
Foreword by Martin Casado

VMware NSX®
Automation

Fundamentals

Caio Oliveira, VMware
Thiago Koga, VMware

II |

 | III

VMware NSX®
Automation

Fundamentals

Foreword by Martin Casado

Caio Oliveira, VMware
Thiago Koga, VMware

IV |

VMWARE PRESS

Program Managers

Katie Holms
Shinie Shaw

Technical Writer

Rob Greanias

Reviewers and Content Contributors

Marcos Hernandez
Anderson Duboc
Gustavo Santana
Angel Villar Garea
Andrew Voltmer
Scott Goodman

Designer and Production Manager

Michaela Loeffler
Sappington

Warning & Disclaimer

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The authors, VMware Press,
VMware, and the publisher shall have neither liability nor responsibility
to any person or entity with respect to any loss or damages arising from
the information contained in this book.

The opinions expressed in this book belong to the author and are not
necessarily those of VMware.

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA
Tel 877-486-9273 Fax 650-427-5001 www.vmware.com.

Copyright © 2018 VMware, Inc. All rights reserved. This product is
protected by U.S. and international copyright and intellectual property
laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark
or trademark of VMware, Inc. and its subsidiaries in the United States
and/or other jurisdictions. All other marks and names mentioned herein
may be trademarks of their respective companies.

 | V

Table of Contents
About the Reviewers and Content Contributors..XII

Preface... XV

Foreword..XVI

Chapter 1 - Introduction... 1

Intended Audience...2
What it will teach... 3
Why this subject is important... 3
How to proceed.. 3
Disclaimer.. 4
Concept Definitions.. 5
Programmability... 5
Automation..7
Orchestration... 9

Chapter 2 - Data Center Automation Challenges.. 13

Network Automation Challenges...16
Security Automation Challenges..19
Tales from the Field – Gustavo Santana..23
Tales from the Field – Marcos Hernandez...27

Chapter 3 - Automation Concepts.. 29

What is an API?...32
API Documentation... 34
What to look for in a good API...35
REST Definitions...36
Consuming NSX REST API thought different methods...............................37
XML Definitions...38
Myth Buster – Automation is for Cloud Only...40
Physical and Virtual Workloads Paradigm..40

Chapter 4 - NSX and vRealize Automation... 45

Current Product Interoperability (January 2018)... 46
vRealize Automation Definitions... 48
vRealize Automation Main Components.. 50
Life Cycle Extensibility ...52
Key Features...52
Common Use Cases for vRealize Automation..53
NSX and vRealize Automation Benefits.. 54
NSX and vRealize Automation Integration...58
Why this integration is helping organizations? ...59
What enterprise are looking for out of this integration?............................60
vRealize Automation Network Profiles..61
Use Cases for vRealize Automation with NSX... 66
Day Two Operations with vRealize Automation and NSX..........................73

VI |

Chapter 5 - NSX and OpenStack..77

OpenStack Definitions... 80
Neutron Concepts and NSX Integration..82
NSX and OpenStack Benefits... 88
Benefits of NSX..91
NSX and OpenStack Integration..93
NSX and VMware Integrated OpenStack... 106
Tales from the Field – Marcos Hernandez.. 115

Chapter 6 - VMware vRealize Automation, OpenStack, or Both?........... 117

Tales From The Field – Angel Villar Garea.. 122
Chapter 7 - VMware NSX and Other Automations Tools........................... 125

Chapter 8 - Conclusion... 137

Bibliography..139

Index...143

 | VII

List of Figures
Figure 1.1	 Programmability Workflow.. 6
Figure 1.2	 Different Automation Solutions... 8
Figure 1.3	 Infrastructure Conductor (Maestro).. 10
Figure 2.1	 Cars substitution of Horse-Drawn Vehicles..................................14
Figure 2.2	 Car Industrialization..15
Figure 2.3	 SDN - Hardware Approach...18
Figure 2.4	 Network Virtualization - Software Approach..............................18
Figure 2.5	 Anatomy of a modern Cyber-Attack...19
Figure 2.6	 Security Data Center Expenses and Losses............................... 20
Figure 2.7	 East-West and North-South Traffic in the Data Center.........21
Figure 2.8	 Automation with a Preconfigured Network................................24
Figure 2.9	 Physical Network Automation..25
Figure 3.1	 Automation may be Different for Each

Person/Organization.. 30
Figure 3.2	 API Interactions..33
Figure 3.3	 VMware NSX RESTful API...35
Figure 3.4	 HTTP verbs/methods and CRUD Operations............................36
Figure 3.5	 VMware NSX® API™ Structure (example)......................................37
Figure 3.6	 Postman within Chrome to GET Syslog Information..............39
Figure 3.7	 People, Process and Technology... 43
Figure 4.1	 Product Interoperability Matrix..47
Figure 4.2	 VMware NSX and vRealize Automation...47
Figure 4.3	 Converged Blueprint Designer with NSX.................................... 48
Figure 4.4	 VMware vRealize Automation ... 49
Figure 4.5	 vRealize Automation Example Deployment.................................51
Figure 4.6	 Cave man without the right tool ..55
Figure 4.7	 vRealize Automation and NSX - Benefits.....................................56
Figure 4.8	 Automation Pillars for vRealize and NSX Integration..............61
Figure 4.9	 External Network Profile ..62
Figure 4.10	 Routed Network Profile..63
Figure 4.11	 NAT Network Profile... 64
Figure 4.12	 One-Arm Load Balancer with External and

Router Network Profile...65
Figure 4.13	 Inline Load Balancer with NAT Network Profile....................... 66
Figure 4.14	 Application Delivery...67
Figure 4.15	 Application Deployment Topologies.. 68
Figure 4.16	 Conveyor Belt for Dev/Test/Production...................................... 69
Figure 4.17	 Multi-Tenant Topology... 70
Figure 4.18	 vRealize Automation & NSX: Security Options...........................71
Figure 4.19	 App Isolation Topology..72

VIII |

Figure 4.20	App Isolation configuration on vRealize Automation............72
Figure 4.21	 NSX Load Balancer Configuration...73
Figure 4.22	 NSX NAT Configuration...74
Figure 5.1	 Networking challenges in OpenStack Clouds............................78
Figure 5.2	 OpenStack Main Projects..82
Figure 5.3	 Neutron Components Interaction...85
Figure 5.4	 OpenStack Neutron Architecture...87
Figure 5.5	 Neutron and Open vSwitch - Switching....................................... 89
Figure 5.6	 Neutron and Open vSwitch - Routing... 89
Figure 5.7	 OpenStack Neutron Vendors Overall Contributions

(August’2017)..92
Figure 5.8	 Neutron components equivalence in NSX.................................. 94
Figure 5.9	 Use Case 1 – VLAN for Layer 2 Services |

No Layer 3 Services.. 96
Figure 5.10	 Use Case 2 – VLAN for Layer 2 Services |

Layer 3 Services...97
Figure 5.11	 Use Case 3 – Layer 2 Services | Layer 3 Services.................... 98
Figure 5.12	 Use Case 4 – Layer 2 Services | Layer 3 Services

with NAT.. 99
Figure 5.13	 Security Group Rules Mapping into NSX

Distributed Firewall... 100
Figure 5.14	 NSX Policy Redirection.. 101
Figure 5.15	 Comparison between using ESG or DLR for

east-west routing...102
Figure 5.16	 DHCP implementation for non-overlapping and

overlapping IPs topologies...103
Figure 5.17	 NSX ESG with Load Balancer integration with

Neutron LBaaS... 104
Figure 5.18	 NSX TraceFlow tool... 106
Figure 5.19	 VMware Integrated OpenStack Architecture...........................109
Figure 5.20	OpenStack Nova and vCenter Integration..................................110
Figure 5.21	 OpenStack Cinder and vCenter Integration.................................111
Figure 5.22	 Comparison between Neutron integration with

vSphere Distributed Switch and NSX.. 112
Figure 5.23	 NSX Integration with OpenStack... 114
Figure 6.1	 vRealize Automation and OpenStack Building Blocks......... 118
Figure 6.2	 vRealize Automation and OpenStack consumption.............. 119
Figure 6.3	 vRealize Automation and VIO integration..................................120
Figure 7.1	 Different automation tools that interacts

with NSX REST API... 126
Figure 7.2	 Chef Architecture.. 128
Figure 7.3	 Puppet Platform...130
Figure 7.4	 Comparing Puppet vs Chef..130
Figure 7.5	 NSX Visio Diagramming Tool Example..134

 | IX

X |

Caio Oliveira
Staff Systems Engineer, NSBU
VMware Inc.

Caio Oliveira is a Staff Systems Engineer within
the VMware Networking and Security Business
Unit (NSBU) for Latin America region,
responsible for driving networking and security
virtualization across the main enterprises in
Brazil. Caio has been with VMware for three
years, and has over ten years of networking
industry experience. Caio has presented at
conferences such VMworld US, OpenStack
Days Brazil, vForum Brazil, and Gartner
Security Summit Brazil in addition to speaking
at local VMware user group meetings.

Caio holds several certifications, including CCIE
(#27569) and AWS Solutions Architect. He is a
VMware Certified Implementation Expert
(VCIX6-NV) for the VMware NSX product and
has been recognized as a VMware vExpert for
technical community involvement. Most
recently, Caio was invited to be part of the
VMware CTO Ambassador program for the
2018-2020 tenure. Caio holds a Bachelor’s
degree in Computer Engineering from the
University of São Paulo in Brazil and a Master’s
degree in Computer Engineering from
Politecnico di Torino in Italy.

You can follow Caio on Twitter @oliveirac_caio
or visit his blog http://www.oliveirac.com.br.

About the Authors

 | XI

Thiago Koga
Staff Systems Engineer, NSBU
VMware Inc.

Thiago Koga is a Staff Systems Engineer within
the VMware NSBU for Latin America, serving
as the first NSX pre-sales engineer for the region.
Thiago has been with VMware for more than
4 years and worked with all verticals across the
entire LATAM region. Prior to his time at VMware,
Thiago spent twelve years working for different
vendors in the networking industry. In 2016 he
moved to Florida to focus on coverage of
northern Latin America.

Thiago holds the VMware Certified
Implementation Expert (VCIX6-NV), VCP-NV
and VCP-DCV certifications for VMware and
AWS Solutions Architect certification. He is
also recognized as a VMware vExpert for his
community engagement. Thiago holds a
Bachelor’s Degree in IT systems analysis and
MBA at CEAG/FGV.

You can follow Thiago Koga on Twitter @
thikoga or on his LinkedIn profile https://www.
linkedin.com/in/thkoga

XII |

About the Reviewers and
Content Contributors

Marcos Hernandez is a Principal Systems
Engineer in the NSX and OpenStack teams at
VMware. He is responsible for supporting large
global enterprise accounts and providing
technical guidance around VMware’s suite of
networking and automation products. Marcos
has a background in data center networking
design and expert knowledge in routing and
switching technologies. Marcos holds CCIE
certification #8283, VCIX, and a Master’s
Degree in Telecommunications from
Universidad Politécnica de Madrid.

Anderson Duboc is an experienced software
professional working as a Sr. Systems Engineer
within VMware Cloud Business Unit. He
possesses a diverse set of interests ranging from
technology to philosophy. Over the past twelve
years, Anderson has helped IT organizations
develop and deliver software in an efficient and
effective fashion. He is a huge fan of how IT
operations can enable developers to maximize
throughput of features without causing chaos
and disruption. He is particularly interested in
collaborative and agile practices, helping
organizations adapt to the increasing pace of
change demanded by business teams who wish
to utilize cloud and mobile technologies.

 | XIII

Gustavo Santana is the leader of the SDDC
system engineering team in Latin America. With
more than 20 years of experience in the data
center industry, Gustavo has worked on
multiple enterprise and service provider data
center projects, addressing demands that require
tight integration between multiple technology
areas – including networking, application
optimization, storage, and servers. A true believer
of education as a technology catalyst, he has also
dedicated himself to the technical development
of many IT professionals at customers, partners,
and vendors. In addition to holding three CCIE
certifications, Gustavo is VCIX-NV and an SNIA
Certified Storage Networking Expert (SCSN-E).

Additional Contributors

Andrew Voltmer
Scott Goodman

Angel Villar Garea is a VMware employee who
has worked with NSX for more than three years
– initially as a Systems Engineer and recently as
Technical Product Manager. Before joining
VMware, he enjoyed an extensive career in roles
focused on traditional networking.

XIV |

First, we would like to thank our families for their support
during the countless hours spent writing this book – both
late into the night and across many weekends. None of this
was possible without your support.

It takes the knowledge and resources of multiple individuals
to create a technical book successfully. We would like to
thank the following people for their support in developing
and reviewing the material included:

Thank you to Marcos Hernandez, Gustavo Santana, Anderson
Duboc, and Angel Villar Garea for your efforts on either
reviewing or contributing with inputs for this book.

Thank you to Martin Casado. Your ideas were always an
inspiration for both of us and your passion about NSX and
network virtualization is exactly what we were looking for in
the opening of our book.

Thanks to the VMware Networking and Security Business
Unit’s team, including Katie Holms, Shinie Shaw, and Kausum
Kumar for the encouragement in creating this book. Thank
you for putting your trust in us.

Also thanks to our leaders Paul Byrne, André Andriolli, and
Dom Delfino for always supporting and pushing us to “think
outside the box” and, as result, this unique book was created.

Acknowledgements

Caio Oliveira

“The greater the obstacle, the more glory in overcoming it.”

Molière

Thiago Koga

 | XV

Preface

VMware NSX Automation Fundamentals offers
guidance to help organizations automate their
environments, leveraging familiar tools including
VMware vRealize® Automation™, OpenStack, and
PowerNSX. It speaks to engineers and technical
decision makers responsible for selecting different
sets of tools to automate their infrastructures,
helping reduce the manual operation associated
with each task.

VMware NSX Automation Fundamentals provides
specific details on automation projects while removing
removes hurdles and misunderstandings that are the
primary roadblocks for organizations seeking
innovation and automation for their environments.

XVI |

Foreword

In the mid-2000s, I was fortunate enough to have visibility into
some of the world’s largest data centers. This was in the early
days of the data center becoming the dominant computing
platform. And at the time, the web giants and the large clouds
were leading the push with respect to scale, sophistication
and efficiency.

One of the architectural aspects that set these data centers
apart from the traditional ones that grew out of the wiring
closet is that despite catering to different use cases and often
using different base technologies, they would implement as
much of the infrastructure in software as possible. This didn’t
mean that they didn’t run their data centers on top of best of
breed hardware, many did. However, functionality that had
traditionally been tied to an appliance such as security,
network configuration, L4-7 processing and visibility were
instead decoupled from the hardware and implemented fully
in software.

They did this not out of ideology, but practicality. The
demands on the data center were growing. They had to
provision applications and associated services in the
timescales the customers wanted them. And they had to scale
them as customer demand across multiple applications
fluctuated. They had to keep up with the rapid innovation
speeds of their application developers that were implementing
the functions that drove the business. And they had to do that
at scale, with full debugging support, and with as much
performance and cost efficiency as they could manage.

Of course, these companies were able to architect this way
because in most cases they didn’t have the burden of
significant legacy workloads. Most of the enterprise didn’t have
this luxury, and so often continued to use legacy approaches
to infrastructure to support their existing workloads.

This was the foundation that lead to the development of NSX.
Compute virtualization had already demonstrated that a
software layer exposing existing interfaces can be used to get
the operational efficiency of the cloud. And so we set out to do
the same thing on the network. The charter was simple, we set
out to build a software layer that supported all of the
interfaces and services of traditional networking. This included
everything from L2 connectivity to L4-7 services such as

 | XVII

Martin Casado

firewalling and load balancing, as well as standard logging and
debugging interfaces. Yet we wanted it to have all the
flexibility of software, allowing for the dynamic creating of
services and full automation capabilities. Used right, we
believed that any data center could achieve the properties of
the leading data centers even while hosting legacy workloads.

Now, over a decade later, the adoption of NSX has shown this
to be the case. It is being used all over the world and hosting a
stunningly broad array of customer classes. From service
providers, the large enterprise. to health care, to government,
and many, many others.

As with many technologies, the adoption and use of NSX is
often a journey. One that starts with a single use case, such as
micro segmentation, or dynamic provisioning. But NSX was
designed to be a platform that can encompass most network
and security functionality. The most sophisticated users
integrate deeply with NSX driving much or all of its
functionality through programmatic interfaces.

This is exactly why this book is so important. NSX was
designed as a platform, one that can be integrated into any
existing workflow. It was designed with open interfaces and
automation in mind. And automation is the way to fully realize
its power. Many new users don’t realize the tremendous
amount of work and thought that have gone into making NSX
the most comprehensive and versatile network hypervisor
every built.

Looking back over the last decade, we’ve come a long way.
From what started as a university research project to what’s
now one of the largest and most pervasive software
infrastructure products on the planet. However, there is still a
lot more innovation to be done in the data center. And there
are few enabling technologies as powerful as compute and
network virtualization. I’m delighted to be writing the foreword
for this book because it contains what you need to know to be
an NSX power user. And mastering NSX is a critical step to
mastering modern data center design.

XVIII |

This book explores how VMware NSX® delivers the
power of automation. VMware NSX Automation
Fundamentals brings guidance and knowledge on
designing the automation for the software defined
data center (SDDC), unlocking NSX’s full potential
to provide the flexibility and agility needed by
enterprises today.

VMware NSX improves the network and security
posture of the SDDC by fundamentally changing the
approach for networking and security. Through NSX’s
open API model, organizations can select the
automation solution best aligned to their operational
practices. VMware NSX has already helped over a
thousand organizations design, deploy, and manage
their SDDCs.

VMware NSX Automation Fundamentals delivers the
roadmap to understanding networking and security
automation challenges in today’s data centers. It
demonstrates the fundamental nature of NSX in the
data center architecture while detailing integrated
solutions for both VMware and third party offerings
(e.g., VMware vRealize® Automation™, OpenStack,
Puppet, Chef, PowerNSX) that assist in creating
networking and security components on-demand.

Abstract

 | XIX

Chapter 1

CHAPTER 1 - Introduction | 1

Introduction

What does Automation Fundamentals for NSX mean?

Networking and security virtualization is one of the most common
topics in IT industry today, with VMware NSX recognized as the most
advanced platform in the segment.

2 |

VMware NSX has three primary use cases: automation, security, and
application continuity. This book will explore automation in depth. The
following concepts summarize why VMware NSX is the right answer for
automation of networking and security:

1.	 VMware NSX is an open platform where anybody – regardless of
role – can automate. Common automation tools include VMware
vRealize Automation, VMware vRealize Orchestration, and
OpenStack.

2.	 VMware NSX helps enterprises achieve modern data center
standards, transforming IT from a cost center to a strategic partner
of business growth. Companies using NSX can implement solutions
to provide any of the following models:

1.	 On-demand IT infrastructure

2.	 Service-like experience

3.	 Developer-centric IT

3.	 The VMware NSX community actively contributes to open source
tools (e.g., PowerNSX, Power CLI, PyNSX). Helping enable
automation use cases, these tools are especially focused on and
useful in the developer-centric IT space.

Intended Audience

This book is meant for people new to NSX as well as those who
have already implemented NSX and now are looking to begin their
automation journey. While it is recommended for readers to have a
basic understanding of the VMware NSX solution, this is not mandatory
since the book will explore some basic NSX concepts.

This book is for any individual involved in transforming and innovating
IT environments; someone who is interested in achieving true
automation to help accelerate the pace of corporate growth.
This list includes:

•	 Decision makers concerned about challenges of implementing
private or public clouds

•	 Managers responsible for IT infrastructure with the need to
achieve greater agility, improve business availability, and
maintain security standards

CHAPTER 1 - Introduction | 3

•	 Engineers responsible for maintaining, creating, and
operationalizing IT infrastructure

•	 Technical decision makers interested in faster and better methods
to offer infrastructure to developers or other areas of the business

In short, it provides insights for everyone who should be involved in
networking and security automation.

What it will teach

This guide presents an introductory perspective on what is required
to automate an NSX environment. It offers a basic understanding on
how to consume NSX primitives along with a deeper look into the
integration between NSX and two of the main platforms used for
automation today: VMware vRealize Automation and OpenStack.
References to more detailed documentation are provided
where applicable.

Why this subject is important

Automation is one of the most common subjects currently explored by
every company across every vertical. The guidance provided in this
book will help individuals understand how to achieve business value for
NSX through the automation use cases. This book will help individuals
build onto their career skillsets while increasing their immediate
personal value to their employer.

How to proceed

This book is intended to be read sequentially; however, it was
designed to also allow a reader to jump to each section separately,
understanding that specific sections are more valuable to
different readers.

Readers will be guided first into the definitions and concepts
surrounding automation, orchestration, APIs, and related concepts.
The book will then explain in more detail the challenges faced in
automating the enterprise and why it is necessary to identify a
networking and security virtualization platform before considering
an automation platform for IT.

4 |

In the final chapters it will explore VMware NSX integration with both
VMware vRealize Automation and OpenStack. It will examine the
differences between the two solutions and help identify the most
suitable option on based on situational requirements. It closes with a
look at additional tools that leverage NSX automation (e.g., Puppet,
Chef) as well as a short summary on the importance of VMware NSX
for IT automation.

Disclaimer

This book was written based on NSX for VMware vSphere® (NSX-V); all
architectural and technical terms are NSX-V related. However, the
concepts and fundamentals explored here are universal and can be
used for both VMware NSX versions: NSX-V (for vSphere hypervisor)
and NSX-T (for multiple hypervisors).

CHAPTER 1 - Introduction | 5

Concept Definitions
IT Automation is the process of automating the configuration,
management, and operation of an IT environment. It is a broad term
that includes several tools, technologies, and methodologies used to
automate IT processes.

Large enterprises are looking for automation to help achieve better
time-to-market, speed, and agility while reducing operational costs to
do basic tasks. Automation can help companies of all sizes benefit
through a more consistent infrastructure, greater predictability, and a
lower rate of human error.

This section explores some of these definitions to offer a better
understanding of how IT organizations can leverage NSX to achieve
desired benefits.

Programmability
The term programmability can have different meanings depending on
user perspective. For a network engineer, programmability means
interacting with a device or group of devices (e.g., driving
configurations, changes, instructions, or troubleshooting) through
software that interacts directly with the device and alters its behavior.
To a developer, programmability means transparently abstracting the
infrastructure to allow manipulation with a specialized set of tools.
For a systems administrator, it is the capability to create the whole
infrastructure without the need to interact with different components.

Programmability can also be driven by scripts and API consumption.
Sysadmins have been doing this for many years; network engineers
have rarely had the same opportunity. Their success has been limited
by the variety between each version, model, or function offered by
different vendors – if they offer such support at all.

The industry is pivoting to leverage programmability. Previously,
RESTful APIs were available only sparingly; now, most companies offer
solutions for a variety of use cases.

6 |

Network programmability is a generic term, many times referred to as
software defined networking (SDN). OpenFlow, as one of the first
major protocol of the SDN movement, helped pave the way for more
diverse implementations that were standards based rather than vendor
specific. Enterprises are now looking for solutions that allow such
programmability, independent of underlying hardware, and deliver
better integration of the network with IT infrastructure platforms such
as VMware or OpenStack.

Chapter 7 discusses tools available in the market and different
perspectives on optimal selection. It also provides examples to
demonstrate tangible benefits and realistic deliverables.

Figure 1.1 Programmability Workflow

CHAPTER 1 - Introduction | 7

Automation

For some organizations, the idea of automation starts with artisan
scripts that leverage the programmability offered by the infrastructure
to start an automated process.

After a while, those same organizations become familiar with scripting/
developer tools (e.g., Ansible, Puppet) and use them to speed up
configuration tasks by removing the human interaction; if there is
something that was done manually using a CLI or GUI, it can be
transformed into code to scale and avoid errors. In this manner, both
individual engineers and the organization can reap the advantages as
they get rid of time-consuming and repetitive tasks.

The problem with individual automated systems (e.g., VLAN creation)
is consistency and task-specific limitation. Enterprises can have a
solution to automate the physical fabric, but what about security,
compute, and storage? Would it not be better to begin with a unified
language that can be leveraged to automate switches, servers,
firewalls, and load balancers?

Organizations are focusing their efforts where they experience the
most change, finding that most of time it is better to have something
automated than nothing at all.

Chapter 3 will cover more details around automation of these tasks. It
will explain the concepts and benefits of automation through APIs,
REST, and XML.

8 |

To deal with this singularity of automation – by vendor, type, or model
– and lack of ability to view all pieces around an application, an
orchestration engine serves an important role.

Figure 1.2 Different Automation Solutions

CHAPTER 1 - Introduction | 9

Orchestration

Both automation and orchestration bring massive value to the business
and the end user. They provide a single platform to the IT organization
to help curb the dreaded day-to-day operations, breaking them down
into smaller, automated tasks that truly provide greater value. On the
surface, they seem to be the same thing – but in the context of IT, they
could not be more different.

In this context, automation describes tasks or functions accomplished
without human intervention. Orchestration describes the arranging and
coordinating of automated tasks, ultimately resulting in a consolidated
process or workflow. Orchestration tools, whether native to an IaaS
platform or distinct 3rd party offering, enumerate the resources that
are required as well as their configuration and interconnection. IT
admins can use tools such as VMware vRealize® Orchestrator™ to
create declarative templates that orchestrate these processes into a
single workflow, so that this new environment workflow becomes a
single API call.

The subtle difference between automation and orchestration is
important because automation is focused on codifying a concrete set
of steps, normally handled manually, that are done to a device or
component. Orchestration requires participation by and decision
making on the part of the infrastructure being orchestrated. The
infrastructure is an active participant, a collaborator, in orchestration –
but is likely not in automation.

A good example is an orchestral performance at a theater; each
musician is performing some sort of automation while playing their
own instrument. On the other hand, there is a conductor who is making
sure all musicians are working together, in sync, to create
harmonization between each instrument/musician. In this example, the
conductor acts like the orchestrator – creating servers, networking,
security policies, etc. – to make sure everything is ready to the
application.

10 |

Figure 1.3 Infrastructure Conductor (Maestro)

There are many different orchestration engines in the market. Most do
not have context about the underlying infrastructure, which is why a
well-documented – even a self-documenting – API is important and
relevant when it comes to the IT infrastructure.

Enterprises that have decided to move away from simple, automated
tasks to a broader approach through orchestration must pay attention
to unique situations and make sure the right configurations are part of
a service catalog.

Chapters 4 and 5 cover in detail how cloud management platforms
(CMPs) help organizations realize this overall approach. They provide a
guide through different scenarios and customer requirements.

CHAPTER 1 - Introduction | 11

Chapter 2

CHAPTER 2 - Data Center Automation Challenges | 13

Data Center
Automation Challenges

There are times in the history of humankind when innovation and
technology become fundamental to the transition from one era to
another.

The true impact of those changes may not truly be understood by
most people from the outset, but they are quickly adopted to leverage
the benefits of this disruptive new way of thinking.

“If I had asked people what they wanted,

they would have said faster horses.”

Henry Ford

14 |

Looking at the pictures in Figure 2.1, the car industry is a perfect
example to demonstrate this concept.

These pictures illustrate the changes that happened in fewer than 15
years with the car industry. Horse-drawn vehicles were completely
replaced by cars due to the new technology and benefits that cars
offered. In this specific period, cars were accepted as faster, safer, and
more reliable. By challenging the status quo rather than continuing
along the exact same way of doing things without thought of
innovation, the world was changed. What remains of those days is the
concept of how we measure the power of an engine – mechanical,
hydraulic, or otherwise – with the throwback term horsepower.

What took thirteen years from year 1900 to 1913 is today happening at
a much faster pace due to the evolution of technology. Uber, Airbnb,
Netflix, Tesla – these are new entrants that can completely disrupt a
stable and established market overnight.

It is important to note that for a new technology to make a complete
disruption in any market, creating value is sometimes not enough; it is
just an entry point. The new technology needs to address the
challenges associated with scaling and attaining healthy growth in
order to achieve disruption. This is a goal that many startups or
challengers never accomplish.

Figure 2.1 Cars substitution of Horse-Drawn Vehicles

CHAPTER 2 - Data Center Automation Challenges | 15

New industries, and especially disruptive technologies, generally fail
when the demand cannot be sustained by the supply. When the first
cars started to run in the streets, the demand for cars significantly
increased over the years. With the growth of the population, the
available offering was not enough to meet the demand. This led to
automotive industrialization, and later automation.

New ideas and demands are generally associated with a big challenge
of meeting the demand with corresponding supply. The car industry
needed that, and started to use specialized machines to substitute for
the human workforce. This allowed companies accomplish the same
goals in a much more efficient manner, without human error, and with
repeatable standard processes. Figure 2.2 offers two images
exemplifying this idea.

Moving ahead in time and observing what is happening today in the
data center, enterprises are facing similar challenges that the car
industry faced decades ago. The requirements of the business areas of
today need a much faster infrastructure to address their goals and the
demands of their customers. Developers cannot wait weeks or months
to start building and developing their applications.

Several companies wisely identified that gap and started to offer
services allowing a developer or interested user to build out an entire
infrastructure in few minutes. This phenomenon is often called shadow
IT. Most companies struggle with it, because now they need to
maintain the same policies they apply for their internal workloads for
cloud workloads. There is also a new set of tools and skills that should
be well understood for infrastructure administrators to control and
maintain both environments – on premises and in the cloud.

Figure 2.2 Car Industrialization

16 |

Enterprises are eagerly looking for solutions and products to increase
their data center automation for faster infrastructure offerings for
developers; however, networking and security are often forgotten in
this process. These companies cannot achieve their goals and these
projects fail because it is important to address all four essential pillars
to every data center: computing, networking, security, and storage.

Network Automation Challenges

Since the beginning of the rise of private clouds and the quest for a
fully automated data center, automation of networking components
has been the most difficult challenge faced by cloud administrators
and users.

There are three main reasons why it is so difficult to
automate networking:

•	 Lack of well documented APIs, or lack of APIs altogether

•	 Non-standard configuration commands across vendors

•	 Several points of configuration

Only with the most recent network hardware systems have APIs
capable of exposing the features and capabilities begun to appear. This
lack of functionality creates a particular and important problem;
whenever a user, administrator, or system needs to create any sort of
automation, direct and full access to each piece of equipment needs to
be provided. This is most often accomplished using Telnet or SSH
protocols. Some may try SSH or CLI for automation with scripts, but
mostly only for basic tasks; this approach is especially frustrating when
more complex tasks cannot be achieved.

While NETCONF and YANG are implemented by many vendors, there
is no standard configuration set of commands for network hardware
equipment. Every vendor has its own commands and specific
language, creating a hard job for any tool trying to automate the
network. Even inside the same vendor, different switches and routers
from different lines of business have their own sets of commands. Even
for a straightforward example of verifying a switch serial number – how
hard is to identify the right command?

One of the biggest challenges is nature of the network itself. It is
composed of several pieces of equipment, almost none offering a
centralized point of control. Each switch needs to be configured and

CHAPTER 2 - Data Center Automation Challenges | 17

managed as a standalone component. This is one of the main reasons
for network failures in the enterprises today (e.g., improper inter-switch
configuration). Extend this to managing hundreds, or sometimes
thousands, of networking hardware devices as standalone
components, across a wide range of different models and vendors.

In summary, the provisioning of an automation solution faces a series
of difficulties, from simply using the different command interfaces –
without the use of a common API – of each vendor to accessing each
component as a standalone element without a centralized
management point.

It is also important to mention that in some big enterprises, especially
cloud providers, the limits of VLANs are a common issue. There is a
necessity for an overlay technology like VXLAN when offering a
tenant-based solution for customers in order to avoid the use of shared
subnets and networks across tenants.

There are some initiatives (e.g., OpenDaylight – www.opendaylight.org)
that are trying to create a centralized controller capable of interacting
with different vendors. The goals include creating a centralized point
of control and exposing APIs for consumption. Despite a multi-year
effort, this initiative is sparsely adopted, existing mostly in lab
environments. The main impediment is the complexity of integrating
with each vendor in a different way.

The two main approaches being adopted today to provide true
network automation for the data centers are the SDN hardware
approach and a network virtualization software approach. Both
approaches rely on creating an abstraction layer and using overlay
technologies for faster provisioning of network elements. They offer a
centralized point of control that also exposes APIs to any external CMP
to automate the creation, modification, or removal of network
components. The models differ in their approach to encapsulation of
the independent hardware underneath the solution.

SDN relies on proprietary hardware switches and controllers,
demanding a refresh of all data center switches to ensure support for
the encapsulation piece. All the work of the encapsulation piece will be
done inside this new networking equipment. There are also scalability
issues with this model of deployment, further reducing interest in
adopting this technology.

18 |

The most common approach is use of an overlay protocol. This
method lets the encapsulation be handled inside the hypervisors,
enabling enterprises to create abstract networks without the need to
refresh the physical network. It also allows any mix of hardware
vendors – not possible in the SDN hardware approach – in a simplified
manner. The underlay physical network needs to meet only two
requirements: MTU of at least 1600 bytes to address VXLAN
requirements and IP connectivity between the hypervisor endpoints.
Some newer encapsulation protocols even eliminate the requirement
for jumbo frames.

Figure 2.3 SDN - Hardware Approach

Figure 2.4 Network Virtualization - Software Approach

CHAPTER 2 - Data Center Automation Challenges | 19

The network is a tightly coupled system; any misconfiguration or
problem can damage or even break the entire data center
environment. Hypervisors are loosely coupled systems; they work
separately from each other, so if a problem arises in one hypervisor it
does not affect the others. This is another reason why network
virtualization based in software is more reliable than the SDN hardware
approach – it can be distributed in the endpoints (i.e., hypervisors)
instead of utilizing centralized components to perform the functions.

VMware NSX uses a network virtualization platform based on a
software approach with thousands of enterprises around the globe.
The next few chapters will discuss in more detail the benefits seen by
those who have already adopted the technology.

Security Automation Challenges
Security is one of the top concerns for enterprises. Every year, the
spend related to security solutions and products grows exponentially
compared to other areas, led by concerns over cybercrime and
cyberattacks. These are now part of the new enterprise reality, no
matter an organization’s size.

Before proposing solutions to solve or minimize the problems, consider
the anatomy of a modern cyberattack by dividing it into four parts:

1.	 Intrusion: Attacker gains access to a specific system or component

2.	 Propagation: After gaining control of the specific system
or component, the infected system infects several other systems
or components

3.	 Extraction: Attacker extracts sensitive data or information from
the infected systems or components

4.	 Exfiltration: Attacker erases all information related to the attack

Figure 2.5 Anatomy of a modern Cyber-Attack

20 |

These four phases present significantly different risks and impact to
enterprises losses through an attack. Despite of the investments in
solutions and products to prevent intrusion (e.g., huge and complex
perimeter firewalls with several advanced features), the losses related
to the propagation, extraction, and exfiltration phases represent a
much larger cost. Many customers have few or no tools to avoid these
types of attacks.

Enterprises are looking for a complete end-to-end automated data
center, and security is a central component of this strategy. Interacting
with security components in the environment (e.g., firewalls) is a must-
have for any on-demand security model. It must be enabled for every
new workload or application provisioned. Direct interaction with
different products and solutions makes security automation one of the
most difficult tasks that administrators and users face.

Figure 2.6 Security Data Center Expenses and Losses

CHAPTER 2 - Data Center Automation Challenges | 21

Traffic patterns in the data center today vary greatly from those several
years ago. East-west traffic (i.e., between the applications and
workloads) inside the data center today represents more than 80% of
the total traffic volume. Facing this reality, internal security is a concern
that every enterprise needs to address.

With applications, VMs, and containers growing at an increasingly
faster rate, manual creation of firewall rules is coming to an end. It is
impossible to create, maintain, and operate thousands of firewall rules
in a heterogeneous environment of security vendors and solutions. As
IP-based rules become harder to maintain, enterprises must look for
ways to summarize these lists while finding other types of objects and
groupings to help consolidate and automate firewall rules.

Every year, the traffic inside the data center continues to grow; how
can security solutions address this growth? Centralization is not the
optimal approach. Enterprises are looking for more robust firewall

Figure 2.7 East-West and North-South Traffic in the Data Center

22 |

appliances with the next-generation capabilities that are needed to
handle an enormous amount of traffic. They are spending money
and effort instead of looking to a new and modern approach that
offers a distributed approach to protecting the workloads in an
automated fashion.

In summary, enterprises today struggle with the growth of east-west
traffic. They are looking for a centralized, automated, simple, and
powerful tool to enforce security closer to the application. This tool
should support automation through any cloud management platform
in the market. In the coming chapters, this book will explore how
VMware NSX can help deliver on this vision.

CHAPTER 2 - Data Center Automation Challenges | 23

Tales from the Field – Gustavo Santana

Challenges of Physical Network Automation

There are several reasons why I particularly dislike the term software-
defined networking (SDN). One of them is the sheer fact that young
engineers are leaving university nowadays without dissociating such
technologies from what they consider basic skills of networking.

Whereas such acceptance surely attests to how network virtualization
is firmly ingrained in IT automation, it still amazes me when the
following statement is issued as an afterthought during architectural
discussions: “No problem, we can automate the physical network”.

Unfortunately, the misfortunes I suffered during my earlier
experiences with network automation do not allow me to remain
silent in such occasions.

These experiences roughly started during the second half of the
2000s, when I was working as a solutions architect in a big network
equipment manufacturer. Back then, many service providers and
advanced enterprise corporations were already flirting with the
concepts of cloud computing via Infrastructure-as-a-Service (IaaS)
projects intended to provision virtual machine to end users,
developers, or IT administrators.

As soon as network architects were engaged in these projects, they
often did not feel too comfortable with a piece software configuring a
physical network infrastructure already in production. Understandably
for these professionals, these solutions were not yet proven in critical
environments such as the ones they were designing for.

Consequently, in a way to minimize disruption and complexity, I saw
many projects strictly focusing on the automated provisioning of
virtual machines while the network infrastructure remained statically
configured, as Figure 2.8 explains.

24 |

Figure 2.8 Automation with a Preconfigured Network

In this example, the cloud software stack, via its orchestrator, only
interacts with the VM manager – VMware vCenter in this case – to
provision VMs that will consume a carefully designed set of VLANs,
IP subnets, firewall rules, and load balancing functions.

Such sensible compromise apparently satisfied both network and
cloud architects for some time, until they painfully discovered together
the inherent challenges associated with this approach:

If service portal users could choose the VLANs where the virtual
machines would be connected, a large number of security issues could
arise. For example, distinct tenants assigned to the same security
segment could easily access each other’s resources without proper
protection from a firewall.

Assigning a set of VLANs to each tenant established a clear scalability
limit to the project because a network infrastructure can only offer
4,094 VLANs as defined in the IEEE 802.1Q standard.
After deciding the number of VLANs each tenant should be connected
to, the configuration of firewall rules and load balancing configurations
for the all the potential tenants could become complex and fairly long.

Worst of all, the pre-provisioned network approach did not allow the
offering of new services in the portal – such as applications with a
different number of tiers as well as user-customizable security and
content rules – without a network reconfiguration.

CHAPTER 2 - Data Center Automation Challenges | 25

With time, the unstoppable force ended up winning its fight with the
immovable object. As more corporations relied on the agility provided
by cloud computing concepts during the early 2010s, more flexibility
was also required from their network infrastructure. The era of proper
physical network automation then began, as Figure 2.9 illustrates.

Figure 2.9 Physical Network Automation

In IaaS projects deployed as this figure shows, services selected on the
portal request the orchestrator to execute workflows that introduce
new configurations on existing data center network devices, such as
core switches, aggregation switches, access switches, firewalls, and
load balancers.

Still, many network teams were nervous about a piece of
software executing configurations in traditional production
networks. Consequently, it was not uncommon that a separate
network infrastructure was acquired and built for these
automated environments.

All was well on paper, until the project architects faced misgivings
such as:

•	 Many network devices did not have APIs, making it necessary for
the orchestrator to deploy configurations through SSH sessions
toward each device’s CLI. Differently from APIs, automation
through CLI access can become extremely complex because
command outputs vary immensely between different vendors,
platforms from the same manufacturer, and even firmware versions

26 |

from the same platform. Resultantly, many network architects
decided to standardize network equipment in an attempt to
minimize orchestration coding complexity, but causing
hardware lock-in.

•	 The addition of new devices in the network infrastructure required
changes in the orchestration software, which sometimes also
required a finer perspective of the network topology to
differentiate similar devices with distinct roles such as core,
aggregation, and access switches.

•	 If tenants also had the option to decommission resources, the
orchestrator workflows could become increasingly convoluted with
tasks such as recognition on each device of all configurations that
belong to this tenant, removal of these configurations without
causing noise to other tenants, and recalculation of the available
pool of resources.

For such reasons, I have personally witnessed IaaS projects where the
orchestration programming was actually much more expensive than
the sum of computing and network hardware acquired!

A fresh breath of air to these IaaS projects came with the porting of
routing, firewall, and load balancer functions into specialized VMs
called virtual network appliances. Their use greatly simplified such
projects because these appliances could relieve the physical network
from the exact functions that required sophisticated programming on
the orchestrator.

However, successful projects that relished the capability to deploy
standalone virtual routers, virtual firewalls, and virtual load balancers
felt the sour taste of the following shortcomings:

•	 These virtual devices are generally licensed per instance,
which can cause huge costs in the IaaS project as it becomes
more popular.

•	 Because each tenant deploys a set of virtual appliances, a large
number of devices can become difficult to monitor and
troubleshoot without a centralized management solution.

Enter VMware NSX… and the rest was history.

CHAPTER 2 - Data Center Automation Challenges | 27

With this brief walk down memory lane, I truly hope you will not be
doomed to repeat history because you did not hear about it. As Thiago
and Caio will continue to explain in this book, VMware NSX became
a natural fit for automated IT environments because it strongly
leverages in its essence all experience gathered by the many network
automation pioneers.

Tales from the Field – Marcos Hernandez

The Curious Case of the Ever-growing Firewall Table

In our dealings with customers around the world, we encountered one
with a very common challenge faced by many security teams: firewall
rule sprawl. While the challenge itself is not unique, in this particular
case it had spun out of control. After years and years of poor firewall
hygiene, multiple configuration sources, and a slew of merges/
acquisitions, the configuration of the core firewalls had reached more
than a million lines. Compiling this configuration took five hours, and
backing it up more than two hours. This customer was forced to seek
special treatment and support as their configuration far exceeded the
devices maximum advertised parameters. Over the years, they had also
experienced a number of outages and upgrades that prompted a
hardware reboot, inevitably leading to traffic loss.

After careful analysis of their security posture, intended state,
application profile, and even geographical distribution, VMware
estimated that 25% of the rules in the ruleset were masked (e.g.,
were never going to be hit), 20% of the rules were referencing systems
that no longer existed in the environment, and over 30% of the rules
were duplicates! That meant that only 25% of the rules – remember,
that is 250 thousand – were there for a reason, although no one knew
exactly why.

As of the writing of this book, VMware is still working with this
customer to identify areas of optimization. Migrating the ruleset in the
perimeter to the NSX distributed firewall for more efficient
segmentation is not enough, as this does not solve for the complexity
problem, only moves it to a different plane. Assessing their application
needs is crucial and we expect to see a tremendous reduction and
rationalization in the number of rules, while enhancing, not diminishing,
their security posture.

Chapter 3

CHAPTER 3 - Automation Concepts | 29

Automation Concepts

When it comes to automation, many people get the chills or are
overcome with doubt and fear. This is often due to the fact the
word itself means different things to different people depending
on what and where they want to automate. This confusion causes
misunderstandings in the expectations, but it is important to
remember that automation is an essential and strategic component
of modernization and digital transformation. Modern and dynamic
environments need a new type of management solution that can
improve speed, scale, and stability across the enterprise.

30 |

Before the discussion around the tools and ways to automate the IT
world, consider the concept itself. Automation is defined as:

1.	 the technique of making an apparatus, a process, or a system
operate automatically

2.	 the state of being operated automatically

3.	 automatically controlled operation of an apparatus, process, or
system by mechanical or electronic devices that take the place of
human labor

https://www.merriam-webster.com/dictionary/automation

Interest in automation has increased over the years as demands for
better security, enhanced mobility, and reduced expenses have grown
and technological possibilities have multiplied. The following examples
will demonstrate that automation is an integral part of daily life, not
just for consumers but even simply human beings.

The food retail industry has started to apply automation to the
ordering process. Some vendors have introduced touch screen
ordering and payment systems in many of their restaurants, reducing
the need for more cashiers. Some cafes and restaurants are using
mobile apps to make the ordering process more efficient for customers
ordering and paying on personal devices. Some restaurants have

Figure 3.1 Automation may be Different for Each Person/Organization

CHAPTER 3 - Automation Concepts | 31

automated food delivery to customers’ tables using a conveyor belt
system. Many supermarkets, and even smaller stores, are rapidly
introducing self-checkout systems that reduce the need for employing
checkout workers.

Another example is an emerging practice of increased automation of
household appliances and features in residential dwellings. Of
particular interest are those with electronic means that allow for
services that in the past were impractical, overly expensive, or simply
impossible. It is possible to start a coffee machine, request a cab,
order pizza, or ask to an artificial intelligent system turn on or turn
off the light.

All these examples help better understand the impact of automation
on daily life; people like to order a coffee without waiting a long time in
the line or prefer to pay the supermarket bill over an express self-
checkout system.

Some automation advantages include:

•	 Increased throughput or productivity

•	 Improved quality or increased predictability of quality

•	 Improved robustness (i.e., consistency) of processes or product

•	 Significant reduction in operating time and work handling time

•	 Freeing up of workers to take on other roles

•	 Creating higher level jobs in the development, deployment,
maintenance, and running of the automated processes

What about data center applications? Is it possible to automate
their networking and security? What benefits does automation
bring to the table?

Data center applications need much more than simply appropriately
sized virtual machines. They also need accurately configured network
connectivity, security, availability, scalability, and performance. In order
to deliver these capabilities to the applications, it is necessary to
automate more than just assigning IP address, DNS entries, and VLANs
to the virtual machines that host those applications. As part of
deploying a multi-tiered application, it is necessary to provision
connectivity through deployment of logical switches and routers. In
addition, it is important to securely deploy the application through
intelligent placement of workloads in security groups, protected by
firewall rules. To achieve these results, it is important to consider a

32 |

platform that can abstract the underlay infrastructure and automate
these processes in the same manner it has been done with compute for
years. There are many benefits of such an approach:

•	 Avoid manual configuration mistakes

•	 Achieve efficiency through automated processes and workflows

•	 Increase productivity through elimination of required manual steps

•	 Decrease operational expenses (OPEX) by eliminating
manual tasks

•	 Streamline maintenance and troubleshooting through deployment
of a consistent application environment

Moving forward in this journey, engineers may be concerned that
automation will replace their jobs. Looking back at the convergence of
wired PBX systems to voice-over-IP, some of the PBX technicians made
the transition, while others retired along with the equipment they
supported. In practice, this transition was more about changing job
roles than eliminating them. There will always be a need for people
who understand how complex technology works, how to use it in good
designs, and how to diagnose problems when it does not work as
intended. Using the grocery store example, it is like the cashier helping
when the express self-checkout system does not work.

Having a better understanding of automation itself and the advantages
it brings, the question now is how best to use that in the data center
environment? What sets of tools are available to help? How can
automation accelerate application development and delivery, reduce
provisioning time, improve resource utilization, and eliminate error-
prone processes?

Before answering these questions, it is important to understand what
tools are used today and how VMware NSX can easily apply them to
deliver these benefits.

What is an API?

This section will answer questions familiar to those new to the concept
of an API: what does it mean; how is it used; and what are its benefits?
It will explain how the concept is relevant to automation and the
importance of always looking for a solid and well documented API.

CHAPTER 3 - Automation Concepts | 33

The acronym API stands for Application Programming Interface. It is a
particular set of rules, specifications, and tools for building software
applications. It serves as an interface between different software
programs and facilitates their interaction, the way the user interface
facilitates interaction between humans and computers.

The API offers flexible ways of projecting capabilities to an outside
audience. It enables enterprises to innovate faster without actually
getting into or understanding the underlying code or software of
the applications.

Figure 3.2 API Interactions

Some vendors consider an API as product; they carefully build and
document it so other stakeholders can understand how to interact with
it and create value. A good API must be open and carry a package of
capabilities that is attractive to an audience, independent of any
specific piece of software running on the back end.

An API is not usually a user interface. It provides software-to-software
interaction, not user interaction. Sometimes, though, an API may
provide a user interface widget, which an app can use and display.

There are two primary benefits that an API brings – simplification
and standardization.

There are many different types of APIs for operating systems,
applications, or websites. Microsoft Windows has many API sets that
are used by system hardware and applications; when text is copied
and pasted from one application to another, it is an API that allows
that to work.

Along with program-centric APIs, there are also web APIs such as the
Simple Object Access Protocol (SOAP), Remote Procedure Call (RPC),
and Representational State Transfer (REST). The next few pages will
discuss these types of APIs in greater detail.

34 |

API Documentation

API documentation describes what types of services an API can offer
and how to use them. It aims to cover everything a consumer would
need to know to use the API. Documentation is crucial for the
development and maintenance of applications that use the API.
It should follow some specifications to provide a consistent format
to document and consume the APIs.

API specification formatting provides several benefits for
developers, including:

•	 Developers or testers can write tests in a simpler way because the
specification is well defined and clearly readable.

•	 Clarity leads to a dramatic reduction of errors during
implementation, testing, and troubleshooting.

•	 Consistency allows other developers to use resources in a
simple way.

Two of the most common API documentation and specification
formats are RESTful API Modeling Language (RAML) and OpenAPI
Specification, formerly known as Swagger. Both are widely utilized and
have a large open source community.

RAML is a YAML-based language, providing all the information
necessary for describing RESTful APIs. RAML makes it easy to build an
API by turning specification into code with server-side generators in
several different languages, including NodeJS, Java, .NET, and Python.
VMware offers a community-supported RAML specification of NSX for
vSphere API (nsxraml) that can be used to simplify the consumption of
NSX services. For additional details please see the nsxraml page on
GitHub (https://github.com/vmware/nsxraml).

CHAPTER 3 - Automation Concepts | 35

Swagger is a framework that was designed to describe, produce,
visualize, and consume RESTful web services. Referred to as language-
agnostic, it has been developed to be read using a common language.
It is also extensible into new technologies and protocols beyond HTTP.
The popularity stems from its simplicity; from its concise
documentation to its ease of readability for machines and humans
alike, Swagger is a framework that has been made very easy to utilize.

What to look for in a good API

The following list reviews some of the key areas to consider when
looking at APIs:

•	 Standard, well defined interfaces into the API such as XML, SOAP,
or REST

•	 Sample code, documentation, and software development kits
(SDKs) to make the process of integration quick and easy

•	 Security controls including:

•	 Access control into the API

•	 Encrypted interface into the API such as HTTPS, SSL, or
TLS to encrypt the sharing of data and services between
the applications

•	 Ability to completely lock down the API if it is not being used

Figure 3.3 VMware NSX RESTful API

36 |

REST Definitions

Representational State Transfer (REST) is one of the most popular
types of API. It was designed to take advantage of existing protocols,
such as HTTP, so that developers do not need to install additional
software or libraries when creating a REST API. Some of the
characteristics required of a REST service include simplicity of
interfaces, identification of resources within the request, and the ability
to manipulate the resources via the interface. A REST API is defined by
a collection of XML documents that represent the objects on which the
API operates.

One of the key advantages of REST APIs is that they provide a great
deal of flexibility. Data is not tied to resources or methods, so REST can
handle multiple types of calls, return different data formats, and even
change structurally with the correct implementation of hypermedia.
This flexibility allows developers to build an API that meets
organization needs.

Unlike SOAP, REST is not constrained to XML; it can return XML, JSON,
YAML, or any other format depending on what the client requests.
Unlike RPC, users are not required to know procedure names or
specific parameters in a specific order.

REST uses HTTP verbs (i.e., methods) to create, read, update, and
delete – tasks referred to as CRUD operations. Other HTTP verbs exist,
but they are not used as significantly as these four. The table in Figure
3.4 describes each verb and its operations within an NSX system.

Figure 3.4 HTTP verbs/methods and CRUD Operations

CHAPTER 3 - Automation Concepts | 37

In the NSX world, the NSX Manager is responsible for the web service
API over HTTPS (i.e., TCP port 443) where all API requests and
responses are formatted in XML. Any REST API tools (e.g., cURL,
RESTClient, Postman) that support HTTP operations can be used to
interact with VMware NSX.

Figure 3.5, taken from the Automation Leveraging NSX REST API
document, shows the typical structure of a REST API call for NSX using
an example that shows scopes (i.e., transport zones).

Figure 3.5 VMware NSX® API™ Structure (example)

All NSX REST API interactions are performed after authentication to
enforce the security of operations.

Consuming NSX REST API thought different
methods

There are different ways to consume the NSX REST API. This can be a
simple tool used to transfer data from server to client like cURL or a
REST client tool from the Chrome web browser like Postman. Going
one step further, simple API calls via REST clients can leverage the NSX
REST API via different programming languages to further automate
tasks and create workflows/programs.

Many programming languages can be utilized, including Python,
PowerShell, Java, Perl, and Go; some of these choices will be discussed
in Chapter 7. Using these tools, organizations can automate NSX and
watch it become helpful not only for management, but also for rapid
development, troubleshooting, and code reuse.

Another option to leverage the NSX REST API is through the use of
orchestrators and configuration management tools. With these
solutions, users can define workflows or playbooks that includes a list

38 |

of tasks that will be executed in an automated way. Those tools are
usually flexible and highly configurable, allowing organizations to
define what needs to be automated. Some examples are VMware
vRealize Orchestrator, a solution adopted by many VMware customers,
and Ansible, an open source platform written in Python.

The final option is consumption of the NSX REST API through a cloud
management platform (CMP). This approach is used by many
organizations to build their private clouds. In this case, these
businesses have realized that simply creating and deleting VMs is now
insufficient; they need to rely on a solution that can also automate the
networking and security services of an application. For such a use
case, the NSX REST API can provide out-of-the-box integration. The
most widely used CMPs are VMware vRealize Automation and
OpenStack, both of which will be discussed in Chapters 4 and 5.

The VMware NSX RESTful API service can be consumed in several
ways. This means that simple or elaborate workflows and complete
systems/portals can be created to provide custom automation,
management, and monitoring capabilities.

Both experienced developers and novice API users can refer to the
NSX for vSphere API Guide for further insights. This guide describes
how to install, configure, monitor, and maintain the VMware NSX
system by using REST API requests. As always when working with
APIs, it is important to check which NSX is deployed to ensure use of
the correct API documentation.

XML Definitions
XML (eXtensible Markup Language) is a flexible way to exchange
structured data between web services. It defines a set of rules for
encoding documents in a format that is both human-
readable and machine-readable.

XML code is a formal recommendation from the World Wide Web
Consortium (W3C), similar to Hypertext Markup Language (HTML).
XML data is known as self-describing or self-defining, meaning that the
structure of the data is embedded with the data. When the data
arrives, there is no need to pre-build the structure to store the data; it
is dynamically understood within the XML.

The design goals of XML emphasize simplicity, generality, and usability.
XML’s power resides in its simplicity. It can take large chunks of
information and consolidate them into an XML document. It is a
representation of arbitrary data structures, so code should be human-
legible and reasonably clear.

CHAPTER 3 - Automation Concepts | 39

XML documents must contain one root element that is the parent of all
other elements:

<root>
 <child>
 <subchild>...</subchild>
 </child>
</root>

In this example <controllerSyslogServer> is the root element:

<controllerSyslogServer>
<syslogServer>10.135.14.236</syslogServer>
<port>514</port>
<protocol>UDP</protocol>
<level>INFO</level>
</controllerSyslogServer>

This example informs the NSX Manager in a structured way (i.e., body
using XML format) to configure a syslog exporter on the specified
controller node. To accomplish that, an HTTP request (POST) is made,
targeting the NSX Manager URL.

POST https://<nsxmgr-ip-address>/api/2.0/vdn/controller/
{controller-id}/syslog

The XML data structure within the body field shows all the available
fields with their respective values for the desired NSX object. When
consuming NSX REST APIs through any REST client, it is important to
set the header field of “content-type” as “application-xml”, as shown in
Figure 3.6.

Figure 3.6 Postman within Chrome to GET Syslog Information

40 |

The API document NSX for vSphere API Guide provides a complete,
detailed description of the XML structure that must be included in the
HTTP request body to create NSX services.

Myth Buster – Automation is for Cloud Only

This section looks at what organizations have done so far and explores
the myths behind a simple question – is automation for cloud only?

The previous few sections have examined how automation can be used
in different ways for different use cases – on-demand IT infrastructure,
service-like experience, or developer-centric IT. Beyond these
concepts, VMware NSX can address automation use cases that are not
necessarily tied to cloud projects.

Physical and Virtual Workloads Paradigm

When enterprises consider automation, they are often eager to start
automating everything – all physical and virtual environments. A
central question to ask when getting started – is it necessary to
automate everything? Consider a subset of the environment that is not
yet virtualized; is this environment so dynamic that there are benefits
to automating it? A tangible example would be physical database
servers that are deployed once and never get touched again in their
lifetime from a network policy point of view.

Perhaps it is a static environment that does not requires a lot of
changes? Is the automation effort worthwhile for a handful of changes
over the year?

On the other side, there may be an extremely dynamic virtualized
environment with a lot of changes, all this tied to different VMs sitting
in separate data centers. It makes clear sense to automate some
activities in this environment to deliver real benefits with quick wins.

The important thing is to see this as step-by-step adoption.
Organizations can get benefits of automation for each project that can
delivery agility, speed, flexibility, or time to market.

CHAPTER 3 - Automation Concepts | 41

What are the other use cases that NSX can help to automate?

•	 Network services: Create on-demand logical networks, logical
routers, logical switches, NAT and, DHCP services. Those services
can be consumed without hours of manual configuration and
extensive processes, avoiding extra costs and repetitive tasks.

•	 Security services: NSX Service Composer and grouping
mechanisms can easily automate DMZ security projects or
micro-segmented applications thru API calls to the distributed
firewall (DFW).

•	 Load balancer services: NSX load balancers offer a fully featured
RESTFull API. This API can be used to create load balancer
services including profiles, redirects, VIPs, and pools. It provides
the flexibility to create on-demand load balancer services, even
enabling elastic load balancer functionality – the capability to add
or remove resources to the load balancer and server farm when it
reaches pre-configured thresholds.

•	 VPN services: For an enterprise that has remote users or business
partner connectivity, it is possible to automate the provisioning of
those users, their profiles, and all associated security postures. A
simple collection of REST API calls can help to achieve this goal.

Another common myth revolves around the requirement to
re-architect the physical network to solve for these use cases. This is
not true; NSX runs over any physical network – L2 or L3 – as long as it
can carry IP packets.

Historically, abstractions and overlays have resulted in simplification
and efficiencies. NSX will facilitate future transitions to different
underlay architectures – from core-aggregation-access to spine-leaf
topologies – as it creates an overlay network, allowing an abstraction
from the physical environment resulting in a simplified and more
efficient design. When using VMware NSX, organizations can minimize
the number of changes to the physical underlay, reducing time spent
on manual configuration and number of errors when performing
those changes.

Adopting new forms of automation for network and security
environments requires a cultural change. How can organizations best
get ready?

The network is the final obstacle to delivering dynamic IT systems that
can more easily adapt to changing business requirements. Change is
needed to increase networking and security efficiency, similar to what

42 |

has been done for server automation. Processes and procedures that
have been developed over the past 15 to 20 years need to change
when automation is used.

Organizations have a common ask – to help them on this transition to
automation. Individual requirements differ, and the challenges are not
only technical. Companies can move forward very smoothly in this
transition with a focus on business priorities to determine how
automation can help.

Organizations use many different sets of tools like PowerNSX, Ansible,
Power CLI, or REST API client to automate the data center
environment running NSX. The use cases may vary by industry or
vertical, but the organization must learn how to best apply NSX
technology and to develop processes to implement and maintain it.
Several things must happen to make a project successful:

•	 People involved must be willing to learn new technologies to
unlock organizational strengths to deliver on the major benefits of
transforming how work gets done across the technology
organization. The business executives must accept that the change
is necessary to stay competitive.

•	 Processes must be reviewed, allowing employees to move away
from unnecessary tasks and practices.

•	 Technology must be deployed to enable abstraction of networking
and security functions from the underlying physical network. This
will enable employees to better architect and manage their
infrastructure moving forward.

CHAPTER 3 - Automation Concepts | 43

The goal is to continually improve an enterprise’s operations across
each of these three dimensions.

A great first step towards an automation project is providing learning
opportunities for organizations and individuals. To gain familiarity with
NSX and learn how it can be automated, start a production pilot with a
single use case and a few workloads. The VMware NSX Hands on Labs
repository provides a sample use case – https://labs.hol.vmware.com/
HOL/catalogs/.

Start simple and make incremental changes with a small, self-sufficient,
and cross-functional team. Re-engineer a single process to start, then
address others over time. Adjust it to a size that can be representative
while still carrying lower risk, then expand the footprint of the initial
use case before adopting new use cases. Train others and increase
knowledge of NSX across more teams. The sooner this process is
begun, the sooner the real benefits of automation can be realized.

Figure 3.7 People, Process and Technology

Chapter 4

CHAPTER 4 - NSX and vRealize Automation | 45

NSX and vRealize Automation

In this new world where there is app for everything, where the
information is available everywhere, and is consumed anytime from
anywhere, organizations struggle with demands for new competencies.
Those requirements call for being more agile, people-oriented,
innovative, customer-centric, efficient, and adept at leveraging
opportunities to change the status quo and tap into this new direction.

46 |

To achieve those requirements, IT teams are exploring new approaches
to accelerate application development and delivery so they can
respond better to business needs, speed time to market, and build
competitive advantage. To gain agility, they need to expedite the
delivery of infrastructure services and applications.

Many IT organizations have already achieved some efficiencies by
virtualizing and automating compute resources with vRealize
Automation. This has solved many problems in terms of provisioning
virtual machines, creating profiles/templates, and deploying
applications. Even with these capabilities, delivery of infrastructure –
including networking and security – to development and production
environments remains challenging to IT organizations; it continues to
require a disproportionate amount of resources to properly execute
these tasks. The last major pillar of automation remaining in the
enterprise data center is networking and security.

By implementing vRealize Automation together with NSX, IT teams can
extend capabilities to address slow networking and security
provisioning without the need to change configuration on the physical
layer every time a new service is provisioned. This integration allows
automation of a complete application stack while maintaining
compliance with the required security and connectivity policies. The
result is improved flexibility and speed in responding to the needs of
the business.

NSX and vRealize Automation have been tightly integrated since
version 6.0 of vRealize Automation. From January 2018, the supported
versions of vRealize Automation 7.x and NSX 6.3.x enable
implementation of an IaaS platform where end users can deploy a
complete application topology, in a secure and compliant manner, with
a rich set of networking and security services through blueprint-based
deployment. The end user does not need to understand networking or
security as the configuration is pre-defined.

Current Product Interoperability
(January 2018)

Figure 4.1 shows an example of interoperability confirmation for
vRealize Automation version 7.3.0. Always refer to the VMware Official
Product Interoperability Matrix for the latest information.

CHAPTER 4 - NSX and vRealize Automation | 47

This integration highlights the power and flexibility of networking and
security virtualization through automation. It demonstrates how the
combination of NSX and vRealize Automation enables use cases like
self-service IT, on-demand security, NAT, load balancing, and
application isolation.

The power of both platforms combined delivers networking and
security services through NSX with the complete service catalog and
resource management capabilities of vRealize Automation – all through
a standardized, repeatable process and on-demand delivery.

Figure 4.1 Product Interoperability Matrix

Figure 4.2 VMware NSX and vRealize Automation

48 |

The Converged Blueprint (CBP) Designer introduced in vRealize
Automation 7.x allows practitioners to graphically design end-to-end
blueprints. These blueprint support VMs, NSX security groups,
security policies, security tags, on-demand load balancing, pre-
created/on-demand networks, middleware, and application
components. All this functionality can be consumed through a drag
and drop canvas, allowing administrators to visualize the topology as it
is being created.

vRealize Automation Definitions

Every company in the world is looking to become successful; agility is
key to making that happen.

In the cloud era, where everything needs to be ready quickly,
processes that are very time-consuming are no longer permitted. IT
departments aim to remove process inefficiencies using end-to-end
automation tools that help IT better serve the business needs.

Inside enterprises, line-of-business (LoB) teams are comparing the
services provided by IT to the simplified consumption model offered
by public clouds (e.g., simply swipe a credit card). The bar has been set
quite high; IT teams are struggling to provide the same agility, speed,
and flexibility.

Figure 4.3 Converged Blueprint Designer with NSX

CHAPTER 4 - NSX and vRealize Automation | 49

To address this demand, VMware has a powerful solution. vRealize
Automation is well known in the industry as a cloud management
platform that supports a multi-vendor, multi-cloud infrastructure. It
allows IT services to be delivered across a wide range of vendors’
products as well as virtual, physical, and cloud platforms. vRealize
Automation defines, delivers, and governs the SDDC.

Figure 4.4 VMware vRealize Automation

vRealize Automation not only provisions the entire infrastructure
(i.e., day one provisioning), but also automates the lifecycle
management of IT resources and helps with day two operations
(e.g., adds, updates, customizations).

As companies have more conversations around DevOps practices to
accelerate application development, vRealize Automation gives IT
teams the ability to provide easy access to traditional and cloud native
application resources. This duality in the infrastructure is also known as
bimodal IT – where a rich set of self-service capabilities is available for
consumption, while at the same time there is the need to support
developers through tools they already know (e.g., out-of-the-box
integration with Puppet, containers, or other tools).

50 |

vRealize Automation Main Components

vRealize Automation comprises three main components:

•	 vRealize Automation Appliance: This is the main component – a
preconfigured Linux virtual appliance delivered in the Open
Virtualization Format (OVF). It hosts the web console, which
comprises the self-service portal. The appliance includes a
preconfigured instance of vRealize Orchestrator. vRealize
Automation uses vRealize Orchestrator workflows and actions to
extend its capabilities.

•	 vRealize Automation Infrastructure as a Service (IaaS): The
installation files for the IaaS components are stored on the vRealize
Automation appliance. The IaaS components themselves must be
installed on a Windows machine and are responsible for the
provisioning of IaaS resources. This Windows machine must be
able to communicate with hypervisors, cloud environments, and
physical hosts. IaaS uses a Microsoft SQL Server database to
maintain information about the machines it manages, plus its own
elements and policies.

•	 Authentication Services: The authentication services ship as part
of the vRealize Automation appliance.

The requirements to deploy vRealize Automation will vary based on
each scenario since enterprise deployments can be of varying sizes. A
basic distributed deployment might improve vRealize Automation by
hosting IaaS components on separate Windows servers, as shown in
Figure 4.5.

CHAPTER 4 - NSX and vRealize Automation | 51

Many production deployments go even further with redundant
appliances, redundant servers, and load balancing for even greater
capacity. For more information about scalability and recommended
design, please refer to the vRealize Automation installation guide at
https://docs.vmware.com/en/vRealize-Automation/7.3/vrealize-
automation-73-installation-and-configuration.pdf

Figure 4.5 vRealize Automation Example Deployment

52 |

Life Cycle Extensibility

vRealize Automation enables integration of solutions into existing IT
environments using vRealize Orchestrator. Common examples include
updating a CMDB when a machine is provisioned, calling an IPAM
system for an IP address when provisioning a machine, or calling a
ticketing system like Remedy when a machine operation is performed.

vRealize Orchestrator delivers out-of-the-box plug-ins and workflows
– more than 30+ plug-ins and thousands of workflows – to make
integration with existing third-party systems easy, achievable without
professional services or customization services.

This extensibility allows organizations to create custom services –
sometimes referred to as Anything as a Service (XaaS) – where
vRealize Automation XaaS Designer can be leveraged to quickly deliver
standalone workflows, day two operations, and other complex NSX
services as-a-service. XaaS components can be dragged and dropped
directly into a blueprint canvas.

Key Features

vRealize Automation has many different features and capabilities;
highlights include:

•	 Support a self-service experience through a unified IT
services catalog

•	 Policy-based governance ensures the right service level to
meet specific business needs

•	 Unified blueprint model via Design Canvas drag and drop,
command line, or API

•	 Enable the entire design and management process via API calls

•	 Support rapid iterations and DevOps principles by automating
the release pipeline for infrastructure and application software

•	 Extensible platform that enables customization and extensibility
at multiple levels across the IT ecosystem

CHAPTER 4 - NSX and vRealize Automation | 53

•	 Design and automate the delivery of any IT services
through service orchestration

•	 Out-of-the-box integration with VMware NSX to automate
networking and security services

Common Use Cases for vRealize Automation

Some use cases are more common than others; this section presents
a few popular examples.

Organizations are building private clouds through the adoption of
VMware’s SDDC, automating their entire infrastructure to be more
agile with a fast go-to-market strategy. There are instances where
these organizations already have vRealize Automation for compute;
this streamlines creation of VMs and applications, however the
networking and security pieces are still manually performed by IT
admins. This results in disconnected processes and delays to
application delivery.

There are other IT departments that want to create a catalog of
standard operating systems or applications available on request
through a self-service portal. Sometimes advanced governance is
required, where approvals, standards compliance, and IT policy are
mandatory on every automated blueprint.

Enterprises can also leverage a provisioning workflow that integrates
with other systems like CMDB, ticketing system, backup, and
monitoring. Another common IT request is a single pane of glass to
integrate cloud environments, including Amazon Web Services (AWS)
and VMware Cloud Providers.

A final example is the ability to offer other services via vRealize
Automation extensibility, where tools like Puppet or Chef help with the
lifecycle management of applications. This makes it possible to deliver
infrastructure on demand for compute, storage, and networking.

54 |

NSX and vRealize Automation Benefits

IT Challenges to Automate Network and Security

IT teams have evolved when it comes to virtual and automated
compute resources. Organizations can reduce the creation time of VMs
to minutes through CMPs like vRealize Automation. Delivery of
infrastructure is not only applicable to compute; it should always
include networking and security. This aspect remains challenging for
IT organizations and continues to require a disproportionate amount of
resources for proper execution.

Organizations often spend a significant amount of time deploying the
infrastructure to support applications. Businesses that are running
hardware-based data center architectures face many challenges,
including lengthy network provisioning, manual steps that can lead to
configuration errors, and other costly processes. At the same time, as
IT environments grow and diversify, technology teams are becoming
more shackled by complexity. This complexity can distract IT teams
from strategic priorities and projects, adding weeks or even months to
project lead times.

When vRealize Automation is adopted without NSX, some of the
challenges mentioned above may appear. Situations vary depending
on size, use cases, and business needs; nonetheless, it is important to
consider virtualizing both networking and security to achieve the best
benefits from data center automation.

Organizations who achieved a good level of automation started
virtualizing the infrastructure – not only compute, but also networking,
security, and storage.

CHAPTER 4 - NSX and vRealize Automation | 55

Virtualize and Automating Compute, Network and Security

vRealize Automation and NSX enable IT teams to drastically reduce
manual efforts and eliminate bottlenecks by automating the
provisioning of all infrastructure and application components. To
achieve those results, the adoption of a software-based approach
becomes necessary – one that does not rely on physical hardware to
provide such capabilities. IT organizations can replicate all networking
and security functions through software embedded in the hypervisor,
regardless of the topology of their physical infrastructures.

Benefits of a Software Based Approach

Organizations that are using a software-based approach to automate
IT data centers are seeing great results. Examples include:

•	 Multi-machine topology: Provides advanced networking
topologies to cloud users as part of the vRealize Automation
Catalog

•	 Full automation: Automated deployment of NAT topology with
connected VMs

•	 Consistent policy: Repeatable deployment of customer
environments to help diagnose technical issues

Figure 4.6 Cave man without the right tool

56 |

•	 Isolation between environments: Each deployment is completely
self-contained

•	 Full VMware SDDC: Complete VMware stack with vRealize
Automation, NSX, and vSphere

In this integration, the networking and security configuration can be
done directly within the vRealize Automation User Interface. It
supports flexible network topologies with application context for

micro-segmentation along with extensibility for deploying specific
configurations. This extensibility can be performed by the consumption
of NSX APIs, as described in Chapter 3.

vRealize Automation and VMware NSX can help customers to:

•	 Reduce provisioning time, improve resource utilization, and
eliminate error-prone processes by automating the delivery
and management of production-ready infrastructure and
application components

•	 Reduce the operational bottlenecks caused by manually
configuring and provisioning security policies, networking, and
infrastructure resources for applications, allowing IT staff to deliver
applications and services faster

•	 Meet security and compliance requirements by templating
networking and security services and policies to deliver standard,
consistent applications

Figure 4.7 vRealize Automation and NSX - Benefits

CHAPTER 4 - NSX and vRealize Automation | 57

Business benefits

Enterprises that have already deployed both solutions have identified
some business advantages when comparing to traditional approach
like all hardware based.

•	 The combination of VMware vRealize Automation and VMware
NSX has allowed organizations to double or even triple in size
without increasing central IT staff

This is huge for some enterprises, as they can address business
demands without increases to OPEX by hiring more technical people
to get the job done. For big organizations, it represents efficiency as
automation takes care of routine tasks, allowing IT teams to spend
less time in the data center and more time focusing on critical issues
for the business.

•	 Developers can now provision a full environment faster, with
zero reliance on IT

Inside organizations it is common to see shadow IT, where developers
consume their needed infrastructure away from their own IT company
environment. This usually happens because IT admins are busy
keeping the business running and cannot deliver what developers
need. The ability to directly service developer requirements allows
organizations to improve productivity and accelerate service time
to market.

•	 Costs reductions through automation and virtualization

Virtual infrastructure dramatically reduces costs and simplifies both
management and day-to-day operations. Enterprises are focused on
minimizing hardware costs, increasing the lifecycle of their existing
hardware equipment, building the platform within the hypervisor, and
virtualizing not just compute, but also networking and security. This
means buying more capacity as the environment grows, not buying
hardware in an upfront model for the following years.

58 |

•	 Simplified operations

A unified management interface provides a single pane of glass,
making it easier to operate and troubleshoot the whole environment.
Organizations have improved the overall infrastructure visibility in
ways that cannot be achieved using a traditional centralized
hardware approach.

•	 Better security means less breaches

vRealize Automation and NSX can help applications be deployed
already hardened, meaning all security parameters are in place and all
unnecessary ports closed. This is hard to achieve without the micro-
segmentation concept. This integration can bring such a concept to a
higher level, not just securing but also automating the security of all
applications. With this level of control, organizations can reduce the
overall attack surface footprint along with associated expenses related
to security breaches and stolen data.

NSX and vRealize Automation Integration
The first step in data center automation must be to virtualize the entire
infrastructure – compute, storage, and networking – creating an
abstraction model from the physical layer to obtain agility, rather than
relying hardware models, types, or software features. Second, native
integration between platforms like vRealize Automation and NSX can
bring added value. Automation can fast-track NSX adoption by
simplifying the deployment, operations, and management.

NSX and vRealize Automation are two major products from VMware
heavily adopted by many organizations. Businesses are using vRealize
Automation to build cloud environments and NSX for the networking
and security services. Individually they are remarkable products; when
integrated, an organization can unlock the real benefits of automation.

Both products have seamless out-of-the-box integration to deliver a
variety number of use cases. This native integration highlights the
value of NSX when combined with automation and self-service. It
embeds the NSX constructs directly into the infrastructure and
application level blueprints, eliminating the need for networking to be
provisioned separately outside of vRealize Automation. This
demonstrates how VMware brings together compute, storage,
networking, and security virtualization to provide a comprehensive
software based solution.

CHAPTER 4 - NSX and vRealize Automation | 59

As of version 7.3, vRealize Automation provides deeper integration
with VMware NSX. It supports native API-based integration between
vRealize Automation and NSX to expose more capabilities and improve
overall performance. NSX is now a dedicated endpoint, providing
logical separation from other vSphere endpoints. This does not
eliminate vRealize Orchestrator from the picture; it is still an area of
investment for vRealize Automation/NSX extensibility as discussed in
later examples.

Why this integration is helping
organizations?

•	 Network connectivity

As part of the application provisioning process, vRealize Automation
blueprint policies specify the configuration of new logical switches and
routers, describing how they will be connected to the perimeter
gateway. Organizations can automate connectivity to existing or
on-demand networks. Each business group can be provided with
reserved network connectivity between the virtual and physical world,
or specific mission critical applications can be configured with
dedicated virtual switches and routers depending on their
performance and reliability needs.

•	 Application Security

As part of day one provisioning, vRealize Automation places each
application in the appropriate NSX security group protected by firewall
rules, intrusion detection integration, and agentless anti-virus. This
granular level of isolation keeps traffic to specific group environments
(e.g., development, test, production), isolated to the individual
application, or between application tier levels.

•	 Better availability and performance to any application

The integrated solution improves application availability through the
dynamic configuration of network load balancers in the context of
deploying or updating application configurations. The NSX load
balancer can be used in all phases of the application lifecycle –
development, staging, or production – without requiring expensive

60 |

physical hardware or manual configuration of legacy load balancing
components. All traffic between virtual machines on the same host will
remain in the host; there is no requirement to exit to consume load
balancing or firewall services.

•	 Automated Application Network Deployment

As part of the application provisioning process, network profiles in
vRealize Automation define the type of virtual network that will be
configured – NAT, routed, or external. The infrastructure service
blueprint specifies the network profile for each type of infrastructure
machine being provisioned.

What enterprise are looking for out of this
integration?
There are three major areas – IT automation, developer cloud, and
multi-tenant infrastructure – where this integration can bring value.
Each one offers different reasons to use both products. In some
instances, all three may interact as part of a transformational project,
helping provide the IT at the speed of business.

IT Automation
Automation allows for a quick, secure, and automatic deployment of
applications and services when and where they are needed. It works
across organizational and geographic boundaries, delivering business
value in minutes rather than days, weeks, or months.

Developer Cloud
Automation enables developers to use a unified API for on-demand
networking and security services. It allows IT to deliver more value to
the business without the constant need for hands-on involvement.
Organizations can maintain parallel and secure development, test, and
production environments on a common infrastructure.

Multi-tenant Infrastructure
Automation empowers organizations to provision and deliver
networking and security services to multiple tenants on a shared
infrastructure, increasing asset utilization and lowering overall
infrastructure costs

CHAPTER 4 - NSX and vRealize Automation | 61

vRealize Automation Network Profiles
Network profiles define how new VMs are connected to the network.
They allow consumption of existing networks or on-demand logical
switches.

Multiple types of network profiles are available in vRealize Automation
– external, routed and NAT. These network profiles can be combined –
with the exception of routed and NAT together – in the same blueprint
to provide different types of topologies.

External Network Profile

The external network profile allows efficient management of IP
allocation by sharing a common network across deployments. It can be
used by pre-created networks, either VLANs or logical switches, and is
used for uplinks on routed and NAT network profiles.

Figure 4.8 Automation Pillars for vRealize and NSX Integration

62 |

NSX load balancer is supported in one-arm mode. The IP addressing
provided by vRealize Automation can use an existing DHCP or IPAM
service.

When multiple deployments share the same network, overlapping IPs
cannot be used; however, security can be provided by micro-
segmentation.

Figure 4.9 External Network Profile

Routed Network Profile

Routed networks contain a routable IP space divided across subnets
that are linked together using a distributed logical router (DLR).
Logical switches are created during blueprint deployment and have a
unique subnet range, carved out from a pool.

The VMs provisioned with routed networks which share the same
routed network profile can communicate with each other and the
external network. All security features are supported (i.e., pre-created
and on-demand security groups, security tags, and app isolation)
while micro-segmentation allows for isolation across different tiers
of a blueprint.

CHAPTER 4 - NSX and vRealize Automation | 63

Figure 4.10 Routed Network Profile

NAT Network Profile

NAT networks use one set of IP addresses for external communication
and another set for internal communication. With one-to-one NAT
networks, every virtual machine is assigned an external IP address
from the external network profile and an internal IP address from the
NAT network profile. With one-to-many NAT networks, all machines
share a single IP address from the external network profile for
external communication.

A NAT network profile defines local and external networks that use a
translation table for mutual communication.

The NAT rules are applied only on the ESG (Edge Services Gateway)
uplink interface. NSX load balancer is supported only in inline mode. If
used, additional VIPs are carved out from the network profiles and
assigned as secondary IP addresses, different than the primary ones
used in the network topology.

64 |

All security features are supported: pre-created and on-demand
security groups, security tags, and app isolation.

Figure 4.11 NAT Network Profile

Two types of NAT network profiles are supported – one-to-one and
one-to-many.

One-to-One NAT Network Profiles

For each VM created on a one-to-one NAT network, one external IP is
configured on the ESG uplink. Both SNAT and DNAT rules are created
on the ESG uplink.

NSX ESG firewall rules provide granular filter access for both intra-app
traffic as well as external communication to and from the VMs
and distributed firewall. DHCP is not supported using 1:1 NAT
network profile.

CHAPTER 4 - NSX and vRealize Automation | 65

One-to-Many NAT Network Profiles

For each one-to-many NAT subnet created, one external IP is
configured on the ESG uplink. An SNAT rule is configured on the ESG
for outgoing traffic; no corresponding DNAT rule is configured as with
one-to-one NAT.

NSX ESG FW rules allow intra-app and outgoing traffic access, while
VMs can only be reached from the outside via a load balancer. DHCP
with NSX ESG is supported on one-to-many NAT network profiles.

On Demand Load Balancer

vRealize Automation deploys an NSX ESG and auto-configures the
load balancing policy. Multiple virtual servers can be configured per
blueprint on the same load balancer, with a dedicated VIP used for
each virtual server.

There are two types of supported topologies with NSX load balancers
– one-arm and in-line.

One-arm load balancers are deployed with external and routed
network profiles. All member VMs of each load balancer pool as well as
load balancer VIPs must be on the same network. Every time a new
one-arm load balancer is created, a new NSX Edge is deployed.
In-line load balancing is configured when using NAT network profiles.

Figure 4.12 One-Arm Load Balancer with External and Router Network Profile

66 |

Load balancer VIPs can be attached to either internal or external
interfaces of an ESG. Mixing VIP placement is supported (e.g., web VIP
on external, app VIP internal network)

Figure 4.13 Inline Load Balancer with NAT Network Profile

Use Cases for vRealize Automation with NSX

Examples are provided below of the most common use cases for an
automated environment, but organizations continue to find new and
interesting use cases for this integration between VMware NSX and
vRealize Automation.

Use Case: Automating Production

Delivery of productions workloads is challenging. There are many steps
involved in a process that can take days, weeks, and sometimes
months to release a new application. In addition to service tickets and
manual configuration, lack of control is one of the top concerns
observed in the organizations due to its potential for security issues.

A typical process is detailed in Figure 4.14:

•	 App owner requests a service

•	 Infrastructure admin requests IP addresses from the network team

CHAPTER 4 - NSX and vRealize Automation | 67

•	 Infrastructure admin deploys VMs

•	 Security team configures firewalls

•	 Network team configures VLANs and load balancers

•	 If something goes wrong, the loop restarts

Figure 4.14 Application Delivery

In such an example, many steps and interactions are necessary to
deploy an application. Additionally, these processes rarely consider
the idea of cleanup during decommissioning of the same application.

With NSX and vRealize Automation, enterprises are creating multi-layer
applications with a single click. They can deploy applications with
network, firewall rules, and load balancers auto-configured at runtime
through a repeatable process applied to each such instance. At the
time of deletion, all the network, firewall, and load balancer

68 |

Figure 4.15 Application Deployment Topologies

configurations are deleted automatically; the IT admins – network,
virtualization, and security – do not need to spend time cleaning up.
For some scenarios, it is possible to build a catalog item with built-in
approval policies and advanced services like NSX guest introspection
for anti-virus/anti-malware protection. When a request is made for that
item in the catalog, all features and configurations are provided,
eliminating extra steps like post-deployment installation and tuning.

Use Case: Automating Development & Test Environments

Development and test environments are often manually provisioned,
requiring significant amounts of labor and time to accomplish simple
tasks. Some organizations have already eliminated scripts and are
using vRealize Automation to create VMs in the compute infrastructure.
This is still not sufficient, as networking and security components (e.g.,
VLANs, firewalls, load balancers) still require manual configuration.

Enterprises are also looking to automate dev/test environments to be
used like a conveyor belt. IT admins could place pre-provisioned VMs in
the test environment, then roll them into the development environment
and further into production using the same parameters (e.g., IP
addresses, firewall rules). This is possible using vRealize Automation
and NSX to create NAT network profiles to move in and out of a fenced
network environment for dev/test.

CHAPTER 4 - NSX and vRealize Automation | 69

Use Case – Multi-Tenant Infrastructure

Organizations are also using integration to deliver multi-tenant private
cloud. Network separation is a key requirement for full multi-tenancy.
Solutions based on physical hardware models cost a lot of money due
to scalability and segmentation factors. The multi-tenant concept is
associated with cloud providers, but can also be used by enterprises
looking to build different environments (e.g., development, test,
departmental) using the same shared infrastructure.

NSX and vRealize Automation can perform separation and isolation of
different tenants using the network profiles embedded in the solution.
It is possible to use NAT for overlapping IP addresses across networks
that need external connectivity. An NSX ESG can be deployed for each
tenant, and stateful services like NAT, firewall, and load balancer can
be provided per each tenant. NSX firewall policy and isolation can also
be delivered per tenant, where organizations can automate and scale
multi-tenant environments to support their business.

Figure 4.16 Conveyor Belt for Dev/Test/Production

70 |

Figure 4.17 Multi-Tenant Topology

Use Case – On Demand Micro-Segmentation

Security is mandatory in all modern data centers. Perimeter security is
no longer sufficient (e.g., internal threats, multiple tenants, contractors)
while VM sprawl requires more granular security controls than those
provided at the perimeter. Security teams struggle to manually
configure firewalls at the pace of cloud initiatives, and it is hard to
maintain consistency across the data center. Additionally, auditing and
control are even more critical in today’s dynamic IT environment.

The integrated solution provided by vRealize Automation and NSX
delivers an automated way to create and consume pre-created security
groups to isolate tenants or applications through micro-segmentation.

In vRealize Automation, security group membership can be defined
both at:

•	 Reservation level by cloud admin for all VMs deployed in a
reservation

•	 Blueprint level for specific VMs within an application

When VMs are created, vRealize Automation will add them to the
selected security groups. NSX will also automatically remove VMs from
the security group at deletion time.

CHAPTER 4 - NSX and vRealize Automation | 71

It is possible to attach existing security tags to provisioned VMs.
Existing NSX security groups can have a dynamic membership based
on security tags. Third party solutions can also leverage the tag
information.

Figure 4.18 vRealize Automation & NSX: Security Options

App isolation is another powerful feature that can be leveraged in this
integration. It provides an optional first level of security with the
following functionality:

•	 All inbound and outbound application access is blocked

•	 Intra-application traffic is permitted

•	 Other policies are applied at a higher precedence to permit/deny
selected traffic

72 |

Figure 4.19 App Isolation Topology

App isolation configuration is simple. During the blueprint
configuration, there is a checkbox to enable automatic configuration.

Figure 4.20 App Isolation configuration on vRealize Automation

vRealize Automation is an excellent fit for automating micro-
segmentation and provides application context to enable a policy-
based approach to security.

CHAPTER 4 - NSX and vRealize Automation | 73

Day Two Operations with vRealize
Automation and NSX

Day two operations functionality enables the cloud/IT admin,
whenever they need to make a change to a device on pre-designed
and implemented blueprint, to perform those changes without
redeploying or rebuilding that specific blueprint.

vRealize Automation integration with NSX enables organizations to
realize operational benefits, simplifying tasks and reducing
maintenance windows to implement those changes.

Load Balancer

IT admins have an enhanced control of NSX-provisioned load
balancers. They have control for customization per blueprint (e.g.,
algorithms, persistence, ports, health monitors) or creation/change
of virtual servers – and their associated configuration – on existing
NSX ESGs.

Figure 4.21 NSX Load Balancer Configuration

74 |

NAT

On-demand NAT port forwarding rules can be configured during
application design, providing greater flexibility and feature parity with
NSX management. Rules can be ordered, added, and removed – even
after the creation time.

Figure 4.22 NSX NAT Configuration

Security

Security is never static; it always requires changes. Within vRealize
Automation, it is possible to view and change active NSX security
groups and tags. With this capability, cloud/IT admins have the power
to add or remove existing NSX security groups or tags from running
applications, or to edit NSX security policies for existing applications.

CHAPTER 4 - NSX and vRealize Automation | 75

Chapter 5

CHAPTER 5 - NSX and OpenStack | 77

NSX and OpenStack

Consider the following scenario – a customer decides it is time to
implement OpenStack to build their cloud, tests in the lab, evaluates
the various distributions available, and hires specialized OpenStack
staff. When the environment goes into production, they realize that
Neutron is not integrating with their physical network.

78 |

If this story is of concern, this chapter is critical to understand the
challenges of networking with any OpenStack distribution and how
VMware NSX is the missing piece for cloud infrastructure.

The biggest challenges for OpenStack cloud implementations are
automation, integration, and orchestration of the required networking
and security components at the physical infrastructure layer. The main
difficulty is that these environments are extremely heterogeneous and
most of the devices do not have an open and programmable interface
for configuration. These challenges defined the initial method of
running OpenStack; manually pre-provisioning the network and using
only basic functionalities when implementing security services (e.g.,
iptables for L2-L4 security).

With the rise of network virtualization solutions and the evolution of
Open vSwitch (OVS), some of these challenges have been solved. It is
possible to create an abstraction layer from the physical elements of
infrastructure and automate the virtual network through the
programmable interface of network virtualization solutions. Commonly
such solutions use an overlay mechanism to create virtual networks
without the need for change in the physical (i.e., underlay) network.

Figure 5.1 Networking challenges in OpenStack Clouds

CHAPTER 5 - NSX and OpenStack | 79

The Neutron project, responsible for managing all OpenStack cloud
security and networking services, has been undergoing constant
modifications, especially around the need for more advanced
functionality such as dynamic routing, VPN, and firewall. These
constant changes impacted maturity, consistency, and resiliency.

Growth without planning has brought major challenges to the
Neutron project. The most debated topic in the community today is
whether the architecture of this project needs to be reworked in order
to simplify its use and improve its integration with network
virtualization solutions.

Few enterprises today are using OpenStack in production
environments without a network virtualization platform. Those that
have no platform in place often face major challenges similar to those
previous discussed.

The benefits that NSX brings to Neutron are:

•	 Agility

•	 Mobility

•	 Security

•	 Multi-tenancy

•	 Simplified operations

Each of those topics will be discussed at a deeper level through the
rest of this chapter.

To integrate with Neutron, VMware NSX has an open plugin available at
Github (https://github.com/openstack/vmware-nsx) that can be used
by any OpenStack distribution or implementation. This plugin
translates the Neutron APIs calls into NSX REST APIs calls to build the
networking and security services.

VMware NSX supports a variety of OpenStack distributions regardless
of the underlying hypervisors.

80 |

OpenStack Definitions
OpenStack is an open source software platform usually deployed in an
IaaS model for the creation of public or private clouds. Its purpose is to
control compute, storage, networking, and security resource pools
with management performed by an integrated panel or consumed
through APIs.

OpenStack turns the sets of hypervisors within or across multiple data
centers into pools of resources. These pools can be managed and
consumed from a single dashboard or through APIs. Both
administrators and users can perform their tasks in an easy
and fast manner.

OpenStack is the control layer that sits above all the virtualized layers,
providing a consistent way to access everything regardless of the
hypervisor technology used underneath.

All tasks – from managing networks to handling storage – becomes
easier as OpenStack abstracts the underlying layers, allowing users
and administrators to consume resources with a consistent set of
APIs from a common dashboard.

OpenStack was created in mid-2010 by Rackspace and NASA, and has
been managed by the OpenStack Foundation since 2016. Today it has
more than 60,000 registered members across a diverse set of
verticals. The purpose of the foundation is to protect, develop, and
promote OpenStack for the community using the solution.

Every six months, a new release of the OpenStack software is provided
by the foundation, bearing the name of a city chosen by the
community. The August 2017 OpenStack release was identified as Pike,
with the following version designated to be named Queens.

OpenStack is a combination of several open source software projects
that work together to bring simplicity and agility to the whole.
Amongst the main projects, key components include:

•	 Nova: Responsible for management of the compute
infrastructure and for creation and lifecycle of all instances
in the OpenStack cloud

•	 Glance: Responsible for searching and storing images of the
instances in the OpenStack cloud

•	 Cinder: Responsible for storing data in the OpenStack cloud;
interacts with storage devices to provide an abstraction layer for
end users

CHAPTER 5 - NSX and OpenStack | 81

•	 Swift: Responsible for storing objects in the OpenStack cloud with
high capacity

•	 Neutron: Responsible for all network components and security
services of the OpenStack cloud

•	 Keystone: Provides authentication and authorization for users of
the OpenStack cloud multi-tenant environment

•	 Heat: Template-based orchestration service that provides greater
agility in creating and provisioning other OpenStack cloud projects

•	 Ceilometer: Responsible for collecting, normalizing, and
transforming data produced by other OpenStack cloud services

•	 Horizon: Dashboard that provides a web based user interface to
OpenStack services

A useful tool to understand the maturity and definition of each project
is the OpenStack Foundation project navigator (https://www.
openstack.org/software/project-navigator/). It is aimed at helping
users make informed decisions about how to consume the software.
Data used to power the project navigator website is provided by the
OpenStack technical and user committees. With project navigator,
enterprises can understand Neutron usage, project maturity, adoption
rates, and problems/challenges specific to every project of interest.

The OpenStack architecture was created with the idea to make each
project as independent as possible. This gives users the option to
deploy only a subset of the functionality and integrate it with other
systems and technologies that offer similar or complementary
functions. This independence should not mask the fact that a
fully functional private cloud is likely to require virtually all this
functionality to operate smoothly or the importance of tightly
integrating the elements.

A typical OpenStack implementation will integrate most projects. The
most popular core projects interact with all the components in the
system. Horizon is the graphical UI that administrators can use to
manage all the projects. Keystone handles the management of
authorized users. Neutron defines the networks that provide
connectivity between the components and security policies between
the instances.

Nova could be considered the main component of OpenStack,
handling the orchestration of workloads. Its compute instances require
some form of persistent storage, either block-based (e.g., Cinder) or
object-based (e.g., Swift). Using this example, Nova will interface with

82 |

Glance to launch an image retrieved from Swift; this integration is built
in and can be achieved without extensive customization.

The OpenStack Foundation created a committee named OpenStack
DefCor, now called the Interop User Group, that establishes the
required minimum feature set of projects and common APIs for
OpenStack products. Their guidelines apply only to commercial uses of
the OpenStack name.

There are several resources available to provide deeper understand
about OpenStack and its projects. The primary resource should be the
official site of the OpenStack Foundation – (www.openstack.org).
Additionally, every six months the OpenStack Foundation hosts the
OpenStack Summit, a global gathering of presentations and
discussions focused on the OpenStack ecosystem.

Neutron Concepts and NSX Integration
Neutron was designed by OpenStack to provide networking-as-a-
service between interface devices (e.g., virtual NICs) managed by other
OpenStack services (e.g., Nova). Starting in the Folsom release,
Neutron became a core project of OpenStack.

Neutron Project Concepts
Networking in OpenStack was designed to create and manage all
networking and security components for the OpenStack cloud
including networks, ports, subnets, security rules, and other items of
interest to OpenStack projects. Neutron is the project responsible for
providing an API that enables OpenStack administrators/users to
define the connectivity and build the multi-tenant cloud. This
framework allows each user to determine the unique characteristics for
their specific environment.

Figure 5.2 OpenStack Main Projects

CHAPTER 5 - NSX and OpenStack | 83

The Neutron API also offers ways to configure a variety of services
including routing, NAT, load balancing, firewalls, and VPN. Plug-ins are
incorporated into Neutron to accommodate different networking
solutions, offering simplicity and flexibility to OpenStack networking
and the cloud.

For advanced networking topologies, users can create, configure, and
design their networks and subnets as desired. Other OpenStack
services like Nova can attach virtual instances to ports on the networks
and provide connectivity to the instances. OpenStack Neutron
supports multiple private networks and enables each user to choose
their own IP addressing scheme.

Neutron Architecture
Since its creation, the Neutron architecture has been difficult to
understand and manage. Starting from the Kilo release, the Neutron
community decided to decompose Neutron for simpler development
and maintenance. Neutron will remain focused in core services at L2
and L3, while layer 4-7 services will be pluggable, creating an
extensible data model. This change generated a broader path for more
companies and individuals to contribute for specific components on
the Neutron project. NSX leverages this architecture model to offer its
unique capabilities and features.

Components
Provider Networks

Provider networks are L2 segments that offer connectivity to the
instances with optional DHCP support and metadata services. Those
segments are mapped into existing L2 networks in the data center. The
most common approach is using 802.1q tagging, separating each
provider network into a separate VLAN.

The general idea of L2 provider networks is to offer simplicity and
reliability for the cloud. Generally, only OpenStack administrators can
create, delete, and update provider networks. This restriction is in
place as configuration of the physical network infrastructure is usually
required as well.

In the most common use case, each tenant will be connected to one or
more provider networks via a physical external router or a Neutron-
owned router. This connection offers external connectivity to reach
another tenant or the Internet.

84 |

Tenant Networks

Tenant networks enable users to create, delete, and modify their
networks whenever they want, without administrator intervention.
Tenant networks are virtual and normally use an overlay protocols like
VXLAN, GENEVE, STT, or GRE. An overlay protocol is preferred to a
traditional VLAN to avoid physical network configuration and
scalability limitations of the number of available VLANs.

By default, tenant networks are isolated and not shared with
other tenants.

Subnets and Subnet Pools

Subnets and subnet pools are used to assign IP addresses for ports of
the instances. Each user can create subnets and assign IP address
without restriction. Some technologies and vendors support no-NAT
implementations. For these situations, IP addresses from subnets
should be different from each other, and subnet pools can be used to
avoid conflicts.

Routers

Neutron routers offer tenants L3 services like routing and NAT. Users
can create, delete, or update Neutron routers and they are not shared
between tenants.

Tenant networks requires Neutron routers to connect to external
networks. DHCP and metadata services are commonly associated with
tenant networks. Those networks use private IP ranges (RFC1918) and
connect to provider networks with a source NAT rule created in the
Neutron router.

Floating IPs are also commonly used to enable the access to the
instances from provider networks via a destination NAT configuration
on the Neutron routers.

Neutron routers can be considered the edge between the tenant space
to the external world including the Internet or other tenants.

Neutron implements routers using L3 agents that reside on the
network nodes. Depending on the size of environment,
oversubscription and redundancy should be considered when
designing the network.

Figure 5.3 exemplifies how Neutron routers interact with provider and
tenant networks.

CHAPTER 5 - NSX and OpenStack | 85

Security Groups

Security groups offers firewall rules at port level for the instances.
Rules can be configured for inbound and/or outbound traffic. By
default, all security groups use an implicit deny rule; therefore, it is
necessary to specify the rules for all the instances in the tenant.

The firewall driver translates security group rules into a configuration
that the infrastructure uses technologies like iptables. Upcoming
examples will discuss the efficiencies and benefits of NSX security
along with the process of translating security group rules into
NSX components.

DHCP

DHCP is an optional but commonly used service that manages IP
addressing for instances that connect to provider or tenants networks.

Metadata

Metadata is an optional service that offers an API containing
information of the networking and security components to
other projects.

Figure 5.3 Neutron Components Interaction

86 |

Services

VPNaaS
VPNs offer secure connectivity access to the external world. VPNaaS
is a Neutron extension that provides an API to configure, delete, or
update tenant VPN services.

LBaaS
Load balancers automate creation, deletion, and updating of resources
based on demand. LBaaS offers an API to provision and configure load
balancers for tenants.

FWaaS
Neutron’s firewall-as-a-service (FWaaS) offers an API to create, delete,
or update firewalls on demand for tenants as a first layer of protection
compared to security groups.

What are Neutron Plugins?

The Neutron plugin architecture is divided in two categories:

•	 Core API: implements the core L2 abstracts like ports
and networks

•	 API extensions: implement other services, including routing
and LBaaS

Neutron allows the use of a set of different backends called plugins
that work with a variety of networking technologies. These plugins
may be available separately or distributed as part of the main
Neutron release.

Neutron uses plugins to deal with hardware and software diversity
at different layers of the OSI model.

Two main approaches are used for Neutron plugins:

•	 Monolithic plugins: The first plug-in implementation, but still
commonly used. Monolithic plugins offer a complete set of features
in a single package.

•	 Modular Layer 2 (ML2) plugins: A new modular Neutron core
plug-in, introduced in the Havana release. The ML2 plugin
architecture supports type drivers to support multiple networking
technologies and mechanism drivers to facilitate access to the
networking configuration in a transactional model.

CHAPTER 5 - NSX and OpenStack | 87

NSX Neutron Plugin

NSX integration with OpenStack is implemented as a Neutron plugin.

The NSX plugin is open source and can be used by any OpenStack
distribution. More information and source code download is available
on the GitHub page - https://github.com/openstack/vmware-nsx.

Neutron API calls are translated into NSX REST API calls. All calls are
received by the NSX Manager, which is the API entry point for the
entire NSX solution. The NSX Manager is then responsible for
mapping and creating the components in the virtual networking
and security infrastructure.

Since NSX can deliver all networking and security controls, the NSX
plugin uses the monolithic approach instead of ML2. OpenStack users
and administrators benefit from using a single monolithic plugin when
using NSX for all Neutron services. If an ML2 plugin were used, the
addition of service plugins could create challenges for operation
and integration.

Figure 5.4 OpenStack Neutron Architecture

88 |

NSX and OpenStack Benefits

Networking Challenges in OpenStack
The OpenStack community considers Neutron one of the more
complicated and complex project in the main core OpenStack projects.
Several enterprises struggle to integrate their physical networking and
security infrastructure with Neutron.

Every year, the OpenStack Foundation releases a survey detailing user
adoption experiences and their opinions using OpenStack. Two quotes
extracted from recent reports represent some of the challenges
with Neutron:

“For Neutron, they wanted the networking service to be less com-

plicated to use, with more substantial documentation and better

integration with compute functions and PaaS layer integration.”

OpenStack User Survey 2016

“Neutron needs to be reworked and simpler – we don’t need to

include every use case under the sun. Kick out the obscure architec-

tures.”

OpenStack User Survey 2017

Most OpenStack clouds leverage Open vSwitch as the reference
implementation together with Neutron for the networking piece
of OpenStack.

Figures 5.5 and 5.6 diagram some of the complexity of Open vSwitch,
detailing the switching and routing architecture of Open vSwitch
integration in OpenStack.

CHAPTER 5 - NSX and OpenStack | 89

Figure 5.5 Neutron and Open vSwitch - Switching

Figure 5.6 Neutron and Open vSwitch - Routing

90 |

These images only illustrate switching and routing functionality; the
complexity grows when adding other services such as security groups,
LBaaS, DHCP, VPNaaS, etc.

The most common challenges that enterprises face with Neutron
and common Open vSwitch implementation can be summarized in
five areas:

•	 Complexity

•	 Scalability

•	 Performance issues

•	 Lack of support

•	 Operations and monitoring tools for day two operations

Off-Topic: Open vSwitch (OVS)

Open vSwitch (OVS) was created by Nicira, then incorporated into
VMware. OVS is one of many open sources projects where VMware
contributes. In 2016, OVS became part of the Linux Foundation to
enable further collaboration from the community.

Two of the biggest contributors of Open vSwitch – Ben Pfaff and Justin
Pettit – are part of the VMware team, and both continue to contribute
to the initiative. As a company, VMware is the top contributor of the
Neutron project and continues to improve and create reliable code to
maintain the use of Neutron for the entire community. Key areas of
involvement include:

•	 Author and biggest contributor of OpenStack Neutron project

•	 Founder of OVN – Open Virtual Networking

•	 Author of OVSDB (Open Virtual Switch Database) – OVSDB is the
most common management protocol used by virtual networks to
communicate with physical networking hardware.

•	 Four out of the ten most active contributors to the OpenStack
Neutron project work at VMware, including Gary Kotton – the top
individual contributor and one of the most recognized members of
the community.

CHAPTER 5 - NSX and OpenStack | 91

Benefits of NSX

Automation is becoming a necessity for every enterprise in the
world; they are looking for infrastructure that can deliver fast and
agile environments, helping to avoid bottlenecks and enabling
continued growing.

NSX abstracts the networking and security physical infrastructure,
providing a reliable and complete virtual infrastructure with all
components exposed via REST APIs.

The benefits that VMware NSX brings to Neutron include:

•	 Agility: create networks at the same speed as the applications

•	 Mobility: provisioning and mobility of instances

•	 Security: micro-segmentation and chaining of partner services
for advanced features

•	 Multi-tenant: possibility of using shared infrastructure among
multiple tenants

•	 Simplified operations: centralized control and single monitoring

The challenges with Neutron can be addressed with NSX as follows:

•	 Simplified implementation of Neutron services

•	 Stability, scalability, and high availability

•	 Continuous development of new functionality

•	 Higher performance due to distributed NSX architecture

•	 Management, day two operations, and native troubleshooting
tools in NSX

Figure 5.7 was taken from Stackalytics (www.stackalytics.com), whose
mission is to provide transparent and meaningful statistics regarding
contributions to both OpenStack and related projects.

92 |

Figure 5.7 OpenStack Neutron Vendors Overall Contributions (August’2017)

NSX completely removes the hardware-centric barrier to the
automation of networking operations. By moving networking and
security services into the data center virtualization layer, NSX delivers
the same automated operational model of a virtual machine for the
entire network.

Working in conjunction with OpenStack, NSX can automate a variety of
processes, significantly the accelerating service delivery cycle and
reducing provision times from weeks to minutes. The business impact
of this includes dramatically reduced operational complexity and cost
as well as improved governance, compliance, and consistency.

Off-Topic: OpenStack Neutron History

OpenStack was created by Rackspace and NASA in 2010; however,
Neutron was not initially one of the core projects. The first project
related to networking and security was called Quantum; its first release
was in the Diablo version of OpenStack in September of 2011.

Quantum was completely developed by Nicira, the SDN startup
acquired by VMware 2012, helping transforming the NVP product into
VMware NSX.

CHAPTER 5 - NSX and OpenStack | 93

NSX and OpenStack Integration
VMware NSX is designed to address application frameworks and
architectures that have heterogeneous physical endpoints and
technology stacks. IT and development teams can use NSX to choose
the technologies best suited for their particular applications. NSX is
also designed for management, operation, and consumption by
development organizations in addition to IT.

By enabling developers to consume networking resources either
through APIs or natively with the OpenStack NSX Neutron plug-in, the
NSX platform creates an abstraction layer to provide faster, secure, and
more agile access to networking and security functionality rather than
requiring access to physical components.

NSX offers to OpenStack:

•	 L2 services with VLAN or VXLAN, DHCP, support for overlapping
IP addresses, and an L2 gateway for VLAN bridging.

•	 L3 services with distributed routing, external network, floating IP,
no-NAT support, and integrated dynamic routing (i.e., floating IP
and/or tenant subnets are automatically advertised to physical
world without changes on the physical routers).

•	 Security groups leveraging stateful distributed firewall on NSX as
well as 3rd party integration.

•	 XaaS model for network functionality, including LBaaS and FWaaS

•	 Instance-specific metadata access services

94 |

NSX Neutron Components and Equivalents

Figure 5.8 illustrates how Neutron components are mapped into
NSX components.

Figure 5.8 Neutron components equivalence in NSX

Tenant or provider networks can be mapped into traditional VLANs,
leveraging vSphere VDS port-groups, or NSX logical switches,
leveraging VXLAN or GENEVE overlay protocols, depending on the
NSX edition.

NSX Edge Services Gateways can be used to replace Neutron routers.
Depending on the topology, one or more NSX ESGs may be required.
The NSX ESG will be responsible for routing and for DHCP services for
tenant networks. When leveraging the floating IP feature, NAT entries
are added into the NSX ESG. LBaaS and FWaaS are also features that
are implemented using the NSX ESG.

Security services like security group rules are translated into the NSX
distributed firewall. These stateful rules can prove a more granular,
flexible, and advanced protection compared to other implementations.

Supported topologies will be discussed in more details later in
this chapter.

CHAPTER 5 - NSX and OpenStack | 95

NSX Supported Topologies and Integration

The NSX Neutron plug-in supports the following topologies:

Topology Use Case Comments

1 VLAN for L2 services; no
L3 services

Micro-segmentation only No overlay networks;
security groups leverage
DFW policies.

2 VLAN for L2 services; L3
services LBaaS and
FWaaS optional

Leverage VLANs for L2;
NSX Edge for L3
services

No overlay networks; L3
provided by NSX ESG;
no distributed routing
supported.

3 L2 services; L3 services
LBaaS and FWaaS
optional

Enterprise customers
that do not need
overlapping IP addresses

Can use distributed
router, NSX ESG, or both;
no overlapping IPs
allowed; very efficient;
preferred enterprise
model

4 L2 Services; L3 services
with NAT; LBaaS and
FWaaS optional

Enterprise customers
that need
overlapping IPs

Can use distributed
router, NSX ESG, or both;
very efficient; preferred
cloud provider and
service provider model

Topology 1: VLAN for Layer 2 Services. No Layer 3 Services

This topology, diagrammed in Figure 5.9, is only recommended for
laboratory environments and small deployments. In this example, NSX
only performs security tasks. VLANs leverage vSphere distributed
switch port groups. All other features (e.g., switching, routing, security,
load balancing) need to be pre-provisioned or created manually in the
physical infrastructure.

96 |

Figure 5.9 Use Case 1 – VLAN for Layer 2 Services | No Layer 3 Services

Topology 2: VLAN for Layer 2 Services. Layer 3 Services

The topology shown in Figure 5.10 is used by enterprises as a
starting point to discover and gain familiarity with NSX and
OpenStack integration.

NSX performs L2 services (i.e., connecting VLANs to NSX ESGs by
leveraging vSphere distributed switch port groups), security, and
routing. No pre-provisioning or manual configuration is required in the
physical infrastructure outside of VLANs used as tenant networks.
Overlapping IP addresses can be used with NAT in place. LBaaS and
FWaaS are optional, delivered by the same NSX Edge Services
Gateway when desired.

CHAPTER 5 - NSX and OpenStack | 97

Figure 5.10 Use Case 2 – VLAN for Layer 2 Services | Layer 3 Services

Topology 3: Layer 2 Services and Layer 3 Services

The topology in Figure 5.11 is broadly recommended for enterprise
deployments, especially where there are no overlapping IPs.

NSX performs L2 services, security, and routing. No pre-provisioning or
manual creation is required in the physical infrastructure. Overlapping
IP addresses are not allowed for tenant networks. LBaaS and FWaaS
are optional, delivered by the NSX ESG when desired.

98 |

Figure 5.11 Use Case 3 – Layer 2 Services | Layer 3 Services

Topology 4: Layer 2 Services and Layer 3 Services with NAT

The final topology, shown in Figure 5.12, is also broadly recommended
for enterprise deployments, especially service providers and
cloud providers.

NSX performs L2 services and L3 services. No pre-provisioning or
manual creation is required in the physical infrastructure. If overlapping
IP addresses are used, each tenant will have its own NSX Edge Services
Gateway. LBaaS and FWaaS are optional and delivered by an NSX ESG
as desired.

CHAPTER 5 - NSX and OpenStack | 99

Figure 5.12 Use Case 4 – Layer 2 Services | Layer 3 Services with NAT

NSX Security and Micro-Segmentation
NSX introduces support for distributed firewall functionality for
workloads running on hypervisors. The NSX DFW provides the
capability to enforce firewalling functionality directly at the workload
vNIC layer, providing an optimal micro-segmented environment.
Stateful firewall rules are supported.

NSX implements an NSX security group for every Neutron security
group. Membership criteria for the security group is based on the
virtual machine vNIC.

Under the NSX firewall rules, a section is created per tenant (i.e.,
project) with security groups used as sources/destinations. Those rules
are applied only for the security groups related to the rules, creating a
true micro-segmented architecture per tenant.

There is a default section for NSX firewall rules which assigns security
groups an implicit drop at the end.

100 |

Figure 5.13 Security Group Rules Mapping into NSX Distributed Firewall

Neutron security groups and NSX micro-segmentation can be used
standalone, without adopting L3 overlays and L3 routing virtualization.
While not as flexible as full network virtualization, the micro-
segmentation-only use case could be an entry point for enterprise
adoption. It provides a great insertion vector for OpenStack and NSX
without disrupting any operational model that is already in place.

NSX Policy Redirection
Security in Neutron relies on tenant security groups. In OpenStack,
tenants are allowed control of their own security firewall rules. Native
Neutron security groups were insufficient to address requirements of
regulatory and enterprise security standards when implemented in
OpenStack. Neutron security groups rely on firewall rules from layers 2
through 4; they do not provide more advanced/granular protection in
other layers.

VMware NSX brings an additional layer of protection through policy
redirection, also known as network extensibility. This functionality
provides an open platform for security partners to integrate solutions
into NSX.

Relying on NSX DFW security group rules, administrators can add
another layer of security (e.g., IPS, antivirus, anti-malware) for specific
traffic with additional needs. This is achieved through integrating
solutions into NSX Manager and configuring redirection policies in the
NSX unified dashboard to determine which type of traffic should
receive advanced treatment. There is no requirement to change or
reconfigure any additional networks for traffic redirection; this is done
before the packet even arrives in the virtual network. All processing is
performed at the vNIC level of the VMs.

The advanced features rely on VM appliances on each hypervisor
where the performance and throughput need to be correctly designed.

CHAPTER 5 - NSX and OpenStack | 101

Best practices recommend identifying the traffic that requires
advanced features; this traffic can be redirected to those appliances
while the standard L2-L4 firewall rules are handled by NSX DFW.

Figure 5.14 NSX Policy Redirection

NSX Edge Services Gateway Integration
Tenants in OpenStack are allowed to create networks, configure
subnets, and determine routing between those networks and external
world. When users create a Neutron router in OpenStack, the NSX
Neutron plug-in translates that action into a API call for NSX Manager
to create an NSX Edge Services Gateway.

When networks are connected to a Neutron router, NSX creates a
connection between the network (e.g., VXLAN or VLAN) to the
correspondent NSX ESG, establishing routing between those networks.

When Neutron routers are connected to an external network, the ESG
is connected to a vSphere port group mapped to an external VLAN;
this provides connectivity to the external world. If tenants have
overlapping networks, the Neutron router must perform NAT to enable
connectivity between tenants and the external world. NAT is not
required if tenants maintain distinct public address ranges.

102 |

If users do not want to use VXLAN to back tenant networks, NSX
administrators must pre-create VLANs in the physical infrastructure.
Due to the complexity this involves, best practices recommend using
VXLAN to back tenant networks.

Neutron routers can be exclusive or shared between tenants
depending on the implementation (i.e., NAT or no-NAT topologies).
Factoring this with performance and scalability requirements,
users and administrators can choose the best design for their
OpenStack network.

Another benefit of using NSX is the optimization of east-west routing
traffic between tenant networks using a DLR. An NSX DLR is
connected to an ESG to manage the routing between tenant networks
while the ESG continues to be responsible for tenant north-south
traffic and networking services. With an NSX DLR, performance
increases as routing is handled inside each hypervisor. If two instances
(i.e., VMs) of a specific tenant reside on the same hypervisor, traffic will
not need to travel to the correspondent NSX ESG.

Figure 5.15 illustrates topologies with and without an NSX DLR.

Figure 5.15 Comparison between using ESG or DLR for east-west routing

CHAPTER 5 - NSX and OpenStack | 103

DHCP
NSX offers DHCP services to Neutron. NSX DHCP is implemented with
static DHCP bindings; this provides greater reliability at scale for
OpenStack clouds with a significant number of instances.

The NSX Neutron plug-in will automatically determine DHCP
implementation depending on the topology. When using topologies
with overlapping IPs, DHCP is implemented per NSX Edge. When using
topologies without overlapping IPs (i.e., no-NAT), DHCP is
implemented in a shared NSX ESG.

Figure 5.16 DHCP implementation for non-overlapping and overlapping IPs topologies

NSX Load Balancing Integration
Beginning with the OpenStack Mitaka version of the NSX plug-in,
Neutron load balancing-as-a-service (LBaaS) version 2.0 is
incorporated and supported.

Rather than relying on third party integration, NSX has embedded load
balancing capabilities provided by the ESG.NSX provides an L4-L7
load balancer that offers OpenStack users and administrators the
capability to balance one or more applications on-demand.
When integrating with Neutron LBaaS, an ESG acts as one-arm load
balancer; this is a different ESG than one acting as the tenant’s Neutron
router. Tenants use the following process to establish NSX LBaaS for
supported protocols (i.e., TCP, HTTP, HTTPS):

•	 Create application pools

•	 Add members (i.e., instance IP addresses) to the pool

•	 Create one or more health monitors

•	 Associate the health monitors with the pool

•	 Create a virtual IP with the pool

104 |

Figure 5.17 illustrates use of an NSX load balancer integration
with Neutron.

Figure 5.17 NSX ESG with Load Balancer integration with Neutron LBaaS

NSX Operations Tools

Managing, monitoring, and troubleshooting OpenStack is a top
concern of administrators and users who have implemented
OpenStack for public or private clouds. Processes to optimize the
installation of OpenStack are getting better, but day two operations
need further improvement, especially with troubleshooting Neutron
networking and security activities.

Be more user- and ops-oriented. It’s been an issue since

the beginning of OpenStack and it still is, even though

we’ve seen huge improvements.

OpenStack User Survey 2017

CHAPTER 5 - NSX and OpenStack | 105

VMware NSX addresses these issues perfectly. NSX offers users and
administrators a set of built-in tools that can be leveraged
independently on a cloud management platform or used with other
automation tools integrated with NSX. Even with a complex and multi-
tenant environment like OpenStack, native operations tools are
extremely useful for troubleshooting and monitoring.

NSX provides a robust logging framework with consistent log formats,
trackable event identifiers, error codes, and tags across the distributed
components. This helps build a correlated, log-based dashboard
through centralized log collectors such as VMware vRealize®
Log Insight™.

Aggregation services in NSX offer a centralized view of information
such as statistics, routes, and MAC table information from distributed
components, presenting a unified picture in a single pane of glass and
eliminating the need log into individual components.

Another benefit is the granular flow and packet-level visibility through
standard tools such as IPFIX and port mirroring. This enables
customers to use their existing monitoring and troubleshooting
tools for network visibility when troubleshooting.

One of the most efficient features that NSX provides is Traceflow. With
Traceflow, users and administrators can simulate the path between two
instances to help identify potential problems. Traceflow is a powerful
tool that provides insights of both virtual networks and security rules in
the path. In OpenStack deployments, Traceflow can be used to identify
and determine the traffic between and inside tenants as well as
connectivity to the external world.

106 |

Figure 5.18 NSX TraceFlow tool

The following section of this chapter discusses additional benefits of
NSX integration with OpenStack as well as how organizations are
gaining competitive advantages by running VMware NSX for their
production OpenStack environments. The final section offers details
about VMware® Integrated OpenStack™ along with its connection to
and interaction with NSX.

NSX and VMware Integrated OpenStack

What is VMware Integrated OpenStack?
Like many other software companies, VMware has its own OpenStack
distribution. It is called VIO – VMware Integrated OpenStack.

There is a growing trend of using commercial OpenStack distributions
by enterprises adopting OpenStack for production environments,
despite of the availability of open source software offered by the
OpenStack Foundation. The main motivation for such a choice is
that the support provided by these companies is critical to any
enterprise wanting to maintain a reliable production environment
with OpenStack.

CHAPTER 5 - NSX and OpenStack | 107

The goal of VMware Integrated OpenStack is not and will never be to
contain the largest number of projects available in the community. It
will focus on offering the most stable projects through a robust, high-
performance, resilient, and secure distribution for environments that
use VMware’s own computing infrastructure. One of the major
challenges of most OpenStack cloud implementations today is
upgrading between versions. This update process is extremely
challenging to perform in the vast majority of OpenStack distributions
and is one of the main differentials available since version 2.0 of VIO.

VMware Integrated OpenStack is based on standard upstream
OpenStack. Core projects that makes up VIO releases are:

•	 Neutron - Network Connectivity

•	 Cinder - Block Storage for Volumes

•	 Nova - Compute Services

•	 Glance - Image repository

•	 Horizon - UI Portal

•	 Ceilometer - Telemetry

•	 Heat - Orchestration

•	 Keystone - Identity Management

Swift, the object store module, is not included in VIO by default. Third-
party integration is required, typically with SwiftStack (https://www.
swiftstack.com/).

Why VMware Integrated OpenStack?

VMware Integrated OpenStack’s main goal is offer simple installation,
upgrade, and operations using VMware infrastructure to provide the
most stable release of OpenStack in the market.

Enterprise deployments of OpenStack lack features like monitoring,
management, and logging. VIO addresses these deficiencies with other
VMware solutions like VMware vRealize® Operations Manager™ and
VMware vRealize® Log Insight™, integrating them without the need for
additional customization.

108 |

VMware Integrated OpenStack is a standard DefCore compliant
OpenStack distribution. Its implementation is fully supported by
VMware, providing an IaaS solution using VMware vSphere for
compute and storage and NSX for network.

Many customers are adopting VMware Integrated OpenStack to
leverage their existing investment in people, skills, and infrastructure
based on their current VMware footprint.

The word integrated is key; deep customization is limited when running
VIO. Customers need to deploy and use the entire set of projects to
leverage the benefits. In that sense, only vSphere, NSX, and vSAN can
be deployed with VIO.

This integrated approach delivers the following benefits:

•	 Single vendor support

•	 Stable and scalable solution leveraging existing vSphere expertise
and management, monitoring, and operations tools

•	 Best in class security solution delivering real micro-segmentation

•	 Fully validated end-to-end solution considering computing,
networking, and storage

VMware Integrated OpenStack Architecture
The 3 major pillars in VMware Integrated OpenStack are:

•	 vSphere Compute for Nova Compute API

•	 vSphere Networking (VDS) or NSX for Neutron Network API

•	 vSphere Storage or VSAN for Cinder and Glance API

vRealize solutions like VMware vRealize® Operations™, vRealize Log
Insight, VMware vRealize® Network Insight™, and VMware vRealize®
Business™ are critical to day two operations, management, billing, and
monitoring. These could also be integrated with VIO.

Figure 5.19 illustrates a high level overview of the VIO architecture.

CHAPTER 5 - NSX and OpenStack | 109

Figure 5.19 VMware Integrated OpenStack Architecture

Compute

The only option available in VIO for compute is vSphere. Nova
connects to vCenter using available drivers and translates Nova API
calls into vSphere API calls.

The reason for supporting only VMware solutions underneath VIO is
the core principle to maintain a simple, stable, and repeatable solution.
This approach provides a production-grade distribution to
enterprises, allowing users to truly experience the power and
benefits of OpenStack.

In standard OpenStack deployments, each Nova Compute is a
hypervisor node. When integrating with vSphere, each Nova Compute
is a cluster with one or more vSphere hypervisors. This architecture
allows users and administrators to leverage some of the top class
features like vSphere HA and vSphere DRS (Distributed Resource
Scheduler) to make optimal usage of the compute infrastructure.

It is important to understand that vSphere is not part of VMware
Integrated OpenStack solution; separate licenses are required.

Figure 5.20 illustrates the computing architecture of VIO.

110 |

Figure 5.20 OpenStack Nova and vCenter Integration

Storage
Another differentiator of VIO is its ability to leverage vSphere Storage
or vSAN features for both Cinder and Glance. Those projects can
potentially use any datastore available, independent of the underlay
physical storage providing the capacity to read/write data.

Cinder integration is simple. vCenter first creates a volume and
attaches it to a shadow VM. When an instance is created in Nova and a
volume is attached into this instance, vCenter changes the link
between the shadow VM to the newly created VM.

Figure 5.21 illustrates the storage architecture of VIO related to Cinder.

CHAPTER 5 - NSX and OpenStack | 111

Figure 5.21 OpenStack Cinder and vCenter Integration

Glance is responsible for the image repository. VIO supports a different
number of formats including ISO, OVA, and VMDK. When an image is
imported, VIO converts it to VMDK or ISO behind the scenes. When a
VM is booted, this VMDK or ISO image is copied from the image
service to the vSphere datastore.

Networking
VMware Integrated OpenStack allows two options for networking
integration with Neutron project: vSphere VDS or NSX.

vSphere VDS is purely a layer 2 switch embedded into the vSphere
hypervisor. NSX is a more complete networking virtualization solution,
containing not only switching but also routing, security features, and
other advanced functionality.

When using vSphere VDS, Neutron API calls are translated using the
vCenter API. When using VMware NSX, Neutron API calls are translated
by the NSX plugin.

112 |

When deploying a vSphere VDS-only model, Neutron features such as
security groups, L3 agent, and tenant networking are not available. For
a production grade implementation of OpenStack, VMware NSX is
highly recommended.

It is important to understand that NSX is not part of VMware
Integrated OpenStack solution; separate licenses are required.

Figure 5.22 illustrates the networking architecture of VIO related
to Neutron.

Figure 5.22 Comparison between Neutron integration with

vSphere Distributed Switch and NSX

CHAPTER 5 - NSX and OpenStack | 113

Operations
vRealize Log Insight (vRLI) analyses structured and unstructured data.
With VMware Integrated OpenStack, VMware vSphere, and VMware
NSX, vRLI can automatically identify structures of data and create an
index for performing analytics. This offers OpenStack users and
administrators a complete suite with dashboards to display time series
events to simplify troubleshooting. vRealize Log Insight also allows
extensibility from different vendors through content packs which allow
integration of commonly used applications into a single pane of glass.

vRealize Operations Manager provides identification, remediation, and
capacity planning for VMware Integrated OpenStack and vSphere. It
offers a single pane of glass for visibility and monitoring across
applications and infrastructure.

vRealize Network Insight retrieves networking and security analytics
information from vCenter and NSX. vRNI is able to help with
security planning and networking visibility for both underlay
and overlay networks.

It is important to understand that vRealize Log Insight, vRealize
Operations Manager, and vRealize Network Insight are not mandatory;
they are not part of VMware Integrated OpenStack but are
recommended when running VIO in production. Separate licenses
are required for all solutions.

VMware Integrated OpenStack and VMware NSX

OpenStack Server uses the Neutron plugin to communicate with NSX
Manager. All the benefits of NSX for OpenStack can be also achieved
with VIO integration, including L2 and L3, security with micro-
segmentation, and LBaaS with native load balancer.

114 |

Figure 5.23 NSX Integration with OpenStack

The Neutron plugin is open source, and all OpenStack Neutron
operations map directly to NSX Manager. NSX ESGs function as
OpenStack L3 agent, metadata server, DHCP L2 agent, tenant
networking, and security group policy enforcement. As a direct result
of leveraging enterprise-grade virtualization with vSphere and
enterprise grade networking with NSX, customers will have an
enterprise-grade OpenStack layer. This will mitigate the risks and
shortcomings of the reference implementation.

NSX is strictly integrated with vSphere and VMware Integrated
OpenStack. Users relying on VMware infrastructure for their complete
data center automation solution have the benefit of a centralized
support from VMware.

CHAPTER 5 - NSX and OpenStack | 115

Tales from the Field – Marcos Hernandez

How VMware Integrated OpenStack and the SDDC Power one
of the Largest E-commerce Websites in the World
After trying to become more agile by implementing a number of COTS
automation solutions, a customer of VMware’s with a market focus on
direct-to-consumer sales decided to leverage VMware’s OpenStack
distribution, VIO. This particular customer had already built a custom,
homegrown, declarative automation tool, and now they just needed to
make it OpenStack-aware. Because of the fact that the OpenStack API
is public, documented, and universal, this task, while not insignificant,
was easier to attain than previous attempts to do the same on
proprietary technologies.

By implementing OpenStack as the abstraction layer for IaaS, the
DevOps team responsible for the custom tool was able to port some of
the primitives they were leveraging in public cloud with only minor
changes. Not being tied to a VMware specific API also gave this
customer the option to use someone else’s OpenStack in the future, if
they choose to do so, without discarding the huge investments in
intellectual property made over the years while building their
consumption strategy.

When done right, OpenStack-based clouds have a tendency to grow
very quickly. This customer was no exception. In a matter of months,
their development pipeline and corresponding compute footprint grew
1000%, while time-to-market of production quality software was
reduced to minutes. This customer is now pushing updates to their
production, user-facing platform, several times a day.

The network was NOT an afterthought. Recognizing the many
challenges of running the reference implementation of Neutron that
leverages open source components, this customer settled on NSX as
the alternative. NSX replaces flaky or older open source network
services that have not been tested at scale in OpenStack, for example,
DHCP. NSX has brought stability to their Neutron layer and after
several years of being in production, the number of severity 1 issues
and outages are a thing of the past.

VIO and the SDDC are central to the business in this particular case,
and other customers could benefit from a prescriptive way to deliver
private cloud in this manner, while appealing to a user population that
wants the tooling freedom unleashed by an open API. There is no
reason why organizations like yours, with similar ambitions, can’t bake
the proverbial cake and eat it too.

Chapter 6

CHAPTER 6 - VMware vRealize Automation, OpenStack, or Both? | 117

VMware vRealize Automation,
OpenStack, or Both?

VMware vRealize Automation or OpenStack? This is a reasonable
question to ask, and is the focus of this chapter.

Before jumping into this topic, note the clear distinction between the
roles of infrastructure and developer teams. Infrastructure teams are
responsible for creating VM images, defining security and network
parameters, and operating/maintaining the whole infrastructure.
Developer teams consume the VM images along with the predefined
security and networking components for their application needs.

118 |

Developer teams need a basic infrastructure consumption model to
simplify the deployment offered through APIs. This can be generic
definition of infrastructure as a service, but most enterprises have
other needs including lifecycle management of workloads, governance,
approval workflow, or service catalogs – tasks usually handled by the
infrastructure team. External cloud connectivity for burst, migration,
or creation of a hybrid environment is yet another critical requirement
for enterprises.

In short, enterprises will likely need both models and both solutions.
Both infrastructure and developer teams may want to deploy vRealize
Automation and OpenStack approaches, and an integrated design
could be the end goal for any enterprise.

Figure 6.1 exemplifies how VMware vRealize Automation and
OpenStack work together when creating the building blocks of a
private cloud.

Figure 6.1 vRealize Automation and OpenStack Building Blocks

CHAPTER 6 - VMware vRealize Automation, OpenStack, or Both? | 119

An OpenStack deployment could be a vRealize Automation end-point,
centrally managed and orchestrated by the infrastructure team,
offering the OpenStack APIs to developer teams to consume and
create the infrastructure primitives as needed. Instead of requesting
networks and VMs for an application, developer teams can request
that as part of the code, gaining agility without the need to wait for an
infrastructure team provision the desired environment.

The table in Figure 6.2 explains the requirements needed to define the
best solution depending on the use case.

Figure 6.2 vRealize Automation and OpenStack consumption

120 |

Figure 6.3 vRealize Automation and VIO integration

Starting in VIO 4.0, vRealize Automation administrators can embed
VIO components in blueprints. They can also manage their VMware
Integrated OpenStack deployments through the Horizon UI as a tab in
vRealize Automation. This integration provides additional governance
as well as single sign-on for users.
The following four directives offer guidance during the project
definition for automation solution:

•	 OpenStack is primarily attractive for developers that want an
AWS-like API, do not care about a GUI or policy and governance,
and are developing next generation resilient applications that
follow an agile development flow (i.e., spin up, test, tear down).

•	 Both OpenStack and vRealize Automation feature a RESTful API. In
many cases, vRealize Automation will meet their requirements and
is much easier to deploy and manage.

•	 OpenStack is targeted at developers that only require an API.
OpenStack is not a good fit for an infrastructure automation
solution that presents a customized portal or a third-party system
like ServiceNow. In this case, vRealize Automation is a much better
fit and more widely adopted for that use case.

•	 OpenStack requires a different skillset, often requiring
organizations to hire specialists for the role. vRealize Automation
was built by vSphere administrators for vSphere administrators.

CHAPTER 6 - VMware vRealize Automation, OpenStack, or Both? | 121

Using VMware infrastructure with vSphere, NSX, and vSAN is the ideal
scenario. Enterprises can create an abstraction layer that will be
consumed as virtual components by both automation solutions without
the requirement of having different or separate physical infrastructure
for each solution.

VMware offers a choice of cloud management platforms that
enterprises choose based on their requirements:

•	 VMware Integrated OpenStack provides the ability to quickly
deploy and maintain a robust OpenStack IaaS using existing
infrastructure and investments – both technology and people.

•	 vRealize Automation provides a fully-featured cloud management
platform – beyond simply IaaS – to also offer hybrid cloud,
extensibility and end-to-end lifecycle management.

122 |

Tales From The Field – Angel Villar Garea

Before looking for a product, look at your needs
The large presence of VMware in the market allows us to find all kind of
needs and requirements among our customers. Infrastructure
automation has been one the most popular requests recently, with
almost any organization looking at building some sort of private cloud.
While a number of them started investigating OpenStack with non-
VMware hypervisors due to the hype at the moment, most of them
finally turned to familiar VMware technologies, either combined with
OpenStack or not. And why is that? Why did they finally choose
VMware technologies? Let’s find out some of the reasons by looking at
a VMware financial customer experience.

This specific customer started looking at OpenStack as a solution for
infrastructure automation. While it provided some benefits like vendor-
neutral APIs, during the testing phase the customer found OpenStack
limited in aspects including:

•	 Out of the box integration with existing enterprise systems like
IPAMs, load balancers, CMDBs, or Active Directory, to name a few.

•	 Extensibility – as time goes by, the customer will need to integrate
the cloud platform with new systems they cannot foresee at the
moment. Will that be feasible? How difficult will it be?

•	 Governance – how to control who can modify CPU and memory of
deployed VMs, or who can deploy a specific app? How to integrate
with existing enterprise approval systems?

•	 Learning curve – how much time will it take infrastructure admins
to learn to operate and troubleshoot the new cloud environment?
Will they have the same visibility and control they enjoy in their
VMware infrastructure?

Overall the main concern was, will they really save time and be
infrastructure independent or will they have to develop in-house
components that will require a huge investment on time and new skills,
while at the same time could be tying themselves to a specific kind of
infrastructure?

So they kept investigating, looking at alternative ways to take most out
of their existing infrastructure without having to rebuild everything
from scratch, in terms of solutions and skills.

CHAPTER 6 - VMware vRealize Automation, OpenStack, or Both? | 123

They found out it was possible to add automation on top of the
technologies they already knew, allowing them to protect their existing
investments and leveraging their years of experience and knowledge,
as well as their well-known monitoring and troubleshooting tools.
They also discovered they could build a private cloud with granular
controls on who does what and when, and with easy integration with
software defined networking and security, so they could automate
deployments and reduce time to market while guaranteeing the new
platform met their corporate security standards.

Additionally, they realized that integrating the new cloud with their
existing enterprise systems was fairly simple, and that there were next
generation monitoring tools that greatly simplified day two operations.

But the final decision point was discovering that the moment they
required it, they could also add OpenStack on top of their existing
infrastructure, providing their developers the environment they needed
with almost no learning curve for the infrastructure administrators.

In summary, this customer felt reinforced after learning that with the
right combination of technologies, they could protect their investment
and satisfy all their business needs, without having to rebuild their
infrastructure from scratch.

Chapter 7

CHAPTER 7 - VMware NSX and Other Automations Tools | 125

VMware NSX and Other
Automations Tools

As discussed in the previous chapters, NSX gives IT organizations
speed and security through standardization and consistency; not just
leveraging CMPs like vRealize Automation and OpenStack, but a wide
variety of automation tools. This helps administrators accomplish tasks
in a shorter amount of time and can turn routine chores, such as
creating virtual subnets or security policies, into something that
requires less intervention and effort from IT.

126 |

There are some IT professionals that are hesitant of diving too deeply
into a new automation tool, worried that they could actually automate
themselves out of a job. Some fear that if they can do their job in half
the time, either they or one of their co-workers may no longer be
necessary. This is far from the truth; there are lots of tasks left
undone because there is not enough time to do everything with a
minimum quality.

In many cases an automation tool may provide a hidden value, such as
the task of creating a new VLAN. First it must be configured into
different switches. If running spanning tree protocol, it is necessary to
check the root instance, bridges, and ports. Additionally, it is important
to make sure security policies are in place. These steps can become so
detailed and mundane that even seasoned administrators will find their
skills challenged by those processes. Using an automation tool the
administrator now shifts from managing each individual deployment to
managing the single automation task, bringing increased value and
process improvement to the organization.

There are a variety of different tools available; this section selects a
few to highlight central NSX capabilities for automation. Some
organizations decide to go full open source, using tools like Python or
Chef without formal enterprise support. Other organizations prefer
enterprise versions of those automation tools which come with support
and implementation services.

Figure 7.1 Different automation tools that interacts with NSX REST API

CHAPTER 7 - VMware NSX and Other Automations Tools | 127

DevOps
DevOps has been a hot topic for the last several years. The modern
DevOps world is full of outstanding and unique open source tools.
Because of the intensive pace of work, DevOps engineers are always
looking for tools to help them improve efficiency and productivity.
They need tools to ship code faster and remove the barriers that slow
down the development process.

Some of the most popular DevOps tools include:

•	 Chef

•	 Puppet

•	 Ansible

•	 SaltStack

•	 CloudFormation

•	 Terraform

These tools enable DevOps engineers to work with infrastructure as
code – a type of IT infrastructure that DevOps teams can automatically
manage and provision through code – rather than using a manual
process. This is also referred to as programmable infrastructure.

Chef
Chef is an open source automation tool available in cloud-hosted and
on-premises varieties. It turns IT configuration and infrastructure
management into code. Chef is a thin domain-specific language (DSL)
built on top of the Ruby on Rails programming language.

Chef is used to streamline the task of configuring and maintaining a
company’s servers. It can be integrated with cloud-based platforms
such as vRealize Automation, OpenStack, and Amazon Web
Services EC2.

Chef uses the core components of a workstation and a server to create
and run sets of instructions, called recipes and cookbooks, on target
nodes. A recipe is a single file that contains one or more resources
along with the instructions for that resource. A resource can be
practically anything: a Windows service, a file, or a PowerShell script.
The instructions available for any particular resource are dependent on
the resource type.

128 |

A cookbook is a collection of recipes. It addition to the recipes, it
includes a method of setting some code (e.g., HTML, PowerShell script)
aside as a template resource. Once included into a cookbook,
these scripts and code can be referenced by multiple recipes within
the cookbook.

Figure 7.2 Chef Architecture

Development teams can use Chef to describe and automate
networking and security for their application workloads within an
OpenStack environment. vRealize Orchestrator has a plug-in that
enables organizations to use Chef to bring DevOps efficiency to deal
with OS configuration, lifecycle management, and application
deployment. This plug-in offers a collection of workflows that can be
used to automate these tasks. More information about VMware and

CHAPTER 7 - VMware NSX and Other Automations Tools | 129

Chef can be found at https://www.chef.io/implementations/vmware/
and https://marketplace.vmware.com/vsx/solutions/chef-plugin-for-
vrealize-orchestrator.

Puppet
Puppet is written in the Ruby on Rails programming language and uses
a declarative Ruby-like domain specific language in its command line
environment. It runs on Unix systems as well as on Microsoft Windows.
The Puppet DSL is declarative: only a description of the desired end
state(s) of the system must be provided; Puppet sorts out the steps
needed to get there. Unlike an imperative language, there is no need to
figure out all the steps required to achieve the desired end state.

Puppet comes in two flavors: a commercial enterprise product –
Puppet Enterprise – and a free open source version. Many enterprises
start with the open source version, only to realize they do not have
the time or resources to maintain the deployment or that they
need additional capabilities which they have to build and
maintain themselves.

Open source Puppet is free for use and open to modification and
customization. Organizations can get a comprehensive tool with core
capabilities and functionality out of the box. For those with the skillset,
it is possible to modify the source code directly. With access to a huge
collection of modules – reusable, sharable units of code that can be
used to extend Puppet across the infrastructure – it is possible to
automate tasks such as setting up a database, adding users, installing
packages, and updating server configurations.

Puppet Enterprise includes over 40+ open source projects (e.g.,
MCollective, Facter, Hiera, etc.) with a straightforward installer, better
out-of-the-box scalability, and role-based access control (RBAC) that
allows delegation of tasks to individuals and groups. Enterprise
packaging includes Puppet server reporting for collection of a wide
variety of metrics about Puppet server health. Access to professional
services is also available.

130 |

Figure 7.3 Puppet Platform

Examples of simple automation configurations include: enabling NSX
ESG syslog, VXLAN segment ID, and NSX ESG load balancing
configurations.

Additional useful information about Puppet and NSX integration is
available at GitHub (https://github.com/vmware/vmware-nsx).

Puppet vs. Chef (at a glance)

 Puppet Chef

Language Puppet’s custom JSON-like
language; Ruby option available
beginning in version 2.6

Subset of Ruby

Approach Declarative Procedural/Imperative

License Apache; earlier versions are GPL Apache

Approach List dependencies and Puppet
figures out how to order the
install.

Write an install script in Ruby
using all the extra helper
functions from Chef.

Deployment Puppet Enterprise runs on a
machine.

Private Chef runs on a machine;
hosted Chef (same price) runs in
Opscode’s cloud.

Figure 7.4 Comparing Puppet vs Chef

CHAPTER 7 - VMware NSX and Other Automations Tools | 131

Ansible
Ansible is an open source automation platform. It is an IT automation
engine that can be used to automate cloud provisioning, configuration
management, application deployment, intra-service orchestration, and
many other IT needs. It is very simple to set up, easy to learn, and has
good documentation.

Designed for multi-tier deployments, Ansible can be used to describe
the state of a system and manage its entire lifecycle, rather than just
manage one system at a time. Unlike Puppet or Chef, it does not use an
agent on the remote host; instead, Ansible accesses all systems under
management through SSH. It is written in Python, which must be
installed on the remote host. It uses a very simple language – YAML, in
the form of Ansible playbooks – that allows users to describe their
automation jobs in an easy way.

Ansible also ships with several modules, called the module library, that
can be executed directly on remote hosts or through playbooks. Users
can also write their own modules. These modules can control system
resources like services, packages, or files. They can also execute
system commands. VMware NSX Ansible modules are available for
teams looking to automate network virtualization. More information
about those modules and their use can be found at GitHub (https://
github.com/vmware/nsxansible). This repository contains several
Ansible modules, written in Python, that can be used to create, read,
update, and delete objects in NSX for vSphere.

The other key characteristic of Ansible that makes it a great tool for
networking and security is the principle of idempotency. This means it
is safe to run the same playbook multiple times against the network, as
no change will be performed if the current state or configuration is
already the same as defined in the playbook.

Ansible is available for free and runs on Linux, Mac, or BSD. Ansible
also has an enterprise product, called Ansible Tower by Red Hat.
Using Ansible in NSX allows for automation of end-to-end provisioning
of logical networks, logical routers, or logical load balancing without
need to interact with anything on the physical (i.e., underlay) network.
These virtual networks created by Ansible can be consumed by virtual
machines, as they have L2 and L3 connectivity to both virtual and
physical networks. In this example, the environment could be part of a
continuous integration flow (CI/CD) allowing the networks to be stood
up and torn down as required. This allows DevOps engineers to
interact with the environment without manual intervention or waiting
for physical network changes.

132 |

Programming Languages and Tools
There are a variety of programming languages that can be used with
NSX REST API, including Python, PowerShell, PowerNSX, Ruby on
Rails, Perl, and Go. Using programming languages goes a step beyond
simply calling NSX REST API calls via REST client tools; programming
languages such as Python or Perl allow for the introduction of custom
advanced logic and workflows.

Python
Python is a widely used open-source tool. It supports object-oriented
programming with classes and multiple inheritance, where objects can
inherit attributes from other parent objects. The simple syntax allows
programmers to build the same task using fewer lines of code when
compared to other languages. Those characteristics make it the
perfect language for someone trying to learn computer programming
for the first time. It is easy to find a way to run Python on a computer
– Windows, Mac OS X, or Linux – as it is a cross-platform programming
language. As Python is very readable, easy to learn, and troubleshoot,
it has become one of the most popular tools and is preferred among
network admins and DevOps engineers.

Another great feature is the ability to group the code into modules
(i.e., a file containing Python definitions and statements) and packages
(i.e., several modules), allowing designated blocks of code to run as
scripts. There are different kind of modules:

•	 Those written in Python; they have the suffix: .py

•	 Dynamically linked C modules; suffixes include .dll, .pyd, .so, and .sl

•	 C modules linked with the interpreter

Python also comes with a large library. This is often cited as one of
Python’s greatest strengths. It enables programmers to reuse or
customize available code to rapidly deploy new projects within their
own environments.

There is a high-level python based library, named PyNSXv, located
at GitHub that exposes workflows and a CLI tool to control NSX
for vSphere.

PyNSXv can be used in two different ways: as a library by importing
the files in the library subdirectory into code; or as a CLI tool by
executing “pynsxv” on the command line after installation. More
information on how to install and run PyNSXv can be found at
https://github.com/vmware/pynsxv.

CHAPTER 7 - VMware NSX and Other Automations Tools | 133

Power NSX
PowerNSX is a PowerShell module that abstracts the NSX API to a set
of easily used PowerShell functions. It is based on VMware Power CLI,
a command line and scripting tool built on Windows PowerShell. It
provides more than 500 cmdlets for managing and automating
components of vSphere, VMware Site Recovery Manager™, vSphere
Automation SDK, VMware vCloud Director®, VMware vCloud® Air™,
VMware vSphere® Update Manager™, VMware vRealize® Operations
Manager™, and VMware Horizon®. The main objective of VMware Power
CLI is to provide a PowerShell interface to the VMware product APIs.

PowerNSX also provides a series of PowerShell cmdlets to manage and
automate NSX for vSphere. It works seamlessly with VMware Power
CLI to bring unprecedented power and flexibility to NSX
administrators. For organizations that already know how to use a
Power CLI tool, they will quickly feel at home using PowerNSX.

PowerNSX is an open and free software offering. More information is
available at GitHub (https://github.com/vmware/powernsx). PowerNSX
focuses on exposing new, update, remove, and get operations for all
key NSX functions as well as adding additional functionality to extend
the capabilities of NSX management beyond the native UI or API.

This module is not supported by VMware, and comes with no
warranties express or implied. Best practices recommend testing
and validating all functionality before using this product in a
production environment.

PowerNSX is a work in progress; it is unlikely that it will ever expose
100% of the NSX API. Feature requests are welcome via
the issues tracker on the project’s GitHub page – (https://github.com/
vmware/powernsx/issues).

PowerNSX can be leveraged to create some interesting tools. An
example of Visio integration is shown in Figure 7.5. The NSX Visio
Diagramming Tool provides users the chance to diagram networks
programmatically. This removes the human time and error elements
from documentation. Within a minute of tool execution, a user will have
the data needed to visualize. More information about PowerNSX along
with numerous use cases can be found in the VMware Press book
Automating NSX for vSphere with PowerNSX.

134 |

Figure 7.5 NSX Visio Diagramming Tool Example

CHAPTER 7 - VMware NSX and Other Automations Tools | 135

Chapter 8

CHAPTER 8 - Conclusion | 137

Conclusion

VMware NSX has many use cases, with automation, security and
application continuity the most frequently adopted. As part of
VMware’s software-defined data center strategy, NSX has been an
open platform where anybody can automate and leverage the built-in
APIs. While NSX does not require automation tools, most customers
use a combination of tools and CMPs. NSX is helping different
companies to implement the modern data center, creating on-demand
infrastructure where ongoing and frequent reconfiguration is no
longer required.

The NSX community continues to provide several tools that can be
used to serve specific purposes through the platform’s open APIs.

NSX treats the physical network as a pool of transport capacity with
networking and security services attached to workloads using a policy-
driven approach. This automates networking operations and eliminates
bottlenecks associated with the traditional hardware-based approach.

Together with any automation platform, NSX helps enterprises that are
embracing cloud computing to speed application development
lifecycles, enabling them to rapidly realize and respond to new
business opportunities.

Bibliography | 139

Bibliography

Books
VMware NSX – Micro-segmentation – Day 1 – Wade Holmes – VMware Press

VMware NSX – Micro-segmentation – Day 2 – Geoff Wilmington –
VMware Press

Operationalizing VMware NSX – Kevin Lees – VMware Press

Automating NSX® for vSphere with PowerNSX – Anthony Burke –
VMware Press

API for Dummies Book

Videos
Openstack and VMware Getting the Best of Both – Andrew Pearce -
OpenStack Summit 2017 Boston - https://youtu.be/EVM498h4eWE

VMware - OpenStack and VMware: Enterprise-Grade IaaS Built on Proven
Foundation – Xiao Gao – OpenStack Summit 2017 Boston - https://youtu.be/
QH90GjcSeOs

VMware - Is Neutron Challenging to You? Learn How VMware NSX is the
Solution for Regular OpenStack Network & Security Services and Kubernetes
– Dimitri Desmidt and Yves Fauser – OpenStack Summit 2017 Boston -
https://youtu.be/DHmCga2tAV8

VMware: Production-Ready Clouds with VMware NSX Networking and
OpenStack – Dimitri Desmidt – OpenStack Summit 2016 Barcelona - https://
youtu.be/r3cT-3qpT60

VMware: Integrated OpenStack with NSX Policy Redirection for NFV:
Technical Deep Dive and Demo – Marcos Hernandez and Vanessa Little –
OpenStack Summit 2016 Barcelona - https://youtu.be/GwdhITcxp9Q

OpenStack Architecture and Stability – Steve Tegeler - https://youtu.be/
fYL4W3aQZMM

Why OpenStack – Steve Tegeler - https://youtu.be/Bk4NoUsikVA

VMware vRealize and OpenStack: A Side By Side Look – Steve Tegeler -
https://youtu.be/eNv1iQf52ZE

Service Chaining in OpenStack with NSX – Marcos Hernandez - https://youtu.
be/xY1uz6PjWlo

Neutron in the Enterprise – Marcos Hernandez - https://youtu.
be/q-O6Noip0Hg

OpenStack and VMware NSX – Marcos Hernandez - https://youtu.be/
L3Q7jtQyTdA

NSX for Compliance – Hadar Freehling - https://youtu.be/sFUvglk8Ni4

140 |

Documents
Automation Leveraging NSX REST API Guide

https://communities.vmware.com/servlet/JiveServlet/
downloadBody/31921-102-3-43550/Automation%20Leveraging%20NSX%20
REST%20API.pdf

NSX and vRealize Automation Micro-Segmentation Tech Guide

https://communities.vmware.com/servlet/JiveServlet/download/32774-1-
161592/NSX-vRA-Microsegmentation-v1.0.pdf

VMware NSX API Guide

https://docs.vmware.com/en/VMware-NSX-for-vSphere/6.3/nsx_63_api.pdf

https://github.com/vmware/nsxraml/blob/master/md-version/nsxvapi.md

VMware Validated Design Converged Blueprints Implementation Guide

https://www.vmware.com/pdf/vmware-validated-design-30-sddc-
converged-blueprints-implementation.pdf

VMware Integrated OpenStack – Design Guide

VMworld Sessions
NET7956 - vRealize Automation and NSX Design Best Practices

NET10011-EDU - Automating Your Network Services Deployments with
VMware NSX and Realize Automation

NET8731 - IT Automation with NSX Network Virtualization and Security

NET1535BU - NSX Design—Reference Design for SDDC with NSX and
vSphere: Part 1 (2017 – Nimish Desai)

NET1536BU - NSX Design—Reference Design for SDDC with NSX and
vSphere: Part 2 (2017 – Nimish Desai)

NET1416BU - NSX Logical Routing (2017 – Jerome Catrouillet and Pooja
Patel)

MTE4864U - NSX Load-balancing with Dimitri Desmidt (2017 – Dimitri
Desmidt)

NET3282BU - The NSX Practical Path (2017 - Nikhil Kelshikar and Ron Fuller)

NET1338BU - VMware Integrated OpenStack and NSX Integration Deep Dive
(2017 – Marcos Hernandez and Russ Starr)

NET3235SU - Why Networking Is at the Heart of Digital Transformation
(2017 – Bruce Davie)

Bibliography | 141

Links
www.openstack.org

https://docs.openstack.org/ocata/networking-guide/intro-os-networking.
html

https://docs.openstack.org/ocata/install/

www.vmware.com

www.vmware.com/go/nsx

https://www.ibm.com/developerworks/cloud/library/cl-openstack-overview/
index.html

https://github.com/vmware/nsxansible

https://github.com/vmware/nsxraml

https://github.com/vmware/nsxramlclient

142 |

Index | 143

Index

N

NAT 41, 47, 55, 60, 61, 63, 64, 65,
68, 69, 74

Neutron 77, 79, 81, 82, 83, 84, 86,
87, 88, 90, 91, 92, 94, 95, 99,
100, 101, 102, 103, 104, 107,
108, 111, 112, 113, 114, 115

NSX Edge Services Gateway 94,
96, 98, 101

NSX Manager 37, 39, 87, 100, 101,
113, 114

O

OpenStack 77, 78, 79, 80, 81, 82,
83, 87, 88, 90, 91, 92, 93, 100,
101, 102, 103, 104, 105, 106,
107, 108, 109, 111, 112, 113, 114,
115

P

Puppet 4, 7, 127, 129, 130
Python 34, 37, 38, 126, 131, 132

R

REST API 36, 37, 38, 39, 41, 42,
79, 87, 91, 132

Routing 79, 83, 84, 86, 88, 90,
93, 94, 96, 97, 100, 101, 111

S

Security 78, 80, 81, 82, 85, 86, 87,
95, 96, 97, 99, 100, 104, 105,
108, 112, 113, 114

Swagger 34, 35
Switching 88, 90, 95, 111
Syslog 39, 130

T

Traffic
East-West 21, 22, 102
North-South 21, 102

A

Ansible 7, 38, 42, 127, 131
API 3, 5, 7, 9, 10, 16, 17, 25, 32, 33,

34, 35, 36, 37, 38, 40, 41, 42,
52, 56, 59, 60, 79, 80, 82, 83,
85, 86, 87, 91, 93, 101, 108, 109,
111, 115, 118, 119, 120, 122, 132, 133

C

Chef 4, 53, 126, 127, 128, 129, 130,
131

Cloud Management Platform 10,
22, 38, 49, 105, 121

Compliance 46, 53, 56
Configuration Management Data-

base 37, 131

D

Distributed Firewall 27, 41, 64, 93,
94, 99

Distributed Logical Router 62, 95,
131

DMZ 41

I

Infrastructure-as-a-Service 23, 50,
118

L

Load Balancer 7, 25, 26, 41, 59, 62,
63, 65, 66, 67, 68, 69, 73, 86,
103, 104, 113, 122

M

Micro-Segmentation 56, 58, 62,
70, 72

MTU (Maximum Transmit Unit) 18
Multi-tenant 60, 69, 81, 82, 91, 105

144 |

V

vCenter 24, 109, 110, 111, 113
Virtual Network 26, 60, 78, 87, 90,

100, 105
VMware Integrated OpenStack

106, 107, 108, 109, 111, 112, 113,
114, 115, 120, 121

vRealize 2, 3, 4, 9, 38, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 65,
66, 67, 68, 69, 70, 72, 73, 74,
105, 107, 108, 113, 117, 118, 119,
120, 121, 125, 127, 128, 133

vSphere 4, 34, 38, 40, 56, 59, 94,
95, 96, 101, 108, 109, 110, 111, 112,
113, 114, 120, 121, 131, 132, 133

VXLAN 17, 18, 84, 93, 94, 101, 102,
130

X

XML 7, 35, 36, 37, 38, 39, 40

Index | 145

$12.99$12.99

This book explores how VMware NSX® delivers the power of
automation. VMware NSX Automation Fundamentals brings guidance
and knowledge on designing the automation for the software
defined data center (SDDC), unlocking NSX’s full potential to provide
the flexibility and agility needed by enterprises today.

VMware NSX improves the network and security posture of the
SDDC by fundamentally changing the approach for networking and
security. Through NSX’s open API model, organizations can select
the automation solution best aligned to their operational practices.
VMware NSX has already helped over a thousand organizations
design, deploy, and manage their SDDCs.

VMware NSX Automation Fundamentals delivers the roadmap to
understanding networking and security automation challenges in
today’s data centers. It demonstrates the fundamental nature of
NSX in the data center architecture while detailing integrated
solutions for both VMware and third party offerings (e.g., VMware
vRealize® Automation™, OpenStack, Puppet, Chef, PowerNSX) that
assist in creating networking and security components on-demand.

6104507809989

ISBN 9780998610450
51299 >

Cover design: VMware
Cover photo: iStock / PhonlamaiPhoto

ISBN-13: 978-0-9986104-5-0
ISBN-10: 0-9986104-5-3

www.vmware.com/go/run-nsx

