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ABSTRACT
We present TimeKeeper: a simple lightweight approach to
embedding Linux containers (LXC) in virtual time. Each
container can be directed to progress in virtual time either
more rapidly or more slowly than the physical wall clock
time. As a result, interactions between an LXC and physi-
cal devices can be artificially scaled, e.g., to make a network
appear to be ten times faster with respect to the software
within the LXC than it actually is. Our approach also sup-
ports synchronized (in virtual time) emulation, by grouping
LXCs together into an experiment where the virtual times of
containers are kept synchronized, even when they advance at
different speeds. This has direct application to the integra-
tion of emulation and simulation within a common frame-
work.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications; D.4.4 [Operating Sys-
tems]: Communications Management—message sending, com-
munication management ; D.4.8 [Operating Systems]: Per-
formance—measurements, simulation; I.6.3 [Simulation and
Modeling]: Applications—Miscellaneous

Keywords
Simulation, Emulation, LXCs, Virtualization, Time Dila-
tion, CORE, Linux Kernel

1. INTRODUCTION
Virtual machine managers (VMM) multiplex the execu-

tion of virtual machines (VM), i.e., software stacks, in such
a way that the VMs behave as though they are running on
individual pieces of hardware. A question of great interest
to us is how the advancement of time in a VM is perceived.
For example, suppose that an application in one VM sends
a message to another, and includes in that message the time
at which the message was sent. What is the value of that
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time variable? In most systems the system clock will give
the time, but the system clock in a VMM typically reflects
time advancement of the VMM, not its VMs. A Xen VM
has an associated domain time, which reflects the amount of
wall-clock time that the VM has received. The domain time
advances with the system clock while the VM is served, and
stops advancing when it no longer has CPU service. How-
ever, domain time is used in Xen for scheduling, and not as
a measure of virtual time.

The idea for embedding Xen in virtual time was originally
expressed in the context of testing distributed applications
[7]. The basic idea is to make virtual time in a VM advance
more slowly than real time, in order to make the (real) net-
work connected to the VM appear to be performing faster.
The approach associates with each VM an integer-valued
time dialation factor, or TDF. A TDF of n reduces the ad-
vancement rate of a VM in time by a factor of n; for example,
a TDF of 2 makes virtual time in the VM advance at half the
rate of wall-clock time. This approach (and subsequent ones
[6]) rescale a VM’s notion of time with reference to a physical
network, in order to emulate a seemingly accelerated rate of
interaction between the VM and the network.

We are motivated by a different objective, to virtualize
time in a VM in order integrate its behavior with a network
simulator such as S3F [11] or ns-3 [13]. This goal raises
new considerations. A network simulator can represent a
much larger infrastructure than a real network in a typi-
cal lab, which creates the need to emulate in virtual time
many VMs; this in turn raises the importance of minimiz-
ing overhead. In particular, we want to have VMs “jump”
over epochs in virtual time where nothing of interest occurs,
rather than rescale time and have the VM crawl through
the epoch just to advance its clock to its next interaction
with the network simulator. An example is a web-server,
whose behavior is to wait for a request, formulate and issue
a database query, wait for the IO system’s response, report
the response and then wait for another request. Depending
on what the experiment is measuring, the VM might be di-
rected to reset its virtual time to the time of a request or
IO completion and completely bypass epochs where the pro-
cess is suspended. Another new consideration is the need to
advance a group of VMs through virtual time so that their
virtual clocks are closely synchronized, even if they advance
those clocks at different rates by virtue of different TDFs.

A final goal is to bring virtual time to the Linux kernel in
a minimally invasive way, that exposes an API to support
our motivating problem of integrating emulation and simula-
tion, and is general enough to support other uses of virtual
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time. These considerations have led us to develop Time-
Keeper, a small set of modifications to the Linux kernel that
allows for the creation of LXCs, each with their own vir-
tual clock. There are two main distinctions separating this
project from previous ones. First, our approach becomes an
integral (and very small) part of the Linux kernel, giving it
the potential to become mainstream. Second, our approach
is much lighter weight than Xen [2] or OpenVZ [16] (admit-
tedly at the cost of less generality than Xen). Finally, our
approach to virtual time synchronization is more sophisti-
cated than that which has been applied to Xen’s to date,
and has greater flexibility of interaction between emulation
and simulation than previous solutions based on OpenVZ.

2. RELATED WORK
Related work exists in the area of simulation/emulation,

and in the area of virtual time. We discuss these separately.

2.1 Simulation/Emulation
In simulation computer systems are modeled entirely in

software. Simulation has the attractive property of being
scalable and repeatable. There are various simulation tools
available today, such as J-Sim [9], ns-2 [12], OMNeT++
[14], and ns-3 [13]. J-Sim is a component-based simulation
environment, where each link, node, and protocol is a com-
ponent. Components have ports associated with them, and
a component contract describes how data should be han-
dled if it arrives at a specific port. Event executions are
in real-time, thus improving the fidelity of the simulation.
OMNet++ and ns-2 are both popular discrete event sim-
ulators. Both simulators are written in C++, while ns-2
provides the interface through OTcl. In ns-2, models are
flat, meaning that creating subnetworks is not possible. On
the other hand, OMNeT++ supports a hierarchical module
structure which makes it easier to develop complex mod-
els in a methodical manner. Many papers have compared
the performance of ns-2 and OMNeT++, concluding that
ns-2 is not nearly as scalable or easy to use as OMNeT++
[10, 15, 20]. Also, there is ns-3, a discrete event simulator
that is aimed to overcome ns-2’s shortcomings. It is devel-
oped in C++, and it is designed to be modular, scalabale,
and extensible. Papers have conducted studies testing the
performance of ns-3 and other simulators, concluding ns-3
to be the most efficient [20]. In addition, ns-3 is a hybrid
approach, allowing for emulation as well.

In contrast to simulation, emulation involves a testbed or
a physical network to provide more realistic results. Two
common testbeds that provide emulation are Emulab [21]
and PlanetLab [17]. Emulab provides the experimenter with
the ability to create arbitrary networks, and allocates spe-
cific nodes from the testbed for a specific amount of time.
The experimenter can run specific operating systems on the
hardware, and is granted root access. This allows for con-
trollable and predictable experiments; however, it is limited
by the size of the testbed, and may not be suitable for all
types of tests. On the other hand, PlanetLab is a global
research network consisting of nodes throughout the globe.
At the time of writing, PlanetLab consists of 1181 nodes at
572 sites. A distinction between PlanetLab and Emulab is
that PlanetLab gives you an LXC on various nodes, while
Emulab will give you sole access to the machine. Therefore,
experiments on PlanetLab will not be reproducible, because

other users may be running experiments on the same nodes
simultaneously.

There also exist hybrid solutions, supporting both simu-
lation and emulation, such as the Common Open Research
Emulator (CORE) [1] and ns-3 [13]. This allows the simula-
tor to be interfaced with real-world communication systems
for more realistic measurements.

2.2 Virtual Time Systems
There have been many recent papers dealing with giv-

ing systems a sense of virtual time, e.g., [3, 5, 6, 19, 22].
DieCast [6] makes modifications to the Xen hypervisor to
give VM’s a concept of virtual time. DieCast also scales
the performance of physical hardware components. This is
a useful option if you want to create an experiment where
the number of nodes in the experiment is greater than the
number of nodes in your testbed. SVEET! [3] is a perfor-
mance evaluation testbed running on Xen-based VMs that
implements time virtualization techniques if the simulation
is overloaded. It sets a static TDF to slow down both the
simulator and the VMs. Our work differs from both DieCast
and Sveet, as we use lightweight LXCs with Linux kernel
modifications instead of Xen-based VMs. We can also dy-
namically change TDFs, as well as support the synchroniza-
tion of LXCs virtual times, even if they have different TDFs.
In some ways our approach resembles that of Zheng et al.,
[22] who developed a virtual time system for simulation and
emulation using OpenVZ. Like our solution, they modified
time-related system calls to return virtual time as opposed
to the system time. However, our work is different, as it
uses LXCs, and brings the notion of a time dialation fac-
tor to the forefront. The OpenVZ system scales measured
elapsed time as we do, but that scaling factor is fixed.

3. DESIGN
We designed TimeKeeper with three objectives. First, we

wanted to develop a lightweight solution. This minimizes
overhead for time-dilated processes. Next, we wanted a sim-
ple solution which would allow researchers to create and test
their own time-dilated processes. Finally, we wanted Time-
Keeper to easily integrate with existing emulators/simulators.
We next expand on these objectives.

3.1 Lightweight
We want to spin up many time-dilated processes simula-

taneously, with minimal overhead. An attractive option is
to use Linux Containers (LXCs) [8], a virtualization method
which allows multiple individual Linux instances to be run-
ning on a single host while sharing the kernel. LXC pro-
duces less overhead than traditional virtual machine moni-
tors, such as Xen [2] or VMWare [18], as they require sep-
arate kernels for each VM. We also attempted to minimize
the number of changes made to the Linux kernel. For exam-
ple, to support basic time-dilation within a process, we need
only add 36 bytes to the process’ task struct (the task struct
is a data structure in Linux that stores information about a
particular process). These changes required modifying only
7 files in the kernel and adding fewer than than 100 lines
of code. To support advanced time-dilation features, such
as running processes with different TDFs within the same
experiment, we developed a linux kernel module which may
be dynamically loaded into the kernel at runtime.
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3.2 User Interface
In order to make TimeKeeper easy to use, we developed

a simple and intuitive application programming interface
(API) to create and manage time-dilated processes. The
presented API is simply a subset of functions which Time-
Keeper provides. The API exports the following functions:

• clone time(unsigned long flags, float dilation,
int should start): causes a new process to be cloned
from the calling process. You can set specific flags just
as you would in the clone() system call. The dilation
argument is the dilation factor of the new process, and
the should start argument will start the new process
immediately with a value of 0, and not start the new
process with a value of 1. This is useful if you wish to
clone numerous processes, and then start them all at
the same time (as in an experiment).

• start experiment(int count, ...): causes a series
of cloned processes all to be started at the same time.
Count represents the number of processes in the exper-
iment, followed by a variable number of pid integers.

• dilate(int pid, float dilation): changes the dilation
factor of a process. Pid represents the unique ID of
the process, and dilation is the new dilation factor of
the process. This can be called on both processes that
were created through the clone time() function, as well
as general processes.

• freeze(int pid): stops the process from executing.
The time at which it stopped executing is remembered.

• unfreeze(int pid): allows a previously frozen process
to continue executing. In between the time in which
the process was frozen and unfrozen, the process does
not perceive the passage of time. For example, if a
process was frozen at time t=10 seconds, and unfrozen
at time t=20 seconds, the process will resume at time
t=10 seconds.

• leap(int pid): changes the container’s virtual time to
be identical to that of the container with id pid. Ap-
plied to a frozen process, it causes that container to
leap over an epoch of virtual time, without modifica-
tion to its TDF.

3.3 Ease of Integration
Finally, we wanted to be sure TimeKeeper could be inte-

grated with other simulation or emulation systems. As proof
of concept, we integrated TimeKeeper with CORE [1]. We
chose to initially integrate with CORE as it already uses
LXCs. Therefore, changes needed to the framework would
be minimal. In addition, the framework itself is highly cus-
tomizable. With only a few modifications to the graphical
user interface (GUI) to allow setting dilation factors, plus
minor changes to the backend we were able to run simple
time dilated experiments. The results can be found in sec-
tion 5.

4. IMPLEMENTATION
We sought a solution that can run different LXCs at differ-

ent TDF’s. We wanted to be able to run LXCs individually
with no synchronization, or grouped together in an exper-
iment where processes with different TDF’s must progress

Figure 1: Pseudocode For Gettimeofday Algorithm

uniformly together in virtual time. The following subsec-
tions describe modifications to the linux kernel and the de-
velopment of a linux kernel module respectively that will
provide needed functionality.

4.1 Kernel Modifications
We added only 36 bytes (5 variables) to the linux task struct

in order to give each dilated process its own perception of
time. The variables added are:

• 4 bytes dilation factor (d f) represents the time dila-
tion factor of the process.

• 8 bytes virtual start time (v s t) represents the point
in virtual time (in ns) at which a process starts pro-
gressing by its TDF.

• 8 bytes past virtual time (p v t) represents how much
virtual time has passed since the last time the process
inquired about the current time.

• 8 bytes past physical time (p p t) represents how much
physical time has passed since the last time the process
inquired about the current time.

• 8 bytes freeze time (f t) is used to determine if a pro-
cess is currently frozen or not. A value of 0 means it
is not frozen, where a value greater than 0 represents
the point in time (in ns) in which a process was frozen.
This is a variable internal to TimeKeeper.

The gettimeofday() system call was modified to return the
virtual time for a process if it has a virtual start time set;
if the virtual start time is not set, then gettimeofday() per-
forms normally. The pseudocode for the gettimeofday mod-
ifications can be found in Figure 4.1.

Consider a quick example for clarification, using a pro-
cess with a TDF of 2. Note this means for every 2 sec-
onds of clock time, the process will perceive only 1 second
of virtual time. We assume the process is started at the
system time of 20 seconds. At this point in time, d f=2,
v s t=20, p v t=0, and p p t=0. Suppose this process per-
forms a computation for 10 seconds, and then calls gettime-
ofday(). Following the pseudocode, a new p p t will be cal-
culated by subtracting the current system time from the
v s t. So the new p p t = 30s - 20s = 10s. A new p v t is
then calculated by finding the time which has elapsed since
the last past physical time, scaling it appropriately based on
the TDF, and finally adding it to the last past virtual time.
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Thus, new p v t = (new p p t - p p t)/d f + p v t = (10s -
0s)/2 + 0 = 5s. So the virtual time = v s t + new p v t =
25 seconds, which is the correct virtual time for the described
scenario. Note, before gettimeofday() returns, new p p t
and new p v t are stored into p p t and p v t respectively.
At the end of this function, the state of the process is: d f=2,
v s t=20s, p p t=10s, and p v t=5s and the global time is
30s. Now assume the process runs for an additional 20 sec-
onds, and checks its time once again. new p p t = 50s - 20s
= 30s and new p v t = (new p p t - p p t)/d f + p v t =
(30s - 10s)/2 + 5 = 15s. So the virtual time returned is
20s+15s = 35s. As you can see, this is consistent with what
is expected, as the process was started at 20 seconds, and
has been running with a TDF of 2 for 30 seconds of physical
time.

In order to accurately maintain the process’ perception
of time, we can not simply alter the gettimeofday() system
call, we must modify system calls such as sleep() and poll()
as well. The sleep() system call takes an integer as an argu-
ment, which represents the number of seconds the program
should sleep before it continues its execution. We modified
the sleep() system call such that it is scaled with the call-
ing process’ TDF. For example, if a process with a TDF of
2 calls sleep(10), it will sleep for 20 seconds of wall clock
time. However, due to its TDF, it will believe it slept for
10 seconds. The poll() system call waits for a set of file
descriptors to become ready so it may perform I/O. Poll()
takes a timeout value as an argument, which corresponds
to the minimum number of milliseconds the system call will
block. Similarly to sleep(), poll() was modified so a process
with a specified TDF will run as anticipated.

4.2 Kernel Module
Some of the more complicated time dilation functional-

ity was developed in the form of a loadable linux kernel
module, e.g., the ability to freeze and unfreeze a process’ ad-
vancement in virtual time. In addition, TimeKeeper is able
to synchronize containers, so we are able to group processes
together with different TDF’s and still manage to insure
their virtual times are synchronized.

To freeze or unfreeze a process, TimeKeeper makes use
of a variable that was added to each process’ task struct:
freeze time (f t). If the user wishes to freeze a process, its
f t is set to the current, non-dilated system time, and a
SIGSTOP signal is sent to the process, removing it from
the CPU and putting it in a stopped state. When the user
wishes to unfreeze a frozen process, the process’ p p t is up-
dated to reflect the amount of physical time the process was
frozen (p p t = p p t + (current system time - f t)). A SIG-
CONT signal is then sent to the process, allowing it to run on
the CPU once again. Finally, f t is reset to 0. To continue
the example in the previous section. Assume the process
was frozen immediately after it last checked its time (vir-
tual time=35s, system time=50s). The current state of the
process is: d f=2, v s t=20s, p p t=30s, p v t=15s, f t=50s.
The process is first frozen for 10 seconds, then unfrozen and
immediately checks the time. When it is unfrozen, the p p t
is changed to (p p t + (current system time - f t)) = (30s
+ (60s-50s)) = 40s. When it checks the time with the up-
dated p p t value, it returns 35s, therefore not recognizing
any time has passed since it was frozen.

In addition to freezing and unfreezing a process’ percep-
tion of time, TimeKeeper is also responsible for grouping

processes with different TDF’s into a single experiment, where
all of the processes virtual times progress uniformly.

TimeKeeper maintains a linked list of all processes in the
experiment, a tunable knob called a timeslice which speci-
fies the amount of phyiscal time the leader LXC should be
allowed to run in each interval, and another tunable knob
that specifies how many processors can be used for LXCs
in the experiment (DED CPU). We would set DED CPU
to be two CPUs less than the total number of CPUs in the
system. This would allow standard background tasks to still
run successfully, even when performing a CPU-intensive ex-
periment. When an experiment is initialized, TimeKeeper
determines the process with the highest TDF, known as the
leader. Knowing the leader is a necessity, as the leader’s vir-
tual time will be progressing slower than any other process
in the experiment. Therefore, we need to scale down the
running time of other processes in the experiment accord-
ingly. For example, if the leader has a TDF of 2 and there
is another process with TDF of 1, the process with a TDF
of 1 will need to run for one half the time the leader runs.

Once the leader has been determined, each process is ded-
icated to a specific CPU, where multiple processes may be
dedicated to the same CPU, and set to have a scheduling
policy of SCHED FIFO (first-in first-out). We set each pro-
cess’ scheduling policy as SCHED FIFO so it will have pri-
ority over other tasks not in the experiment, as well as not
get pre-empted until we say so. Each process will receive a
fraction of the timeslice in which it will be allowed to run
on its dedicated CPU, this fraction is based on the process’
TDF in respect to the leader’s TDF, and maintained by a
high-resolution timer (hrtimer) [4]. To run a process, it is
unfrozen with TimeKeeper’s previously mentioned unfreeze
capability, and its hrtimer is set to expire when its fraction of
the timeslice is up. When the hrtimer for a process expires,
that process is frozen, and the next process whose turn it
is to run on the CPU gets unfrozen and has its hrtimer set.
When all processes in the experiment have been allowed to
run for their fraction of the timeslice, the round is up. At
the end of each round, the leader will be recalculated if new
processes were added to the experiment, or if the past leader
finished executing. Each process’ virtual time is compared
to the expected virtual time. If a process’ virtual time ex-
ceeds the expected virtual time, that process will be forced
to run for less time in the following round (by setting the
hrtimer to expire earlier). If a process’ virtual time is below
the expected virtual time, that process will be allowed to
run for additional time in the following round. The next
round begins when all processes know how long they should
be allowed to run for in the next round. See Figure 4.2 for
the basic psuedocode.

5. EVALUATION
In this section, we will discuss our preliminary results re-

garding the accuracy of hrtimers, and our virtual time sys-
tems ability to keep the LXCs synchronized. In addition, we
look into scalability of the system, the overhead TimeKeeper
may create, as well as how efficiently TimeKeeper can keep
LXCs running in real-time. Unless otherwise specified, ex-
periments were conducted on a Dell Studio XPS Desktop,
with 24 GB of RAM, and 8 Intel Core i-7 CPU X 980’s
@ 3.33GHz. The machine is running 32-bit Ubuntu with a
modified 3.10.9 Linux kernel.

182



Figure 2: Pseudocode for LXC Synchronization Al-
gorithm

timeslice μ σ
300ms 862ns 1130ns
30ms 401ns 680ns
3ms 341ns 592ns
300μs 523ns 2306ns
30μs 351ns 2128 ns
3μs 481ns 3312ns
1μs 2404ns 4213ns

300ns 2925ns 6012ns

Table 1: Mean and Standard Deviation of Timer
Error for Different Timeslice Lengths

5.1 hrtimer accuracy
The effectiveness of TimeKeeper’s ability to keep virtual

clocks synchronized is highly dependent on the hrtimers abil-
ity to fire interrupts at precise moments in time. If we want a
particular LXC to run for 3μs at a time, then we would want
the hrtimer associated with that particular LXC to trigger
an interrupt as close to 3μs as possible. For the initial test,
we set different hrtimers to periodically fire at different time
intervals (timeslice), and measured what time the hrtimer
interrupt actually fired. We collected 200 data points for
every different time interval. From there, we calculated the
mean (μ) and standard deviation (σ) of the error. Table 1
presents the results.

Taking the first row as an example, when the timer was
scheduled to fire an interrupt every 300ms, on average the
interrupt occurred 862ns from what was expected. This is
excellent accuracy, there are five orders of magnitude be-
tween the error and the timeslice. The magnitude of the
variation in error is roughly constant; the error size relative
to timesliceis still an order of magnitude smaller with a 30
micro-second timeslice, and is roughly equal with a 3 micro-
second timeslice. These comparisons tell us something very
important about the level of granularity we can effectively
use in combined emulation/simulation scenarios. If 10% er-
ror in timing is acceptable and a simulated message takes on
the order of 100 micro-seconds to pass on the network from

# of LXCs timeslice μ σ
10 .3ms 596ns 1084ns
10 3ms 685ns 1129ns
10 30ms 1028ns 1766ns
10 300ms 812ns 1447ns
80 .3ms 196ns 375ns
80 3ms 193ns 374ns
80 30ms 258ns 535ns
80 300ms 333ns 628ns

Table 2: Mean and Standard Deviation of Error as
a Function of Timeslice and #LXCs

one device to another, we can expect to get a little over three
timeslices in during the message’s passage through the net-
work simulator. This means that if a container is sensitive
to IO from the simulator only at timeslice boundaries (as is
the case with the virtual-time OpenVZ system), there may
be as much as a 33% error in the virtual time at which the
container “sees” the message. The take-away message here is
that Linux timers are very accurate, but if we are to be able
to take advantage of that accuracy when interfacing emu-
lated LXC containers and a network simulator we will have
to find a way to integrate simulator time and container time
at a finer granularity than the timeslice. This constitutes
one of our areas of future work.

5.2 Synchronization
To integrate our emulation with network simulation we

will need to keep LXCs closely synchronized. We performed
a set of experiments to evaluate how tightly we are able to do
so. In these experiments, TimeKeeper aimed to have each
LXC achieve a target virtual time by the end of each times-
lice. For each LXC and each timeslice we measure the devi-
ation of the virtual time the LXC actually achieved at that
timeslice from the target goal. For each set of experiments
we compute the mean error μ and the the standard deviation
of the error σ, taken over all LXCs and synchronizations,
and observe the behavior of these errors as a function of
the number of LXCs and the size of the timeslice. Our first
round of experiments used the same TDF for all containers;
each container was engaged in the compute-intensive task of
computing the factorial of a large number.

For the first experiment, we used a TDF of 10 for each
container, and recorded measurements for 150 timeslice in-
tervals. The results are summarized in Table 2, and reveal
some interesting information. First, it demonstrates that
TimeKeeper is effective at keeping virtual times synchro-
nized on the timeslice sizes used. TimeKeeper is seemingly
more effective at keeping the experiment synchronized when
the timeslice length is 3ms rather than 300ms. At the time
of this writing we are unsure of the underlying cause for this
difference, and are working at additional instrumentation in
an effort to uncover an understandable explanation.

To give better insight into the distribution of error, we
also plotted two cumulative distribution functions (CDFs).
Figure 3 shows us a CDF when the number of LXCs in the
experiment range from 10-80, and the timeslice interval is
constant at 3ms. Regardless of whether the experiment had
10 LXCs or 80 LXCs, TimeKeeper was able to keep every
LXCs virtual time within 4μs of the expected virtual time
for more than 90% of each timeslice interval. However, this
comes at a cost. The more LXCs you add to the experi-
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Figure 3: CDF with timeslice=3ms as a function of
#LXCs
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Figure 4: CDF with 10 LXCs as a function of times-
lice length

ment, the longer it takes for the experiment virtual time to
progress. This will be explored more fully in Section 5.3.
Figure 4 shows us a CDF when we have an experiment size
of 10 LXCs (where 5 LXCs have a TDF of 10, and 5 LXCs
have a TDF of 1), and we vary the timeslice interval lengths.
In general, TimeKeeper is able to keep the experiment vir-
tual time in sync, but we noticed when the timeslice interval
is .3ms that it did not perform as well. These results cor-
respond with what we found in Table 1 (where the hrtimers
were not as accurate at a granularity of .3ms as opposed to
higher granularities).

5.2.1 Scalability
Figure 5 demonstrates scalability, plotting how the mean

and standard deviation of the error behaves as the number of
containers grows. Again we see the interesting phenomena
that the error decreases with increasing numbers of contain-
ers; the error is also contained almost always to be less than
half a micro-second.

We obtained access to a larger machine, with 32 cores and
64Gb of memory. This allowed us to bring TimeKeeper up
and observe how many containers we can sustain. We suc-
cessfully did one experiment using 45,000 containers, which
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Figure 5: Testing Scalability with a Timeslice of 3ms
and a TDF of 1/10
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Figure 6: Testing Scalability with the Product of
#LXCs and TDF Constant

represents two orders magnitude increase of what could be
done on that same machine with openVZ containers.

We performed an experiment aimed at measuring the mean
and standard deviation of the time error found when Time-
Keeper tries to keep all LXC containers in an experiment
synchronized. For this we keep the product of number of
containers with the TDF constant, at approximately 20.
The intuition is we are trying to keep the rate (in wall-
clock time) at which virtual time advances in the system
as a whole constant—increasing the number of containers
means the number of times a container is given service per
unit wallclock time decreases, so each time it gets service it
has to advance simulation time farther. Now in these exper-
iments the timeslice length is kept constant.

Figure 6 displays the results, and reveals an interesting
consequence of the scaling we employ. As the number of
LXCs increases, the TDF decreases, which means that the
advance in virtual time per unit wall-clock tick increases.
The error of timers in wall-clock time is unaffected by the
number of containers, however this fixed error is amplified by
the amplification of virtual time advancement. This explains
the linear increase in error. We’d get essentially the same
curve—but with different y-axis values—by using a different
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(a) 6 Dedicated CPUs and 24 GB RAM
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(b) 28 Dedicated CPUs and 64 GB RAM

Figure 7: Overhead Ratio with Timeslice=3ms as a
Function of #LXCs

constant product of TDF and #LXCs. A product that is
larger by a factor of 10 will yield errors that are a factor
of 10 smaller. Two main points should be appreciated from
this data. One, that TimeKeeper has managed as many
as 45,000 synchronized containers on a commodity server,
and second, that the error of timers in real-time has more
impact on the errors in virtual time the faster the containers
are accelerated through virtual time.

5.3 Overhead
We measured the scheduling overhead of TimeKeeper,

by dividing the amount of physical time progression of the
leader LXC by the amount of time spent in the synchroniza-
tion method of TimeKeeper. We call this the overhead ratio
(OR). The larger the OR value, the more efficient the em-
ulation. We ran multiple experiments with different TDFs
and timeslice lengths. We learned that as timeslice length
increases, so does the OR. This is intuitive, as a larger times-
lice will call TimeKeeper’s synchronization function less fre-
quently.

Figure 7(a) shows how the OR changes as the number of
LXCs in an experiment increases. For this particular experi-
ment, the timeslice was set to 3ms, and we scaled the number
of LXCs from 10-160. As the number of LXCs grew, the OR
decreased. This is because TimeKeeper must manage more
LXCs, and managing these additional LXCs results in more
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Figure 8: Determining Maximum #LXCs Where
Real-Time is Maintained

overhead. This overhead can be reduced by dedicating more
CPUs to the LXCs in the experiment.

The overhead ratio calculated on a machine with 32 cores
(28 dedicated cores) and 45,000 LXCs was .23 and is shown
in Figure 7(b). This is to be expected, and reducing that
overhead is a topic of future study. For example, the task of
setting the timers for all LXCs to initiate the timeslice can
be accomplished with a tree structure, rather than the serial
structure our current implementation employs.

5.4 Maintaining Real-Time
We also wanted to determine how efficient TimeKeeper is

at keeping LXCs running in real-time. When we say real-
time, we mean that for every instant in time, all LXCs in
the experiment will have a virtual time that is greater than
or equal to the system time. Obviously, we will only be able
to keep an experiment in real-time if all of its TDFs are all
less than or equal to 1. For the experiment, we assumed all
LXCs have the same TDF. Therefore, the maximum num-
ber of LXCs in an experiment we can keep in real-time is:
N/TDF, where N is the number of dedicated CPUs on the
machine, and we are assuming no overhead. However, our
system does have overhead, so our experiment will deter-
mine just how close we can get to this upper bound. We
ran experiments with 6 dedicated CPUs, a timeslice of 3ms,
and TDFs of 1/10, 1/50, and 1/100 with increasing numbers
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of LXCs per experiment, until we found the tipping point
(the point where we could no longer keep the experiment
as a whole in real-time). We calculated the virtual time of
each LXC and compared it to the system time at the end
of each timeslice interval. Our results are in Figure 8. We
found the maximum number of LXCs to be: 6/(TDF + 1),
any more LXCs cause a tipping point and the experiment
can no longer be kept in real-time. Figure 8(a) displays the
virtual time of the experiment with respect to the system
time using this tipping point. As you can see, all exper-
iments virtual time is increasing linearly in respect with
the system time. Figure 8(b) displays the same thing, but
this time, adding just 1 more LXC to each experiment, ie:
6/(TDF + 1) + 1. This is obviously the tipping point, as
all three experiments virtual time is now decreasing with
respect to the system time.

6. CONCLUSION
We introduced TimeKeeper: a lightweight, simplistic, and

easily integrated solution to provide LXCs with their own
view of virtual time. TimeKeeper was integrated into the
CORE framework, and collected promising results. We demon-
strated TimeKeeper’s ability to keep the LXCs virtual time
synchronized to within half a micro-second of error. In ad-
dition, scalability was also tested, with experiments pushing
upwards of 45,000 LXCs, each with their own virtual time,
all on a single commodity server.
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