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Abstract 

 Transcranial magnetic stimulation (TMS) is a burgeoning field of medicine currently 

under intense study exploring its therapeutic and diagnostic applications. One such study at the 

Massachusetts General Hospital (MGH) concerns a patient who had a seizure while undergoing 

TMS treatment for medication-resistant depression. The purpose of this Major Qualifying Project 

was to create an accurate model of the patient from T1 and T2 magnetic resonance imaging 

(MRI) data using a complex toolchain of medical imaging and mesh processing software. 

ANSYS Maxwell was used to conduct a finite element analysis (FEA) of the patient’s unique 

cranial geometry to calculate the electric field inside the cortex during a simulated TMS 

procedure. This analysis was done to gain insight into the cause of the patient’s seizure. 

Additionally, this project aimed to make recommendations for the process of rapid 3D surface 

mesh generation from T1 and T2 MRI data. This recommendation is significant in the safety and 

individualized setup of TMS procedures.  
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Background 

Transcranial Magnetic Stimulation 

 Transcranial magnetic stimulation (TMS) is the induction of an electric field in the brain 

by a pulsed magnetic field generated using an excited coil placed close to the skull [1]. This 

electric field can depolarize neurons and thereby modulate cortical function [2]. Several TMS 

devices have been approved by the FDA as a noninvasive treatment for medication-resistant 

depression [3]. Stimulation devices typically consist of a transducing coil attached to a discharge 

system capable of delivering 400 V-3 kV and 4 kA-20 kA [4]. This results in 1.5-2.0 Tesla (T) at 

the face of the coil and can induce electric fields in the brain up to approximately 150 V/m. It is 

assumed that the field can activate neurons at a depth of 1.5-3.0 cm [5]. TMS treatments are 

typically delivered in trains of pulses. There are 4 key parameters which define TMS dosing: 

train duration, inter-train interval, intensity, and frequency. A course of treatment may consist of 

many 30-minute TMS sessions and may include maintenance sessions [6]. 
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Figure 1. On left is an example of a TMS coil from US Patent 6179770 [7] and on right is the coil 

geometry used in this project’s simulations. 

 

Applications of TMS 

 In addition to its use in treating depression, TMS has applications in research, 

discovering associations between stimulated brain regions and their resulting behaviors. These 

links could then be used diagnostically to evaluate damage from stroke, and other injuries or 

disorders affecting neurons [8]. Additionally, there is evidence that it may be useful in treating 

neuropathic pain [9]. TMS has been suggested for use in the treatment of maternal depression 

thereby bypassing fetal exposure to drugs, but further study is required [10]. To this end, there 

are many clinical trials investigating TMS treatment for a variety of neuropsychiatric disorders 

[11]. 
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Safety of TMS 

A single pulse of TMS has been said to raise temperatures in the brain under 0.1 C [12]. 

High rates of blood flow in the brain provide a safety margin for brain-temperature increase [13]. 

TMS coils heat up significantly, however, and have the potential to induce currents in any 

implants or conductive materials present in the subject, causing additional heating and 

unintended cortical stimulation. Especially concerning is conductive surface electrodes made of 

silver or gold which can reach temperatures of 50-55 C, causing skin burns [14]. TMS may also 

damage the internal circuitry of implanted devices such as cochlear implants, deep brain 

stimulation systems, and cortical stimulation electrode arrays, causing them to malfunction. A 

meta-analysis concludes that TMS can be applied safely to patients with implanted stimulators of 

the nervous system if the TMS coil is not near the internal pulse generator [6]. Chronic 

electromagnetic field exposure possible during TMS treatment is well under accepted levels [15]. 

The most severe acute adverse effect of TMS treatment is induced seizures. Our case of 

accidental seizure occurred even after the definition of safety limits and the establishment, 

through several reported cases, that TMS can cause seizures [6]. A review of safety in TMS 

treatment for epilepsy recorded a 1.4% crude per-subject risk to develop a seizure, though this 

statistic is likely skewed low due to the presence of antiepileptic drugs in the subjects [16]. The 

risk of seizure during TMS treatment has been shown to be less than 1% in non-epileptic 

subjects. Other circumstances may increase the probability of seizure such as medications, 

diseases such as autism or stroke, and a history of seizures [6].  
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An effective way to understand the risks associated with TMS is to examine the 

questionnaire asked of patients prior to treatment. From Clinical Neurophysiology, the following 

is an updated screening questionnaire before TMS: 

 

1. Do you have epilepsy or have you ever had a convulsion or a  

seizure? 

2. Have you ever had a fainting spell or syncope? If yes, please 

describe in which occasion(s)? 

3. Have you ever had head trauma that was diagnosed as a concussion or was 

associated with loss of consciousness? 

4. Do you have any hearing problems or ringing in your ears? 

5. Do you have cochlear implants? 

6 . Are you pregnant or is there any chance that you might be? 

7. Do you have metal in the brain/skull or elsewhere in your body (e.g., 

splinters, fragments, clips, etc.)? If so, specify the type of metal. 

8. Do you have an implanted neurostimulator (e.g., DBS, epidural/subdural, VNS)? 

9. Do you have a cardiac pacemaker or intracardiac lines? 

10. Do you have a medication infusion device? 

11. Are you taking any medications? (Please list) 

12. Did you ever undergo TMS in the past? If so, were there any problems? 

13. Did you ever undergo MRI in the past? If so, were there any problems? 
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A patient saying “yes” to any one of these does not preclude them from TMS treatment, however 

the risk/benefit ratio of a “yes” answer should be examined by the researcher or physician 

conducting the TMS procedure [17]. 

 

Uncertainty in TMS Setup 

Currently, there is a great deal of uncertainty in the setup of the TMS procedure. 

Parameters which vary are location of the coil, size of the patient’s head, and conductivities of 

the tissue layers of the head, which all contribute to determining the patient’s threshold of 

stimulation [43]. The electric field distribution is susceptible to changes in these parameters and 

it is important to accurately target the cortical region of interest [6]. Therefore, it is important to 

quantify these parameters and minimize the uncertainty of the TMS procedure for each session. 

Coil targeting of the dorsolateral prefrontal cortex in depression clinical trials have used 

scalp landmark methods, which is a combination of visual targeting and elicitation of a motor 

twitch in the subject’s hand [44]. Frameless stereotaxy is also used to position the coil to 

anatomically defined targets [6].  It has been demonstrated that improved targeting using MRI in 

TMS for depression yielded better treatment outcomes [18]. However, MRI targeting is 

impractical for most TMS users.  

 

Guidelines for Induced Currents 

The International Commission on Non-Ionizing Radiation Protection (ICNIRP) provides 

guidelines for exposure levels to time-varying electric, magnetic, and electromagnetic fields [19, 

20]. These guidelines serve to protect people from the adverse health effects of nonionizing 
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radiation (NIR) up to 300 GHz. Currents exceeding those of human-originating bioelectric 

signals in tissues cause many adverse physiological effects which increase as induced current 

density increases [4]. At current densities of 10-100 mA/m2 modulation of brain cognitive 

function occurs. For frequencies of 10 Hz to 1 kHz, when current density exceeds 100 mA/m2, 

thresholds for neuronal stimulation are exceeded and potentially life-threatening effects such as 

respiratory failure may occur [19]. The possibility of permanent tissue damage becomes greater 

with prolonged exposure to strong induced current densities [4]. The ICNIRP guidelines for 

exposure to NIR in the band of 1-110 kHz for the human head and trunk are current densities 

below ƒ/500 mA/m2, where ƒ is the signal frequency in hertz. At 5 kHz, the maximum exposure 

recommended is 10 mA/m2 [20]. This estimate can also be stated in terms of the induced electric 

field by dividing current density by conductivity [4]. 

 

Computational Electromagnetics 

Overview 

Computational electromagnetics (CEM) is a broad category of processes that attempt to 

link electromagnetic theory and novel experimentation to accurately predict the behavior of 

electromagnetic systems through simulation. Researchers use this tool to simulate 

electromagnetic effects on discretized physical geometry in a parameterized environment. An 

example of discretized geometry as it pertains to this project is shown in Fig. 2. Maxwell’s 

equations are simplified (i.e. using boundary conditions) and solved numerically to find the 

electromagnetic wave propagation through a geometry in a reasonable time frame with available 

computing power.  
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Figure 2. An example of discretized geometry in two forms. The left hemisphere is represented by a 

surface CAD model. The right hemisphere uses a neural-fiber model. 

 

Computational electromagnetic procedures have gained traction within several fields 

such as antenna design, and other communication systems, but most notably within the medical 

community and medical device design [21]. Cellular phone manufacturers, automotive 

manufacturers, magnetic resonance imaging, functional brain imaging, and transcranial magnetic 

stimulation are a few examples of the myriad applications of electromagnetics within the scope 

of medicine. Computational electromagnetics has been identified as an influential tool during the 

development of medical devices and medical device applications by the Food and Drug 

Administration (FDA) [22].  

There are several solution methods for CEM and it is important to choose a technique 

appropriate for the problem. A poor choice of CEM method would mean inaccurate results or 

impractically long computation times. Furthermore, each method also has specific discretization 

strategies, involving geometries and basis functions, which have implications in development 

and computation time [42]. For this project, we used the finite element method (FEM) with 
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discretized geometry represented by a 3D CAD surface mesh model and vector basis functions 

[23]. 

 

Finite Element Method 

The FEM is a process that uses numerical methods to approximate solutions to 

differential equations. It is important to note that FEM is not limited to applications in 

computational electromagnetics and can be applied to study other physical phenomena such as 

mechanical stress and fluid flow. One of the advantages of the FEM is that the technique allows 

various governing equations to be adapted to it and regardless of this, the steps to the solution 

remain the same. However, a disadvantage to FEM compared to other CEM methods is the lack 

of an explicit solution [24]. Rather, the problem is realized with a system of linear equations and 

solved iteratively until convergence takes place [42]. This iterative numerical method can 

increase the need for computational resources significantly and solution time can be lengthy.  

One additional advantage to FEM is an adaptive mesh refinement procedure. When 

employed in conjunction with unstructured meshes like a 3D CAD surface mesh, the accuracy of 

the geometry can be adaptively increased until convergence is reached [42]. This results in a 

significant reduction in computation time without sacrificing the accuracy of the simulation. 

Materials of various properties are modeled in the method as well, with alterations of the 

equations relating to the behavior of certain terms [25]. 

 

From [24, 25], the steps for the Finite Element Method include the following:  

1. Separate the domain of the solution into non-overlapping, adjacent subdomains 



17 

 

2. Choose the applicable basis function to interpolate the solution variable over the 

subdomains  

3. Estimate the solution variable so that the sum of each element’s influence on that variable 

results in the overall solution  

4. Develop the solution using common methods such as the discontinuous Galerkin family 

of numerical methods [26] 

5. Solve the resulting system of equations after application of the boundary condition 

6. Post-process the results and check for validity  

 

Furthermore, one possible example for the governing equation for a one-dimensional 

boundary value problem (where Ѱ is the solution variable, with material characteristics ⍺ and 𝛽, 

and if applicable, forcing function, ƒ) is:  
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With the governing equation and the discretized solution domain defined, a basis function 

(otherwise known as an interpolating function or shape function) must be chosen. The Lagrange 

basis equation, or the basis for quadratic polynomials, for example, is shown in Eq. (b):  
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In Eq. (b), note that n is the number of nodes and when i = j, the result is disregarded. Next, we 

generate an estimate of the solution variable so that the sum of each element’s discrete solution is 

equal to the solution variable over the entire domain; following the example, this can be 

formulated in basis function form as:  
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When Eq. (c) is replaced into Eq. (a), we obtain an estimate of the solution in Eq. (d). 
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A minor variance between the numerical and analytical solution is found when Eq. (d) is set to 

zero. This variance is referred to as the residual, which is used when formulating the solution, 

and is shown in Eq. (e).  
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When formulating the solution using methods like the Galerkin Method of Weighted Residuals, 

the goal is to force the residual to zero over the solution domain. This is achieved by choosing 

coefficients or weighting functions and then integrating the weighted residual.  

Once every element in the system is characterized by the Galerkin Method of Weighted 

Residuals, they are collected together into a system of linear equations representing the entire 

solution domain [24]. The final calculation step is performed by imposing the boundary 

conditions, like Dirichlet or Neumann types, which are used to simplify and produce a well-

conditioned system of linear equations [24]. Post-processing is done to validate results and 

associate derived quantities to the discretized geometry. And, if the error value is too great than 

more adaptive passes may be performed, resulting in a finer mesh with more tetrahedra, and 

therefore greater accuracy [42]. 

 

Computational Modeling of Humans 

Overview 

 Computational modeling of humans concerns the creation of discretized geometry of the 

human body for use in finite element analysis (FEA). The goal is to create models for use 

simulation to better understand the interaction of physical fields and forces on the human body. 

This has a particularly interesting application in the design and validation of medical devices and 

in better understanding multifaceted biomedical problems [27]. It is well understood that 

computational modeling of humans can accelerate research by assisting scientists in conducting 

many simulated experiments to determine which potentially costly physical experiment will best 

illustrate the problem being researched [21]. Because of this, computational human models have 
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become a significant part of biomedical research and many full-body models have been 

completed to date [29]. 

 

Human Model Construction 

 In general, human models are created in one of two discretization schemes which have 

implications for the types of CEM problems to be solved, model development in terms of process 

and time, and it determines compatibility with commercial FEA solver packages [42]. One type 

is voxel models, which is the most commonly used scheme for commercial human CEM models 

[28]. The other type is a CAD model, which we use in this project. Voxel models are preferred as 

human CEM models because they easily represent non-homogeneous tissue regions, creating 

them from source images without the immense amount of processing required by a CAD model. 

Moreover, CAD models, despite their drawbacks in terms of creation and processing time, have 

a mathematical advantage: they can give a linear or polynomic approximation, as opposed to a 

staircase approximation for the voxel model [29]. Additionally, CAD models can be deformed 

and are able have their resolution be adaptively refined [30].  

 Segmentation is a process of creating voxel or CAD CEM models from a set of images.  

Fig. 3 illustrates the process of manual segmentation, which is recognized as the industry 

standard [29]. In Fig 3a, an image of a patella is outlined to capture its geometry. Repeating this 

process on each image while moving upward in the z-direction, a point cloud like the one seen in 

Fig. 3b is generated. From the point cloud, either a voxel model (Fig. 3d) or a CAD model (Fig. 

3c) may be created by connecting the points, in the case of a CAD model, or by creating voxels 

based on point location in the voxel model. A manual segmentation effort for a single model can 
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be measured in man-months or years [31]. As a result, there are also semi-automatic and 

automatic segmentation algorithms which use pixel contrast and probabilities to trace the 

boundaries of tissue geometry [32]. 

 

 

Figure 3. Illustration of segmentation procedure with CAD and voxel comparison. 

 

Specific Parameters for CAD Models  

 Because we will use a CAD model in this project, we will discuss some of the parameters 

necessary for a functional CAD model for CEM use. First, a 3D triangular mesh representing a 

solid object must have no holes. Secondly, the mesh must be strictly 2-manifold [29]. A mesh is 

considered 2-manifold if every edge is manifold with only two triangles attached. Any deviation 

from this parameter results in an invalid mesh. Three examples of manifoldness are illustrated in 

Fig. 4. 
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Figure 4. Illustrations of a) manifold edge, b) non-manifold edge, c) non-manifold node. 

  

 In addition to conditions related to the mesh itself, when multiple meshes representing 

different tissues are compiled into a larger model, the meshes must not intersect with each other 

[42]. Meshes fully enclosed within another mesh are fine. Usually the contact regions, where 

meshes must be extremely close without intersecting, are discovered through validation and 

corrected manually by slightly moving nodes in the direction opposite the contact region [42]. 

An example image of an intersected triangle as it would appear in ANSYS Maxwell’s mesh 

validation tool is shown in Fig. 5. 

 

Figure 5. Intersected triangle in ANSYS Maxwell’s mesh validation tool. 
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Mesh Refinement and Validation 

 After segmentation occurs, the mesh will go through a process of refinement to gain 

certain desirable characteristics. Decimation is performed to reduce the number of triangles in 

the model [33]. When a model is generated through segmentation, it may have up to hundreds of 

times the number of triangles desired. It may be infeasible to run a simulation on a mesh of that 

resolution using the computational resources available, therefore decimation is necessary. 

Smoothing is then performed to remove the sharp edges and improve triangle quality. Triangle 

quality is a measure of the acceptability of a triangular mesh for FEA simulations based on ratios 

of the geometric properties of the triangles [35]. We will use this ratio to measure the metric of 

minimum triangle quality, which is the value of the lowest quality triangle in the mesh. 

Minimum edge length of a triangle is another metric which is tracked to determine worst-case 

triangle properties which may affect simulation accuracy [42]. 

 An algorithm such as Laplacian smoothing may be used in which a new vertex location 

is defined based on regional information for each vertex in a neighboring mesh [36]. Intersection 

and triangle quality issues are resolved using mesh processing tools such as MeshLab and 

ANSYS Space Claim. An example of one triangle quality issue, overconnected edges, which can 

be resolved in SpaceClaim is shown in Fig. 6. Other types of intersection and quality issues 

which are resolved in the refinement and validation process are self-intersections, holes, non-

manifold nodes and vertices, spikes, fold overs, micro tunnels, and near-degenerate triangles 

[37]. 
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Figure 6. Overconnected edges as they appear in ANSYS SpaceClaim. 

 

 

Dielectric Properties  

In computational electromagnetics, models are described with their relative conductivity 

and permittivity of their tissues as functions of frequency. The standard data set from 10 Hz to 

100 GHz for most human tissues was the work of C. Gabriel supported by the US Air Force 

Research Laboratory [29]. Samples for dielectric properties are taken both in-vitro and in-vivo; 

the only dielectric properties taken in-vivo are surface level samples, whereas after death, in-

vitro, researchers able to gather samples of subsurface tissue such as white matter. Whether the 

in-vitro or in-vivo mechanism yields a significant difference, a difference that could potentially 

invalidate the results of a simulation, is still up for debate.  
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For the purposes of this project, the following tissues were used with their respective 

dielectric properties at a specific frequency of 5 kHz. The dielectric parameters are based on the 

Gabriel dispersion relationships [34].  

 

Tissue Source Permittivity (F/m) Elec. Cond. (S/m)  

Skin Skin (Dry) 1.13E+3 2.01E-4 

Skull (Cortical Bone) Skull (Cortical Bone) 8.40E+2 2.03E-2 

Cerebrospinal Fluid Cerebrospinal Fluid 1.09E+2 2.00E+0 

Brain (Grey Matter) Brain (Grey Matter) 4.23E+4 1.10E-1 

Brain (White Matter) Brain (White Matter) 2.09E+4 1.10E-1 

Blood Blood 5.23E+3 7.00E-1 

 

Table 1. Table of Material Properties used in this Project - Permittivity and Electrical Conductivity at a 

frequency of 5kHz. 

 

Methodology and Results 

Case Study & Problem Statement 

A Massachusetts General Hospital (MGH) case study concerning a patient who had a 

seizure while undergoing treatment for medication-resistant depression is the motivation for this 

project. The patient had an abnormality in his cerebral cortex, specifically in the region targeted 

by the TMS procedure. We received T1 and T2 (contrasted) magnetic resonance imaging (MRI) 

images from MGH and were tasked with creating a model of the human head and performing 
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FEM simulation to approximate the E field produced by the procedure. In addition to creating 

the model and performing simulations, we made recommendations for a process of rapid 3D 

surface mesh model generation, which would be of great benefit to the safety and individualized 

setup of a TMS procedure. 

 

Model Development 

Model development is the product of a large toolchain that includes SpaceClaim, 

MATLAB, MeshLab, PolyMender, Ramesh Cleaner, FreeSurfer, and Statistical Parametric 

Mapping (SPM). We followed the normal model development pathway discussed in the previous 

section consisting of segmentation, refinement and post-processing with a few modifications, 

particularly in terms of segmentation. We will now discuss briefly the myriad of individual 

software tools, both commercial and open source, used in the model development toolchain.  

 

Toolchain 

SPM 

Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/), developed by 

the Wellcome Department of Imaging Neuroscience at University College London, is a software 

tool used for the analysis of functional MRI data distributed as a MATLAB plugin. Its objective 

is to investigate the differences in brain activity recorded during fMRIs or PET scans. Voxels are 

used to describe the map of the area being scanned, independent of which type of imaging 

software is used. Using statistical data from many prior scanned functional MRI images, the 
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software package can determine which tissue classes each voxel belongs to and create maps 

which can be created into surface meshes using other software packages [38]. 

 

FreeSurfer  

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/), developed at the Athinoula A. Martinos 

Center for Biomedical Imaging at MGH is a software package whose function is to analyze MRI 

data to better visualize and map brain images. The most important feature to this project is its 

ability to produce surface meshes from MRI data [39].  

 

PolyMender 

PolyMender (http://www1.cse.wustl.edu/~taoju/code/polymender.htm), a program based 

on an algorithm developed by Tao Ju in his paper “Robust Repair of Polygonal Models” [40]. 

PolyMender outputs a closed surface that estimates the input polygonal model. The advantages 

of PolyMender include a relatively tiny amount of resources required (computer power and time 

on the researcher’s part), while producing a high-quality output consistent with the input 

geometry.  

 

MeshLab 

Meshlab (http://www.meshlab.net/), is an open source software package used to process 

and improve 3D triangular CAD meshes [41]. It is capable of a multitude of mesh processing 

functions, but we used it for filetype conversion and Laplacian smoothing in this project.  
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Ramesh Cleaner 

Ramesh Cleaner, developed by Marco Centin and Alberto Signoroni, is a software 

package designed to improve 3D triangular CAD meshes, mostly tailored for 3D object 

scanning. Ramesh cleaner is capable of automatically resolving the following common issues 

with 3D CAD meshes: isolated and degenerate vertices, spikes, fold overs, complex boundaries, 

self-intersections, holes, micro tunnels, and near-degenerate triangles [37]. 

 

Makarov’s MATLAB Scripts  

Custom MATLAB scripts written by Dr. Sergey Makarov and his lab were heavily 

utilized in this project. Many of the scripts are described and explained in his book, “Low-

Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB” 

[42]. Some of the functions performed by these scripts which were utilized in this project 

include: decimation, Laplacian smoothing, intersection and manifoldness validation, shortest 

edge decimation, and moving or translating nodes automatically. 

 

ANSYS SpaceClaim 

 ANSYS SpaceClaim, a 3D CAD modeling software application packaged as part of 

ANSYS simulation software, is one of the most utilized tools in the toolchain. SpaceClaim is 

used in any of the manual node and facet manipulations done on the project. As such, hundreds 

of man-hours were spent in this program correcting meshes and resolving intersections manually. 

It is also one of the better tools, along with Ramesh Cleaner, for fixing holes, self-intersections, 

and over-connected edges.  
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ANSYS Maxwell 

ANSYS Maxwell is a Finite Element Analysis software that focuses on electromagnetic 

field simulation. The software utilizes finite element method techniques to resolve frequency-

domain electromagnetic and electric fields [29]. One of the key features of Maxwell is its 

adaptive meshing which results in faster computation runtime while converging to desired error 

[29]. The inputs of this software are the object’s geometry, material properties, the defined the 

output of interest, and simulation parameters. The output is a set of data for each point in the 

model based on the governing equation of interest. 

 

Model Generation Methodology 

Semi-Automatic Segmentation 

SPM was used to employ its semi-automatic segmentation algorithm in the first round of 

segmentation for this project. The input to SPM was T1 and T2 MRI images and the output was 

in the form of a voxel image map for the skin, skull, cerebrospinal fluid (CSF), grey matter 

(GM), and white matter (WM).  We used the default segmentation settings and tissue probability 

maps with all seven tissue Gaussians specified to capture as much of the geometry as possible. 

These voxel image maps were imported into FreeSurfer, which allowed us to extract a 3D 

surface mesh from the voxel image map. This process resulted in a mesh which meets none of 

the parameters for a 3D CAD surface mesh and has geometry represented inside two (GM, WM) 

of the mesh shells which was extracted into its own set of 2-manifold meshes.  
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Decimation and Additional Segmentation 

  To make meshes easier to work with manually and for performance considerations 

meshes were decimated after semi-automatic segmentation by an order of 10-100. Custom 

MATLAB scripts were utilized to perform this operation. SpaceClaim was then utilized to 

further segment and clean the semi-automatic segmentation from SPM. The output meshes from 

SPM contained a lot of geometry inside, some of which was captured, and the undesirable 

portion was deleted. These triangles are deleted because it would violate the rules of a 3D CAD 

mesh that it must be 2-manifold and non-intersecting while other tissue shells must be fully 

contained inside the outer tissue layer shell.  

The result of this operation was the capture of 3 additional meshes pertaining to the 

patient’s abnormality. These included an edema mesh, and two meshes for the abnormality’s 

inner and outer layer. These layers and edema were identified and correlated to the MRI data 

viewed in FreeSurfer.  An additional round of decimation was performed to approximately reach 

the target triangle threshold of 125,000 triangles. This number was chosen to estimate a 

simulation time of about 24-48 hours with 3 adaptive passes through experience with the 

simulation systems and the ANSYS software platform.  

 

Post-Processing & Mesh Validation 

 In post-processing, the meshes are smoothed with Laplacian smoothing using either 

MATLAB or MeshLab to achieve the same result. At this point, we had isolated the geometry, 

decimated it to the required number of triangles, and improved triangle quality using Laplacian 

smoothing. The next step in the process was mesh validation. The individual meshes were 

validated in SpaceClaim and corrected of the countless triangle problems that can occur, such as 
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holes, as was discussed in the CEM model background section. Triangle quality is also an 

important consideration at this stage and MATLAB scripts were utilized to improve the overall 

triangle quality of some meshes.  

The skull mesh was especially difficult to achieve adequate triangle quality and produce 

an accurate mesh. This is due to the complex geometry of the skull’s orbital bones and sinus 

cavities. As a result, the team spent the greatest amount of time on the skull model. PolyMender 

was employed to generate a new mesh for the GM which improved the mesh processing and 

validation time from tens of hours to just one or two. The PolyMender algorithm was not 

effective when applied to the skull model, especially when compared to the success of the GM, 

again likely due to its complex geometry.  

After the individual meshes are validated, they must all be placed into ANSYS Maxwell 

for a more rigorous individual mesh validation and validation of the model as whole by checking 

for intersections between meshes in and around contact regions. This took the second greatest 

amount of time to complete. When intersections are indicated in ANSYS Maxwell’s validation 

procedure, they must then be located by inspection in SpaceClaim. Once the triangles of interest 

are located, nodes are moved or, facets are deleted and recreated, to resolve the intersection. This 

process repeats for each intersection in each mesh until all are resolved and validation is 

successful inside ANSYS Maxwell. If large area of intersection was detected, MATLAB scripts 

were used to attempt to automatically resolve the intersections. It achieved this result by moving 

nodes slightly and checking for intersections in an automated fashion with somewhat limited 

results. The fastest way to resolve intersections is manually. A flow chart of the process 

explained above is available in Fig. 7. 
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Figure 7. Flow chart of model development procedure with toolchain items in boxes and arrows labeled 

with processes. 

 

Model Results 

The resulting final meshes have the following properties: 

• All meshes are strictly 2-manifold 

• All meshes do not intersect 

• Referring to Table 2, meshes 2 through 8 are contained within the skin mesh 

• Meshes 4 through 8 are contained within the CSF mesh 

• Meshes 5 through 8 are contained within the GM mesh 

• Meshes 7 and 8 are contained within the Edema mesh 

• Mesh 8 is within the Tumor (outer) mesh 
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Table 2 contains the relevant statistics for each mesh. The final total number of triangles in the 

model is 134,171. Each individual mesh is presented in Fig. 8-15. A cross-section of the entire 

model with each tissue mesh labeled is available in Fig. 16. 

 

Mesh Num. of 

triangles 

Min. triangle 

quality 

Min. edge 

length (mm) 

01 SKIN 9982 0.06 0.64 

02 SKULL 27668 0.0002 0.10 

03 CSF 5992 0.03 0.72 

04 GM 25000 0.03 0.45 

05 WM 49044 0.02 0.37 

06 EDEMA 7530 0.06 0.18 

07 TUMOR 

OUTER 

3732 0.02 0.16 

08 TUMOR 

INNER 

5332 0.11 0.12 

Table 2. Model results tabulation including mesh name, number of triangles, minimum triangle quality, 

and minimum edge length. 
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Figure 8. Completed and validated 3D CAD surface mesh of the skin, which contains 9,982 triangles. 

 

Figure 9. Completed and validated 3D CAD surface mesh of the skull, which contains 27,668 triangles. 
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Figure 10. Completed and validated 3D CAD surface mesh of the CSF, which contains 5,992 triangles. 

 

Figure 11. Completed and validated 3D CAD surface mesh of the GM, which contains 25,000 triangles. 
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Figure 12. Completed and validated 3D CAD surface mesh of the WM, which contains 49,044 triangles. 

 

Figure 13. Completed and validated 3D CAD surface mesh of the edema, which contains 7,530 triangles. 
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Figure 14. Completed and validated 3D CAD surface mesh of the tumor (outer), which contains 3,732 

triangles. 

 

Figure 15. Completed and validated 3D CAD surface mesh of the tumor (inner), which contains 5,332 

triangles. 
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Figure 16. Full head model cross-section with visible tissue mesh layers labeled. 

 

Rapid Modeling Recommendation 

 My recommendation for rapid mesh generation is to create a custom solution for surface 

mesh extraction from the SPM voxel image maps. A lot of time and effort could be saved by 

producing a higher-quality mesh at the conversion step. If that is not possible, I would 

recommend the use of PolyMender directly after FreeSurfer mesh generation. It generates an 

entirely new surface mesh where you can designate the desired resolution and it aims to create a 

manifold, water-tight shell. From Tao Ju’s paper, Robust Repair of Polygonal Models, “The 

method is guaranteed to produce a closed surface that partitions the space into disjoint internal 

and external volumes” [40]. Using this as a starting point for post-processing saves an incredible 

amount of time especially on meshes like the skin, CSF, GM and WM. The skull was less 
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successful with this method due to its complexity (i.e. sinus cavities and orbital bones). Ramesh 

Cleaner along with manual correction in SpaceClaim were the two tools most useful for the 

creation and refinement of the skull mesh.  

 

Simulation in ANSYS Maxwell  

For the simulation of this project ANSYS Maxwell was used. An Eddy current simulation 

was performed with a 5 kHz sine wave from a 1 kA excitation at the modeled coil directed to the 

cortex. The setup for the simulation consisted of creating the coil geometry (radius 2.5cm), 

setting the dielectric properties for the materials (including air), importing and validating all the 

meshes in ANSYS Maxwell, including resolving inter-mesh intersections and inverted triangles. 

We set the simulation to run on 8 cores for 3 adaptive passes for a final mesh of approximately 

1,000,000 tetrahedra. With these parameters, the simulation took about a day to run. We then 

create the images by cutting through the model at various depths to display the E field on that 

plane for presenting to MGH researchers. 

 

Simulation Parameters 

We carried out two simulations to demonstrate the effect the patient’s abnormality had on 

the E field in his cortex. In the first simulation, the edema, tumor (outer), and tumor (inner) were 

set to the same values as WM, with permittivity of 2.09E+4 and a conductivity of 1.10E-1, as 

shown in Table 1. This provides a simulation on the patient’s geometry with the WM as one 
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homogeneous region. Essentially, his abnormality can be considered not present in the “normal” 

simulation results. Other tissues were set to their appropriate values as per Table 1. 

 

The second simulation contains the abnormal properties for edema, tumor (outer), and 

tumor (inner). Edema is assigned an average of blood and WM (1.77e4, 3.83e-1); Tumor (inner), 

and Tumor (outer) are both assigned blood properties as per Table 1. These choices for 

conductivity and permittivity tissue value assignments were made in consultation with medical 

researchers and professionals at MGH. An Eddy current simulation was performed for each of 

the two models with a 5 kHz sine wave from a 1 kA excitation at the modeled coil. Each 

simulation was set to run for 3 adaptive passes.  

 

Coil Model Generation 

More accurate coil development was attempted and is shown in Fig. 17. It was created in 

ANSYS Maxwell and replicated the Magstim coil used in the actual procedure. Copper tape was 

created with a small insulating layer of plastic around it and wound for 8 turns.  It was not used 

in favor of the simple figure-8 coil because the figure-8 is the accepted standard for TMS FEA 

simulations. 



41 

 

 

Figure 17. Full head model cross section with accurate copper-tape coil representation. 

 

Simulation Results 

  The simulations ran for approximately 24 hours on 8 cores of a HPC Linux sever. 

The models were cross-sectioned in 15mm intervals through the region of the patient’s 

abnormality. Fig. 18 illustrates the cross-sectioning and shows the location of the abnormality as 

it was cross-sectioned. Edema is colored magenta, tumor (outer) is colored green, and tumor 

(inner) is colored red. On each of these cross-sections from both simulations, the E field is 

plotted as a heat map across the plane of the cerebrum. On each of the following comparison 

figures, a box has been drawn around the location of the patient’s abnormality. Figures 19 and 20 

show the comparison of “normal” and “abnormal” at a depth of 65mm from the top of the scalp. 

There is a clear increase in the E field in the location of the abnormality in the “abnormal” 
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simulation. In Figures 21 and 22, we move up to a depth of 50mm in the patient’s cortex. The 

increase in the E field in the region of the abnormality follows what we saw at the previous 

depth. Now, notice there is also a large gradient between the various layers of the abnormality. 

Moving to a depth of 35mm in Figures 23 and 24 we continue to see the same trend. 

 

 

Figure 18. Full head model cross-sections showing relative height of the visualizations from the origin 

(the origin is in the center of the skull). 
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Figure 19. Cross-section of the “normal”  head model at 65mm depth from the scalp with the E field 

plotted in V/mm. 

 

Figure 20. Cross-section of the “abnormal”  head model at 65mm depth from the scalp with the E field 

plotted in V/mm. 
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Figure 21. Cross-section of the “normal”  head model at 50mm depth from the scalp with the E field 

plotted in V/mm. 

 

Figure 22. Cross-section of the “abnormal”  head model at 50mm depth from the scalp with the E field 

plotted in V/mm. 
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Figure 23. Cross-section of the “normal”  head model at 35mm depth from the scalp with the E field 

plotted in V/mm. 

 

Figure 24. Cross-section of the “abnormal”  head model at 35mm depth from the scalp with the E field 

plotted in V/mm. 
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Conclusions and Future Work 

 The purpose of this Major Qualifying Project was to create an accurate model of the 

patient’s head from T1 and T2 MRI images, which was completed successfully. ANSYS 

Maxwell was used to conduct a finite element analysis of patient’s unique cranial geometry to 

calculate the electric field inside the cortex during a simulated TMS procedure. The results were 

plotted showing the abnormality indeed does have an impact on the E field in the patient’s brain 

during a simulated TMS procedure. Additionally, this project made recommendations for the 

process of rapid 3D surface mesh generation from T1 and T2 MRI images. Future work may 

include formalizing these recommendations into a procedure that includes PolyMender or a 

custom converter from the output of SPM designed with meeting the requirements of FEA 3D 

surface meshes as the goal.  
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