
2 3 2 5 - 6 0 9 5/ 14 /$ 31 . 0 0 © 2 0 14 I EEE 	 S EP T E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 81

DAVID
BERNSTEIN
Cloud Strategy Partners,
david@cloudstrategypartners.com

CLOUD TIDBITS

WELCOME TO CLOUD TIDBITS! In each issue,
I’ll look at a different “tidbit” of technology that I
consider unique or eye-catching, and of particular
interest to the IEEE Cloud Computing readers.

Today’s tidbit focuses on container technology
and how it’s emerging as an important part of the
cloud computing infrastructure.

Cloud Computing’s Multiple OS Capability
Many formal definitions of cloud computing exist.
The National Institute of Standards and Technol-
ogy’s internationally accepted definition calls for
“resource pooling,” where the “provider’s computing
resources are pooled to serve multiple consumers
using a multitenant model, with different physical
and virtual resources dynamically assigned and
reassigned according to consumer demand.”1 It also
calls for “rapid elasticity,” where “capabilities can be
elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward
commensurate with demand.”

Most agree that the definition implies some kind
of technology that provides an isolation and mult-
itenancy layer, and where computing resources are
split up and dynamically shared using an operating
technique that implements the specified multiten-
ant model. Two technologies are commonly used
here: the hypervisor and the container. You might
be familiar with how a hypervisor provides for vir-
tual machines (VMs). You might be less familiar
with containers, the most common of which rely on
Linux kernel containment features, more commonly
known as LXC (https://linuxcontainers.org). Both
technologies support isolation and multitenancy.

Not all agree that a hypervisor or container is re-
quired to call a given system a cloud; several special-
ized service providers offer what is generally called
a bare metal cloud, where they apply the referenced
elasticity and automation to the rapid provisioning
and assignment of physical servers, eliminating the
overhead of a hypervisor or container altogether.
Although interesting for the most demanding appli-
cations, the somewhat oxymoron term “bare metal
cloud” is something perhaps Tidbits will look at in
more detail in a later column.

Thus, we’re left with the working definition that
cloud computing, at its core, has hypervisors or con-
tainers as a fundamental technology.

Cloud Systems with Hypervisors and
Containers
Most commercial cloud computing systems—both ser-
vices and cloud operating system software products—
use hypervisors. Enterprise VMware installations,
which can rightly be called early private clouds, use
the ESXi Hypervisor (www.vmware.com/products/es-
xi-and-esx/overview). Some public clouds (Terremark,
Savvis, and Bluelock, for example) use ESXi as well.
Both Rackspace and Amazon Web Services (AWS) use
the XEN Hypervisor (www.xenproject.org/developers/
teams/hypervisor.html), which gained tremendous
popularity because of its early open source inclusion
with Linux. Because Linux has now shifted to sup-
port KVM (www.linux-kvm.org), another open source

Containers and
Cloud: From
LXC to Docker
to Kubernetes

82	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

CLOUD TIDBITS

alternative, KVM has found its way into more recent-
ly constructed clouds (such as AT&T, HP, Comcast,
and Orange). KVM is also a favorite hypervisor of the
OpenStack project and is used in most OpenStack dis-
tributions (such as RedHat, Cloudscaling, Piston, and
Nebula). Of course, Microsoft uses its Hyper-V hy-
pervisor underneath both Microsoft Azure and Micro-
soft Private Cloud (www.microsoft.com/en-us/server
-cloud/solutions/virtualization.aspx).

However, not all well-known public clouds use
hypervisors. For example, Google, IBM/Softlayer,
and Joyent are all examples of extremely successful
public cloud platforms using containers, not VMs.

Some trace inspiration for containers back to the
Unix chroot command, which was introduced as part
of Unix version 7 in 1979. In 1998, an extended ver-
sion of chroot was implemented in FreeBSD and called
jail. In 2004, the capability was improved and released
with Solaris 10 as zones. By Solaris 11, a full-blown ca-
pability based on zones was completed and called con-
tainers. By that time, other proprietary Unix vendors
offered similar capabilities—for example, HP-UX con-
tainers and IBM AIX workload partitions.

As Linux emerged as the dominant open plat-
form, replacing these earlier variations, the technol-
ogy found its way into the standard distribution in
the form of LXC.

Figure 1 compares application deployment using
a hypervisor and a container. As the figure shows,
the hypervisor-based deployment is ideal when ap-
plications on the same cloud require different op-
erating systems or OS versions (for example, RHEL
Linux, Debian Linux, Ubuntu Linux, Windows
2000, Windows 2008, Windows 2012). The abstrac-
tion must be at the VM level to provide this capabil-
ity of running different OS versions.

With containers, applications share an OS (and,
where appropriate, binaries and libraries), and as a re-
sult these deployments will be significantly smaller in
size than hypervisor deployments, making it possible
to store hundreds of containers on a physical host
(versus a strictly limited number of VMs). Because
containers use the host OS, restarting a container
doesn’t mean restarting or rebooting the OS.

Those familiar with Linux implementations
know that there’s a great degree of binary applica-
tion portability among Linux variants, with librar-
ies occasionally required to complete the portability.
Therefore, it’s practical to have one container pack-
age that will run on almost all Linux-based clouds.

Docker Containers
Docker (www.docker.com) is an open source project
providing a systematic way to automate the faster
deployment of Linux applications inside portable
containers. Basically, Docker extends LXC with a
kernel-and application-level API that together run
processes in isolation: CPU, memory, I/O, network,
and so on. Docker also uses namespaces to com-
pletely isolate an application’s view of the underly-
ing operating environment, including process trees,
network, user IDs, and file systems.

Docker containers are created using base images.
A Docker image can include just the OS fundamen-
tals, or it can consist of a sophisticated prebuilt appli-
cation stack ready for launch. When building images
with Docker, each action taken (that is, command ex-
ecuted, such as apt-get install) forms a new layer on
top of the previous one. Commands can be executed
manually or automatically using Dockerfiles.

Server Server

Host OS Host OS

Hypervisor Container engine

APP
A

LibsLibsLibs

LibsLibsLibs

OS
A

OS
B

OS
C

APP
B

APP
C

APP
A

APP
B

APP
C

(a) (b)

Figure 1. Comparison of (a) hypervisor and (b) container-based

deployments. A hypervisor-based deployment is ideal when applications

on the same cloud require different operating systems or different OS

versions; in container-based systems, applications share an operating

system, so these deployments can be significantly smaller in size.

S EP T E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 83

Each Dockerfile is a script composed
of various commands (instructions) and
arguments listed successively to auto-
matically perform actions on a base
image to create (or form) a new image.
They’re used to organize deployment ar-
tifacts and simplify the deployment pro-
cess from start to finish.

Containers can run on VMs too. If a
cloud has the right native container run-
time (such as some of the clouds men-
tioned) a container can run directly on
the VM. If the cloud only supports hyper-
visor-based VMs, there’s no problem—the
entire application, container, and OS
stack can be placed on a VM and run just
like any other application to the OS stack.

Abstractions on Top of VMs and
Containers
Both VMs and containers provide a rath-
er low-level construct. Basically, both
present an operating system interface to
the developer. In the case of the VM, it’s
a complete implementation of the OS;
you can run any OS that runs on the
bare metal. The container gives you a
“view” or a “slice” of an OS already run-
ning. You access OS constructs as if you
were running an application directly on
the OS. Developers often build on this
level of abstraction to provide more ap-
plication runtime constructs, so users
don’t feel like they’re running on a bare
machine or a bare OS, but on an appli-
cation runtime of some kind.

Virtual appliances, such as Virtu-
alBox (www.virtualbox.org), Rightscale

Appliance,2 and Bitnami (https://bitnami
.com), provide application runtime en-
vironments that shield the application
from the bare OS by providing an inter-
face for applications with higher-level,
more portable constructs. Virtual appli-
ances gained popularity with equipment
manufacturers who wanted to provide
a vehicle for distributing software ver-
sions of an appliance—for example, a
network load balancer, WAN optimizer,
or firewall. Virtual appliances can run
on top of a VM or a container (native
LXC-based or running on top of a VM).

For even more isolation from the
OS, especially desired by application
programmers, application runtimes can
be reconfigured into total platform-as-
a-service (PaaS) runtimes. Readers will
remember that last issue I discussed
Cloud Foundry PaaS, and mentioned
that it uses container technology for de-
ployment. It’s for precisely this reason
they do so—the distribution can be tar-
geted precisely for the container engine
and Linux OS on the cloud, and like the
virtual appliance can also run on top of
a VM.

As Figure 2 shows, there are many
possible layering combinations, depend-
ing on the OS’s capabilities, the deploy-
ment/portability strategy, and whether a
PaaS is used.

How does one choose? As men-
tioned earlier, the virtual appliance
approach is a favorite vehicle used by
network equipment manufacturers to
create a portable software appliance.

Those who want to deploy applica-
tions with the least infrastructure will
choose the simple container-to-OS ap-
proach. This is why container-based cloud
vendors can claim improved performance
when compared to hypervisor-based
clouds. A recent benchmark of a “fast
data” NewSQL system claimed that in an
apples-to-apples comparison, running on
IBM Softlayer using containers resulted
in a fivefold performance improvement
over the same benchmark running on
Amazon AWS using a hypervisor.3

Software developers tend to prefer
using PaaS, which will use a container if
available for its runtime, to maximize per-
formance as well as to manage application
clustering. If not, the PaaS will run a con-
tainer on a VM. Consequently, as PaaS
gains in popularity, so do containers.

However, using containers for secu-
rity isolation might not be a good idea.
In an August 2013 blog,4 one of Dock-
er’s engineers expressed optimism that
containers would eventually catch up to
VMs from a security standpoint. But in
a presentation given in January 2014,5
the same engineer said that the only
way to have real isolation with Docker
is to either run one Docker per host, or
one Docker per VM. If high security is
needed, it might be worth sacrificing
the performance of a pure-container de-
ployment by introducing a VM to obtain
more tried and true isolation. As with
any other technology, you need to know
the deployment’s security requirements,
and make appropriate decisions.

Application

OS

VM

Container Container Container Container Container Container

PaaS PaaS

PaaS PaaS

PaaS

Virtual
appliance

Virtual
appliance

Virtual
appliance

Virtual
appliance

VM VM VM VM VM VM

OS OS OS OS OS OS OS OS OS OS

Figure 2. Possible layering combinations for application runtimes.

84	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

CLOUD TIDBITS

Open Source Cluster Manager for
Docker Containers
As mentioned earlier, one of containers’
nicest features is that they can be man-
aged specifically for application clus-
tering, especially when used in a PaaS
environment. Answering this need, at
the June 2014 Google Developer Forum,
Google announced Kubernetes, an open
source cluster manager for Docker con-
tainers.6 According to Google, “Kuber-
netes is the decoupling of application
containers from the details of the sys-
tems on which they run. Google Cloud
Platform provides a homogenous set of
raw resources . . . to Kubernetes, and in
turn, Kubernetes schedules containers
to use those resources. This decoupling
simplifies application development since
users only ask for abstract resources like
cores and memory, and it also simplifies
data center operations.”

Google goes on to describe network-
centric deployment improvements in
Kubernetes: “While running individual
containers is sufficient for some use cas-
es, the real power of containers comes
from implementing distributed systems,
and to do this you need a network. How-
ever, you don’t just need any network.
Containers provide end users with an
abstraction that makes each container a
self-contained unit of computation. Tradi-
tionally, one place where this has broken
down is networking, where containers are
exposed on the network via the shared
host machine’s address. In Kubernetes,
we’ve taken an alternative approach: that
each group of containers (called a Pod)
deserves its own, unique IP address that’s
reachable from any other Pod in the clus-
ter, whether they’re co-located on the
same physical machine or not.”

Industry Movement around
Kubernetes
Shortly after Google’s announcements,
several players endorsed Kubernetes—

and therefore Docker and containers—
as a core cloud deployment technology.7
In addition to a host of start-ups (such
as CoreOS, MesoSphere, and Salt-
Stack), Kubernetes supporters include:

•	 Google (for Google Cloud Engine,
GCE),

•	 Microsoft (for Microsoft Azure),
•	 VMware,
•	 IBM (for Softlayer and OpenStack),

and
•	 Red Hat (its OpenStack distribution).

Although HP, Canonical, AWS, and Rack-
space are “Docker friendly,” they haven’t
explicitly endorsed Kubernetes. Industry
speculation is that once a more neutral
governance/collaboration structure is put
together around Docker (a start-up com-
pany) and Kubernetes (still controlled
by Google), organizations will agree on a
common packaging and deployment ap-
proach—and here we have practically ev-
eryone already thinking about it. I’m not
aware of any cloud project with this level
of alignment on anything!

CONTAINERS, DOCKER, AND
KUBERNETES SEEM TO HAVE
SPARKED THE HOPE OF A UNIVER-
SAL CLOUD APPLICATION AND
DEPLOYMENT TECHNOLOGY. And
that, my friends, qualified it to be this
issue’s Cloud Tidbit. I hope you enjoyed
it!

References
1.	P. Mell and T. Grance, The NIST Def-

inition of Cloud Computing: Recom-
mendations of the National Institute of
Standards and Technology, NIST Spe-
cial Publication 800-145, 2011.

2.	U. Thakrar, “Introducing Right-
Scale Cloud Appliance for vSphere,”
blog, 10 Dec. 2013; www.rightscale
.com/blog/enterprise-cloud-strategies/

introducing-rightscale-cloud-appliance
-vsphere.

3.	B. Kepes, “VoltDB Puts the Boot
into Amazon Web Services, Claims
IBM Is Five Times Faster,” Forbes,
6 Aug. 2014; www.forbes.com/sites/
benkepes/2014/08/06/voltdb-puts
-the-boot-into-amazon-web-services
-claims-ibm-5-faster.

4.	 J. Petazzoni, “Containers & Dock-
er: How Secure Are They?” blog,
21 Aug. 2013; http://blog.docker
.com/2013/08/containers-docker
-how-secure-are-they.

5.	 J. Petazzoni, “Linux Containers
(LXC), Docker, and Security,” 31 Jan.
2014; www.slideshare.net/jpetazzo/
linux-containers-lxc-docker-and
-security.

6.	C. Mcluckie, “Containers, VMs, Ku-
bernetes and VMware,” blog, 25 Aug.
2014; http://googlecloudplatform
.blogspot.com/2014/08/containers
-vms-kubernetes-and-vmware.html.

7.	B. Butler, “Containers: Buzzword du
Jour, or Game-Changing Technol-
ogy?” NetworkWorld, 3 Sept. 2014;
www.networkworld.com/article/
2601925/cloud-computing/container
-party-vmware-microsoft-cisco-and
-red-hat-all-get-in-on-app-hoopla
.html.

DAVID BERNSTEIN is the managing
director of Cloud Strategy Partners, co-
founder of the IEEE Cloud Computing
Initiative, founding chair of the IEEE
P2302 Working Group, and origina-
tor and chief architect of the IEEE In-
tercloud Testbed Project. His research
interests include cloud computing, dis-
tributed systems, and converged commu-
nications. Bernstein was a University of
California Regents Scholar with highest
honors BS degrees in both mathemat-
ics and physics. Contact him at david@
cloudstrategypartners.com.

