
Linux Containers: Future or Fantasy?

Aaron Grattafiori

Technical Director

NCC Group (aka iSEC Partners/Matasano Security/Intrepidus Group)

DEF CON 23

Infosec, pentesting, Neg9/CTF

iSEC Partners for 5.5 years
 NCC Group for 0.1 years

Hacking Samsung Smart TVs @ BH USA 2013, Toorcon, etc
Macs in the age of the APT @ BH USA 2011, Source, etc

2015 NCC Group 2

whoami

These slides are not intended to be
consumed without the corresponding
presentation or whitepaper. The
information contained within is designed
for presenting and not 100% completeness
with regards to risks, recommendations,
findings, etc.

2015 NCC Group - INTERNAL 3

 Disclaimer

2015 NCC Group 4

whoami

2015 NCC Group 5

Story One: The Server

Bob’s Ruby on Rails app gets popped
or his SQL database server is compromised
or his Wordpress plugin gives RCE
or ….

He wants to add security... But how?

2015 NCC Group 6

Once Upon a Time

OLD

The tried and true still used today

Broken if you have root

2015 NCC Group 7

Chroot ?

mkdir(“ncc");

chroot(“ncc");

chdir("../..");  oh no…

chroot(".");

2015 NCC Group 8

Chroot 

2015 NCC Group 9

SELinux ?

NSA made it

Complex type system for MLS systems

Good support on RHEL

2015 NCC Group 10

SELinux ?

Complexity

Linus Torvalds problem

The setenforce 0 problem

Kernel enforces it: Kernel gotta kernel

2015 NCC Group 11

SELinux (and other MAC) 

Well you’ve protected the kernel, apps and
helped prevention memory corruption and
hardened against other attacks but…

2015 NCC Group 12

OK, No MAC but grsecurity!

2015 NCC Group 13

Full Virtual Machines?

QEMU, KVM or ESX escapes

Recent Xen/QEMU
updates anyone?

VM for single process?
Nope.

2015 NCC Group 14

Full Virtual Machines 

2015 NCC Group 15

Story Two: The Client

“Gulenn” talks to a potential
source named “citizenfour”

He can’t use a Chromebook
because he is paranoid of Google

2015 NCC Group 16

Once Upon a Time

“Malware is just for Windows”

“OSX sucks, it’s insecure”

Linox is like… super sakure right?

2015 NCC Group 17

Hey, just use Linux!

He’s one webkit or gekco bug away from a
TBB compromise. What app sandboxes?

Pidgin and libpurple don’t have a great
track record

LiveCDs are stale code by definition

2015 NCC Group 18

aaaaannnnddd broken…

2015 NCC Group 19

Story Three: The Embedded

Margaret is in charge of embedded security
at D-LINK, Belkin, <insert IoT company>

She wants to add isolation between the
web app, wpa_supplicant and DLNA stack

Tired of having CSRF-able arbitrary code
execution via buggy input validation

2015 NCC Group 20

Once Upon a Time

Everything runs as root

No security is added (because $$$)

You can’t easily virtualize or segment
ARM/MIPS within a router, but is there
nothing we can do to improve IoT?

2015 NCC Group 21

Margret isn’t alone!

2015 NCC Group 22

What do these stories have in common?

Attack surface matters almost more than anything else

Sandboxes and containers at least let us pick our
battles: they should be the rule not the exception (Props to
Google Chrome Browser, Adobe Reader X, Apple Seatbelt, Google ChromeOS, etc)

How can we work to improve server, desktop and
embedded security for Linux ?

2015 NCC Group 23

What do these stories have in common?

2015 NCC Group 24

We have to try something new

Paul Smecker: They exited out the front door. They had
no idea what they were in for. Now they're staring at six
men with guns drawn. It was a fucking ambush.

NCC Group - INTERNAL 2015 25

Paul Smecker: This was a fucking bomb dropping on
Beaver Cleaverville. For a few seconds, this place was
Armageddon!

NCC Group - INTERNAL 2015 26

Officer Greenly: What if
it was just one guy with
six guns?

NCC Group - INTERNAL 2015 27

Paul Smecker: Why don't
you let me do the
thinking, huh, genius?

NCC Group - INTERNAL 2015 28

But Greenly was right… it was “il Duce”

NCC Group - INTERNAL 2015 29

2015 NCC Group 30

What if it wasn’t one cpu with multiple kernels, but

one kernel with multiple userlands?

2015 NCC Group 31

 OpenVZ
 Linux Vservers
 FreeBSD Jails
OpenBSD/NetBSD Sysjail
 Solaris Zones
HP UX Containers
 AIX Workload Partitions

Fundamentally less secure than
hardware virtualization

2015 NCC Group 32

A little bit about OS Virtualization

Hardware virtualization creates
software emulation for pretty much
everything

Software or OS virtualization
partitions a single kernel and
attempts to restrict or control access
to hardware

2015 NCC Group 33

OS vs Hardware Virtualization

Hardware virtualization is
even fundamentally less
secure than physically
different hardware…
(surrounded by guys with guns and fences)

2015 NCC Group 34

But we don’t want to depend on a single
method for security …

2015 NCC Group 35

Namespaces

2015 NCC Group 36

Namespaces

http://www.cs.bell-labs.com/sys/doc/names.html

Plan9

2015 NCC Group 37

Namespaces

Linux Kernel

MOUNT
NET

UTS

USER
PID

clone(2)

set_ns(2)

unshare(2)

2015 NCC Group 38

It all starts with a CLONE(2)

“Kernel Execution Context”

CLONE_NEWNS: Added in 2.4.19 kernel

Per user / via PAM

Per process view of files, disks, NFS

2015 NCC Group 39

MOUNT Namespace

CLONE_NEWIPC: Added in 2.6.19

“System 4 IPC objects”

2015 NCC Group 40

IPC Namespace

CLONE_NEWUTS: Added in 2.6.19

uname(2), setdomainname(2),
sethostname(2)

2015 NCC Group 41

UTS Namespace

CLONE_NEWPID: Added in 2.6.24

Process IDs start at 1

Can be nested

2015 NCC Group 42

PID Namespace

2015 NCC Group 43

PID NS example

$ lxc-create –t busybox –n foo ; lxc-start –n foo

$ lxc-attach -n foo -- ps
PID USER COMMAND
 1 root init
 5 root /bin/sh
 10 root ps

2015 NCC Group 44

CLONE_NEWNET: Added in 2.6.24

Separate network device, IP, MAC,
routing table, firewall

2015 NCC Group 45

NETWORK Namespace

CLONE_NEWUSER: Added in 2.6.23
but finished 3.8

Important for actually securing
containers
… also a high risk area of the kernel :/

2015 NCC Group 46

USER Namespace

$ lxc-attach -n foo -- sh

BusyBox v1.21.1 (Ubuntu 1:1.21.0-1ubuntu1) built-in shell
(ash) …

$ id

uid=0(root) gid=0(root)

$ sleep 1337

2015 NCC Group 47

USER NS example

100000 17110 0.0 0.0 2184 260 pts/14 S+ 12:03 0:00 sleep 1337

2015 NCC Group 48

Capabilities

2015 NCC Group 49

root

CAP_NET_ADMIN

CAP_SYS_PCAP

CAP_SYS_MODULE

CAP_SYS_RAWIO

CAP_MKNOD

CAP_NET_BIND_SERVICE

CAP_SYSLOG

CAP_NET_RAW

CAP_DAC_READ_SEARCH

CAP_MAC_ADMIN

CAP_SYS_PTRACE

CAP_SETGID

CAP_SETUID

CAP_SYS_BOOT

CAP_SYS_TIME

CAP_SYS_CHROOT

CAP_AUDIT_WRITE

CAP_WAKE_ALARM

CAP_SYS_ADMIN

Pros: Kernel devs adding them 

Cons: Busy (and lazy) kernel devs 

Result: Semi-working capabilities model!

2015 NCC Group 50

Capabilities

CAP_NET_ADMIN
CAP_NET_RAW
CAP_NET_BIND_SERVICE
CAP_SYS_RESOURCE
CAP_SYS_PTRACE
CAP_SYS_RAWIO
CAP_KILL

2015 NCC Group 51

Examples of Capabilities

What should be dropped ?

2015 NCC Group 52

Dropping Capabilities

Everything!

What if I leave just “CAP_FOO” enabled?
 It depends…

$ ls –l /bin/ping

-rwsr-xr-x 1 root root 44168 May 7 2014 /bin/ping

2015 NCC Group 53

Fixing ping

$ cp /bin/ping /tmp ; ls –l /tmp/ping
-rwxr-xr-x 1 root root 44168 Mar 18 11:02 /tmp/ping

$ /tmp/ping localhost
ping: icmp open socket: Operation not permitted

$ sudo setcap cap_net_raw=p /tmp/ping

2015 NCC Group 54

Fixing ping

$ getcap /tmp/ping

/tmp/ping = cap_net_raw+p

$ /tmp/ping localhost

PING localhost (127.0.0.1) 56(84) bytes of data

64 bytes from localhost (127.0.0.1): icmp_seq ...

SYS_CHROOT NET_RAW
SYS_MODULE
SYS_RAWIO NET_ADMIN
SYS_PTRACE
MAC_ADMIN CAP_MKNOD
MAC_OVERRIDE
DAC_READ_SEARCH

2015 NCC Group 55

Some Dangerous Capabilities

* Perform a range of system administration operations including:
quotactl(2),

mount(2), umount(2), swapon(2), swapoff(2), sethostname(2), and
setdomain‐

name(2);

* perform privileged syslog(2) operations (since Linux 2.6.37,
CAP_SYSLOG should

be used to permit such operations);

* perform VM86_REQUEST_IRQ vm86(2) command;

* perform IPC_SET and IPC_RMID operations on arbitrary System V
IPC objects;

* perform operations on trusted and security Extended Attributes
(see attr(5));

* use lookup_dcookie(2);

* use ioprio_set(2) to assign IOPRIO_CLASS_RT and (before
Linux 2.6.25)

IOPRIO_CLASS_IDLE I/O scheduling classes;

* forge UID when passing socket credentials;

* perform administrative operations on many device drivers.

2015 NCC Group 56

CAP_SYS_ADMIN == root

* exceed /proc/sys/fs/file-max, the system-wide limit on the
number of open files, in system calls that open files (e.g.,
accept(2), execve(2), open(2), pipe(2));
* employ CLONE_* flags that create new namespaces with clone(2)
and unshare(2);
* call perf_event_open(2);
* access privileged perf event information;
* call setns(2);
* call fanotify_init(2);
* perform KEYCTL_CHOWN and KEYCTL_SETPERM keyctl(2)
operations;
* perform madvise(2) MADV_HWPOISON operation;
* employ the TIOCSTI ioctl(2) to insert characters into the input
queue of a ter‐
minal other than the caller's controlling terminal.
* employ the obsolete nfsservctl(2) system call;
* employ the obsolete bdflush(2) system call;
* perform various privileged block-device ioctl(2) operations;
* perform various privileged filesystem ioctl(2) operations;

See False Boundaries and Arbitrary Code Execution post by Spender
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522

2015 NCC Group 57

Control groups

Hierarchical and inheritable

Controls different subsystems
 (Dev, CPU, Mem, I/O, Network)

ulimit on steroids

2015 NCC Group 58

cgroups

Controlling access to resources
based on subgroups:
 devices, CPU, I/O, Mem, …

Filling some gaps of namespaces

2015 NCC Group 59

cgroups

Controlling cgroups is typically
performed via a virtual filesystem:
/sys/fs/cgroup

Main configuration (besides
container configs):
/etc/cgrules.conf,
/etc/cgconfig.conf

2015 NCC Group 60

cgroups

cgexec

cgmanager

Container platforms make it easy

2015 NCC Group 61

cgroups

2015 NCC Group 62

Putting that all together…

Namespaces logically isolate kernel elements

Capabilities help enforce namespaces and
reduce undesired privileges

Cgroups limit hardware resources

2015 NCC Group 63

Putting it all together…

Linux Containers

Better than chroot!

Still not virtualization…

2015 NCC Group 64

Enter: Containers (LXC, Docker,
CoreOS rkt, Heroku, Flockport, Kubernets,
Joyant, etc)

Beyond ro, nodev, noexec, nosuid

Bind, Overlay, Union, CoW,
Versioning, even sshfs

2015 NCC Group 65

Mount options

Self-hosted PaaS systems

Amazon EC2

Google App Engine

Rackspace, Heroku

2015 NCC Group 66

Namespaces, Capabilities and Cgroups:
where are they now on Linux servers?

ChromeOS and the Chrome browser

Limited use in Android

Some Linux distros

Sandboxing tools: minijail, mbox

2015 NCC Group 67

Namespaces, Capabilities and Cgroups:
where are they now on Linux clients?

2015 NCC Group 68

LinuX Containers: LXC

lxc.rootfs = /var/lib/lxc/defcon-ctf/rootfs

lxc.utsname = isec

lxc.start.auto = 1

lxc.mount.entry = /lib lib none ro,bind,nodev 0 0

lxc.mount.entry = /lib64 lib64 none ro,bind,noexec 0 0

2015 NCC Group 69

LXC: Template: Basics

lxc.cgroup.tasks.limit = 256

lxc.cgroup.devices.deny = a

lxc.cgroup.devices.allow = b 9:0 r

lxc.cgroup.memory.limit_in_bytes = 4000000

2015 NCC Group 70

LXC: Template: Cgroups

lxc.cap.keep = sys_time sys_nice

lxc.aa_profile = lxc-container-default

lxc.seccomp = /path/to/seccomp.rules

2015 NCC Group 71

LXC: Template: Other Security

2015 NCC Group 72

Recent Advancements

Non-root users can now create/start containers
and be “root” inside the container

Weird things can obviously happen

More work and auditing to be done

2015 NCC Group 73

Unprivileged Containers

There are 190 syscalls in Linux 2.2
There are 337 syscalls in Linux 2.6
There are 340 syscalls in Linux 4.1

 How many does your app really need?

2015 NCC Group 74

What about that kernel attack
surface?

SECure COMPuting

Filtering the kernel (yet again)

“System call filtering isn't a sandbox. It provides a
clearly defined mechanism for minimizing the exposed
kernel surface.” – Will @redpig Drewry, Google

2015 NCC Group 75

Seccomp-bpf

Syscall arguments can also be filtered (mostly)

Large number of filters = performance hit

Only really supports x86 and x86_64 (for now)

You’ll need LXC, Minijail or Mbox
 (Docker /contrib now, release branch soon (1.8?))

2015 NCC Group 76

Seccomp-bpf

Seccomp-bpf

prctl(2) – operations on a process

PR_SET_SECCOMP:

SECCOMP_MODE_STRICT (old)

SECCOMP_MODE_FILTER (new hotness)

NCC Group - INTERNAL 2015 77

Seccomp-bpf

struct sock_filter filter[] = {

 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr),

 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_ptrace, 1, 0),

 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),

 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

 };

struct sock_fprog prog = {(unsigned short) (sizeof(filter) /

sizeof(filter[0])), filter };

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&prog);

NCC Group - INTERNAL 2015 78

Berkeley Packet Filter
tcpdump –p –nqi wlan0 –d ‘tcp and port 80’

(000) ldh [12]

(001) jeq #0x86dd jt 2 jf 8

(002) ldb [20]

(003) jeq #0x6 jt 4 jf 19

(004) ldh [54]

(005) jeq #0x50 jt 18 jf 6

(006) ldh [56]

(007) jeq #0x50 jt 18 jf 19

(008) jeq #0x800 jt 9 jf 19

(009) ldb [23]

.

NCC Group - INTERNAL 2015 79

 ChromeOS / Google Chrome
Firejail OpenSSH
 Capsicum Tor
Mbox vsftpd BIND
 LXC QEMU
 Opera Browser
 Docker (/contrib)
2015 NCC Group 80

Seccomp-bpf: where

Docker
CoreOS
Flockport
Sandstorm.io
RancherOS

… and many more

2015 NCC Group 81

So who is implementing
and supporting containers?

Heroku (ish)
Joyent
Amazon
VMware
Google/Kubernets

2015 NCC Group 82

Lets talk about the big two

2015 NCC Group 83

Packaging and deployment focused –
 one app per container

Devs and Ops, DevOps, DevCyberOps,
DevSecOps, BlackOps, etc

Developing PaaS

Makes it easy

2015 NCC Group 84

What is the “big deal”

libcontainer, libchan, libswarm, etc

Written in go

REST API

Running docker daemon (as root)

2015 NCC Group 85

So Docker is just LXC? Nope.

Docker images:

 $ docker run --name mynginx –v \

 /opt/content:/usr/share/nginx/html:ro -d nginx

Docker Hub:

 $ sudo docker run ubuntu:14.04 /bin/echo 'Hello world’

 Hello world

Orchestration, Communication, Management

2015 NCC Group 86

Docker Ecosystem

2015 NCC Group 87

Minimal OS for hosting containers

Launching the rkt and app container spec

App container spec picked up by VMware Photon

Separation from Docker and LXC

2015 NCC Group 88

CoreOS

Takes some of the configuration away

FreeBSD::OSX  LXC::Docker

Additional packaged tools | features

2015 NCC Group 89

Why Docker, Rocket, etc?

LXC: You want to run a containerized OS or single
app. Hard mode with the most flexibility.

Docker: You want to run a single app per
container. Easy mode with some costs.

CoreOS: You want to host Docker containers or
try and use rkt. So much bleeding it’s rated R.

2015 NCC Group 90

Why Docker, Rocket, etc?

2015 NCC Group 91

Going on the attack

Container to other container
Container to itself
Container to host
Container to support infrastructure
Container to local network
Container to …

2015 NCC Group - INTERNAL 92

Lets think about this….

2015 NCC Group 93

Starting at the top

2015 NCC Group 94

Starting at the top

Lots of drivers, old code, weird filesystems,
old syscalls, platform specific problems
strange or unused network protocols

2015 NCC Group 95

Kernel who?

If you don’t drop the right ones: game over

Not dropping caps also allows kernel code
exec… CAP_NET_ADMIN (CVE-2013-4588, CVE-2011-

2517, CVE-2011-1019, …)

2015 NCC Group 96

Not…. Dropping caps

Speaking of dropping capabilities, a
Docker shocker: CAP_DAC_READ_SEARCH

“Invoke open_by_handle_at(2)”

Brute force the inode of /etc/shadow

Props to Stealth aka Sebastian Kramer

2015 NCC Group 97

Not…. Dropping caps

Without a MAC system, capability
dropping and the user namespace
are your only line of defense

2015 NCC Group 98

Not…. Dropping caps

Procfs: /proc/kcore,

 /proc/sys/modprobe,

 /proc/sys/kernel/sysrq

Sysfs: /sys

Cgroups does not limit: mknod
Kernel ring buffer: dmesg

Network access: br0

Unintended devfs: /dev, /dev/shm

2015 NCC Group 99

Not…. Limiting access

Forkbomb! :(){ :|:& };:

Memory, disk, entropy…

2015 NCC Group 100

Not…. Limiting resources

When was the last time you
updated OpenSSL in your Docker
container?

How do you deal with updates in
place if apt-get upgrade is a “no-no”?

2015 NCC Group 101

When good containers go stale

“The flawed assumption of modern
computing environments”

Eggs in one (kernel) basket

AppArmor does a decent job

2015 NCC Group 102

Lack of MAC (Mandatory Access Controls)

Bad defaults: Capability dropping,
networking,

Unprivileged containers finished-ish

A few security fixes have lagged :/

2015 NCC Group 103

LXC Weaknesses

2015 NCC Group 104

Capability dropping: a shocker

Root daemon plus root to use it

Weak REST API authentication defaults

Docker “github all the way down”

2015 NCC Group 105

Docker Weaknesses

Does not drop all capabilities by default, drops all except
“those needed” (still includes some dangerous capabilities
 CAP_NET_RAW, CAP_FOWNER, CAP_MKNOD, …)

Docker binds container port maps to all interfaces by
default

Base images are huge… apt-get is hungry

Docker networking defaults allow cross-container
networking and access to Docker host

2015 NCC Group 106

Docker Weaknesses

Giving low rights users access to Docker means giving
them root on the Docker host

Currently missing support for key security features:
seccomp-bpf and the User Namespace

Exposing the socket/REST API inside a container for
introspection <- don’t do that

2015 NCC Group 107

Docker Weaknesses

Docker Weaknesses
About that lack of User namespace….:

Hi all, I'm a maintainer of Docker. As others already
indicated this doesn't work on 1.0. But it could have. Please
remember that at this time, we don't claim Docker out-of-
the-box is suitable for containing untrusted programs with
root privileges. So if you're thinking "pfew, good thing we
upgraded to 1.0 or we were toast", you need to change your
underlying configuration now. Add apparmor or selinux
containment, map trust groups to separate machines, or ideally
don't grant root access to the application. Docker will soon
support user namespaces, which is a great additional security
layer but also not a silver bullet! When we feel comfortable
saying that Docker out-of-the-box can safely contain
untrusted uid0 programs, we will say so clearly.

NCC Group - INTERNAL 2015 108

Posted one year ago :/

2015 NCC Group - INTERNAL 109

2015 NCC Group 110

Rocket (rkt) is extremely new

No root daemon but rkt still requires root…

2015 NCC Group 111

CoreOS “rkt” Weaknesses

2015 NCC Group 112

Rocket does not drop many dangerous
Capabilities or support the User namespace

CoreOS “rkt” Weaknesses

2015 NCC Group 113

Seccomp ? Nope.

Apparmor ? Nope.

SELinux? Kinda.

Root inside container? Yep.

/proc, /proc/sys limits? Nope.

CoreOS “rkt” Weaknesses

2015 NCC Group 114

The Dream

2015 NCC Group 115

The Implementation

2015 NCC Group 116

Open Container Project (OCP)

Robert 'Bob' Morton: At
Security Concepts, we're
projecting the end of crime
in Old Detroit within forty
days.

There's a new guy in town.
His name is RoboCop.

2015 NCC Group 117

Open Container Initiative (OCI?)

Working on a joint specification (OCF) for
containers

Launched runc. An OCF implementation using
libcontainer from Docker.

Unfortunately still not working on RoboCop.

2015 NCC Group 118

That all sounds bad/easy to mess up

 … and how to make it better

2015 NCC Group 119

Recommendations

2015 NCC Group 120

Grsecurity/PaX is the only serious
kernel hardening patchset. Just do it

Typical sysctl hardening

Minimal kernel modules

2015 NCC Group 121

Kernel Hardening

Gotta drop them all!

Design for the smallest set

Assume the worst

2015 NCC Group 122

Dropping all the Capabilities

AppArmor
Grsecurity RBAC

SMACK
SELinux

2015 NCC Group 123

Adding a MAC Layer

Defaults to enabled for LXC and
Docker!

Can be nested!

Path based, but hey it works

2015 NCC Group 124

AppArmor

Don’t allow access to docker user or group

Don’t run privileged or root containers

Drop additional capabilities

Upgrade to 1.8 when released (or use /contrib now) which has seccomp-bpf
and User namespace support, w00t!

Checkout docker-bench-security and other solid work by Docker Security
team

Use small base images

2015 NCC Group 125

Docker Specific Hardening

Use a whitelist if you can but a blacklist
will do OK

Docker is exploring a “high”, “med”, “low”
default for 1.8+ but what is really needed is
profiles for each Containerized app.

2015 NCC Group 126

Seccomp-bpf

Mount security, Extended filesystem attributes,
Access controls, Permissions, Logging,
Firewalls, Auditing, Hardened
Toolchain, Safe languages, Attack
surface reduction, Least privileges,
Least Access, Resource Limits, 2FA,
Reduced Complexity, Pentesting

2015 NCC Group 127

Normal System Hardening

Listening on “all interfaces”
(includes docker0/lxcbr0)

Containers are great for network
auditing/traceflow!

2015 NCC Group 128

Network Hardening

2015 NCC Group 129

Trust A

HYPERVISOR/HARDWARE
Linux kernel with grsecurity+pax
Syscall Filtering w/ seccomp-bpf

Minimal container distro
Mount protections

User namespace w/o caps
Hardened application

Trust B

Trust C

Trust D

2015 NCC Group 130

Where do we go from here?

More namespaces (proc, dev)

Minimal hypervisors (ClearContainers)

Minimal container distros

Android or other non-x86 that needs app/system
segmentation/sandboxing

2015 NCC Group 131

Where do we go from here?

“Desktop” applications in containers

Improved seccomp-bpf argument filtering

Hopefully more granular capabilities

….. more vulnerabilities too! :/

2015 NCC Group 132

Where do we go from here?

Microservices

2015 NCC Group 133

Where do we go from here?

2015 NCC Group 134

Where do we go from here?

2015 NCC Group 135

Where do we go from here?

2015 NCC Group 136

Conclusion

It’s not about perfect security but improving the
current state and making attackers work harder

The technologies to support containers can be used to
help secure existing non-container Linux systems

Microservices architecture fits a least-privilege and
least-access container/security model

Physically separate critical security barriers and
isolate by trust

2015 NCC Group 137

In closing

My whitepaper: “Understanding and Hardening
Linux Containers”…

Covers everything here in muuuch more depth!
 (background, namespaces, all the capabilities, cgroups, explores
MAC, seccomp-bpf, past container attacks, overall and specific
weaknesses, security recommendations for LXC, Docker, rkt
deployments)

2015 NCC Group 138

Coming soon!

When will the whitepaper be released ?

 Hopefully in the next few weeks!

How can I make sure I get it?

 Email me! or follow me on Twitter! @dyn___ (totally not a
ploy for more followers)

2015 NCC Group 139

Coming soon!

 Any Questions/Comments?

 Aaron.Grattafiori@nccgroup.trust

 https://twitter.com/@dyn___

2015 NCC Group 140

Thanks!

