple concréyges, the definitions of member functions vary between trivial
and not-too-complicatedSome,such as incrementing a month, are tricky enough to make it worthwhile
designing a suitable set of interface functisather than leaving the manipulation of the data structure
completely to users.

3.2 HelperFunctions
Typically, a class has a numberfahctions associated with it that need not be defined in the class itself
because they don't need direct access to the representatioexample:

int diff(Date a, Date b); // number of days in the range [a,b) or [b,a)
bool leapyear(int y);

Date next_weekday(Date d);

Date next_saturday(Date d);

Defining such functions in the class itself would complicate the class interfadecaedse the number of
functions that potentially needed to be examined when a change to the representation is considered.

How are such functionsassociated” with clasPate ? Traditionally,their declarations were simply
placed in the same file as tHeclaration of clasBate , and users who nedahtes would make them all
available by “including” the file defining the interface, as

#include "Date.h"

However, this still leaves the association implicit as far as thel@guage rules are concerned, and the
names pollute the global name spaéemore recent approadh to enclose the class and its helper func-
tions in a namespace:

namespace Chrono { // facilities for dealing with time

class Date {
...

h

int diff(Date a, Date b);

bool leapyear(int y);

Date next_weekday(Date d);
Date next_saturday(Date d);

...
}

Names from a namespace damused by explicitly qualifying them with the namespace name or by intro-
ducing an aliasForexample:

void f(Chrono::Date d)

{
Chrono::Date next_sunday = Chrono::next_saturday(d).add_day(1);
}
or
using Chrono::Date; /I introduce alias “Date”

void f(Date d)
{

using Chrono::next_saturday; /I introduce alias “next_saturday”

Date next_sunday = next_saturday(d).add_day(1);

If detailed control of names is not required, all tizenes from a namespace can be made available by a sin-
gle declaration:

using namespace Chrono; // make all names from Chrono available

void f(Date d)
{

}

Using themore discriminating ways of referring to names in a namespace is less likely to lead to name
clashes and surprises [Stroustrup1994817].

Date next_sunday = next_saturday(d).add_day(1);

3.3 OverloadedOperators
It is often useful to add functions to enable conventional notaf@nexamplethe operator== func-
tion defines &+'s equality operator to work fdate s.

bool operator==(Date a, Date b); Il equality
{
return a.day()==b.day()
&& a.month()==b.month()
&& a.year()==b.year();

}
Other obvious candidates are:
bool operator!=(Date, Date); /I inequality
bool operator<(Date, Date); /I less than
bool operator>(Date, Date); /l greater than
...
Date& operator++(Date& d) /I increase date by one day

Date& operator--(Date& d); // decrease date by one day

Date& operator+=(Date& d, int n); /I add n days
Date& operator-=(Date& d, int n); /I subtract n days
ostreamé& operator<<(ostreamé&, Date d); /I output d

istream& operator>>(istreamé&, Date& d); // read into d

For Date , these operators can be seema&se conveniences, but for many typesich as complex num-
bers, arrays, and function-like objeetthe use of conventional operators ge firmly entrenched in
people’s minds that their definition is almost mandatddgually, it is wise to define only operators that
are conventional for a given type and to define them to have their conventional meaning.

When thinking about operator overloading, most people seem primarily togharkhmetic operators
such as+ and-. In our experience, assignment, subscripting]] , and application() are both more
commonly useful and more fundamental to the types for which they are used.

3.4 TheSignificance of Concrete Classes

We call suchsimple user-defined types concrete types to distinguish them from abstract types as presented
below and to emphasize their similarity to built-in types sucintas and char . They have also been

called “value types,” and their use “value-oriented programmin@.Heir model of use anthe “philoso-

phy” behind their design are quite different from what is often advertiséwlgsct-oriented program-

ming.”

The intent of a concrete type is to do a single relatively stmially well and efficiently.It is not usually
the aim to provide the user with facilities to modify the behavior of a concrete ltyparticular, concrete
types are not intended to display polymorphic behavior (see 85.2).

If you don't like some detail of a concretgoe, you build a new one with the desired behavibyou
want to “re-use” a concrete type you usentthe implementation of your new type exactly as you would
have used amt . Forexample:

class Date_and_time {

private:
Date d;
Time t;

public:
Date_and_time(Date d, Time t);
Date_and_time(int d, Date::Month m, inty, Time t);
...

I3

The derived class mechanism described in 85.2 can be used to define new types from a concrete class by
describing the desired differences, but that implementation technique is beyond the scope of ttisgaper;
[Stroustrup,199482.9.1].

A concrete class such Bete needs no hidden overhead in time or spabae size of a concrete type
is known at compile timso that objects can be allocated on the run-time stack (that is, without free-store
operations). Thdayout of each object is known at compile time so that inlining of operatidnsialy
achieved. Similarlylayout compatibilitywith other languages, such as C and Fortran, also comes without
special effort.

A good set of such types can provide a concrete foundftioapplications. We feel that many pro-
gramming languages have neglected concrete tylpask of support for “small efficient types” can lead
to gross run-time and space inefficiencies when overly general and expensive mechanisms adéeused.
natively, it can lead to obscure programs and wastedwih®es programmers are forced to discard expen-
sive abstraction mechanisms in favor of direct manipulation of data structures or lower-level languages.

4 Containersand Generic Programming

As one would expect from a language withteong emphasis on facilities for designing and using simple
types, @+ doesn't provide sophisticated dauctures as built-in typedn this, G-+ follows a tradition
stretching back t&\lgol60 of supporting nontrivial concepts, such as input/output, through librdras.
guages following this idea include C, Lisp, Beta, Eiffel, and Smalltalk.

It is not sufficient to provide only simple data structur@oing that just forcesvery programmer to
reinvent the wheellnstead library types must be supplied with the basic operations needesktthem.

For example, C doesn’t provide a proper string typesteadit provides a convention for usiragrays of
characters and a set of functions for manipulating such strings.

A string isone of the simplest examples of a critically important kind of type, the contafnean-
tainer is an object used to hold other objec®therexamples are vectors, lists, maps (sometimes called
associative arrays and dictionaries), sets, and queues.

In addition toinput/output streams and proper character strings, thestandard library provides these
and other containers [Koenig,1995[t also provides théasic operations needed to use the containers.
These operationrsconventionally called algorithmsinclude sorting, merging, facilities faterating over
containers, facilities for applying operations of elements in containersTatestandard library facilities
for containers and generic algorithms are derifiean Alex Stepanov’'s STL library [Stepanov,1994]
[Vilot,1994]. Thissection explores some of thenciples behind the STL and some of the techniques used
to express them.

4.1 AnElementary Data Structure
A library of fundamental data types is valuable only if the types provided by the library are abasy as
use as built-in typesAs an example, we will examine how to handle variable-length arrays firsimdC
then in G+

C’s notion of an array matches traditional machine hardware exactlgrrag has a fixed size (known
at compile time), and it is trivial to obtain pointers to elements of the aRayexample:

void f1() [* C or C++ function */

{

#define n 1000
int squares[n];
inti;

for (i = 0; i < n; ++i) squaresli] = i*i;

/* use squares */

}

creates an array containingnteger values with indices throughn-1 and sets each element to the square
of its index. Unfortunately the size of such an array, in this casenust be a compile-time constant.

In C, a variable-length array is usually simulatesing the library functionsnalloc andfree that
deal in raw memoryForexample:

void f2(n) int n; /* a C function */

{
int *squares = malloc(n * sizeof(int));
inti;

for (i = 0; i < n; ++i) squares]i] = i*i;
[* use squares */

free(squares);

}

To make this work, C supports a form of type punsiiigis possible to take an array of one type and treat
the memory it occupies asitfreally contained memory of another typ€his makes it possible to assign
the result frommalloc to squares . C'’s definition of indexing iswhat makes it possible to refer to
squaresi] as if it were an element of an arralProbablythe greatest inconvenience of using C this
way is the requirement to free the memory explicitly when done with it.

Now let us lookat how G+ handles variable length arrayés with built-in arrays, €+ library arrays
are one-dimensionalMulti-dimensionalarrays are most commonly used for numeramahputation, which
is supported by a separatemerical library. A one-dimensional array is calledvactor , and is used
something like this:

void f3(int n) /I C++ function

{

vector<int> squares(n);
for (inti=0;i < n; ++i) squares]i] = i*i;

/l use squares

}

This is not much more difficult than using a built-in array: As for the built-in arrays, there is no special
requirement to free the memory useddgiares ; that memory is automatically freed whire variable
goes out of scoffe

Making this work for an array size thatn®t a compile time constant and for an array that is a user-
defined type requires the ability

T Becausd3() uses free store anfd() uses the stack3() incurs a fixed allocation overhead, which deperadapng other

things, on how fast thgystem’s memory allocator is and how much trouble the compiler takes to optimize uses of the standard library.
In the (worst and unrealistic) case whase squarewas nothing, with a compiler thases the allocator that comes with the machine

and no special optimization, we measured the overhead to be to between a factor of 2 and a factor of 3 dependingaddrittee size
vector. Onthe other hand, whewse squarew/as printing out the vector there weremeasurable performance differend&’e timed

an intermediate example, wharse squarewas to take thequare root of each elemenhn this case, the overhead varied from 5% to

58% depending on the size of the vectdve leave it for the reader to decide in which situations the overhead mighgribéicant.

There is no significant overheadfB() compared to using the C-style variable length arrd@2(n .

-10 -

[1] for vector<int> to be a distinct type from, sayector<float> ;

[2] for the library todefine what it means to create an object of ypetor<int> with a particular

parameter;

[3] to define the meaning of subscripting (for examgd@ares[i]); it no longer suffices to use the

C array/pointer equivalence;

[4] to say what happens whervector goes out of scope.

Indeed, much of the complexity int€is there primarily for use by library authorMore language mecha-
nism is needed to allow a library to define useful arrays than would be negdeldidie a particular defini-
tion of arrays in the language itself.

As one would expect from a data structure implemented in a library, more operations are abaitable
just the most elementary oneSor example, suppose we wanted our vestprares to contain onlyal-
ues greater than 100d.akingadvantage of our knowledgleat we stored values gguares in ascending
order, we might like to find the first element greater than 1000, copy that oradl #mel subsequent ones to
the beginning, and then shrink tiiector to the appropriatsize. Hereis a straightforward way to do
that:

void gl(vector<int>& squares)

{

int n = squares.size();
/I find first square greater than 1000:

intk =0;
while (k<n && squares[k]<=1000) ++k;

/ move larger squares:
for (int i=0, j=k; k<n; i++,j++) squares[i] = squaresj];

/ resize squares so that its size becomes m-k

}

In addition to missinghe part that resizesjuare , this code is tedious and error-pron&hatwe really
want to do is two things:

[1] find the first element, if any, ;fquares that is greater than 1000, and

[2] erasethe elements afquares before the one we found.
The library offers ways to do that directlirst we write apredicatefunction, which checks ifts argu-
ment is greater than 1000:

bool bigger1000(int n) { return n > 1000; }

Next we use a standard library function calfied to locate the first element for whidfigger1000 is
true:

void g2(vector<int>& squares)

{
vector<int>::iterator vi =
find_if(squares.begin(), squares.end(), bigger1000);

I resize squares

}

This last example introduces three things we haven't seen before:

[1] the library defines a typ&ector<int>::iterator that can be used to magklocation in a
vector<int>

[2] everyvector has a paiof member functions calledegin andend, which return iterators that
identify the initial element and a point one past the last element véther ; and

[3] thelibrary functionfind_if locates the first element betwesre points identified by two iterators
that satisfies the property given by its third argumeéntthis case, the third argumentapointer to
the functionbigger1000() ;find_if calls through that pointer to check each element.

-11 -

After calling find_if , the vector iteratovi will identify either the first element afquares that is
larger than 100@r a point one past the end sifuares . All that is left to do is erase the elements of
squares starting at the beginning and ending just before

void g3(vector<int>& squares)

{
vector<int>::iterator vi =
find_if(squares.begin(), squares.end(), bigger1000);
squares.erase(squares.begin(), vi);
}

This will work even ifvi points past the endOf course, we can combine these two expressions and do
away with the local variable :

void g4(vector<int>& squares)

{

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(), bigger1000));

4.1.1 Library Support for Predicates
For many,g4() is as terse, elegant, and efficient as they could wistnwever,we can dobetter still
because the library offers some tools for building objects that behave like predicate funicibus.see
how we can eliminate the predicdigger1000() and replace it with standard library featuréghe
point of this is to demonstrate that whée basic library facilities become familiar, it becomes unnecessary
to invent tiny functions just to implement trivial predicates.

There is a library type calledreater<int> whose objectsake a pair of integers and determine
whether the first is greater than the secohrdother words, if we declare

greater<int> gt;

thengt(3,4) would befalse andgt(4,3) would betrue . Theseobjects are not trulfunctions, but
they act like functionsWe therefore call them function objects.

There is also a library function calléihd2nd that takes a predicate and a vadunel yields an object
that, when called with a single argument, applies the predicate to that argumére gallie. Thisis con-
fusing to describe, but easy to use:

(bind2nd(gt, 1000)) (999)
isfalse and
(bind2nd(gt, 1000)) (1001)

is true . We can therefore usbind2nd(gt, 1000) as ourpredicate instead dbigger1000()
when callingfind_if

void g5()
greater<int> gt;

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),
bind2nd(gt, 1000)));
}

Again, we can go further still byliminating the local variablggt . The explicit constructor call
greater<int>() will serve the same purpose by creating an anonymous object:

-12 -

void g6()

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),
bind2nd(greater<int>(), 1000)));
}

We can think of the body of this function as meaning
“Remove fromsquares all the elements u and not including the first element that is greater
than 1000.”
For programmers without experience with functional languages, this may appear confusing at first
glance, but that is mostly because of unfamiliari@nceone understands what the originglerations do,
we find this code easier to understand than the original “straightforward” veigigh,. It is also easier
to convince ourselves of its correctness.
Importantly, the notational convenienceg8() has notbeen bought at the cost of run-time ineffi-
ciency compared to the conventional C-style vergibf) T.

4.2 Another Elementary Data Structure

People who mostly use languadbat, like C, Fortran, Basic, or Pascal, support arrays more conveniently
than lists often use arrays whtey really wanted listsPeoplewho mostly use languages that, like Lisp or
ML, supportlists more conveniently than arrays, are similarly biased toward {ssquares example,
contrived as it is, illustrates an array bias that could be expensive: deleting thekimteahents ofan
n-element array will rarely be faster than deleting the inkiaglements of am-element list anamay well

be much slower Supposeave wanted to use lists instead of vectors insowares example. Howwould

we do it?

Using lists in C is so messy that we will leave it to the reader as an exerbisstandard €+ library
provides lists that are about as easy to use as arfégamain difference from the viewpoint of this exam-
ple is that lists do not offean indexing operationWe must therefore use one of several available ways of
appending an element to a list; the most convenient in the present context looks like this:

void fill(list<int>& squares)

for (int i = O; i<n; ++i) squares.insert_back(i*i);

}

Here,insert_back is a member function thappends an element to the end déa . Thismakes it
possible to build up a list af elements without having to use indexintpdeed,classvector has a
insert_back() member function as well, so the loop above would work botlkidotor s andist s.

Not only that, but if we want to find the first elementsqgtiares that isgreater than 1000 and remove
everything before it, the same expression as before will work here too:

void h(list<int>& squares)

{
squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),
bind2nd(greater<int>(), 1000)));
}

Interestingly, although the expression is the same, many of its components have differenthigypes
squares is alist than they do wherquares is avector . So,for examplesquares.begin()

yields a valueof typelist<int>::iterator whensquares is alist<int> , thefind_if func-

tion needs to execute completely different code (becaosessing the elements of a list is different from
accessing the elements of a vector), andrsdt is common for things like this to be possible in languages

T Naturally, the performance of such functions is implementation dependent and it is not easyttatsagomparison of such simple
examples really meanddowever,it might be relevant to mention that weeasuredj1() (C-style) to be on average 5% slower than
g4() (STL Usingbigger1000) and on average 15% slower thg() (pure STL library). Inlining is the reason tha6 is faster
thatg4() .

-13 -

like Lisp or Smalltalk, where types are not determined until exectitio®, but it is unusual in languages
that support strong static typingVhatin C++ makes this possible?

4.3 Function Templates and Compile-time Polymorphism

Object-oriented programminig built on top of run-time polymorphism: the ability to choose, during pro-
gram execution, among functions with similar signatures defined as members of a collection of related
types. Waewill look at that styleof programming in more detail in 89n addition, G+ has function tem-

plates, which offer a kind of compile-time polymorphism: every template offers a cmoécke during
compilation, among operations on types that may be completely unrelated.

Function templates are similar to theneric operations provided in languages like CLU, Modula-3, and
Ada. Howeverthey they are unusually flexibia the sense that they work both with built-in and user-
defined types and do not require explicit declaration of the types with which they will eventually be used.

Here is a simple example:

template<class T> T abs(T x)

{
if (x < 0) return -x;
return x;

}

The wordclass above simply means “type:T can represent any type, not just a user-defined tgue.
for exampleabs(-3) is 3 (and has typint), abs(-42.1) is42.1 (and has typelouble), and so
on.

This template defineabs for any typeT that supports copyinginary-, and binary<. Thatimplies,
among other things, that it does not work for complex numbers because they do not défireeesult of
abs(z) wherez is acomplex is acompile time error.Forreasons like this, it is possible to define tem-
plate specializations, which work for specific types:

double abs(complex z)

{

}

This specialization will be called &bs is applied to a&omplex argument and the template will bsed
for other argument types.

With even this little bit of knowledge, it is possible to begin to see things likefind_if can be
made to work.Considerfor example the following implementation:

return sqrt(pow(re(z),2)+pow(im(z),2));

template<class I, class P> | find_if(l begin, | end, P pred)

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

This template function says little about the specific tyip€for iterator) andP (for predicatg; in conse-
guence, the function can be used on quite a variety of types.
For example, consider a built-in array:

void k()
int a[100];

int* p = find_if(&a[0], &a[100], bigger1000);
}
Here,bigger1000 is our function from 8§4.1 that tests if ésgument is greater than 1000he typesl

andP are “pointer toint ” and “pointer to function takingnt and returningool ,” respectively, so in
this particular context we could have writtemd_if this way:

-14 -

int* find_if(int* begin, int* end, bool (*pred)(int))

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

This is just a C program; it does a linear search of the elements of an array in the obvious way.
Now let us look at how we usdithd_if in h() where it was usednsquares andsquares was
alist<int>

find_if(squares.begin(), squares.end(), bind2nd(greater<int>(), 1000))

Here typel is the type obquares.begin() . Wedon't actually know what thaype is, but its name is
list<int>::iterator . All we know beyond its namis that it denotes an element of tyioe
somehow. Weould think of an iterator as a simple pointeirtb , though for dist a simpleint* s
an unlikely candidate for an iterator type.

Our use ofind_if is therefore equivalent to what we would have if we wrote it this way:

typedef typename list<int>::iterator I;
I find_if(l begin, | end, bool(*pred)(int))

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}
We still don’t know what this doesNe have, however, reduced the problem of understaritiioga previ-
ously unsolved problem, namelynderstanding howst<int>::iterator works. Moreoverjf we

know that we want this function to do a linear search, we can infer from that the behavior that
list<int>::iterator must have.

Most fundamental are the facts theigin is alist<int>::iterator and we pasbegin as an
argument and return it as a resulthatmeans it must support copyinfyloreover,comparingoegin with
end requires thalist<int>::iterator must support comparison and, presumably, thatonepari-
son must yield some sensible resinally, because we usbegin and++begin , those operation®o
must do the right things, whatever those dfewe makethelist<int>::iterator type do all those
things,find_if will work.

4.3.1 Iterator Categories

The standard € library defines what “all those things” aréMore specifically, it defines five iterator cat-
egories and says what it takes for a type to be a member of each ofithben says, for the library func-
tions that accept iterators, what category of iterator each one is expected to be.

The simplest kind of iterator is callexh input iterator; it does just enough to allow a sequential data
structure to be read babt written. Thus,if p is an object of an input iterator typ®, and++p do sensible
things, but--p might not. You can find the formal definition in the draft ANSI/ISO+€ standard
[Koenig,1995] or in [Stepanov,1994].

There are also output iterators, which allowesuential data structure to be written but not rekk
difference between an input and an output iterattinas if p is an output iteratop may only be written
but not read.

If a single object can serve both as an input and an output iterator, we call it a fivenatod. A for-
ward iterator that also supports the decrement operatgiis calleda bidirectional iterator Finally, a bidi-
rectional iterator that also supports subscriptamgl other operations analogous to pointer arithmetic is
called a random access iteratdthis can be represented graphically:

-15 -

Iterator categories:
Input
Forward < Bidirectional < RandomAccess
Output
their operations:
++ *===I= - []

This iterator nomenclature is not parttbe G-+ language. Insteadt, is part of the standard library docu-
mentation. Thusfor example, the description d&hd_if states that the first two arguments must be
input iterators that delimit a range of values.

C++ templates do not require the author of functions fikd_if to declareexplicitly that its argu-
ments should b@put iterators. In fact, there is no explicit way to declare such things even if the author
wanted to. We have heard numerous suggestitiret G-+ should make it possible to wrifand_if ina
style similar to the following:

template<class I: input_iterator, class P: predicate>
I find_if(l begin, | end, P pred)
{

}

Why does &+ offer no such facility?Thereare three main reasons:

[1] Any such facilitywould have to take into account not only inheritance but also built-in types and
operations on types not defined as members (such as the “Hetpgtions” in §3.2 and §3.3).
Ordinary pointers meet the requirements for random-access iterators when thsgdte point to
elements of (built-in) arraysThat means we would need some way of saying that for anyType
T* is a random-access iteratdDtherwisewe would have to forego the ability to use functitike
find_if on built-in arrays.

[2] The facility would offer little additional safety, iny. The main benefit would be that errors would
be detected when a templétection, such and_if , is called instead of when code is generated
for it; we believe that this benefit alone is not enough to justify a whole new type-checking facility.

[3] Evenif such a facility existecand checked usage completely at the earliest possible instant, that
would still not guarantee safetyl.o work correctly, aemplate requires that its parameter type pro-
vide the expected operations with tlepected semanticsSpecifying“the expected operations”
can be messy and constrainingpecifying“the expected semantics” can kerprisingly difficult.

For example, most attempts to specify something as simple as a less than opdratgneral can
involve the programmer in thatricacies of the IEEE floating-point valddaN (not a number).We
prefer to leave such complexity in the documentation.
In general, we know of no way of expressing constraints on tenpgdséeneters that wouldn't be either too
cumbersome or too constraining [Stroustrup,1994,813tead Ct+ provides mechanisms for providing
separate implementations, called specializations, for special dasesxample, in addition tproviding a
generalist template, one can provide versions to be used for lists of pointers (in general), and d6r lists
void* (in particular).

...

4.4 Strategy,Style, and Interface Conversion
Users rely on library codeConverselylibraries often have to rely on user code for critimpérations done
to user dataExamplesare copy operations fabjects passed to a container, compare functions passed to a
sort routine, and a user-defined class overriding a virtual draw function in a graphics class.

Over the years, ihas become obvious that techniques making such dependencies rely less on specific
names and interfacgtyles significantly increase the flexibility and usefulness of librariése template
mechanism has played a key role in such tailoring of interfaces.

-16 -

4.4.1 Minimizing Run-time Resolution

Flexibility is often achieved by postponing decisions until tiame. Sometimesthat is just right, but at
other times the convenience is bought at a cost in speed and $adeisiderthe well knownC (and @+)
standard library functioprintf()

#include <stdio.h>
main()

printf("%s", "Hello world\n");

}
Here, printf() determines the type of its second argument at run timgeneral, it has to, because its
first argument, the format string, might be a variadlemost casesstatic type checking qdrintf() is

possible. Howeverfrom an implementer’s viewpoint, it is easier to put this kinduoftime type checking
into theprintf library function than into the compiler.
The G+ equivalent,

#include <iostream.h>
main()

cout << "Hello world\n";

}

does not rely on run-time typingnsteadthe types otout and of the the string literal are used to select
during compilation the appropriate version of #ve operator to useThis means that there is no run-time
overhead involved in finding the right kinaf output conversion to use and no possibility that the wrong
choice will cause a crash.

The cooperation between the user and the libraggtizblished through the convention thattkeoper-
ator is used for outputlf a library or a user needs to support output of a new type, anésvwrovided.

4.4.2 Templatedor Interface Conversion
Sometimes conventions claskor example, there mape one well-established convention for 1/O and
another for container interface€onsequentlyit can be usefulor library routinesnot to rely directly on
the interfaces of the objects they udasteadthey rely onauxiliary objects that express the mapping
between the expectation of library code and the user code interfeaocesxample, the algorithms in the
STL library doesn’t use containers directinsteadhey access their input and output through iterators.
This strategy makes it possible waite iterator classes whose sole purpose is to impose a particular
interface on objects of some class that already exists.example, many popular algorithms reidweir
input one element at a time from a sour¢emakes perfect sense to let those algorithms get their input
from aninput stream.In fact, anything else requires clumsy workaroun@snsequentlythe standard €
library offers a template class callesiream_iterator . Eachobjectof that class obeys the rules for
input iterators, but such objects do not iterate over a data structure ordinary sense.nstead,an
istream_iterator yields, in turn, each of théata values in a particular input stream, read according
to the usual rules for ttwe> operator.
For example, suppose we say

input_iterator<string> ins(cin);

Thenins is an object that on request will read strings filom , so that ifs is astring
S = *ins++;

has the same effect as
cin >>s;

The STL model requires that we iterate from somewhersomewhere.Consequentlywe need a value
indicating “end of file” that we carcompare the iteratdns to. Sucha value is used by default for an
uninitializedinput_iterator<string> , SO that we can say something like this:

-17 -

input_iterator<string> ins(cin);
input_iterator<string> eof;

void f1()

while (ins != eof) {
S = *ins++;
...

}

and the loop will be executed once for eatting in the standard input file.
This is equivalent to:

void f2()
{
while (cin >> s) {
...
}
}
However, definingnput_iterator makes it possible for the algorithm library to use the input/output
stream library unmodified.For example we can read all the strings in the standard immat a
vector<string> without writing an explicit loop.Insteadwe cancreate thevector directly from the

standard input:
vector<string> vs(ins, eof);

Here,vs is constructed with two arguments, both iterators; doing that cassés be initialized with a
copy of the elements the range delimited by those iteratots.this case, that range is the entire contents
of the standard input file.

Along similar lines, we can create an output iterator attached to the standard output file:

ostream_iterator<string> outs(cout, "\n");

Here, the second argument to thetream_iterator constructor is a string that wille written after
each use of thestream_iterator . Thus,for example

*outs++ = "Hello world";

will print Hello world followed by a newline character.
With these iterators, we can readthk strings in the standard input and print them on the standard out-
put this way:

void g1()
{

vector<string> vs(ins, eof);
copy(vs.start(), vs.end(), outs);

We can even write
void g2()
{

copy(ins, eof, outs);

which would write each string as soon as it read it.

However, reading the entire input before producing output makes it possible to do intettd@atiisg
before printing, such as sorting the elemerftsr example, this complete prografexcept for including
header files) sorts standard input onto its standard output:

-18 -

int main()

{
istream_iterator<string> ins(cin), eof;
ostream_iterator<string> outs(cout, "\n");

vector<string> vs(ins, eof);
sort(vs.begin(), vs.end());
copy(vs.begin(), vs.end(), outs);

return cout && cin; // use state of streams as result

}
Of course, €+ provides a form of run-time polymorphism as well, which is the subject of the next section.

5 Designof Class Hierarchies

From Simula, €+ borrowed the concept of a class as a user-defined type and the concept lofectass
chies. Inaddition, G+ borrowed the idea for system design that classes shoulddaeto model concepts
in the programmer’s and tregpplication’s world. This is often called object-oriented design and is the key
to effective use of classet.anguageconstructsdirectly support these design notions; the application of
design concepts is what distinguistegective use of €+ from simpler uses of the language constructs as
notational props for more traditional types of programming.

A concept doesn't exist in isolatiozor example, try to explain what a car iSoonyou’ll have intro-
duced the notions of wheels, engines, drivpeglestrians, trucks, ambulances, roads, oil, speeding tickets,
motels, etc.Consequentlywhen we try to map concepts into classes, we soon find the nergréss rela-
tionships between classedowever,we can't express arbitrary relationships directly, and even if we could
we wouldn’t want to.Our classes should be more narrowlgfined than our everyday concepts, and more
precise. Languagdbat borrowfrom Simula are particularly adept at expressing hierarchical relationships
between classes.

5.1 ClassHierarchies
Consider asimple design problem: Provide a way for a program to get an integer value from a graphical
user interface.This can bedone in a bewildering number of way$o insulate our program from this vari-
ety, and also to get a chance to explorepbssible design choices, let us start by defining our program’s
model of this simplenput operation. We will leave the details of implementing it using a real user-
interface system for later.
The idea is to have @assival_box that knows what range of input values it will accefitprogram
can askanival_box for its value, and ask it to prompt the user if necesshmaddition, a program can
ask anival_box if a user has changed the value since the last operation initiated by the program.
Because there areany ways of implementing this basic idea, we must assume that there will be many
different kinds ofival_boxe s, such as sliders, plain boxes where a gaartype a number, dials, voice
interaction, and so on.

5.2 ATraditional Class Hierarchy

Our first solution will be a traditional class hierarchy as commonly found in Simula or Smalltalk programs.
Classival_box defines the basic interfate allival_box es and specifies a default implementation

that more specific kinds a¥al_box es can override with their own versions addition,we declare the

data needed to implement the basic notion.

-19 -

class ival_box {
protected:
int val;
int low, high;
bool changed;
public:
ival_box(int Il, int hh)
{ changed = false; low=ll; high=hh; val = II; }
virtual int get_value()
{ changed = false; return val; }
virtual void set_value(int i)
{ changed = false; val = i; }
virtual void prompt()
{}
virtual bool was_changed() const
{ return changed; }

h

The defaultimplementation of the functions is pretty sloppy and provided here primarily to illustrate the
intended semanticsA realistic class would, for example, provide some range checking.
Given this basic definition afal_box , we can derive variants of the concept fromFar example:

class ival_slider : public ival_box {

/I graphics stuff to define what the slider looks like, etc.
public:

ival_slider(int, int);

int get_value();
void prompt();
bool was_changed();

h
A class likeival_slider is said to belerivedfrom classival box andival box is said to be a
baseof ival_slider . Alternatively, we can callival_box the superclass afal_slider and
ival_slider a subclass df/al_box . Thenotation

class ival_slider : public ival_box { /* ... */ };

defines ival_slider to be a subtype ofval_ box . In other words, we can manipulatn
ival_slider as we would aival_box ;they share the interface definedibgl_box
Further, avirtual function in a baselass, sayival_box::prompt() , can be overridden by

defining a function with the same name and the same argument types in a derived class, say
ival_slider::prompt() . Thatdone, a call oprompt() on an objectof the derived class will
invoke “the right” function, even if the variable used to refer to itred_slider is a plain pointeto
ival_box . Forexample:

void f()

{

ival_box* p = new ival_slider(10,700);
p->prompt();

Here, the initialization op is legal becaus&al_slider is a subtype oival_box , and the call of
prompt() will invoke ival_slider::prompt() becausgrompt() is a virtual function overrid-
den inival_slider

Getting “the right” behavior fromival_box ’s functions independently ofhe exact kind of
ival_box actually used is called polymorphism type with virtual functions igalled a polymorphic
type. Toget polymorphic behavior in43, objects must be manipulated through pointarseferences.
The reason for this is that whamanipulating an object directly, its type is always known during compila-
tion so that run-time polymorphism is not needed.

Thenew operator creates an object ofi@en type on the free store, initializes it by an invocation of the

-20 -

appropriate constructor, and returns a pointer to the resulting object .

A derived class constructor need not take the same set of arguments as ittasmsEypically a
derived class has its own distinct requirements for arguments relatingp@articsular variant of the idea
represented by the baskss. However,to simplify the discussion here, we will define all of our construc-
tors to take twant s bounding the desired range.

The data members @fal_box were declaregrotected to allow access from derived classes.
Thus, ival_slider::get_value() can deposit a value iival_box::val . A protected
member is accessible from a class’ own members and members of derived classes, but not to general users.

In addition toival_slider , we would define other variants of tial _box concept such as
ival_dial where you select a value by turning a knitdshing_ival_slider that flashes when
you ask it tagprompt() , andpopup_ival_slider that responds tprompt() by appearing in some
prominent place where it is hard for the user to ignore.

A programmer might use theséval classes” like this:

void interact(ival_box* pb)

{
pb->prompt(); // alert user
...
inti = pb->get_value();
if (pb->was_changed()) {
/I new value; do something
}
else {
/Il old value was fine; do something else
}
...
}
void some_fct()
{
ival_box* p1 = new ival_slider(0,5);
...
interact(pl);
ival_box* p2 = new ival_dial(1,12);
...
interact(p2);
}
Note that most application code is written in terms of (pointers to) plael_box es the way
interact() is. Thatway, the application doesn’t have to know about the potentaifje number of

variants of thaval box concept. Thé&nowledge of such specialized clasgesolated in the relatively
few functions that create such objecfBhis isolates users from changesthe implementations of the
derived classes and most code can be oblivious to the fact that there are differentikeldbat es.

Where wouldwe get the graphics stuff fromMost user-interface systems provide a class defining the
basic properties of being an entdp the screen, so if we use the system from “Big Bucks Inee'would
have to make each of oival_slider , ival_dial , etc., classes a kind &Bwindow class. This
would most simply be achieved by rewriting dual_box so that it derives fronBBwindow. That
way, all our classes inherit all the properties d8Bwindow. For example, everyval box can be
placed on the screen, obey the graphical style rulesgdized, be dragged around, etc., according to the
standard set by tH@Bwindow system. Ouclass hierarchy would look like this:

class ival_box : public BBwindow { /* ... */ }; /I rewritten
class ival_slider : public ival_box { /* ... */ };
class ival_dial : public ival_box { /* ... */ };

class flashing_ival_slider : public ival_slider { /* ... */ };

-21 -

class popup_ival_slider : public ival_slider { /* ... */ };
or graphically using obvious abbreviations:

BBwindow

!

ibox
islider idial
ipopup iflash

5.2.1 Critique
This design works well in many ways, and foany problems this kind of hierarchy is a good solution.
However, there are some awkward details that could lead us to look for alternative designs.

We retrofittedBBwindow as the base afal_box . Thisis not quiteright. The use ofBBwindow
wasn't part ofour basic notion of aival box ; it was an implementation detaiDeriving ival_box
from BBwindow elevated an implementation detail to a first-level design decisibiatcan be right, say
when working in the environment defined by “Big Bucks Inds a keydecision of how our organization
conducts its businesddowever,what if we alsovanted to have implementations of awal_box es for
systems from “Imperial Bananas,” “Liberated Software,” and “Compiler WizzesPhis would require
us to write and maintain four distinct versions of our program:

// BB version:

class ivalue_box : public BBwindow { /* ... */ };
/I CW version:

class ivalue_box : public CWwindow { /* ... */ };
/1B version:

class ivalue_box : public IBwindow { /* ... */ };
/I LS version:

class ivalue_box : public LSwindow { /* ... */ };

This could become a version-control nightmare.

Another problem is that every derived class sh#tesasic data declarediiral_box . Thatdata is,
of course, an implementation detail that criepd ourival_box interface also.Froma practical point of
view, it is also the wrong data in margses.For example, arival_slider doesn’t need the value
stored specifically.It can easily be calculated from the position of sfider when someone executes
get_value() . Ingeneral, keeping two related, but differesgts of data is asking for troubl8ooneror
later someone will get them out of synalso, experience shows that novice programntersd to mess
with protected data in ways that are unnecessary and cause maintenance prbbkame better kept pri-
vate so that writers of derived classes cannot messthetin. Better still, data should be in the derived
classes where they can be defined to megghiirements exactly and cannot complicate the life of unrelated
derived classesln almost all cases, a protected interface should contain functions, types and constants
only.

Deriving from BBwindow gave the benefit of making the facilities providedBBwindow available
to users ofval_box . Unfortunately,it also means that changes to clBBsvindow may force users to
recompile or even rewrite thetode to recover from such changés.particular, the way most+@ imple-
mentations work implieshat a change in the size of a base class requires a recompilation of all derived
classes.

-22 -

Finally, our program may have to run in a mixed environment where windows of different user-
interface systems coexisiThis could happen either because two systems somefhane a screen, or
because ouprogram needs to communicate with users on different systdasngour user-interface sys-
tems “wired in” as the one andnly base of our one and oniyal_box interface just isn't flexible
enough to handle that.

5.3 Abstract Classes
So, let’s start again and build a new class hierarchy that solves the problems presented in the critique of the
traditional hierarchy.Thatis:
[1] The user-interface system should be an implementation detail that is hidden from users who don’t
want to know about it.
[2] Theival_box class should contain no data.
[3] No re-compilation of code using tlinal_box family of classes shoulde required after a change
of the user-interface system.
[4] ival_box es for different interface systems should be able to coexist in our program.
Several alternative approaches can achteise We will present one that maps cleanly into thetQan-
guage.
First we specify clasival_box as a pure interface:

class ival_box {
public:
virtual int get_value() = 0;
virtual void set_value(int i) = O;
virtual void prompt() = 0;
virtual bool was_changed() const = 0;
virtual ~ival_box() { }

h

This is much cleaner that the original declaratioivaf box . Thedata is gone, ansb are the simplistic
implementations of the member functioriGonetoois the constructor, because there is no data for it to ini-
tialize.

Instead, two things have been add®de will describe the rolef the function called-ival_box()
the destructor, belowThe curious=0 syntax says that a function is a pure virtual functidnclasswith
one or more pure virtual functions is called an abstract cBssausebjects ofabstract classes cannot be
created, pure virtudlnctions need not be define@nly objects of non-abstract derived classes can be cre-
ated; those classes must definetladl pure virtual functions they inheritor example, if we assume that

ival_slider is derived fromval_box and defines all the pure virtuals:
void f()
ival_box b1; /I error: abstract class
ival_box* p1 = new ival_box; /I error: abstract class
ival_slider b2; /I ok
ival_box* p2 = new ival_slider; /I ok
}
The definition ofival_slider might look like this:

class ival_slider : public ival_box, protected BBwindow {
/I data needed for slider

protected:
/Il functions overriding BBwindow virtual functions
Il'e.g. BBwindow::draw(), BBwindow::mouse1hit()

-23 -

public:
ival_slider(int,int);
~ival_slider();

int get_value();

void set_value(int i);

void prompt();

bool was_changed() const;

I3

Interestingly, this declaration allows application code tondten exactly as in thanteract() and
some_fct() example above All we have done is to restructure the implementation details in a more
logical way.

The virtual function ival box::~ival_box() and its overriding function
ival_slider::~ival_slider() are destructors, that is, functions that ianglicitly called when an
object is destroyed (goes out of scope, is expliddyeted, etc.).Many classes require some form of
cleanup for an object beforegbes away.Sincethe abstract classal box cannot know if a derived
class requires such cleanup, it must assume that it ddefining a virtual destructor in the base ensures
proper cleanupForexample:

void f(ival_box* p)

{
...

delete p;
}

Thedelete operator explicitly destroys the object pointed topbyWe have no way oknowing exactly
which class the object pointed to pybelongs to, but thanks igal_box s virtual destructor, proper
cleanup as (optionally) defined by that class’ destructor will be called.

Theival_box hierarchy can now be defined like this:

class ival_box {/* ... */ };

class ival_slider : public ival_box, protected BBwindow { /* ... */ };
class ival_dial : public ival_box, protected BBwindow { /* ... */ };
class flashing_ival_slider : public ival_slider { /* ... */ };

class popup_ival_slider : public ival_slider { /* ... */ };
or graphically using obvious abbreviations:

BBwindow ibox BBwindow

N .
~ -
~ -

s

islicer idial -

ipopup iflash

Each derived clasimherits an abstract class (for examg] box) requiring it to implement the base
class’ pure virtual functions, and BBwindow provides them withthe means of doing soSince
ival_box provides the interface for thderived class, it is publicly derived usingublic . Since
BBwindow is only an implementation aid, it is derived usipgotected . Thisimplies that a program-
mer using, sayval_slider , cannot directlyuse facilities defined bBBwindow; only the interface
inherited byival box and possibly augmented bal_slider is available.

Deriving directly from morethan one class is usually called multiple inheritand¢ote that
ival_slider must override functions frorbothival_box andBBwindow so it must be defined by
deriving it directly or indirectly from both As shown in 84.2, derivingval_slider indirectly from
BBwindow by makingBBwindow a base oival_box is possible, but has undesirable side effects.

-24 -

This design is cleaner and more easily maintainable than the traditiorabadeno less efficientlt
still fails to solve the version control problem, though:

/I common:
class ival_box {/* ... */ };
/I BB version:

class ival_slider : public ival_box, protected BBwindow

(. *Y
/I CW version:
class ival_slider : public ival_box, protected CWwindow
{I .. *Y
...
In addition, there is no way of having mal_slider for BBwindow's coexistwith anival_slider
for CWwindows even if the two user-interface systems can themselves coexist.
The obvious solution is to define several differieat_slider classes with separate names:

class ival_box {/* ... */ };
class BB_ival_slider : public ival_box, protected BBwindow { /* ... */ };
class CW_ival_slider : public ival_box, protected CWwindow { /* ... */ };

...
or graphically:

BBwindow ibox CW;vindow
BBislidér CWislider ~
To further insulate our application-orientedl_box classes from implementation details, we garone
step further andirst derive an abstradtal_slider class fromival_box and then derive the system
specificival_sliders from that:

class ival_box {/* ... */ };

class ival_slider : public ival_box { /* ... */ };

class BB_ival_slider : public ival_slider, protected BBwindow { /* ... */ };
class CW_ival_slider : public ival_slider, protected CWwindow { /* ... */ };

...
or graphically:

ibox
BBwindow islider CWyindow
BBislider CWwislider ~

Usually, we can dbetter yet by utilizing more specific classes in the implementation hieraFamnexam-
ple, if the Big Bucks Inc. system has a slider class, we can derivigabuslider directly from the
BBslider

-25 -

class BB_ival_slider : public ival_slider, protected BBslider { /* ... */ };

class CW_ival_slider : public ival_slider, protected CWslider { /* ... */ };
or graphically:

ibox

BBslider islider CWslider
A% 74

~ -
-
s
-

BBislidér CWislider
This improvement becomes significant whesas is not uncommerour abstractions are not talifferent
from the ones provided by the system used for implementaliothat case, programmirrgduces to map-
ping between similar concept®erivationfrom general base classes, suciBBs window, is then done
only rarely.
The completéhierarchy will consist of our original application-oriented conceptual hierarchy of inter-
faces expressed as derived classes:

class ival_box {/* ... */ };

class ival_slider : public ival_box { /* ... */ };

class ival_dial : public ival_box { /* ... */ };

class flashing_ival_slider : public ival_slider { /* ... */ };

class popup_ival_slider : public ival_slider { /* ... */ };

followed by theimplementations of this hierarchy for various windows systems expressed as derived
classes:

/I BB implementations:

class BB_ival_slider
: public ival_slider, protected BBslider { /* ... */ };

class BB_ival_dial : public ival_box, protected BBdial { /* ... */ };

class BB_flashing_ival_slider
: public ival_slider,
private BBwindow_with_bells_and_whistles { /* ... */ };

class BB_popup_ival_slider
: public ival_slider, protected BBslider { /* ... */ };

/I CW implementations:

class CW_ival_slider
: public ival_slider, protected CWslider { /* ... */ };

class CW_ival_dial : public ival_dial, protected CWknob { /* ... */ };
...

...
or graphically:

-26 -

islider

iflash

BBslider
A

CWsl Cwsl

/ \
BBislider BBipop CWipop CWifl BBifl CWislider BBidial CWidial

Note how the originalbox class hierarchy appearsichanged, but is surrounded by implementation
classes.

5.3.1 Critique
The abstract clas#esign is flexible, and almost as simple to deal with as the equivalent design relying on a
common basaefining the user-interface systerm the latter design, the windows class is the root of a
tree. Inthe former, the original application class hierarchy appears unchanged as the root ofltddsses
supply its implementationsin either case, you can looktheival_box family of classes without both-
ering with the window-related implementation details most of the time.

In either case, the complete implementation of éaahbox class must be rewrittemhen the public
interface of the user-interface system chandg¢swever,in the abstract class design almaltuser code is
protected against changes to the implementation hierarchy and require no recompilation.

5.4 LocalizingObject Creation

The flexibility of the abstract class design causes one problem, thddgétof an application can be writ-

ten using théval_box interface. Furthershould the derived interfaces evolveptovide more facilities

than plainival_box , then most of an application can Wetten using thaval_box , ival_slider ,

etc., interfaces However,the creation of objectsiust be done using implementation-specific names such

asCW _ival_dial andBB_flashing_ival_slider . We would like to minimize the number of

places such specific names occur, and object creation is hard to localize unless you do it systematically.
As usual, the solution is to introduce an indirectidiis can be done in many ways, but hexe sim-

ple one:

class ival_box_maker {
public:
virtual ival_slider* ival_slider(int, int) =0;
virtual ival_dial* ival_dial(int, int) =0;
virtual popup_ival_slider* popup_ival_slider(int, int) =0;
...
I3

For each interface from theval _box family of classes a user should knoabout, class
ival_box_maker provides a function making awbject. We now represent each user-interface system
by a class derived froimal_box_maker

-27 -

class BB_maker : public ival_box_maker {

public:
ival_slider* ival_slider(int, int);
ival_dial* ival_dial(int, int);
popup_ival_slider* popup_ival_slider(int, int);
...

I3

class LS_maker : public ival_box_maker {

public:
ival_slider* ival_slider(int, int);
ival_dial* ival_dial(int, int);
popup_ival_slider* popup_ival_slider(int, int);
...

2

Each function simply creates an object of the desired interface and implementatioRdyprample:

ival_slider* BB_maker::ival_slider(int a, int b)

{
}

Given a pointer to &al_maker , a user can nowreate objects without having to know exactly which
user-interface system is useor example:

return new BB_ival_slider(a,b);

void f(ival_maker* pim)

{
...
ival_box = pim->ival_slider(-99,99);
I/l instead of new BB_val_slider(-99,99);
I or new LS_val_slider(-99,99);
I or ..
...
}

BB_ival_maker BBim;
LS_ival_maker LSim;

void g()

f(&BBim); // let f use BB
f(&LSim); // let f use LS
}

This technique appears in [Gamma,1994] asatistract factorypattern.

6 Ct++Style

C++is often inaccurately described as an object-orietateduage, and (therefore?) often criticized for not
fulfilling everybody'’s fantasies of what an object-oriented language ought to be.

If we haveto stick a pretentious-sounding label oft+Gt must be:C++ is a multi-paradigm language.
It supports several styles of programmiagd combinations of those styleShe traditional summary is
[Stroustrup,1994]:

box center; I.C++is a general-purpose programming language that
— is a better C
— supports data abstraction
— supports object-oriented programming

However, the exact scope of this iseasy to pin down to a simple slogan such as “Everything is an
Object!” or “No side effects!” Suchslogans are certainly not among the ideals 6f €ven though

-28 -

support for both object-oriented programming and functional styles of programming is.

Good G+ style is pragmatic, has evolved from the Simula ideas of object-oriented desigrdelting,
places a premium on direct expressafrideas, shares much of C's concern for low-level efficiency, and is
aimed at solving current everyday problems.

Naturally, this is just our viewNothingis universally held in a community as large as the Gser
community, but our views directly reflected in the design ofr€[Stroustrup,1994,84]. Fortunatefgr
people who hold other views, one of our strondeedtl opinions is exactly thatt€ should support a vari-
ety of styles. Thus,even though we don'’t try tprovide direct support for every style of programming in
C++, we don’tgo out of our way to prevent styles we don't like, eitherdeed,it is often a source of
enjoyment to see people using+Gn ways we did not anticipateespecially when it is successful.

Unfortunately—er maybe fortunatehy-style is hard to define and must taught (and learned!) with
liberal use of examplesWe have presented three areas wheiré @ovides direct supportyhere a definite
view of design can guide the programmer, and where the design views and resdiimg style reflects
experience with €. Theexamples were chosen to demonstrate aredsre not universally well-covered
by modern programming languages awtiere current practieein C++ and other languagesoften
diverges from our idealThusthe examples from 83, 84, and 85 can serve as discriminating cases and pos-
sibly as inspiration to do as well or better.

Clearly, by “style” we just don’'t mean rules fandentation of code, the naming of variables, and the
banning of unfashionable language featur€nod programs are the result of a focus on concepts and
sound notionof design, rather than mechanistic language-technical isSgshissues matter, but at a
much more detailed level.

C++ supports enough data abstraction to make it possible to program at aslénghas in many more
“advanced” languagesDoing so usually requires extensive work designing, implementingtamdg a
library supporting the styleBuilding such a framework should not be everyday workrfast G+ pro-
grammers. Foexample, the STL wasndasy to design (Alex Stepanov and his colleagues worked on the
basic ideas for ovea decade), was somewhat easier to implement (the current version was about two years
of work for two people), and it is quite simple to teach and use.

This is a key idea: first a relativemall group of people develops a library supporting an application
domain well. After that, many more people can uke library to develop applications or the next level of
library. We are not making a value judgement abprdgrammers herelt easier to use a well-designed
library than it is to design and implement it, and the subsetoin€eded tgroduce a complete, efficient,
and elegant library is far larger than what is needed to uskhis has led some people to propose a class
system of programmers with the besbgrammers focused on library development and the worst restricted
to application development.

However, the demands on a programmekRsls are a function of both the inherent difficulty of the
application and the quality of tools available for disvelopment.Therefore,one cannot blindly assume
that lesser skills or fewdanguage features are needed for application developnSamhetimesthings
seem the other way around with thierary developers benefitting from a relatively limited and well-
defined problem domain, and the application developers suffering from being lastoverly large and
complicated design spac&romthis observatioromes the notion that the best way to make progress on a
large system is to focus on the developm&mseveral libraries or frameworks and then build the system
incrementally from those.

The unit of design isiot the individual classin C++ or in any other languagelt is a set of classes
related by some logical criteria [Stroustrup,1991812.11.3R8Jr example, the powenf the STL comes
from the unifying criteriafor what constitutes a container, an iterator, eédmilarly, the discussion of
design issues relating to the input operation in 85 whalte been impossible had we tried to consider the
problem one isolated class at a time.

Another key observation is that not every class is suppodeelused in the same way or obey the same
simple-minded design criteriaOften, simplified design rules of thumb are advertised as universal princi-
ples and a curious form of reductionism takes the place ofttahking. Thus,we find people arguing that
because somelasses are best designed as part of a hierarchy, every class must be designed to be part of a
class hierarchy; that because it makesse for some functions to tietual , every function must be
virtual ; and that because some interfaces are best described as abstract clatass,pnesented to a
users may contain data.

-29 -

This kind of purely language-driven thinking makes no sense td\&smust focuson the concepts in
the application and map them into the language constructs in the most appropriate ethgrwords, we
must design first and keep our programming-language-technical concerns secdddamg other hand,
we don’tconsider totally language-independent design practithé design must map into the language
used for its implementation ia way that suits the fundamental structure of the langukgparticular, a
design for a €+ program thatries to subvert €t's static type system will be ugly, unpleasant to imple-
ment, and hard to maintairAgainstthe fundamental structure of a languagmny language-one can win
Pyrrhic victories only.

One implication of this ishat major interfaces are usually best defined in terms of specific user-defined
types and that a class should providerdarface that match a single coherent concépiis allows better
type checking, and wherever possible static (compile time) checking should be used to nuairhizsn,
run-time errors, and the neéar run-time checking of arguments passed across an interfdeeDate
constructor can be used to illustrate some tradeoffs:

Date::Date(int d, Month m, int y);

Month is a user-defined type (an enumeration), so we can’t get much confusion frorR¢loatereading
the declaration know what is expected; should they nevertheless mess up, the compiler catches the problem:

Date d1(1978,2,21); /I error: 2 is not a Month
Date d2(1978,Date::feb,21); /I ok

However, we reversed the yeamnd the day.TheDate constructor’'s check of the range of dates in Febru-
ary will catch that at run-time.

Had Date been critical in our design, we might have introduceDay or a Year type to allow
stronger compile-time checkindzor example:

class Year {
inty;
public:
explicit Year(inti) {y =i; } /I construct Year from int
operator int() const { returny; } /I conversion: Year to int
2
class Date {

Date(int d, Month m, Year y);
...

h

Date d3(1978,feb,21); /I error: 21 is not a Year
Date d4(21,feb,Year(1978)); // ok

The Year class is a simple “wrapper” around ant . Thanksto the operatorint() a Year is
implicitly convertedinto anint wherever neededThanksto theexplicit constructor, afnt can be
explicitly (only) converted into &ear . Becauseérear 's member functions are easily inlined, no run-time
or space costs are addethisreflects the rule for the design of €that to beuseful, a facility mustn't just
be elegant: it must also be affordable in real prograwie.don’t have any strong rules for where such
added compile time checking is worth the added effort from the progranmeecessary, such simple
wrapper class can contain additional run-time checks.

Letting a classepresent a single coherent concept (only) tends to lead designs away from hierarchies
based on very general base classHsis is good because over time such base classes tend to acquire data
and functions tahe point where they become a burddine classic example is a base class for a container
hierarchy. Sucla class tends to provide a superset of the operations needed for individual containers.
may, for exampleprovide operations for indexing, list operations, size adjustments, access to associative
data structures, etBecauseot every specific container camplement every operation on the “fat” con-
tainer interface, inefficiencies, run-time checking, and brggult; see also [Stroustrup.1991,813.4.
clean G+ program tends to be a forest of classes rather than a single large tree.

Naturally, many C++ designs violate one or more of our suggested ruldss is partly because not
everybody agrees about these desigles, and partly because of inexperience about design intthe C

-30 -

community. Theranay very well be more good designers in the- Community than in anyther pro-
gramming community, but there certainly are more novicese rapid growth of @+ usage ensures that.

We canteach design to small groups, and even to larger organizatitmsever,getting design technique
applied on a largecale (hundreds or thousands of programmers) is a task no language community has been
spectacularly successfulayet.

7 SociologicalObservations

A programming language by itself is usele&nlesssupported by tools, techniques, and a user commu-
nity, a languagés simply an intellectual playthingThereis a need for experimental languages, niche lan-
guages, languages devoted to the pursuit of beauty without comprdiasever,Ct+ was nevemeant

to be one of those; it was designed and evolved to be a practical tool.

Like thesuccess of C, the success aft@vas no accidentNaturally,a certain element of good fortune
was involved in both cases; nothing succeeds on a large scale without a bit dflitwekver,a large part
of that success came from an effort to make @e best language possible, rather than best possible
language.

Throughout its evolutionC++ was heavily influenced by a desire to make it a useful tool to a commu-
nity of potential users whalready existed, whose problems we knew reasonably wabtherimportant
aspect was restrainC++ was not allowed to grow without solid feedback on what we already had, without
practical experience with problem argaghere what we had felt “not good enough”), and without con-
cerns for compatibility and transition issuekheorywas never a sufficient reason for adding somettong
C++. Theorydetermines the form of what is added but not what is needed.

7.1 Thebest language possible
What is the best programming languagé/ have lost coundf the number of times we have heard that
guestion asked armhswered.Most of those questions and answers have little meaning because they focus
on language-technical issuesthe exclusion of vitally important aspects of how a non-experimental pro-
gramming language is used: programming languages, like other tools, are useful only in context.
A context has several partsorexample:
[1] Whatproblems, or kinds of problems, will the language be used to solve?
[2] What skills do the peopléhave who might use the languag@hich new skills are they able and
willing to acquire?
[3] What languagesare available, or can be made availabW&Patis the cost of making them avail-
able?
[4] How easy is it to obtain access to experts who can help answer the questions that inevitably arise?
[5] Are useful libraries available?
[6] Is it necessary for programs to work with other programs that already exist?
[7] Whatare the performance constraints?
[8] Will it become necessary to run one’s programs on other machiheePnow, what about later?
[9] Will the investment in time and money on a language, its taotstechniques for this project, pay
off by having the language, etc., useful for other projects?
This list is, of course, incomplete, but it gives an idewladit influences the choice of a programming lan-
guage for a production system.
Notice that the nature of the language itself is directly reletanhly the first, second, and last ques-
tions on the list. Theother questions pertain mostly to the available implementations anddorttmunity
of users that surrounds the language(s) and implementations, the infrastructurelasfgtiege. This
implies that to be successful, a language must be designed with an eye to its likely implementations, the
communities of people who will be using it, and the purposes to which they will put it.

7.2 Cr+andC

C++ was originally intended for the same kinds of applicat@sa€. Although C started out as a language
in which to write operating systems, it has since hesd for a wide variety of things that fall into the gen-
eral category of “system programming.Suchthings often need to get particular hardware facilities
through extralinguistic meansThat implies that to remain useful for systggrogramming, €+ must be
careful not to stray too far from the underlying machine (see §2).

-31 -

Because €+ was intended to be useful in the same areas as Gnajoe goal of @+ has been to do
everything C can, and do it as efficiently in time and space asddsequentlyif onewrites a C program
in C++, that program will be as fast and small as it would have been ifh@.is not true of every €
implementation, of course, battainable in theory, and often achieved in practiCet+ even made a few
improvements on C in areas not related to abstracmmeof those improvements, such@mst types
and the ability to include argument typas part of a function declaration, found their way back into C.
Others, such as inline function definitions, did not.

The desirgo do everything C can do is a strong constraint-oh Gorexample, it has made it infeasi-
ble to make the primitive €3 array and pointer operations asgfer than their C counterpartt.is possi-
ble, of course, to define safe data structae$-+ classes, but in practice few€programmers have the
discipline needed to use such data structures exclusiviéiys, C is both a great strength of€and a
great weakness.

That G-+'s relationship with C wouldn’t be easy wakear from the startWe like aspects of C, but
some key elements of the C language and culture aredisagptive to people trying to write more abstract
programs and trying to reasaibout programsFor example, the C preprocessor is essential for real-world
C programming, buis also a menace: any piece of source text may turn out not to be what it appears to be
because a macro substitution may radically change what the programmer wrote before the compiler sees it.

The traditional academic respornsesuch problems seems to be “ban itThe C++ answer has been:
first make the obnoxious feature redundant, then discourage its use; finally we may actually tamsider
ning the now-unused featurd.his strategy is slow and often frustrating, but it respects people’s practical
needs in a way a more radical approach doe£tt: doesn’t yet have facilities that make the C preproces-
sor completely redundariut inline functions, constants, namespaces, templates, etc., allow a programmer
to restrict the use of preprocessor facilities to a minimum related to source code management.

The policy regarding CH- compatibility has been expressed ‘a&s close to C as possiblebut no
closer” [Koenig,1989]. In practice, thianeans that €+ accepts any C featurehowever ugly—as long as
it does not interfere with the type systeffihis policy has kept incompatibilities to an easihanageable
minimum.

C is thede factomeasure of efficiencyPeoplegenerally accept that if something runs as fast as well-
written C it is fast enoughlf it doesn’t, criticism results-fair or not. Sinceits inception, one of the aims
of C++ has been to make it possible woite programs that are not only abstract, but also run quickly.
Throughout the lifetime of €+, and well before it, people have argued that smphasis on run-time per-
formance is unnecessary.

The typical argument runs something likés: “Computers are so fast these days that we can afford to
give up some of that speed if by doing so we gain somethiggchange.” That something might be
development time, or safety, or whatever the favorite language @ietlsen making the argument has to
offer. Sucharguments are often valid, but radtvays, and it is not easy to tell when they will be important
and when they will not.

For small programs-such as many student projects gmdtotypes—efficiency rarely mattersLarger
systems, however, often consists of many layers of softwhmerhead is allowed to builgp in the indi-
vidual layers,the total system becomes glacifdlaturally, if the overhead in an individual layer is really
support for subsequent layers so that these layers become simpler andh&astéris doesn’'t happen.
Unfortunately, we have found this happy phenomenon less common than one might haveltdped.
absence of such synergi¢se language with the most efficient low-level semastittsat is, C or €+—
wins. Ofcoursewhen one is developing programs for one’s self or one’s immediate circle, such issues are
less important.Thatis one of the ways in which+@ has been guided by the requirements of commercial,
rather than academic, users.

Finally, there are application areas where efficiency is paramdtigbu are writing an operating sys-
tems kernel or a network driver you don’t want any fatyoar code—for any reason.For hard real-time
applications you have the additional requirement that the perforntdresesry feature must be absolutely
predictable as well as sufficiently fagti++ meets the requirements here.

By being C-compatible, 5 was able to benefit fror®’s libraries easily, directly, and without over-
heads. Théenefits of that are inestimable becauggvies the €+ programmer access to the largest col-
lection of newand old code availablelt made the difference between early+®eing a toy and being a
tool. Inaddition to gaining access libraries written in C, link and layout compatibility with C allows+C

-32 -

programs to call routines in languages with edthpatible calling sequence, such as Fortran and assembler
on many systemskurther,C++ functions can be called from such languaggéis allowed G+ to be used
to write libraries for use from other languages from day one.

7.3 Cr+and Other Languages

We have seen other languages as a fertile source of iBeagrammindanguages are fun to play with and
it is hard toimagine a modern languagexcept purely commercial hackgrom which one cannot learn
something important.

One cannot simply graft geature from one language on to another, howeVér influence is more
subtle. Inaddition to the “parent languages” C a&inula, we can see traces of Ada, Algol68, Clu, and
ML in C++. Manymore languages, including Lisp, have inspired programming techniques.

Judging from the net, discussions in the literature, remarkenferences, etc., the relationship between
languages is supposed to be antagonistic and dominated by fierce commercial rividiigehas left
few—if any—traces in the definition of &, and“marketing strategy” never took significant amount of
time from the technical work omt@. Theprimary reason for this is that in the early years (gatyl 1989),
C++didn’t have any marketinglt grew as a&completely disorganized grass-roots movem@ite repeated
rumors that €+ succeeded becaueé “large corporation backing” are the products of overexcited imagi-
nations of would-be commercial competitois. fact, AT&T spent the grand sum 8000 on &€+ adver-
tising in the critical 1985-1989 periodNo one could seriously attributet€s succesgo that. The other
theory, that €+ was first in the field of OO languages atiais established itself before any competition
arose, is equally at odds with facts++ became commercially available in October 198%la, Smalltalk,
Objective C, and some Lisp dialects wemmmercially available well before that and even Eiffel was at
most half a year behind.

In explaining G+'s success, we fall back on less interesting reasonsw@s a reasonable language,
cheap, easy to port, fast, coexisted well with other languages, and relatively easy to learn.

C++ owes a good part of its success to the fact that it was able to build on the existing C comimunity.
our experience, the only alternative to building on an existing communitypiska set of problems for
which no widely acceptable solution exists.

The first G-+ compiler—and the only one for sevengbars—compiled G+ into C instead of assembly
language or machine languagéhis allowed people tgort C-+ to a new computer in a matter of days
instead of monthsprovided only that the machine already had a C compiléiis guaranteed that+G
could be readily made availabd@ any machine that supported C, which opened the entire C community as
potential G+ users. Thisapproach has since become popular as a method of makingmgyages avail-
able [Stroustrup,199483.3].

The programming language one uses will be influenced in practice by the languageseighbors
use. Thigs trueof natural languages as well as programming languages, of cdtmgéishis the world’s
most widespread second languadéereason is that lots of people speak it already,ttiek is a signifi-
cant English literature, that more technical information is available in Ertgshin other languages, etc.
The facts that English (as actually used) doesn’t have a fixed grammar, that English speltirgycane
art, that idiomatic English is fiendishly difficu#ind varies from place to place and from time to time, that
English has more words than any other language, @'t seem to matter.The benefits ofknowing
English make it worth more effort than most other languadesaddition, it is relatively easto speak
English badly, and people accept poor English as long as it effectively canf@ysation. We believe
similar phenomena are occurring with-€

7.4 Learningto use G+
In two hours, it is possible to teaclCaprogrammer enought€ to make that programmer noticeably more
productive. Ina week, it is possible to teach a C or Pascal programmer enoughatfubetioning &+
programmer in the sense of being ablevtite code without looking in the manual all the tirée usually
takes six to eighteemonths for a programmer to become genuinely comfortable with object-oriented
design to the point where the proper use of mésti@nguage features feels natural enough to be unnoticed
in the larger task of building software.

Exceptional programmers can etter yet. However,C++ wasn't designed for exceptional program-
mers. Youdon't have to be a genius to be a gogd Grogrammer.

-33-

The estimate of the time needed to become comfortable witta@l object-oriented design is based on
the assumption thahe programmer/designer learns on the job and stays produatsteally by program-
ming in a “less adventurous” style of+43 during that period.If one could devote full time to learning
C++, one would be comfortable fastardowever,without applicatiorof the new ideas on real projects that
degree of comfort could be misleadin@bject-orientedprogramming and object-oriented desigre
practical—ather than theoreticatdisciplines. Unappliedyr applied only to toy examples, thedeas can
become dangerous “religions.”

The time-consuming thing to learn abd@ttt+ is not syntax, but design concep#s.good indication of
poor appreciation of € is code littered with casts (explicit type conversion®)ten, the casts are the
result of someone writing C or trying to write Smalltalk i#C

Our observation is that most people who are aware that there is somethan¢etoned can learnt€
well in a reasonable amount of tim@&he people who fail, and in consequence write appallimg &d
complain a lot, are in our experience mostly people who approathvith the attitude that they knouwll
there is to knowabout programming so that all they have to do is to pick up “a bit of odd syntamfor-
tunately, some such people proceed to teacho€ even write €+ textbooks, and their studertten suffer
with them.

8 Conclusions

The G-+ programming language has evolved in responsts taser community.Managingthat evolution
hasn’'t been easy, but new language features, techniques, and libeatiés be developed to meet the
needs of a growing user communityhe coming ISO/ANSI standard should herald a period of stability of
the language definition that ought to set of an explosion of work on tools, techniques, and libraries.
The key problem is educationTo use G+ well—or any other language supporting abstraction
mechanisms-people must focus on design issues, and teaching design on a large scale is not easy.

9 Acknowledgements

Vince Russo made our Christmpeeparations more interesting by suggesting that we might be able to
write this paper at the same tim&ection4 was partly inspired by Alex Stepanov’s work on SiEL
[Stepanov,1994]. Sectioh was partly inspired by [Gamma,199%rian Kernighan made constructive
comments of an draft of this paper.

10 References

[Booch,1993] GradyBooch: Object-oriented Analysiand Design with Applications, 2nd edition
Benjamin Cummings, Redwood City, CA993. ISBN0-8053-5340-2.

[Gamma,1994] GammB., et.al. Design Patterns AddisonWesley. 1994. ISBN0-201-63361-2.

[Koenig,1989] AndrewKoenig andBjarne StroustrupAs Close as Possible to—cbut no Closer
The C++ Report.Vol 1 No 7 July 1989.

[Koenig,1995] AndrewKoenig (editor): The Working Papers for the ANSI-X3J16 /ISO-SC22-
WG21 G-+ standards committee.

[Koenig,1995a] AndrevKoenig and Barbara Mo&®uminations on €. Book,to appear 1996.

[Stroustrup,1985] Bjarné&troustrup:The G+ Programming Language Addison Wesley, ISBN 0-
201-12078-X. Octobet985.

[Stroustrup,1991] Bjarn8troustrupThe G+ Programming Language (2nd EditioAgldison Wesley,
ISBN 0-201-53992-6.Junel991.

[Stroustrup,1994] Bjarn&troustrupThe Design and Evolution ofr€ Addison Wesley, ISBN 0-201-
54330-3. March994.

[Stepanov,1994] Alexandé&tepanov and Meng Le&he Standard Template LibrarySO Program-
ming language €+ project. DocNo: X3J16/94-0095, WG21/N0482May 1994.

[Vilot,1994] Michael J Vilot: An Introduction to the STL LibraryThe C++ Report. October
1994.

