
Introduction to KVM

By Sheng-wei Lee
swlee@swlee.org #20110929

Outline
•  Hypervisor - KVM  

•  virt-manager

•  Libvirt 

•  Migration

  How to install KVM.

  Bridged Networking

  Virsh
How to new a VM
How to adjust the setting of a VM.
How to make an image of a VM
How to new a VM using an existed image
How to close a VM.

  Virt-manager (VMM)

  KVM (for Kernel-based Virtual Machine) is a
full virtualization solution for Linux on x86
hardware containing virtualization extensions
(Intel VT or AMD-V). It consists of a loadable
kernel module, kvm.ko, that provides the
core virtualization infrastructure and a
processor specific module, kvm-intel.ko or
kvm-amd.ko. KVM also requires a modified
QEMU although work is underway to get the
required changes upstream.

  Using KVM, one can run multiple virtual
machines running unmodified Linux or
Windows images. Each virtual machine has
private virtualized hardware: a network card,
disk, graphics adapter, etc.

  The kernel component of KVM is included in
mainline Linux, as of 2.6.20.

  KVM is open source software.

  Guest Support Status 
http://www.linux-kvm.org/page/
Guest_Support_Status

The "Virtual Machine Manager" application (virt-
manager for short package name) is a desktop
user interface for managing virtual machines. It
presents a summary view of running domains,
their live performance & resource utilization
statistics. The detailed view graphs performance
& utilization over time. Wizards enable the
creation of new domains, and configuration &
adjustment of a domain's resource allocation &
virtual hardware. An embedded VNC client viewer
presents a full graphical console to the guest
domain.

  libvirt supports:
  The Xen hypervisor on Linux and Solaris hosts.
  The QEMU emulator
  The KVM Linux hypervisor
  The LXC Linux container system
  The OpenVZ Linux container system
  The User Mode Linux paravirtualized kernel
  The VirtualBox hypervisor
  The VMware ESX and GSX hypervisors
  The VMware Workstation and Player hypervisors
  Storage on IDE/SCSI/USB disks, FibreChannel, LVM, iSCSI, NFS

and filesystems

  See also:
 http://www.ibm.com/developerworks/linux/library/l-libvirt/index.html

  Storage drivers
  Directory backend
  Local filesystem backend
  Network filesystem backend
  Logical Volume Manager (LVM) backend
  Disk backend
  iSCSI backend
  SCSI backend
  Multipath backend

  KVM currently supports savevm/loadvm and
offline or live migration Migration commands
are given when in qemu-monitor (Alt-Ctrl-2).
Upon successful completion, the migrated VM
continues to run on the destination host.

  Note
 You can migrate a guest between an AMD

host to an Intel host and back. Naturally, a
64-bit guest can only be migrated to a 64-bit
host, but a 32-bit guest can be migrated at
will.

  Requirements
  The VM image is accessible on both source and

destination hosts (located on a shared storage, e.g.
using nfs).

  It is recommended an images-directory would be
found on the same path on both hosts (for migrations
of a copy-on-write image -- an image created on top
of a base-image using "qemu-image create -b ...")

  The src and dst hosts must be on the same subnet
(keeping guest's network when tap is used).

  Do not use -snapshot qemu command line option.
  For tcp: migration protocol
  the guest on the destination must be started the

same way it was started on the source.

internet

Switch

Shared Storage (Storage Pool)

Physical Server

  https://help.ubuntu.com/community/KVM

  Check that your CPU supports hardware virtualization

  To run KVM, you need a processor that supports
hardware virtualization. Intel and AMD both have
developed extensions for their processors, deemed
respectively Intel VT-x (code name Vanderpool) and
AMD-V (code name Pacifica). To see if your processor
supports one of these, you can review the output
from this command:

  egrep -c '(vmx|svm)' /proc/cpuinfo

  If 0 it means that your CPU doesn't support
hardware virtualization.

  If 1 (or more) it does - but you still need to
make sure that virtualization is enabled in the
BIOS.

  Use a 64 bit kernel (if possible)

  Running a 64 bit kernel on the host operating system
is recommended but not required.

  To serve more than 2GB of RAM for your VMs,
you must use a 64-bit kernel (see 32bit_and_64bit).
On a 32-bit kernel install, you'll be limited to 2GB
RAM at maximum for a given VM.

  Also, a 64-bit system can host both 32-bit and 64-
bit guests. A 32-bit system can only host 32-bit
guests.

  To see if your processor is 64-bit, you can run this
command:

 egrep -c ' lm ' /proc/cpuinfo

  If 0 is printed, it means that your CPU is not 64-bit.
  If 1 or higher, it is.
 Note: lm stands for Long Mode which equates to a 64-bit

CPU.

  Now see if your running kernel is 64-bit, just issue the
following command:

 uname –m

  x86_64 indicates a running 64-bit kernel. If you use see
i386, i486, i586 or i686, you're running a 32-bit kernel.

  Note: x86_64 is synonymous with amd64.

  Install Necessary Packages
  For the following setup, we will assume that

you are deploying KVM on a server, and
therefore do not have any X server on the
machine.

  Lucid (10.04) or later
  $ sudo apt-get install qemu-kvm libvirt-bin

ubuntu-vm-builder bridge-utils

  Add Users to Groups

  To check:
$ groups
adm dialout cdrom floppy audio dip video plugdev fuse lpadmin

admin sambashare kvm libvirtd

  To add your <username> to the groups:
 $ sudo adduser `id -un` kvm
 Adding user '<username>' to group 'kvm' ...
$ sudo adduser `id -un` libvirtd
 Adding user '<username>' to group 'libvirtd' ...

  Verify Installation
  You can test if your install has been

successful with the following command:

 $ virsh -c qemu:///system list
 Id Name State

  If on the other hand you get something like
this:

 $ virsh -c qemu:///system list
 libvir: Remote error : Permission denied
 error: failed to connect to the hypervisor

  Creating a network bridge on the host
  Install the bridge-utils package:

 $sudo apt-get install bridge-utils

  We are going to change the network
configuration1. To do it properly, you should
first stop networking2:

 $sudo invoke-rc.d networking stop/restart

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static

Address <your_IP>
network <network>
netmask <netmask>
Broadcast <broadcast>
gateway <gateway>
bridge_ports eth0
bridge_stp off
bridge_fd 0
bridge_maxwait 0

$ sudo /etc/init.d/networking restart

  Creating a guest
  Guests can be created from XML

configuration files. You can copy existing
XML from previously created guests or use
the dumpxml option(refer to
Creating a virtual machine XML
dump(configuration file)). To create a guest
with virsh from an XML file:

$ virsh create configuration_file.xml

  Alternatively, if you want to define it, but not
run it, you could have used:

 $ virsh define /tmp/foo_new.xml

  Once a virtual machine is running, you can

manage it in many different ways, such as:

 $ virsh start foo

  Creating a virtual machine XML
dump(configuration file)

  To perform a data dump for an existing guest
with virsh:

$ virsh dumpxml [domain-id, domain-name or
domain-uuid] > <domain>.xml

  You can perform the following to install
Ubuntu Hardy:

$ sudo virt-install --connect qemu:///system\
 -n hardy -r 512 -f hardy.qcow2 -s 12 /
-c hardy-server-amd64.iso --vnc --

noautoconsole --os-type linux --os-variant
ubuntuHardy --accelerate --
network=network:default

  <domain type='kvm'>
  <name>Ubuntu-11.04-i686_Base</name>
  <uuid>4b4c19e8-9d76-0c9d-

cbf8-12141823d393</uuid>
  <memory>524288</memory>
  <currentMemory>524288</currentMemory>
  <vcpu>2</vcpu>
  <os>
  <type arch='i686' machine='pc-0.14'>hvm</

type>
  <boot dev='cdrom'/>
  <boot dev='hd'/>
  <bootmenu enable='no'/>
  </os>
 

  <features>
  <acpi/>
  <apic/>
  <pae/>
  </features>
  <clock offset='utc'/>
  <on_poweroff>destroy</on_poweroff>
  <on_reboot>restart</on_reboot>
  <on_crash>restart</on_crash>
  <devices>
  <emulator>/usr/bin/kvm</emulator>
  <disk type='file' device='disk'>
  <driver name='qemu' type='qcow2'/>
  <source file='/Storage/local/Base/Ubuntu-11.04-i686_Base.qcow2'/>
  <target dev='hda' bus='ide'/>
  <address type='drive' controller='0' bus='0' unit='0'/>
  </disk>

  <disk type='file' device='cdrom'>
  <driver name='qemu' type='raw'/>
  <target dev='hdc' bus='ide'/>
  <readonly/>
  <address type='drive' controller='0' bus='1' unit='0'/>
  </disk>
  <controller type='ide' index='0'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x01'

function='0x1'/>
  </controller>
  <interface type='network'>
  <mac address='52:54:00:4a:9a:02'/>
  <source network='default'/>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x03'

function='0x0'/>
  </interface>
 

  <serial type='pty'>
  <target port='0'/>
  </serial>
  <console type='pty'>
  <target type='serial' port='0'/>
  </console>
  <input type='mouse' bus='ps2'/>
  <graphics type='vnc' port='-1' autoport='yes'/>
  <sound model='ac97'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
  </sound>
  <video>
  <model type='cirrus' vram='9216' heads='1'/>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
  </video>
  <memballoon model='virtio'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
  </memballoon>
  </devices>
  </domain>

  Create the hard drive image with qcow2
format:

$ qemu-img create -f qcow2 <image

name>.qcow2

  Cloning a virtual machine
  You can clone an existing virtual machine

using the virt-clone tool. This duplicates the
disk image and sets up the virtual machine
domain configuration.

  If you wish to clone a virtual machine
named srchost to a new machine newhost,
ensure that the virtual machine srchost is not
running and execute the following command.

$ virt-clone --connect=qemu:///system -o srchost -n newhost -
f /path/to/newhost.qcow2

$ virsh shutdown foo

$ virsh suspend foo

$ virsh resume foo

$ virsh save foo state-file
 To save the current state of a guest to a file using the virsh command

$virsh restore foo stat-file
To restore a guest that you previously saved with the

virsh save option using the virsh command

  Virt-Manager

  If you are working on a desktop computer
you might want to install a GUI tool to
manage virtual machines.

 $ sudo apt-get install virt-manager

