
© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 1

Table of ContentsTable of Contents
Copyright Notice..3
Important Notice...3
Chapter 1: Introduction to Linux...4

 What is Linux?...4
A Little History..5
Running Linux for the First Time...6
Importing a Virtual Machine...6
Guest Additions and the Extension Pack...10

Chapter 2: Files and Directories in Linux...11
The Filesystem Hierarchy Standard..12
What is the Shell?...12
Navigating the System...14

Exercises 1.1..15
More commands to work with files and directories...16

Exercises 1.2..17
Redirection and Pipelines..17
History and Tab Completion..17

Exercises 1.3..18
Further Reading..19

Chapter 3 - Permissions and Ownership..19
Adding and Modifying User Accounts and Groups..20

Exercises 2.1..21
File Permissions and Ownership..22

Exercises 2.2..23
Removing Users and Groups...23

Exercises 2.3..24
Further Reading..24

 Chapter 4 - Finding and Describing Files..24
Finding Files in the System...24

Searching for Files by Name...24
Searching by Permissions...25
 Searching by Size..25
Searching by Owner or Group Owner...25
Searching by Access or Modification Time..26
Performing Operations on the Search Results..26

Determining a File’s Type..26
Exercises 3.1..27

Further Reading..27
Chapter 5 – Linux Processes...28

Reporting Current Processes with ps..29
Displaying a Tree of Processes with pstree...30

Exercises 4.1..31
Monitoring Linux Processes with top...31
Killing Processes...32

Exercises 4.2..33
Modifying Process Execution Priorities..33

Using nice...33
Using renice..34
 Exercises 4.3...34

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 2

Chapter 6 – Linux Shell Scripts..35
Flow Control..37
Loops.. 38
While Loops..38
Putting it all Together..38

Determining if a service is running in a systemd-based distro.............................38
Pinging a series of network or internet hosts for reply statistics..........................40
Exercises 5.1..41

Further Reading..41
Chapter 7 - Maintaining Software using APT and YUM................................42

How Package Management Systems Work...42
Installing a Package from a compiled (*.deb or *.rpm) file...................................43
Upgrading a Package from a Compiled File..43
Listing Installed Packages...43
Finding out which package installed a file..44
Searching for a Package...45

Installing or updating a package from a repository..45
Removing a Package...45
Displaying information about a package..46

Exercises 6.1..46
Further Reading..46

Chapter 8 - Network Operations..47
Installing and Securing a SSH Server..47
Transferring files securely over the network...49

Transferring files with scp (secure copy)...49
Receiving files with scp..49
Sending and receiving files with SFTP..49
Exercises 7.1..50

Further Reading..50
Appendix A - Compression and Archiving...51

The tar utility..51
Most commonly used tar commands..51
The Gzip utility...52

Summary.. 55

Copyright Notice
Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical
or photocopying, recording, or otherwise, for commercial purposes without the prior
permission of the publisher.

Important Notice
DISCLAIMER: We highly encourage you to become familiar with the commands
used in this e-book and their man pages.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 3

This e-book although it is as complete as possible - is intended as a starting point and
not as an exhaustive guide system administration.

We hope you will enjoy reading this e-book as much as we enjoyed writing it and
formatting it for distribution in PDF format.

You will probably think of other ideas that can enrich this e-book. If so, feel free to
drop us a note at one of our social network profiles:

http://twitter.com/tecmint https://www.facebook.com/ tecmint

https://www.linkedin.com/company/
tecmint

https://www.facebook.com/
groups/ l inux s ys a dmins/

In addition, if you find any typos or errors in this book, please let us know so that we
can correct them and improve the material. Questions and other suggestions are
appreciated as well – we look forward to hearing from you!

Chapter 1: Introduction to Linux
In this chapter, you will learn:

• What is Linux?
• Installing VirtualBox on Windows
• Importing Rocky Linux 9 virtual machine on VirtualBox
• VirtualBox extension pack and guest additions

What is Linux?

According to the Linux Foundation (an entity that is dedicated to fostering the growth
of Linux):

Linux is, in simplest terms, an operating system. It is the software on a computer that
enables applications and the computer operator to access the devices on the computer
to perform desired functions. The operating system (OS) relays instructions from an
application to, for instance, the computer's processor. The processor performs the
instructed task, then sends the results back to the application via the operating
system.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 4

http://twitter.com/tecmint
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.facebook.com/groups/LinuxSysAdmins/
https://www.linkedin.com/company/tecmint
https://www.linkedin.com/company/tecmint
https://www.facebook.com/TecMint

Besides, Linux is both a multi-user (in that it allows multiple users on different
computers or terminals to access a single system with one OS on it) and multitasking
(available processor time is divided between several tasks automatically, creating the
illusion, so to speak, that the tasks are running simultaneously).

A Little History

In 1991, in Helsinki, a computer science student by the name of Linus Torvalds began
a project that later became the Linux kernel.

Development was done on Linus’ computer, which was equipped with a 80386
processor, the MINIX operating system, and the GNU C compiler.

As he would write later in his book Just for fun [2001], Torvalds eventually realized that
he had written an operating system kernel (a program to allocate resources and talk to
the hardware, the ‘heart’ of the operating system, so to speak).

The first version of the Linux kernel was released under a personal license that
restricted commercial activity. Later, in the middle of December 1992 he published
version 0.99 using the GNU GPL.

The reason behind this change in this way of licensing had been explained earlier by
Linus himself in the release notes of version 0.01:

Sadly, a kernel by itself gets you nowhere. To get a working system you need a shell,
compilers, a library etc. These are separate parts and may be under a stricter (or
even looser) copyright. Most of the tools used with linux are GNU software and are
under the GNU copyleft. These tools aren't in the distribution - ask me (or GNU) for
more info.

That is why, from that moment on, Linus and GNU project developers worked to
integrate GNU components (applications, libraries, and developer tools) with the
Linux kernel (to make a fully functional and free operating system.

We must mention at this point that the GNU Project had been launched much earlier,
(in 1984, to be accurate) by the Free Software Foundation (led by a former MIT AI
scientist named Richard Stallman) to develop the GNU system.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 5

Running Linux for the First Time

First off, let us clarify that when we use the word Linux nowadays, we usually refer to
a Linux distribution, a fully-functional operating system that consists of the kernel
and a series of application programs and libraries.

There are at least two ways to start experimenting with Linux. You can boot your
computer using a live CD/DVD or USB stick, or installing a virtualization platform
such as VirtualBox.

The first option (booting your computer using a live CD/DVD or USB stick) will not
make any modifications to your storage devices.

Linux will run directly from the media device, and you will be able to test the
operating system before actually installing it. If you decide you like it, you can later
install it using the built-in wizard.

However, this book focuses on the second option: installing VirtualBox and setting up
virtual machines. A virtual machine consists of an operating system (a Linux
distribution, for example) running on top of the physical resources of your computer.

In the virtualization ecosystem, virtual machines are also known as guests or
appliances, whereas the computer that runs the virtualization platform is known as the
host.

To install VirtualBox, download it from here and then follow the instructions
provided in Chapter 2 of the VirtualBox manual.

Importing a Virtual Machine

One of the advantages of using VirtualBox is that it allows us to export and import
virtual machines previously created, and use them in a different host.

Thus, you will be able to start using Linux almost immediately by importing the
virtual machines that are provided with this book.

To download the virtual machine files, go to here. The Rocky Linux 9 VM is all in
one file since it is relatively small (~830 MB).

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 6

https://drive.google.com/file/d/1QDnqUOue7srLBPAppxy-uSB-QvPB2Ttt/

Using VirtualBox, you can also add virtual disks as storage devices, increase the
amount of memory allocated for the guest, and change the settings of virtual
machines, among other things.

To import one of the virtual machines, follow these steps:

1. Go to File Import appliance.→
2. Select the .ova file.
3. Click Next and follow the instructions on the screen.
4. When the import process is completed, your virtual machine will show up in

the main screen of VirtualBox. Right click on it and choose Start.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 7

Guest Additions and the Extension Pack

As mentioned previously, VirtualBox makes it possible to run one or more guests on
top of the host operating system.

To better leverage the hardware resources and to provide a better working experience
with VirtualBox and the appliances running on top of it, the following software
packages are provided separately:

Guest additions are drivers that can be installed on an desktop appliance-basis, and
help improve the communication between the hosts and the guests.

They provide functionality such as shared clipboard / storage, and support for several
screen resolutions.

To install guest additions, start a virtual machine [must have desktop environment
installed] and then go to the Devices Insert Guest Additions CD image menu, and →
follow the prompts.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 8

To install desktop environment in Rocky Linux 9 minimal system run:

$ sudo dnf install epel-release
$ sudo dnf config-manager --set-enabled powertools
$ dnf copr enable stenstorp/lightdm
$ dnf groupinstall "xfce"
$ dnf install lightdm
$ systemctl disable gdm
$ systemctl enable lightdm
$ systemctl set-default graphical.target
$ reboot

The Extension pack provides integration between the host’s USB 2.0 and 3.0 ports
and the guest, encryption for disk images, and virtual remote desktop functionality.

To install them, go to the VirtualBox Downloads page, and click on Oracle VM
VirtualBox Extension Pack.

Note that the installation file is operating system-agnostic, so it will work regardless of
the operating system of the host where VirtualBox has been installed.

More information on how to install guest additions and the extension pack can be
found in Chapter 1 of the VirtualBox manual.

Chapter 2: Files and Directories in Linux

In this chapter, you will learn:

 The Filesystem Hierarchy Standard
 What is the shell?
 Commands: pwd, cd, ls
 More commands: touch, echo, mkdir, rmdir, rm, cp, mv
 Redirection and pipelines
 History and tab completion in the command line
 Extra reading (links to related Tecmint articles)

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 9

https://www.virtualbox.org/manual/ch01.html
https://www.virtualbox.org/wiki/Downloads

The Filesystem Hierarchy Standard

A quick glance at distrowatch.com will give us but a glimpse of the vast number of
Linux distributions available today. Some of them are maintained by well-known
companies or free software initiatives, whereas others represent the contributions of
individuals.

In order to provide a fundamental standard to be expected in modern Linux
distributions, the Linux Foundation designed the Filesystem Hierarchy Standard
(FHS) to be used by distribution maintainers, package developers, and system
implementers.

The FHS consists of a document that provides an overall outline and reference of the
Linux directory structure. Although it is not intended as a fixed set of instructions, it
represents the specifications on what to reasonably expect in the directory tree of a
given distribution.

We will revisit this topic once we have learned the basic commands that are needed to
navigate a Linux system.

What is the Shell?

A shell is a program that accepts commands and gives them to the operating system to
be executed.

In other words, the shell provides an interface layer between the Linux kernel and the
end user.

Often used interchangeably, a terminal is a program that allows us to interact with the
shell. For example:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 10

When we first start a terminal, it presents a command prompt (also known as the
command line), which tells us that the shell is ready to start accepting commands from
the user.

Linux provides a range of options for shells, the following being the most common:

1) bash: Bash stands for Bourne Again SHell and is the default shell in most (if not all)
modern Linux distributions. It incorporates tens of built-in commands, and an
extensive documentation on how to use its wide variety of features. We will cover
some of them in this book.

2) sh: The Bourne SHell is the oldest shell and therefore has been the default shell of
many UNIX-like operating systems for many years.

3) ksh: The Korn SHell is a Unix shell which was developed by David Korn at Bell
Labs in the early 1980s. It is backward-compatible with the Bourne shell and includes
many features of the C shell.

To open a terminal, simply go to the applications menu and select Terminal (or a
similar name) from the list.

Regardless of the distribution, you will be presented with a command prompt that
should look as the below image:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 11

where the gacanepa is the current username and desktop is the hostname. With that
said, let’s dive into the amazing world of the Linux command line!

Navigating the System

If we log into Linux using a text-mode login screen, chances are we will be dropped
directly into our default shell.

On the other hand, if we log into Linux using a graphical user interface (GUI) login
screen, we will have to open a shell manually by starting a terminal.

Either way, we will be presented with the user prompt and we can start typing and
executing commands (a command is executed by pressing the Enter key after we have
typed it).

Commands are composed of two parts:

1) the name of the command itself (along with one or more optional flags preceded by
a hyphen), and

2) arguments.

To view the list of available options and / or required arguments, type man followed
by the name of the command and press Enter.

A text document known as the man page of the command will open. To scroll down
or up, use the arrows of your keyboard, and press the letter Q when you want to exit.

Let’s consider the following examples to illustrate.

 To print the path of the current working directory, use pwd. This command
does not take any optional flags nor requires an argument.

 To change to another location in the directory tree, use cd followed by a
relative or absolute path. For example:

 cd Documents will change the working directory to a directory named
Documents inside the current one. In this case, a relative path is used since
it is given starting at the current directory.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 12

 cd /home/student/files will change the working directory to
/home/student/files. This is an example of an absolute path since it is
indicated starting at the root (/) directory.

 In the above examples, both Documents and /home/student/files are
arguments passed to the cd command.

 Additionally, cd accepts the following arguments:
■ cd ~ or cd (without arguments) will change to the current user’s

home directory.
■ cd .. will change to the parent directory of the current one.
■ cd ../../ will move two levels up the tree.

To view detailed information about files and directories, we will use ls followed by an
optional flag (or more) and a file or directory name. When used without arguments, ls
will return information about the objects inside the current working directory. These
are the most used flags:

 -l returns a long directory listing. This includes not only the names of the
objects (files and directories, for example) inside the current working directory,
but also the access permissions (we will revisit this topic in the next chapter)
and the owners of each object.

 -a causes ls to return hidden files, whose names start with a dot (.). Hidden files
are often used as configuration files, and to store user preferences.

 -t tells ls to order the results by modification time.

For example,

● ls -a will display the names of all the objects inside the current working
directory, hidden or not.

● ls -la /var will return a long directory listing of the contents of the /var
directory.

● ls -lt ../ will show a long directory listing of the current working directory’s
parent.

● ls -l /home/student/files/info.txt will return a long directory listing of a file
named info.txt located inside /home/student/files if it exists, or an error message if
it does not.

Exercises 1.1

In these exercises, you will write the commands to perform the following actions:

1.1.1: Change the current working directory to /etc. Then move to /var/log using a
relative path.

1.1.2: Refer to the man page of ls to find out what option should be used to return a
long directory listing of /var/log (not its contents).

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 13

1.1.3: Display a long directory listing of /usr ordered by modification time, newest first.

1.1.4: Navigate to the root directory using cd / and then list its contents with ls. Check
the FHS documentation to learn more about each of the subdirectories found inside.

More commands to work with files and directories

The following commands are often used while working with files and directories in
the command line:

● touch is used followed by a filename. If the file exists, touch will update its
modification time (you can verify this with ls -l followed by the filename before
and after doing touch). Otherwise, an empty file will be created with the name
of the argument. For example, if myfile.txt does not exist inside the current
directory, touch myfile.txt will create an empty file named myfile.txt in the said
location.

● rm (short for remove) followed by a filename will remove the file in question.
For example, rm myfile.txt will remove myfile.txt from the current working
directory.

● mkdir followed by an argument will create a new directory. For example,
mkdir me will create a directory named me inside the current directory.
However, mkdir me/otherdir will fail if me does not already exist. To avoid
this, use the -p option to create a directory structure that starts with a missing
parent. In other words, mkdir -p me/otherdir will create a directory named me
and a subdirectory called otherdir inside me in the same operation.

● rmdir is analogous to rm, but for directories. To remove a directory with this
command, it must be empty.

● cp, besides the optional flags, requires two arguments. It is often used to copy
the contents of one file (first argument) into another (second argument). For
example, cp file1.txt file2.txt will copy the contents of file1.txt into file2.txt.

● mv operates almost identically than cp, only that it is used to move a file or
directory (first argument) to a different location (second argument) when both
arguments represent existing objects. If the second argument does not
correspond to an existing object, mv will remove the first argument to the
second one. For example, let us suppose that both dir1 and dir2 exist, whereas
dir3 does not. In that scenario, mv dir1 dir2 will move dir1 to dir2, thus
becoming a subdirectory of the latter. On the other hand, mv dir1 dir3 will
rename dir1 to dir3.

Note: You can use either relative or absolute paths with the above commands.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 14

Exercises 1.2

1.2.1: The commands associated with removing or renaming files or directories should
be used with caution. All of them provide an option that prompts the user for
confirmation before actually performing the operation. Consult the man pages to find
out what option should be used in this case.

1.2.2: Create an entire structure as files/personal/2017 inside the current directory
using only one command.

1.2.3: Create an empty file inside files/personal/2017. Use ls -l to verify its last
modification time and update it, then check again.

Redirection and Pipelines

To store the output of a given command in a file for later inspection, we will use the
redirection operators. Depending on whether you want to overwrite the contents of a
file or append to them, you will use > or >>, respectively. For example, ls -l >
longdirectorylisting.txt will create a file named longdirectorylisting.txt inside the
current directory (if it does not exist already) and write the output of ls -l to it. If the
file exists and is not empty, use >> instead to avoid overwriting its contents, since >
will replace them with the output of the command.

A classic use of redirection is writing a text string to a file using the echo command as
follows:

echo "I love Tecmint.com" > testfile.txt

will write the message within quotes to a file named testfile.txt in the current directory.

On the other hand, we can chain several commands together using pipelines,
represented by a vertical bar (|).

When two or more commands are thus chained together, the output of the first is
sent as input to the second, and so on.

The advantage of using pipelines will become evident as we learn more and more
commands. When we reach that point, we will recall what we have said in this chapter.

History and Tab Completion

After working with the command line for some time, you may want to repeat a
command previously executed.

To facilitate this, the shell keeps a history that you can access using the history
(surprise!) command.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 15

When you type history in the command line and press Enter, the command history
will be listed with line numbers. A command in the history list can be repeated by
typing the command number preceded by an exclamation sign.

For example, the following excerpt shows some commands in the history list. In the
following example, the output has been truncated for the sake of brevity and shows a
portion of the command history:

...
253 cd /var/log
254 cd /home/student
255 ls -lt /home/student
...

If we want to execute cd /home/student, we can just type !254 and press Enter.

As we can see, this way of entering commands can come in handy when we want to
repeat long entries in the history list.

Additionally, Bash provides a very useful feature known as tab completion. It allows
you to autocomplete a command after typing a partial name and pressing the Tab key
twice.

When multiple completions are possible, then all of them will be listed. For example,
type whi and press Tab twice. Based on your system, you will get more or less results,
but should be similar to:

which which-nodejs while whiptail

On the other hand, if you do the same after typing wha, most likely you will only get
whatis as result.

Exercises 1.3

1.3.1: Write a text string of your choice to a file named mychoice.txt. Use the right
redirection operator to write another line without overwriting the existing contents of
the said file. Then use the cat command, followed by the filename (cat mychoice.txt)
to display the contents of the file.

1.3.2: Repeat the exercise of tab completion. Type ch and press Tab twice. Take note of
3 commands out of the resulting list and use the whatis command to find out what it
is used for. Note you’ll have to consult the man page of whatis first.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 16

Further Reading

Links to articles published in Tecmint.com...

● http://www.tecmint.com/15-basic-ls-command-examples-in-linux/

● http://www.tecmint.com/ls-command-interview-questions/

● http://www.tecmint.com/echo-command-in-linux/

Chapter 3 - Permissions and Ownership

In this chapter, you will learn:

 Users and groups
 Important files: /etc/passwd, /etc/group, /etc/shadow
 Commands: chmod, chown, chgrp, visudo
 The /etc/sudoers file
 Extra reading (links to related Tecmint articles)
 Exercises

In Linux, users and groups are used to control access to files, directories, and other
system resources.

As a system administrator you will need to know how to add, edit, suspend or delete
user accounts and groups, and granting them the necessary permissions to perform
their tasks.

These tasks must be performed as root, the superuser, or using the sudo command as
a regular user. To learn how to use sudo, refer to the links in the Further reading
section at the end of this chapter.

To switch to the root account, type

su -

and type root’s password.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 17

Adding and Modifying User Accounts and Groups

To add a new user called me, do:

useradd me

This will also create a group named me.

Additionally, you can create other groups using groupadd. For example, the following
command will add a group called support:

groupadd support

When a new account is added, you can find the information about it in /etc/passwd.
This file contains a record per system user account and has the following format
(fields are delimited by a colon):

● User name
● User password (or the character x if the password is stored in /etc/shadow in

encrypted form)
● User ID (UID): an integer that identifies the account.
● Group ID (GID): another integer that identifies the group to which the user

belongs.
● User info: this file is optional. If it is not empty, it will contain extra information

about each user account.
● Absolute path to the user’s home directory.
● Absolute path to the default shell for the user.

At any time after adding an account, you can edit the following information (and
others as well) using usermod, whose basic syntax is as follows:

usermod [options] [username]

Examples:

 To set an expiration date, use the --expiredate flag followed by a date in the
YYYY-MM-DD format.

 To add the user to supplementary groups, use the combined -aG, or the
separate --append and --groups options, followed by a comma separated list of
groups.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 18

 To change the location of the user’s home directory, use the -d, or --home
options, followed by the absolute path to the new home directory.

 To change the user’s default shell, use the --shell switch, followed by the path
to the new shell. If you don't want to allow the user to be able to login (perhaps
to temporarily suspend access to his / her account), you can use
/usr/sbin/nologin or /usr/bin/false as shell.

Note that you can edit the user's information in one single command or separately.
You can perform one or more of the above operations simultaneously. The following
example illustrates the process of doing it all at once:

usermod --expiredate 2017-05-31 --append --groups users --home /tmp --
shell /bin/sh me

Let’s examine what the above command does:

 First off, the account that is being modified appears at the end of the command
(me).

 It will expire on May 31, 2017.
 The account will be added the the users group.
 Its home directory is changed to /tmp, and its default shell to /bin/sh.

From time to time, you may need to change other users’ passwords or even your own.
To do so, use the passwd command followed by the username for which you want to
change the password. In case you want to reset it for yourself, just type passwd and
press Enter.

Exercises 2.1

2.1.1: Create a new user account named johndoe and a group called misc.

2.1.2: Add johndoe to group misc.

2.1.3: Change the default shell to /bin/sh.

2.1.4: Reset the password of johndoe to this#is$my%newpassword.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 19

File Permissions and Ownership

In Chapter 2, you learned to use ls to list files and directories. Let’s take a look at the
output of ls -l, which provides a detailed listing of a directory’s contents or a file’s
properties.

The first character indicates the object type (first highlighted column in the below
image):

 – represents a regular file.
 d indicates the object is a directory.
 l represents a symbolic link (a link, or shortcut, to another object).
 b indicates the object is a block device. Storage devices fall into this category.

The next nine characters of the file attributes represent the file mode. The first 3
characters in this group indicate whether the permissions of the file’s owner on a
given object.

The next 2 sets of 3 characters indicate the same information for the file’s group
owner, and the rest of the system users. For example, let’s examine infoSistema.html
in the above image:

● It is a regular file.
● The file’s owner (user: gacanepa) has read and write permissions on the file.
● Other members of the file’s group owner (group: gacanepa) will only be able to

read the file. Same as other system users.

The easiest way to change a file's mode is using the chmod command followed by an
expression that indicates the owner’s rights with the letter u, the group owner’s rights

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 20

with the letter g, and the rest with o. Permissions are then granted (or revoked) with
the + or – signs, respectively.

For example,

● chmod o-r infoSistema.html revokes the read permission over the greeting
file for users that are not members of the group owner.

● chmod g+wx infoSistema.html grants write and execute permissions over
the file for members of the group owner.

● chmod +x infoSistema.html grants execution permissions for all users.

File and group ownership are changed with the chown and chgrp commands,
respectively. The basic syntax for both commands is as follows:

1. chown root infoSistema.html will change the owner of the file to root.
2. chgrp me infoSistema.html will change the group owner of the file to me.

After the owner and group associated with the file, ls -l shows the size of files, the last
modification date, and the file name.

Exercises 2.2

2.2.1: Create a new empty file named file1.sh and set user johndoe as its new owner.

2.2.2: Change the group owner of file1.sh to misc.

2.2.3: Grant execute permissions on file1.sh to all system users.

Removing Users and Groups

From time to time, you may also need to remove users or groups for good. Note that
this is different than merely disabling them as we learned previously.

To remove an account, user userdel followed by the username.

Similarly, user groupdel, followed by the group name, to remove a group.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 21

Exercises 2.3

2.3.1: Remove the user account johndoe and the group misc. Do a ls -l on file1.sh. What
do you see in the columns that represent the owner and group owner of file1.sh?

Further Reading

Links to articles published in Tecmint.com...

http://www.tecmint.com/vi-editor-usage/

http://www.tecmint.com/su-vs-sudo-and-how-to-configure-sudo-in-linux/

http://www.tecmint.com/rhcsa-exam-manage-users-and-groups/2/

Chapter 4 - Finding and Describing Files

In this chapter, you will learn:

 Find files based on one or more search criterias
 Describing files
 Commands: find, type, file
 Extra reading (links to related Tecmint articles)
 Exercises

Finding Files in the System

The find command is used to search recursively through directory trees for files or
directories that match certain characteristics. Subsequently, it can either print the
matching files or directories or perform other operations on the matches. We can
search for files by name, owner, group, type, permissions, date, and other criteria.

Searching for Files by Name

To search for a file by name, we will use the -name option. We can use wildcards if we
enclose pattern in quotes.

As a result, find will locate files that match the wildcard filename. The following
example will locate all files with a name ending in .sh inside /home/gacanepa:

find /home/gacanepa -name "*.sh"

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 22

Searching by Permissions

If we need to find files that have certain permissions, we can do so by using the -perm
option. If we precede mode with a + (plus sign), find locates files in which any of the
specified permission bits are set.

If we precede mode with a - (minus sign), find locates files in which all the specified
permission bits are set. To find all files that can be executed by any user, located inside
the current directory (represented by a dot) and descend recursively down to 3 levels
(using -maxdepth):

find . -maxdepth 3 -type f -perm -o=x

Searching by Size

We can search for a file of a given size with the -size n expression. Normally, n is
specified in 512-byte blocks, but we can modify this by trailing the value with a letter
code, such as c for bytes, k for kilobytes (units of 1024 bytes), M for megabytes (units
of 1048576 bytes), or G for Gigabytes (units of 1073741824 bytes). To find all files that
are larger than 100MB inside the current directory, we will do

find . -type f -size +100M

where -type f indicates we’re searching for regular files. If we were searching for
directories, we would use -type d instead.

Searching by Owner or Group Owner

The -gid GID or -uid UID expression searches for files whose group ID (GID) or user
ID (UID) is set to GID or UID, respectively.

The -group option locates files whose group name is name, but the -gid option can
come in handy if the GID has been orphaned and has no name, but the latter is
generally easier to use. Same applies to -user.

Examples:

Find all directories inside /var owned by group lp:

find /var -type d -group lp

Find all files owned by root in /etc:

find /etc -type f -user root

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 23

Searching by Access or Modification Time

To avoid cluttering up your system with old files that you may never use again, it is a
good idea to do a clean up once in a while. Modification and access times represent
the date when a file was last modified or accessed.

 -atime +30 or -mtime +30 means files that were last accessed or modified more
than 30 days ago, respectively.

 -atime -30 or -mtime -30 less than 30 days.
 -atime 30 or -mtime 30 exactly 30 days.

To view the list of files that were last accessed more than 6 months ago (180 days)
inside /home/me/Documents, do

find /home/me/Documents -type f -atime +180

Performing Operations on the Search Results

Finally, we can do something with the results returned by find using the -exec option.
This flag takes a command (along with its options) as an argument, followed by {} +
which is a placeholder for the matches resulting from the search.

To update the timestamps of all .sh files inside the current directory:

find . -name "*.sh" -exec touch {} +

To remove the execute permission from all .sh files inside /opt, do

find /opt -type f -name "*.sh" -exec touch {} +

As you can see, you can combine several search criterias in the same command.

Determining a File’s Type

As we explore the system, it will be useful to know what kind of contents a file has
without opening it. T

o do this, we can use the file command to determine a file’s type (unlike other
operating systems, file extensions in Linux are not required to reflect a file’s contents).

We invoke the file command followed by a filename. Similarly, the type command is
used to determine the type of an executable file.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 24

For example,

file RMD.py
type ps
type touch
type echo

Particularly, shell builtins are a special type of executables that are provided by the
shell itself and may differ from one to another.

Exercises 3.1

3.1.1: Find all directories owned by user root in /var. Only descend down to two levels.

3.1.2: Find all files that have been last modified more than 3 months ago in your home
folder.

3.1.3: Find all empty files in the current directory using the -empty option of find.

3.1.4: Find out the type of the following files using type: echo, which, find.

Further Reading

Links to articles published in Tecmint.com...

http://www.tecmint.com/35-practical-examples-of-linux-find-command/

http://www.tecmint.com/find-linux-command-description-and-location/

http://www.tecmint.com/explanation-of-everything-is-a-file-and-types-of-files-in-
linux/

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 25

Chapter 5 – Linux Processes

In this chapter, you will learn

 Definition of a process
 Daemons
 Signals
 Commands: ps, top, nice, renice, kill, killall
 Extra reading (links to related Tecmint articles)
 Exercises

Every program that runs on our Linux system is a process. The normal life cycle of a
process includes starting, executing, and dying, and is automatically managed by the
kernel, without need for user intervention.

However, once in a while one (or more) of the following exceptions may occur:

● The process dies due to a known or an unknown reason and needs to be
restarted.

● The process “runs wild” and consumes system resources at an abnormal level
and needs to be terminated.

● The process needs to be restarted in order for it to reread its configuration file
after it has been modified.

Knowing how to handle those situations is at the very center of the Linux
administration skills that every system administrator needs to posses.

To begin, let’s introduce the following concepts related with processes:

 Every process has a number assigned to it when it starts. It is called Process ID
(PID) and is an integer unique among all running processes.

 Processes must have associated privileges, and a process’ UID (User ID) and
GID (Group ID) are associated with the user who started it, and only have
access to the system resources owned by it and also others, depending on the
file permissions.

 The first process started by the kernel at boot time is a program called systemd.
This process has PID 1 and is the parent process of all other processes on the
system. The parent process ID (PPID) is the PID of the process that created the
process in question.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 26

At any time, there could be tens or even hundreds of processes running on our Linux
system. Monitoring these processes is done using three convenient tools: ps, pstree,
and top.

Reporting Current Processes with ps

The ps command allows us to take a snapshot of processes currently running on our
system. Depending on the options used, it can return different types of information
as we will see in the examples.

Without options, ps will list the processes owned by the current user. On the other
hand, it is important to note that you can combine several options into one. For
example, instead of typing ps -e -f you can do ps -ef.

To display the full list of processes using the standard format, do ps -ef as shown in
the following image where the output has been truncated for the sake of brevity:

In the above image, the TIME column indicates the accumulated CPU time used by
the process. You’ll learn the meaning of the other columns in the Exercises section in
this chapter.

It is important to note that you can filter the output of ps -ef using a pipeline followed
by the grep command and a filter pattern. For example, to display all the processes
with the word firefox in the associated command, do:

ps -ef | grep -i firefox | grep -v grep

where the -i option will cause grep to ignore the case and treat Firefox, firefox, or
FiReFoX indistinctly. Also, the second pipeline followed by grep -v grep will remove
the actual grep command from the results.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 27

Another well-known method to print a list of processes is using an user-defined
format. This is explained in greater detail in the STANDARD FORMAT SPECIFIERS
section in the man page. To illustrate, let’s suppose we only want to display the PID,
PPID, the command, and the memory usage. To do this, use the combined -eo option
followed by pid,ppid,cmd,%mem as follows:

ps -eo pid,ppid,cmd,%mem

If you want to sort the results returned by the above command, ps also provides a --
sort option that must be followed by an equal sign and the desired sort field. For
example, the following example returns the same information as the previous one,
only that it’s ordered by memory usage in descending form (that’s what -%mem is
for):

ps -eo pid,ppid,cmd,%mem --sort=-%mem

To sort in ascending form, omit the minus sign as follows:

ps -eo pid,ppid,cmd,%mem --sort=-%mem

Displaying a Tree of Processes with pstree

To view a hierarchical list of processes in a tree format, you can use pstree. This tool is
very handy for understanding parent / child process relationships.

If the PID is specified after the -p option, the displayed tree is rooted at that process.
Otherwise, it is rooted at the process with PID 1. If user (a valid username) is specified
at the end, trees for all processes owned by user are shown.

The following image shows processes starting at PID 1954:

pstree -p 1954

and a portion of the list of processes owned by gacanepa:

pstree gacanepa -p

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 28

Exercises 4.1

4.1.1: Use man ps to identify the meaning of the columns USER, %CPU, %MEM, and
STAT in the output of ps aux, which is another standard variant to display all
processes.

4.1.2: Use ps and the required options to return only the PID and CMD columns of
the process list.

4.1.3: Use pstree to display all processes owned by root. Make sure to display the PIDs
as well.

Monitoring Linux Processes with top

Similar to ps, top lists the process currently running on our system - but updates by
default every 5 seconds. This is useful when we want to watch the status of one or
more processes or to see how they are using our system.

This listing is ordered by default by CPU usage. Additionally, a header of useful
information (current time, uptime, number of users and processes, load, CPU status,
and memory, to name a few examples) is also displayed, as seen in the below image:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 29

If you want to use a different refresh rate, use the the interval (-d) option. For
example, top -d 3 will bring up top and refresh its output every 3 seconds.

Killing Processes

in more precise terms, killing a process means terminating it by sending it a signal to
either finish its execution gracefully (SIGTERM=15) or immediately (SIGKILL=9)
through the kill or pkill commands. The difference between these two tools is that
the former is used to terminate a specific process or a process group altogether, while
the latter allows you to do the same based on the process name and other attributes.

In addition, pkill comes bundled with pgrep, which shows you the PIDs that will be
affected should pkill be used. For example, before running

pkill -u gacanepa

it may be useful to view at a glance which are the PIDs owned by gacanepa:

pgrep -l -u gacanepa

By default, both kill and pkill send the SIGTERM signal to the process. As we
mentioned above, this signal can be ignored (while the process finishes its execution
or for good), so when you seriously need to stop a running process with a valid
reason, you will need to specify the SIGKILL signal on the command line:

To force the termination of a process identified by PID=1954, do

kill -9 1954

or

kill -s SIGKILL 1954

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 30

Additionally, you can also terminate processes based on the owner or other attributes,
such as all the children of a given process. For example,

pgrep -l -P 9892

will list the processes that would be kill if we run

pkill -P 9892

Exercises 4.2

4.2.1: Use kill -l and man 7 signal to a) list the available signals, and b) learn about
what SIGTERM, SIGSTOP, and SIGKILL.

4.2.2: Use pgrep to identify a list of processes that would be killed if you run pkill to
terminate a) all processes owned by a given user, and b) all the child processes of a
given one.

Modifying Process Execution Priorities

Part of Linux’s flexibility is to let users and system administrators prioritize process
execution. This feature can come in handy when we have a high-load machine and
want to make sure some special process(es) get more rights (or “priority”) to use
system resources than others.

However, we must note that under normal circumstances we don’t need to worry
about execution priority because the kernel handles it automatically. The usual
method of performing a change of execution priority is through the nice and renice
commands. We can use nice to launch a program with a specified priority or use
renice to alter the priority of a running one.

Using nice

When you start a process using nice, the kernel will allocate more or less system
resources to the process based on the assigned priority (a number commonly known
as “niceness” in a range from -20 to 19).

The lower the value, the greater the execution priority. Regular users (other than root)
can only modify the niceness of processes they own to a higher value (meaning a

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 31

lower execution priority), whereas root can modify this value for any process, and
may increase or decrease it.

The default priority value is 0. To start a script named backup.sh with a different
priority, use nice -n followed by the desired priority. For example:

nice -n -10 backup.sh

or

nice -n 5 backup.sh

While the first example will increase the priority to -10, the second one will decrease
it to 5.

Using renice

If a process is already running, you can modify its execution priority using renice -n
followed by the new priority and -p to indicate the PID. For example, let’s suppose
that backup.sh is still running with PID 9892 and you want to change its priority to 10.
To do this, use the following command:

renice -n 10 -p 9892

Exercises 4.3

4.3.1: Try to change the niceness of a process not owned by you. Do you get any error
message(s)? If so, what does it say?

4.3.2: Launch top and identify the column that lists the niceness of processes. From
another terminal, change the priority of this process and verify that the niceness
change is reflected in the output of the first terminal.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 32

Chapter 6 – Linux Shell Scripts

In this chapter, you will learn:

● Shell scripts with Bash
● Environment Variables
● Variable substitution
● Shell expansion
● Extra reading (links to related Tecmint articles)
● Exercises

In simple words, a shell script is nothing less and nothing more than a plain text file.
Thus, it can be created and edited using our preferred text editor. We will use vim in
the following examples, but you may choose whatever one you like.

Type

vim myscript.sh

and press Enter.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 33

The very first line of a shell script must be as follows (also known as a shebang):

#!/bin/bash

It “tells” the operating system the name of the interpreter that should be used to run
the text that follows.

Now it’s time to add our commands. We can clarify the purpose of each command, or
the entire script, by adding comments as well. Note that the shell ignores those lines
beginning with a pound sign # (explanatory comments).

#!/bin/bash
DATE=$(date +%Y-%m-%d)
echo "I am learning shell scripting"
echo "Today is $DATE"

In line #2, we create a variable named DATE with the contents of the command
enclosed within $(). This syntax tells Bash to run whatever command we specify
between $() and assign the output to the variable.

Once the script has been written and saved, we need to make it executable:

chmod +x myscript.sh

Before running our script, we need to say a few words about the $PATH environment
variable, a special kind of variable that is available from the moment you login using
a console or a terminal. If we run

echo $PATH

from the command line, we will see the contents of $PATH: a colon-separated list of
directories that are searched when we enter the name of a executable program. It is
called an environment variable because it is part of the shell environment - a set of
information that becomes available for the shell and its child processes when the shell
is first started.

When we type a command and press Enter, the shell searches in all the directories
listed in the $PATH variables and executes the first instance that is found. Let’s see an
example:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 34

If there are two executable files with the same name, one in /usr/local/bin and
another in /usr/bin, the one in the first directory will be executed first, whereas the
other will be disregarded.

If we haven’t saved our script inside one of the directories listed in the $PATH
variable, we need to prepend ./ to the file name in order to execute it:

./myscript.sh

Otherwise, we can run it just as we would do with a regular command:

myscript.sh

Flow Control

Whenever you need to specify different courses of action to be taken in a shell script,
as result of the success or failure of a command, you will use the if construct to define
such conditions. Its basic syntax is:

if CONDITION; then
COMMANDS

else
OTHER-COMMANDS

fi

where CONDITION can be one of the following (only the most frequent conditions
are cited here) and evaluates to true when:

● [-a file] file exists.→
● [-d file] file exists and is a directory.→
● [-f file] file exists and is a regular file.→
● [-u file] file exists and its SUID (set user ID) bit is set.→
● [-g file] file exists and its SGID bit is set.→
● [-k file] file exists and its sticky bit is set.→
● [-r file] file exists and is readable.→
● [-s file] file exists and is not empty.→
● [-w file] file exists and is writable.→
● [-x file] is true if file exists and is executable.
● [string1 = string2] the strings are equal.→
● [string1 != string2] the strings are not equal.→
● [int1 op int2] where op is one of the following comparison operators:

 -eq --> is true if int1 is equal to int2.
 -ne --> true if int1 is not equal to int2.
 -lt --> true if int1 is less than int2.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 35

 -le --> true if int1 is less than or equal to int2.
 -gt --> true if int1 is greater than int2.
 -ge --> true if int1 is greater than or equal to int2.

Loops

This loop allows to execute one or more commands for each value in a list of values.
Its basic syntax is:

for item in SEQUENCE; do

COMMANDS;
done

where item is a generic variable that represents each value in SEQUENCE during each
iteration.

While Loops

This loop allows to execute a series of repetitive commands as long as the control
command executes with an exit status equal to zero (successfully). Its basic syntax is:

while EVALUATION; do
EXECUTE_COMMANDS

done

where EVALUATION_COMMAND can be any condition that can evaluate to true or
false, and EXECUTE_COMMANDS can be any program, script or shell construct,
including other nested loops.

Putting it all Together

We will demonstrate the use of the if construct and the for loop with the following
example.

Determining if a service is running in a systemd-based distro

Let’s create a file with a list of services that we want to monitor at a glance:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 36

Our shell script (for_demo.sh) should look like:

#!/bin/bash

This script iterates over a list of services and
is used to determine whether they are running or not.
LIST=$(cat myservices.txt)

for service in $LIST; do
 systemctl --quiet is-active $service
 if [$? -eq 0]; then
 echo "$service is [ACTIVE]"
 else
 echo "$service is [INACTIVE, NOT INSTALLED, OR UNKNOWN]"
 fi
done

Let’s explain how the script works:

1) The LIST variable is populated with the output of

cat myservices.txt

2) During each iteration, service represents the value of an element inside LIST. For
each element of LIST, the following command will be executed:

systemctl status $service | grep --quiet "running"

This time we need to precede our generic variable (which represents each element in
LIST) with a dollar sign to indicate it’s a variable and thus its value in each iteration
should be used.

The output is then piped to grep. When that happens, the above command returns an
exit status of 0 (represented by $? in the if construct), thus verifying that the service is
running. An exit status different than 0 indicates that the service is not running.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 37

We could go one step further and check for the existence of myservices.txt before
even attempting to enter the for loop

#!/bin/bash

This script iterates over a list of services and
is used to determine whether they are running or not.
LIST=$(cat myservices.txt)

if [-f myservices.txt]; then
 for service in $LIST; do
 systemctl status $service | grep --quiet "running"
 if [$? -eq 0]; then
 echo $service "is [ACTIVE]"
 else
 echo $service "is [INACTIVE or NOT INSTALLED]"
 fi
 done
else
 echo "myservices.txt is missing"
fi

Pinging a series of network or internet hosts for reply statistics

You may want to maintain a list of hosts in a text file and use a script to determine
every now and then whether they’re pingable or not (feel free to replace the contents
of myhosts and try for yourself). The read shell built-in command tells the while loop
to read myhosts line by line and assigns the content of each line to variable host,
which is then passed to the ping command.

#!/bin/bash

This script is used to demonstrate the use of a while loop

while read host; do
 ping -c 2 $host
done < myhosts

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 38

Exercises 5.1

5.1.1: Write a shell script that saves the list of running processes to a file named
process_list.txt in the current directory. Use the custom format to display only the PID,
PPID, CMD, %CPU, and %MEM, sorted by %CPU in descending form.

5.1.2: Write a shell script that finds all files with permissions 777 (read, write, and
execute permissions allowed for all users in the system) and changes them to 644
(read and write permissions for the owner, and only read privileges for the rest). Hint:
use the -perm option as explained in Chapter 4.

Further Reading

http://www.tecmint.com/category/bash-shell/

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 39

Chapter 7 - Maintaining Software using APT and
YUM

In this chapter, you will learn:

 Use aptitude or yum to search for, install, update, or remove packages.
 Extra reading (links to related Tecmint articles)
 Exercises

When we speak of package management in Linux, we refer to a method of installing
and maintaining (which includes updating and probably removing as well) software on
the system.

In the early days of Linux, programs were only distributed as source code, along with
the required man pages, the necessary configuration files, and pretty much nothing
more. Nowadays, most Linux distributors use by default pre-built programs or sets of
programs called packages, which are presented to users ready for installation on that
distribution.

How Package Management Systems Work

If a certain package requires a certain resource -such as a shared library, or another
package-, it is said to have a dependency. All modern package management systems
provide some method of dependency resolution to ensure that when a package is
installed, all of its dependencies are installed as well.

Almost all the software that is installed on a modern a Linux system will be found on
the Internet. It can either be provided by the distribution vendor through central
repositories (which can contain several thousands of packages, each of which has
been specifically built, tested, and maintained for the distribution) or be available in
source code that can be installed downloaded and installed manually.

Because different distribution families use different packaging systems (Debian:
*.deb / CentOS: *.rpm), a package intended for one distribution will not be
compatible with another distribution.

In order to perform the task of package management effectively, you need to be
aware that you will have available two types of utilities: low-level tools (which handle
in the backend the actual installation, upgrade, and removal of package files), and

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 40

high-level tools (which are in charge of ensuring that the tasks of dependency
resolution and metadata searching -”data about the data”- are performed).

DISTRIBUTION LOW-LEVEL TOOL HIGH-LEVEL TOOL

Debian and derivatives dpkg apt-get / aptitude

CentOS rpm yum

The most frequent tasks that you will do with high and low level package
management tools are listed in the following sections.

Installing a Package from a compiled (*.deb or *.rpm) file

The downside of this installation method is that no dependency resolution is
provided. You will most likely choose to install a package from a compiled file when
such package is not available in the distribution’s repositories and therefore cannot be
downloaded and installed through a high-level tool.

Since low-level tools do not perform dependency resolution, they will exit with an
error if we try to install a package with unmet dependencies. To illustrate, we will use
a fictitious file named file.deb for Debian and derivatives, and file.rpm for CentOS
and similar distributions:

dpkg -i file.deb

rpm -i file.rpm

Upgrading a Package from a Compiled File

Again, you will only upgrade an installed package manually when it is not available in
the central repositories.

dpkg -i file.deb

rpm -Uvh file.rpm

Listing Installed Packages

When you first get your hands on an already working system, chances are you’ll want
to know what packages are installed:

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 41

dpkg -l

rpm -qa

If you want to know whether a specific package is installed, you can pipe the output of
the above commands to grep. Suppose we need to verify if package mysql-common is
installed on an Ubuntu system:

dpkg -l | grep mysql-common

Another way to determine if a package is installed:

dpkg --status package_name

rpm -q package_name

For example, let’s find out whether package sysdig is installed on our system

Finding out which package installed a file

dpkg --search file_name

rpm -qf file_name # CentOS / openSUSE

For example, which package installed pw_dict.hwm?

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 42

Searching for a Package

To search for a package by name, do

aptitude search package_name

yum search package_name

yum search all package_name

When you use search all, yum will search for package_name not only in package
names, but also in package descriptions.

Installing or updating a package from a repository

While installing a package, you may be prompted to confirm the installation after the
package manager has resolved all dependencies. Note that running update or refresh
(according to the package manager being used) is not strictly necessary, but keeping
installed packages up to date is a good sysadmin practice for security and dependency
reasons.

Depending on your chosen distro, you will use one of the following options to install
package_name:

aptitude install package_name

yum install package_name

If you want to update a package that is already installed, replace install with safe-
upgrade in aptitude and install with update in yum. Next, we’ll learn how to remove a
package using the same tools.

Removing a Package

In Debian and derivatives, do

aptitude remove package_name

or

aptitude purge package_name

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 43

where remove will uninstall the package but leave its configuration files intact,
whereas purge will erase every trace of the program from your system.

Most (if not all) package managers will prompt you, by default, if you’re sure about
proceeding with the uninstallation before actually performing it. So read the
onscreen messages carefully to avoid running into unnecessary trouble!

Displaying information about a package

After performing a search for a package, you may want to view additional
information about it. Both aptitude and yum provide a method to do it:

aptitude show package_name

yum info package_name

The following command will display information about the birthday and htop
packages:

aptitude show birthday

yum info htop

Exercises 6.1

6.1.1: Use aptitude to find information about htop, and then install it.

6.1.2: Use yum search and search all to find all packages with the word tools in their
name or description.

Further Reading

Links to articles published in Tecmint.com...

http://www.tecmint.com/linux-package-management/

https://www.tecmint.com/20-practical-examples-of-rpm-commands-in-linux/

http://www.tecmint.com/dpkg-command-examples/

http://www.tecmint.com/20-linux-yum-yellowdog-updater-modified-commands-
for-package-mangement/

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 44

http://www.tecmint.com/linux-package-management/

https://www.tecmint.com/apt-advanced-package-command-examples-in-ubuntu/

Chapter 8 - Network Operations

In this chapter, you will learn:

● Installing and configuring an SSH server
● Copying files securely over the network
● Extra reading (links to related Tecmint articles)
● Exercises

As a system administrator you will often have to log on to remote systems to perform
a variety of administration tasks using a terminal emulator. You will rarely sit in front
of a real (physical) terminal, so you need to set up a way to log on remotely to the
machines that you will be asked to manage.

In fact, that may be the last thing that you will have to do in front of a physical
terminal. For security reasons, using Telnet for this purpose is not a good idea, as all
traffic goes through the wire in unencrypted, plain text. Instead, we will use SSH - a
network protocol that provides a secure way to access a remote server.

Installing and Securing a SSH Server

For you to be able to log on remotely to a remote system using SSH, you will have to
do:

yum update && yum install openssh openssh-servers

or

aptitude install openssh-server

After installation, there is a couple of basic things that you need to take into account if
you want to secure remote access to your SSH server. The following settings should
be present in the /etc/ssh/sshd_config file.

1) Change the port where the sshd daemon will listen on from 22 (the default value) to
a high port (~2000 or greater), but first make sure the chosen port is not being used.
For example, let’s suppose you choose port 2500. Use netstat (a tool included in the

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 45

https://www.tecmint.com/apt-advanced-package-command-examples-in-ubuntu/

net-tools package in CentOS, and out of the box in Debian and derivatives) in order
to check whether the chosen port is being used or not:

netstat -npltu | grep 2500

If the above command does not return anything, you can safely use port 2500 for
sshd, and you should change the Port setting in the configuration file as follows:

Port 2500

2) Only allow SSH protocol 2:

Protocol 2

3) Configure the authentication timeout to 2 minutes, do not allow root logins, and
restrict to a minimum the list of users which are allowed to login via ssh:

LoginGraceTime 2m
PermitRootLogin no
AllowUsers gacanepa

4) If possible, use key-based and disable password authentication:

PasswordAuthentication no
RSAAuthentication yes
PubkeyAuthentication yes

Before this, you will need to create a pair of private and public keys and copy the
public one from your local machine to the server. To do it, use

ssh-keygen -t rsa

After running the above command, press Enter a few times to accept the default
options until you get taken back to the command prompt. Next, go to your home
directory and type

ssh-copy-id -i .ssh/id_rsa.pub192.168.0.100

to transfer the public key to the remote server with IP 192.168.0.100. You will be
prompted to enter the password for your current account in the remote server once.
Afterwards, you will be able to login without a password by doing

ssh 192.168.0.100

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 46

Transferring files securely over the network

If you need to ensure security while transferring or receiving files over a network, and
specially if you need to perform that operation over the Internet, you will want to
resort to 2 secure methods for file transfers: scp and sftp. Both should have been
installed along with openssh.

Transferring files with scp (secure copy)

Use the -P flag if SSH on the remote hosts is listening on a port other than the default
22. The -p switch will preserve the permissions of local_file after the transfer, which
will be made with the credentials of remote_user on remote_hosts. You will need to
make sure that /absolute/path/to/remote/directory is writeable by this user.

scp -P XXXX -p local_file
remote_user@remote_host:/absolute/path/to/remote/directory

Receiving files with scp

You can also download files with scp from a remote host:

scp remote_user@remote_host:myFile.txt /absolute/path/to/local/directory

Or even between two remote hosts (in this case, copy the file myFile.txt from
remote_host1 to remote_host2):

scp
remote_user1@remote_host1:/absolute/path/to/remote/directory1/myFile.txt
remote_user1@remote_host2:/absolute/path/to/remote/directory2/

Don’t forget to use scp -P followed by the port number if SSH is listening on a port
other than the default 22.

Sending and receiving files with SFTP

Unlike SCP, SFTP does not require previously knowing the location of the file that we
want to download or send.

This is the basic syntax to connect to a remote host using SFTP:

sftp -oPort=XXXX username@host

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 47

where XXXX represents the port where SSH is listening on host, which can be either a
hostname or its corresponding IP address. You can omit the -oPort flag if SSH is
listening on its default port (22).

Once the connection is successful, you can issue the following commands to send or
receive files:

get -Pr [remote file or directory] # Receive files
put -r [local file or directory] # Send files

In both cases, the -r switch is used to recursively receive or send files, respectively. In
the first case, the -P option will also preserve the original file permissions.

To close the connection, simply type “exit” or “bye”.

Exercises 7.1

7.1.1: What are the permissions of the id_rsa and id_rsa.pub files? Hint: these files are
located in a hidden subdirectory named .ssh inside your /home directory. Use the file
command to determine their corresponding file types.

7.1.2: Transfer the file created in 5.1.1 to a directory named rem_files on the remote
server (IP 192.168.0.100) via scp. Assume SSH is listening on port 10543 on the remote
host. We are assuming the current local user account has write permissions on that
directory

Further Reading

Links to articles published in Tecmint.com...

http://www.tecmint.com/ssh-interview-questions/

http://www.tecmint.com/sftp-command-examples/

http://www.tecmint.com/scp-commands-examples/

http://www.tecmint.com/sftp-upload-download-directory-in-linux/

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 48

Appendix A - Compression and Archiving

A file archiving tool groups a set of files into a single standalone file that we can
backup to several types of media, transfer across a network, or send via email. The
most frequently used archiving utility in Linux is tar.

When an archiving utility is used along with a compression tool, it allows to reduce
the disk size that is needed to store the same files and information.

The tar utility

tar bundles a group of files together into a single archive (commonly called a tar file
or tarball). The name originally stood for tape archiver, but we must note that we can
use this tool to archive data to any kind of writeable media (not only to tapes).

Tar is normally used with a compression tool such as gzip, bzip2, or xz to produce a
compressed tarball.

Basic syntax:

tar [options] [path ...]

where … represents the expression used to specify which files should be acted upon.

Most commonly used tar commands

Long option Abbreviation Description

--create c Creates a tar archive

--concatenate A Appends tar files to an archive

--append r Appends files to the end of an archive

--update u Appends files newer than copy in
archive

--diff or --compare d Find differences between archive and
file system

--file ARCHIVE f Use archive file or device ARCHIVE

--list t Lists the contents of a tarball

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 49

--extract or --get x Extracts files from an archive

Normally used operation modifiers

Long option Abbreviation Description

--directory dir C Changes to directory dir before
performing operations

--same-permissions p Preserves original permissions

--verbose v Lists all files read or extracted.
When this flag is used along with --
list, the file sizes, ownership, and
time
stamps are displayed.

--verify W Verifies the archive after writing it

--exclude file --- Excludes file from the archive

--exclude=pattern X Exclude files, given as a PATTERN

--gzip or --gunzip z Processes an archive through gzip

--bzip2 j Processes an archive through bzip2

--xz J Processes an archive through xz

The Gzip utility

Gzip is the oldest compression tool and provides the least compression, while bzip2
provides improved compression. In addition, xz is the newest but (usually) provides
the best compression.

This advantages of best compression come at a price: the time it takes to complete
the operation, and system resources used during the process.

Normally, tar files compressed with these utilities have .gz, .bz2, or .xz extensions,
respectively. In the following examples we will be using these files: file1, file2, file3,
file4, and file5.

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 50

EXAMPLE 1: Group all the files in the current working directory and compress the
resulting bundle with gzip, bzip, and xz (please note the use of a regular expression to
specify which files should be included in the bundle - this is to prevent the archiving
tool to group the tarballs created in previous steps)

tar czf myfiles.tar.gz file[0-9]
tar cjf myfiles.tar.bz2 file[0-9]
tar cJf myfile.tar.xz file[0-9]

EXAMPLE 2: List the contents of a tarball and display the same information as a long
directory listing. Note that update or append operations cannot be applied to
compressed files directly (if you need to update or append a file to a compressed
tarball, you need to uncompress the tar file and update / append to it, then compress
again).

tar tvf [tarball]

Run any of the following commands:

 gzip -d myfiles.tar.gz
 bzip2 -d myfiles.tar.bz2
 xz -d myfiles.tar.xz

Then

tar --delete --file myfiles.tar file4 (deletes the file inside the
tarball)

tar --update --file myfiles.tar file4 (adds the updated file)

and

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 51

1. gzip myfiles.tar, if you choose #1 above.
2. bzip2 myfiles.tar, if you choose #2.
3. xz myfiles.tar, if you choose #3.

Finally, do

tar tvf [tarball]

again

and compare the modification date and time of file4 with the same information as
shown earlier.

EXAMPLE 3: Suppose you want to perform a backup of users’ home directories. A
good sysadmin practice would be (may also be specified by company policies) to
exclude all video and audio files from backups.

Maybe your first approach would be to exclude from the backup all files with an .mp3
or .mp4 extension (or other extensions). What if you have a clever user who can
change the extension to .txt or .bkp, your approach won’t do you much good. In order
to detect an audio or video file, you need to check its file type with file. The following
shell script will do the job:

#!/bin/bash
Pass the directory to backup as first argument.
DIR=$1
Create the tarball and compress it. Exclude files with the MPEG string
in its file type.
-If the file type contains the string mpeg, $? (the exit status of the
most recently executed command) expands to 0, and the filename is
redirected to the exclude option. Otherwise, it expands to 1.
-If $? equals 0, add the file to the list of files to be backed up.
tar X <(for i in $DIR/*; do file $i | grep -i mpeg; if [$? -eq 0]; then
echo $i; fi;done) -cjf backupfile.tar.bz2 $DIR/*

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 52

Summary

This book is intended as an introduction to the Linux command line and as a
reference guide for intermediate and advanced users.

We believe learning Linux should not be difficult, and should not cost you an
exaggerate amount of time or money.

We are not only passionate about Linux and other Free and Open Source
technologies, but also about teaching those topics.

That is why, by buying this material, you don’t just get the ebook to learn on your
own – you also get our support to answer questions and free updates when we release
them.

Happy learning!

© 2022 Tecmint.com - Last Revised: July 2022 - All Rights Reserved 53

	Copyright Notice
	Important Notice
	Chapter 1: Introduction to Linux
	What is Linux?
	A Little History
	Running Linux for the First Time
	Importing a Virtual Machine
	Guest Additions and the Extension Pack

	Chapter 2: Files and Directories in Linux
	The Filesystem Hierarchy Standard
	What is the Shell?
	Navigating the System
	Exercises 1.1

	More commands to work with files and directories
	Exercises 1.2

	Redirection and Pipelines
	History and Tab Completion
	Exercises 1.3

	Further Reading

	Chapter 3 - Permissions and Ownership
	Adding and Modifying User Accounts and Groups
	Exercises 2.1

	File Permissions and Ownership
	Exercises 2.2

	Removing Users and Groups
	Exercises 2.3

	Further Reading

	Chapter 4 - Finding and Describing Files
	Finding Files in the System
	Searching for Files by Name
	Searching by Permissions
	Searching by Size
	Searching by Owner or Group Owner
	Searching by Access or Modification Time
	Performing Operations on the Search Results

	Determining a File’s Type
	Exercises 3.1

	Further Reading

	Chapter 5 – Linux Processes
	Reporting Current Processes with ps
	Displaying a Tree of Processes with pstree
	Exercises 4.1

	Monitoring Linux Processes with top
	Killing Processes
	Exercises 4.2

	Modifying Process Execution Priorities
	Using nice
	Using renice
	Exercises 4.3

	Chapter 6 – Linux Shell Scripts
	Flow Control
	Loops
	While Loops
	Putting it all Together
	Determining if a service is running in a systemd-based distro
	Pinging a series of network or internet hosts for reply statistics
	Exercises 5.1

	Further Reading

	Chapter 7 - Maintaining Software using APT and YUM
	How Package Management Systems Work
	Installing a Package from a compiled (*.deb or *.rpm) file
	Upgrading a Package from a Compiled File
	Listing Installed Packages
	Finding out which package installed a file
	Searching for a Package

	Installing or updating a package from a repository
	Removing a Package
	Displaying information about a package
	Exercises 6.1

	Further Reading

	Chapter 8 - Network Operations
	Installing and Securing a SSH Server
	Transferring files securely over the network
	Transferring files with scp (secure copy)
	Receiving files with scp
	Sending and receiving files with SFTP
	Exercises 7.1

	Further Reading
	Appendix A - Compression and Archiving
	The tar utility
	Most commonly used tar commands
	The Gzip utility

	Summary

