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whoami 



 
These slides are not intended to be 
consumed without the corresponding 
presentation or whitepaper. The 
information contained within is designed 
for presenting and not 100% completeness 
with regards to risks, recommendations, 
findings, etc. 
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      Disclaimer 
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whoami 
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Story One: The Server 



Bob’s Ruby on Rails app gets popped 
or his SQL database server is compromised  
or his Wordpress plugin gives RCE 
or …. 
 
He wants to add security... But how? 
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Once Upon a Time 



OLD 
  
The tried and true still used today 
 
Broken if you have root 
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Chroot ? 



 

mkdir(“ncc"); 

chroot(“ncc"); 

chdir("../..");  oh no… 

chroot("."); 
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Chroot  
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SELinux ? 



NSA made it 
 
Complex type system for MLS systems 
 
Good support on RHEL  
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SELinux ? 



Complexity 
 
Linus Torvalds problem 
 
The setenforce 0 problem 
 
Kernel enforces it: Kernel gotta kernel  
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SELinux (and other MAC)  



Well you’ve protected the kernel, apps and 
helped prevention memory corruption and 
hardened against other attacks but… 
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OK, No MAC but grsecurity! 
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Full Virtual Machines? 



QEMU, KVM or ESX escapes 
 
Recent Xen/QEMU  
updates anyone? 
 
VM for single process?  
Nope. 
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Full Virtual Machines  
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Story Two: The Client 



“Gulenn” talks to a potential 
source named “citizenfour” 
 
He can’t use a Chromebook 
because he is paranoid of Google 
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Once Upon a Time 



 
“Malware is just for Windows” 
 
“OSX sucks, it’s insecure” 
 
Linox is like… super sakure right? 
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Hey, just use Linux! 



He’s one webkit or gekco bug away from a 
TBB compromise. What app sandboxes? 
 
Pidgin and libpurple don’t have a great 
track record 
 
LiveCDs are stale code by definition 
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aaaaannnnddd broken… 
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Story Three: The Embedded 



Margaret is in charge of embedded security 
at D-LINK, Belkin, <insert IoT company> 
 
She wants to add isolation between the 
web app, wpa_supplicant and DLNA stack 
 
Tired of having CSRF-able arbitrary code 
execution via buggy input validation 
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Once Upon a Time 



Everything runs as root 
 
No security is added (because $$$) 
 
You can’t easily virtualize or segment 
ARM/MIPS within a router, but is there 
nothing we can do to improve IoT? 
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Margret isn’t alone! 
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What do these stories have in common? 



Attack surface matters almost more than anything else 
 
Sandboxes and containers at least let us pick our 
battles: they should be the rule not the exception ( Props to 
Google Chrome Browser, Adobe Reader X, Apple Seatbelt, Google ChromeOS, etc) 

  
How can we work to improve server, desktop and 
embedded security for Linux ? 
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What do these stories have in common? 
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We have to try something new 
 
 



Paul Smecker: They exited out the front door. They had 
no idea what they were in for. Now they're staring at six 
men with guns drawn. It was a fucking ambush. 
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Paul Smecker: This was a fucking bomb dropping on 
Beaver Cleaverville. For a few seconds, this place was 
Armageddon! 
 

NCC Group - INTERNAL 2015 26 



Officer Greenly: What if 
it was just one guy with 
six guns? 

NCC Group - INTERNAL 2015 27 



Paul Smecker: Why don't 
you let me do the 
thinking, huh, genius? 
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But Greenly was right… it was “il Duce” 
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What if it wasn’t one cpu with multiple kernels, but  
 
one kernel with multiple userlands? 
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         OpenVZ 
  Linux Vservers 
          FreeBSD Jails 
OpenBSD/NetBSD Sysjail 
          Solaris Zones 
HP UX Containers 
        AIX Workload Partitions 



Fundamentally less secure than 
hardware virtualization 
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A little bit about OS Virtualization 



Hardware virtualization creates 
software emulation for pretty much 
everything 
 
Software or OS virtualization 
partitions a single kernel and 
attempts to restrict or control access 
to hardware 
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OS vs Hardware Virtualization 



 
 
Hardware virtualization is 
even fundamentally less 
secure than physically 
different hardware… 
(surrounded by guys with guns and fences) 

 
2015 NCC Group 34 

But we don’t want to depend on a single 
method for security … 
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Namespaces 
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Namespaces 

http://www.cs.bell-labs.com/sys/doc/names.html 

Plan9 
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Namespaces 

Linux Kernel 

MOUNT 
NET 

UTS 

USER 
PID 



clone(2) 

 

set_ns(2) 

unshare(2) 
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It all starts with a CLONE(2) 

“Kernel Execution Context” 



CLONE_NEWNS: Added in 2.4.19 kernel 
 
Per user / via PAM 
 
Per process view of files, disks, NFS 
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MOUNT Namespace 



CLONE_NEWIPC: Added in 2.6.19 
 
“System 4 IPC objects” 
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IPC Namespace 



CLONE_NEWUTS: Added in 2.6.19 
 
uname(2), setdomainname(2), 
sethostname(2) 
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UTS Namespace 



CLONE_NEWPID: Added in 2.6.24 
 
Process IDs start at 1 
 
Can be nested 
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PID Namespace 
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PID NS example 

$ lxc-create –t busybox –n foo ; lxc-start –n foo 
 
$ lxc-attach -n foo -- ps 
PID   USER     COMMAND 
    1 root     init 
  5 root     /bin/sh 
   10 root     ps 
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CLONE_NEWNET: Added in 2.6.24 
 
Separate network device, IP, MAC, 
routing table, firewall 
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NETWORK Namespace 



CLONE_NEWUSER: Added in 2.6.23 
but finished 3.8  
 
Important for actually securing 
containers 
… also a high risk area of the kernel :/ 
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USER Namespace 



$ lxc-attach -n foo -- sh 

 

BusyBox v1.21.1 (Ubuntu 1:1.21.0-1ubuntu1) built-in shell 
(ash) … 

$ id 

uid=0(root) gid=0(root) 

$ sleep 1337 
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USER NS example 

100000   17110  0.0  0.0   2184  260 pts/14   S+   12:03   0:00 sleep 1337 
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Capabilities 
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root 

CAP_NET_ADMIN 

CAP_SYS_PCAP 

CAP_SYS_MODULE 

CAP_SYS_RAWIO 

CAP_MKNOD 

CAP_NET_BIND_SERVICE 

CAP_SYSLOG 

CAP_NET_RAW 

CAP_DAC_READ_SEARCH 

CAP_MAC_ADMIN 

CAP_SYS_PTRACE 

CAP_SETGID 

CAP_SETUID 

CAP_SYS_BOOT 

CAP_SYS_TIME 

CAP_SYS_CHROOT 

CAP_AUDIT_WRITE 

CAP_WAKE_ALARM 

CAP_SYS_ADMIN 



Pros: Kernel devs adding them  
 
Cons: Busy (and lazy) kernel devs  
 
Result: Semi-working capabilities model!  
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Capabilities 



CAP_NET_ADMIN 
CAP_NET_RAW 
CAP_NET_BIND_SERVICE 
CAP_SYS_RESOURCE 
CAP_SYS_PTRACE 
CAP_SYS_RAWIO 
CAP_KILL 
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Examples of Capabilities 



 
What should be dropped ? 
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Dropping Capabilities 

Everything! 
 
What if I leave just “CAP_FOO” enabled? 
 It depends… 



$ ls –l /bin/ping 

-rwsr-xr-x 1 root root 44168 May 7 2014 /bin/ping 

2015 NCC Group 53 

Fixing ping 

$ cp /bin/ping /tmp ; ls –l /tmp/ping 
-rwxr-xr-x 1 root root 44168 Mar 18 11:02 /tmp/ping 

$ /tmp/ping localhost 
ping: icmp open socket: Operation not permitted 



$ sudo setcap cap_net_raw=p /tmp/ping 
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Fixing ping 

$ getcap /tmp/ping 

/tmp/ping = cap_net_raw+p 

$ /tmp/ping localhost 

PING localhost (127.0.0.1) 56(84) bytes of data 

64 bytes from localhost (127.0.0.1): icmp_seq ... 



SYS_CHROOT     NET_RAW 
SYS_MODULE 
SYS_RAWIO      NET_ADMIN 
SYS_PTRACE     
MAC_ADMIN      CAP_MKNOD 
MAC_OVERRIDE  
DAC_READ_SEARCH 
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Some Dangerous Capabilities 



* Perform a range of system  administration  operations  including:  
quotactl(2), 

mount(2),  umount(2),  swapon(2),  swapoff(2),  sethostname(2),  and 
setdomain‐ 

name(2); 

* perform privileged syslog(2) operations (since Linux 2.6.37, 
CAP_SYSLOG  should 

be used to permit such operations); 

* perform VM86_REQUEST_IRQ vm86(2) command; 

* perform IPC_SET and IPC_RMID operations on arbitrary System V 
IPC objects; 

* perform operations on trusted and security Extended Attributes 
(see attr(5)); 

* use lookup_dcookie(2); 

* use   ioprio_set(2)   to  assign  IOPRIO_CLASS_RT  and  (before  
Linux  2.6.25) 

IOPRIO_CLASS_IDLE I/O scheduling classes; 

* forge UID when passing socket credentials; 

* perform administrative operations on many device drivers. 
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CAP_SYS_ADMIN == root 

* exceed /proc/sys/fs/file-max, the system-wide  limit  on  the  
number  of  open files,  in  system  calls that open files (e.g., 
accept(2), execve(2), open(2), pipe(2)); 
* employ CLONE_* flags that create new namespaces with clone(2) 
and unshare(2); 
* call perf_event_open(2); 
* access privileged perf event information; 
* call setns(2); 
* call fanotify_init(2); 
* perform KEYCTL_CHOWN and KEYCTL_SETPERM keyctl(2) 
operations; 
* perform madvise(2) MADV_HWPOISON operation; 
* employ the TIOCSTI ioctl(2) to insert characters into the input 
queue of a ter‐ 
minal other than the caller's controlling terminal. 
* employ the obsolete nfsservctl(2) system call; 
* employ the obsolete bdflush(2) system call; 
* perform various privileged block-device ioctl(2) operations; 
* perform various privileged filesystem ioctl(2) operations; 

See False Boundaries and Arbitrary Code Execution post by Spender 
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522 
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Control groups 



Hierarchical and inheritable 
 
Controls different subsystems  
 (Dev, CPU, Mem, I/O, Network) 
 
ulimit on steroids 
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cgroups 



Controlling access to resources 
based on subgroups: 
      devices, CPU, I/O, Mem, … 
 
Filling some gaps of namespaces 
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cgroups 



Controlling cgroups is typically 
performed via a virtual filesystem: 
/sys/fs/cgroup 
 

Main configuration (besides 
container configs): 
/etc/cgrules.conf, 
/etc/cgconfig.conf 
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cgroups 



cgexec 
 
cgmanager 
 
Container platforms make it easy 
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cgroups 
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Putting that all together… 



Namespaces logically isolate kernel elements 
 
Capabilities help enforce namespaces and 
reduce undesired privileges 
 
Cgroups limit hardware resources 
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Putting it all together… 



Linux Containers 
 
Better than chroot! 
 
Still not virtualization… 
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Enter: Containers (LXC, Docker, 
CoreOS rkt, Heroku, Flockport, Kubernets, 
Joyant, etc) 



 
Beyond ro, nodev, noexec, nosuid 
 
Bind, Overlay, Union, CoW, 
Versioning, even sshfs 
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Mount options 



 
Self-hosted PaaS systems 
 
Amazon EC2 
 
Google App Engine 
 
Rackspace, Heroku 
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Namespaces, Capabilities and Cgroups: 
where are they now on Linux servers? 



 
ChromeOS and the Chrome browser 
 
Limited use in Android 
 
Some Linux distros 
 
Sandboxing tools: minijail, mbox 
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Namespaces, Capabilities and Cgroups: 
where are they now on Linux clients? 
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LinuX Containers: LXC 



lxc.rootfs = /var/lib/lxc/defcon-ctf/rootfs 

lxc.utsname = isec 

lxc.start.auto = 1 

lxc.mount.entry = /lib lib none ro,bind,nodev 0 0 

lxc.mount.entry = /lib64 lib64 none ro,bind,noexec 0 0 
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LXC: Template: Basics 



lxc.cgroup.tasks.limit = 256 

lxc.cgroup.devices.deny = a 

lxc.cgroup.devices.allow = b 9:0 r 

lxc.cgroup.memory.limit_in_bytes = 4000000  
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LXC: Template: Cgroups 



lxc.cap.keep = sys_time sys_nice 

lxc.aa_profile = lxc-container-default 

lxc.seccomp = /path/to/seccomp.rules 
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LXC: Template: Other Security 
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Recent Advancements 



Non-root users can now create/start containers 
and be “root” inside the container 
 
Weird things can obviously happen 
 
More work and auditing to be done 
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Unprivileged Containers 



 
There are 190 syscalls in Linux 2.2  
There are 337 syscalls in Linux 2.6 
There are 340 syscalls in Linux 4.1 
 
    How many does your app really need? 
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What about that kernel attack 
surface? 



SECure COMPuting  
 
Filtering the kernel (yet again) 

 
“System call filtering isn't a sandbox.  It provides a 
clearly defined mechanism for minimizing the exposed 
kernel surface.” – Will @redpig Drewry, Google  

2015 NCC Group 75 

Seccomp-bpf 



Syscall arguments can also be filtered (mostly) 
 
Large number of filters = performance hit  
 
Only really  supports x86 and x86_64 (for now) 
 
You’ll need LXC, Minijail or Mbox 
  (Docker /contrib now, release branch soon (1.8?)) 
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Seccomp-bpf 



Seccomp-bpf 

prctl(2) – operations on a process 

 

PR_SET_SECCOMP: 

 
SECCOMP_MODE_STRICT (old) 

SECCOMP_MODE_FILTER (new hotness) 
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Seccomp-bpf 

struct sock_filter filter[] = { 

       BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr), 

       BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_ptrace, 1, 0), 

       BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW), 

       BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL) 

   }; 

 

struct sock_fprog prog = {(unsigned short) (sizeof(filter) / 

sizeof(filter[0])), filter }; 

 

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, 
&prog); 
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Berkeley Packet Filter 
# tcpdump –p –nqi wlan0 –d ‘tcp and port 80’ 

(000) ldh      [12] 

(001) jeq      #0x86dd          jt 2 jf 8 

(002) ldb      [20] 

(003) jeq      #0x6             jt 4 jf 19 

(004) ldh      [54] 

(005) jeq      #0x50            jt 18 jf 6 

(006) ldh      [56] 

(007) jeq      #0x50            jt 18 jf 19 

(008) jeq      #0x800           jt 9 jf 19 

(009) ldb      [23] 

. . . . . 
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  ChromeOS / Google Chrome 
Firejail     OpenSSH 
   Capsicum        Tor 
Mbox   vsftpd           BIND 
   LXC             QEMU  
 Opera Browser 
                         Docker (/contrib) 
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Seccomp-bpf: where 



Docker 
CoreOS 
Flockport 
Sandstorm.io 
RancherOS 

 
… and many more 
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So who is implementing 
and supporting containers? 

Heroku (ish) 
Joyent 
Amazon 
VMware 
Google/Kubernets 
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Lets talk about the big two 
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Packaging and deployment focused –  
   one app per container 
 
Devs and Ops, DevOps, DevCyberOps, 
DevSecOps, BlackOps, etc 
 
Developing PaaS 
 
Makes it easy 
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What is the “big deal” 



libcontainer, libchan, libswarm, etc 
 
Written in go 
 
REST API 
 
Running docker daemon (as root) 
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So Docker is just LXC? Nope. 



Docker images: 
 
 $ docker run --name mynginx –v \ 

      /opt/content:/usr/share/nginx/html:ro -d nginx 

 
Docker Hub: 
 
 $ sudo docker run ubuntu:14.04 /bin/echo 'Hello world’  

 Hello world 

 
Orchestration, Communication, Management 
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Docker Ecosystem 
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Minimal OS for hosting containers 
 
Launching the rkt and app container spec 
 
App container spec picked up by VMware Photon 
 
Separation from Docker and LXC 
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CoreOS 



Takes some of the configuration away 
 
FreeBSD::OSX  LXC::Docker 
 
Additional packaged tools | features 
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Why Docker, Rocket, etc? 



LXC: You want to run a containerized OS or single 
app. Hard mode with the most flexibility. 
 
Docker: You want to run a single app per 
container. Easy mode with some costs. 
 
CoreOS: You want to host Docker containers or 
try and use rkt. So much bleeding it’s rated R. 
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Why Docker, Rocket, etc? 
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Going on the attack 



Container to other container 
Container to itself 
Container to host 
Container to support infrastructure 
Container to local network 
Container to …  
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Lets think about this…. 
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Starting at the top 



2015 NCC Group 94 

Starting at the top 



Lots of drivers, old code, weird filesystems, 
old syscalls, platform specific problems 
strange or unused network protocols 
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Kernel who? 



If you don’t drop the right ones: game over 
 
Not dropping caps also allows kernel code 
exec… CAP_NET_ADMIN (CVE-2013-4588, CVE-2011-

2517, CVE-2011-1019, …) 
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Not…. Dropping caps 



Speaking of dropping capabilities, a 
Docker shocker: CAP_DAC_READ_SEARCH 
 
“Invoke open_by_handle_at(2)” 
 
Brute force the inode of /etc/shadow 
 
Props to Stealth aka Sebastian Kramer 
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Not…. Dropping caps 



Without a MAC system, capability 
dropping and the user namespace 
are your only line of defense 
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Not…. Dropping caps 



Procfs:  /proc/kcore, 

    /proc/sys/modprobe, 

    /proc/sys/kernel/sysrq 

Sysfs:        /sys 

Cgroups does not limit:  mknod 
Kernel ring buffer:    dmesg 

Network access:     br0 

Unintended devfs:   /dev, /dev/shm 
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Not…. Limiting access 



 
Forkbomb!       :(){ :|:& };: 
 
Memory, disk, entropy… 
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Not…. Limiting resources 



 
When was the last time you 
updated OpenSSL in your Docker 
container? 
 
How do you deal with updates in 
place if apt-get upgrade is a “no-no”? 
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When good containers go stale 



 
“The flawed assumption of modern 
computing environments” 
 
Eggs in one (kernel) basket 
 
AppArmor does a decent job 
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Lack of MAC (Mandatory Access Controls) 



Bad defaults: Capability dropping, 
networking,   
 
Unprivileged containers finished-ish 
 

A few security fixes have lagged :/ 
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LXC Weaknesses 
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Capability dropping: a shocker 
 
Root daemon plus root to use it 
 
Weak REST API authentication defaults 
 
Docker “github all the way down” 
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Docker Weaknesses 



Does not drop all capabilities by default, drops all except 
“those needed” (still includes some dangerous capabilities                                                
     CAP_NET_RAW, CAP_FOWNER, CAP_MKNOD, …) 
 
Docker binds container port maps to all interfaces by 
default 
 
Base images are huge… apt-get is hungry 
 
Docker networking defaults allow cross-container 
networking and access to Docker host  
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Docker Weaknesses 



Giving low rights users access to Docker means giving 
them root on the Docker host 
 
Currently missing support for key security features: 
seccomp-bpf and the User Namespace 
 
Exposing the socket/REST API inside a container for 
introspection <- don’t do that 
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Docker Weaknesses 



Docker Weaknesses 
About that lack of User namespace….: 
 
Hi all, I'm a maintainer of Docker.  As others already 
indicated this doesn't work on 1.0. But it could have. Please 
remember that at this time, we don't claim Docker out-of-
the-box is suitable for containing untrusted programs with 
root privileges. So if you're thinking "pfew, good thing we 
upgraded to 1.0 or we were toast", you need to change your 
underlying configuration now. Add apparmor or selinux 
containment, map trust groups to separate machines, or ideally 
don't grant root access to the application. Docker will soon 
support user namespaces, which is a great additional security 
layer but also not a silver bullet! When we feel comfortable 
saying that Docker out-of-the-box can safely contain 
untrusted uid0 programs, we will say so clearly. 
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Posted one year ago :/ 
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Rocket (rkt) is extremely new 
 
 
 
No root daemon but rkt still requires root… 
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CoreOS “rkt” Weaknesses 
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Rocket does not drop many dangerous  
Capabilities or support the User namespace 

CoreOS “rkt” Weaknesses 
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Seccomp ? Nope. 
 
Apparmor ? Nope. 
 
SELinux? Kinda. 
 
Root inside container? Yep. 
 
/proc, /proc/sys limits? Nope. 
 

CoreOS “rkt” Weaknesses 
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The Dream 
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The Implementation 
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Open Container Project (OCP) 

Robert 'Bob' Morton: At 
Security Concepts, we're 
projecting the end of crime 
in Old Detroit within forty 
days.  
 
There's a new guy in town. 
His name is RoboCop. 
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Open Container Initiative (OCI?) 

Working on a joint specification (OCF) for 
containers 
 
Launched runc. An OCF implementation using 
libcontainer from Docker. 
 
Unfortunately still not working on RoboCop. 
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That all sounds bad/easy to mess up 
 
 … and how to make it better 
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Recommendations 
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Grsecurity/PaX is the only serious 
kernel hardening patchset. Just do it  
 
Typical sysctl hardening 
 
Minimal kernel modules 
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Kernel Hardening 



Gotta drop them all! 
 
Design for the smallest set 
 
Assume the worst 
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Dropping all the Capabilities 



AppArmor 
Grsecurity RBAC 
 
SMACK 
SELinux 
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Adding a MAC Layer 



Defaults to enabled for LXC and 
Docker! 
 
Can be nested! 
 
Path based, but hey it works 
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AppArmor 



 
Don’t allow access to docker user or group 
 
Don’t run privileged or root containers 
 
Drop additional capabilities 
 
Upgrade to 1.8 when released (or use /contrib now) which has seccomp-bpf 
and User namespace support, w00t! 
 
Checkout docker-bench-security and other solid work by Docker Security 
team 
 
Use small base images 
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Docker Specific Hardening 



Use a whitelist if you can but a blacklist 
will do OK  
 
Docker is exploring a “high”, “med”, “low” 
default for 1.8+ but what is really needed is 
profiles for each Containerized app. 
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Seccomp-bpf 



Mount security, Extended filesystem attributes, 
Access controls, Permissions, Logging, 
Firewalls, Auditing, Hardened 
Toolchain, Safe languages, Attack 
surface reduction, Least privileges, 
Least Access, Resource Limits, 2FA, 
Reduced Complexity, Pentesting 
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Normal System Hardening 



Listening on “all interfaces” 
(includes docker0/lxcbr0)  
 
Containers are great for network 
auditing/traceflow! 
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Network Hardening 
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Trust A 

HYPERVISOR/HARDWARE 
Linux kernel with grsecurity+pax 
Syscall Filtering w/ seccomp-bpf 

Minimal container distro 
Mount protections 

User namespace w/o caps 
Hardened application 

Trust B 

Trust C 

Trust D 
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Where do we go from here? 



More namespaces (proc, dev) 
 
Minimal hypervisors (ClearContainers) 
 
Minimal container distros 
 
Android or other non-x86 that needs app/system 
segmentation/sandboxing 
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Where do we go from here? 



“Desktop” applications in containers 
 
Improved seccomp-bpf argument filtering 
 
Hopefully more granular capabilities 
 
…..  more vulnerabilities too! :/ 
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Where do we go from here? 



 
 
 
Microservices 
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Where do we go from here? 
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Where do we go from here? 
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Where do we go from here? 
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Conclusion 



It’s not about perfect security but improving the 
current state and making attackers work harder 
 
The technologies to support containers can be used to 
help secure existing non-container Linux systems 
 
Microservices architecture fits a least-privilege and 
least-access container/security model 
 
Physically separate critical security barriers and 
isolate by trust  

2015 NCC Group 137 

In closing 



My whitepaper: “Understanding and Hardening 
Linux Containers”… 
 
Covers everything here in muuuch more depth! 
 (background, namespaces, all the capabilities, cgroups, explores 
MAC, seccomp-bpf, past container attacks, overall and specific 
weaknesses, security recommendations for LXC, Docker, rkt 
deployments) 
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Coming soon! 



When will the whitepaper be released ? 
 
 Hopefully in the next few weeks!  
 
How can I make sure I get it? 
 
 Email me! or follow me on Twitter! @dyn___ (totally not a 
ploy for more followers) 
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Coming soon! 



   Any Questions/Comments? 
 
 

  Aaron.Grattafiori@nccgroup.trust 

  https://twitter.com/@dyn___ 
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Thanks! 


