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Abstract

This paper discusses two main trends in the development of virtual
machine systems: full system virtualization, where an entire hardware
architecture is replicated virtually, and paravirtualization, where an
operating system is modified so that it can be run concurrently with
other operating systems that have also been designed for paravirtual-
ization.

1 Introduction

When computer systems were first invented they were mammoth systems
that were large and expensive to operate. Due to their size, expense, and
demand for their usage, computer systems quickly evolved to become time-
sharing systems so that multiple users (and applications) could use them
simultaneously. As computers became more prevalent however, it became
apparent that simply time-sharing a single computer was not always ideal.
For example, misuse of the system, intentional or unintentional, could easily
bring the entire computer to a halt for all users. For organizations that could
afford it, they simply purchased multiple computer systems to mitigate these
pitfalls.

Having multiple computer systems proved beneficial for the following rea-
sons:

Isolation. In many situations it is beneficial to have certain activities
running on separate systems. For instance an application may be known
to contain bugs, and it might be possible for the bugs to interfere with
other applications on the same system. Placing the application on a separate
system guarantees it will not effect the stability of other applications.
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Performance. Placing an application on it’s own system allows it to
have exclusive access to the system’s resources, and thus have better per-
formance than if it had to share that system with other applications. User-
level separation of applications on the same machine does not effectively
performance isolate applications–scheduling priority, memory demand, net-
work I/O and disk I/O of one process can effect the performance of others
[1]. (For example, one application thrashing the hard disk can slow all other
applications on the same system).

Most organizations at the time weren’t so fortunate to be able to purchase
multiple computer systems. It was also recognized that purchasing multiple
computer systems was often wasteful, as having more computers made it even
harder to keep them busy all the time. However having multiple computers
obviously had it’s benefits, so taking cost and waste into consideration IBM in
1960’s began developing the first virtual machines that allowed one computer
to be shared as if it were several.

This paper discusses two main trends in the development of virtual ma-
chine systems: full system virtualization, where an entire hardware architec-
ture is replicated virtually, and paravirtualization, where an operating system
is modified so that it can be run concurrently with other operating systems
that have also been designed for paravirtualization.

1.1 Virtual Machines

IBM developed the virtual machine concept as a way of time-sharing very
expensive mainframe computers. Typically an organization could only afford
one mainframe, and this single mainframe had to be used for development
of applications and deployment of applications. Developing an application
on the same system you intend to deploy on while other applications are “in
production” on that system was generally considered bad practice. This is
still true today. Development activities may require reboots or cause insta-
bilities in the system, and it is undesirable to have these activities interfere
with production applications.

The virtual machine concept allows the same computer to be shared as
if it were several. IBM defined the virtual machine as a fully protected
and isolated copy of the underlying physical machine’s hardware[2]. IBM
designed their virtual machine systems with the goal that applications, even
operating systems, run in the virtual machine would behave exactly as they
would on the original hardware.
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1.2 Virtual Machine Monitor

The idea of a Virtual Machine Monitor (VMM) goes hand-in-hand with vir-
tual machines. The VMM is the software component that hosts guest virtual
machines. In fact, the VMM is often referred to as the host and the virtual
machines as guests. The VMM is a software layer that abstracts the physical
resources for use by the virtual machines. Because the VMM provides an ab-
straction, it can run multiple virtual machines on the same system. Figure
1 demonstrates the relationship between the VMM and virtual machines.
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Figure 1: Virtual Machine Monitor - Virtual Machine Relationship

The VMM provides a virtual processor and other virtualized versions of
system devices such as I/O devices, storage, memory, etc. The VMM also
provides isolation between the virtual machines it hosts so that problems in
one cannot effect another.

1.3 Virtualizing Internet Services

In the age of the Internet boom a new kind of system was popularized for
building Internet applications: the multi-tier system architecture. This com-
mon way of building Internet applications separates the web server physically
from the database server and easily enables load-balancing and clustering of
an application’s components. This approach is scalable, easier to manage,
and extremely fault-tolerant; however IT departments are quickly realizing
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that these benefits are often outweighed by the cost of operating the addi-
tional hardware required for physical server independence. Virtual machines
provide the same benefits of componitization while dramatically lowering
hardware and operational costs.

The benefits of running multiple services on one piece of hardware are
reinforced by Zipf’s law [3]. Zipf’s law states that the frequency of an event
is proportional to x−α, where x is the rank of the event in comparison to
all other events. Studies have found that frequency of access to web servers
and other Internet Services can be fit to Zipfian distributions by observing
the usage behaviors of web caches [4]. Zipfian distributions have shown that
most Internet Services are relatively unpopular, and a small few make up the
majority of accesses by customers. This is true for web caches and server
environments that host a large number of diverse Internet Services.

If only a small number of Internet Services are frequently active, and the
rest are dormant most of the time, then does isolation for performance still
make sense? No. It is clearly a waste of resources to have a small set of
computers be busy most of the time and have the rest lay idle. Consoli-
dating Internet Services to a single machine or group of machines by using
virtual machines is an elegant solution that provides the benefit of isolation
while simultaneously reduces wasted computing power and maintenance of
additional computers.

1.4 Requirements for Virtual Machines

In 1974 Popek and Goldberg defined what they believed where the formal
requirements for a virtualizable computer architecture [5]: For any computer
a virtual machine monitor may be constructed if the set of sensitive instruc-
tions for that computer is a subset of the set of privileged instructions. In
other words, the most essential requirement a computer architecture must
exhibit in order to be virtualizable is that privileged instructions must trap,
meaning when a guest virtual machine (while running directly on the real
processor) attempts to execute a privileged instruction, the processor stops
and returns control to the VMM so it can either decide whether or not to
execute the instruction, or simulate the instruction by some other means.

Popek and Goldberg also stated that a virtual machine architecture has
three essential characteristics:

1. Any program run under the VMM should exhibit an effect identical
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with that demonstrated if the program had been run on the original
machine directly. They offered one exception to this rule, timing. The
software (or hardware) aiding the virtual machine needs to manage
the resources used by the virtual machine(s), and this requires it to
intervene occasionally, thus altering the timing characteristics of the
running virtual machine(s).

2. A statistically dominant subset of the virtual processor’s instructions
are executed directly by the real processor. Popek and Goldberg say
that a virtual machine is different from an emulator. An emulator in-
tervenes and analyzes every instruction performed by the virtual pro-
cessor, whereas a virtual machine occasionally relinquishes the real pro-
cessor to the virtual processor. For efficiencies sake, this relinquishment
must make up the majority of the real processor’s workload.

3. The VMM is in complete control of system resources. A virtual machine
running on the system does not have direct access to any of the system’s
real resources, it must go through the VMM.

These characteristics, although interesting on the surface, prove to be
difficult or undesirable to meet, as shall be discussed in further sections.

2 Full System Virtualization

Full system virtualization provides a virtual replica of the system’s hardware
so that operating systems and software may run on the virtual hardware
exactly as they would on the original hardware. The first full system vir-
tualization system developed was the CP-67 software system which ran on
the IBM 360/67 mainframe computer [6]. The CP-67 program was designed
as a specialized time-sharing system which exposed to each user a complete
virtual System/360 computer.

2.1 Virtualizing System/370

The performance of CP-67 and later software virtualization systems for Sys-
tem/360 was less than spectacular, so IBM decided to create a computer
that had a specialized architecture intended to aid virtualization. This ar-
chitecture was first delivered in the Virtual Machine Facility/370 (VM/370)
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[7]. The VM/370 was a VMM that ran on the System/370 Extended Ar-
chitecture (370-XA). 370-XA provided specific CPU instructions designed to
maximize the performance of running virtual machines. To the user, the
virtual machine exposed was a virtual replica of the System/370 computer.

To increase the performance of VM/370, the 370-XA platform provided
“assists” in the architecture that boosted the performance of certain opera-
tions performed repeatedly by the VM/370 VMM. Before assists, the VMM
had to simulate many of the architectures instructions for each virtual ma-
chine so they could be performed safely without interfering with other virtual
machines. The development of assists allowed some of these simulated in-
structions to be executed in safely in hardware. Other assists supplanted
frequently executed instructions that still required VMM intervention. As-
sists were enabled by placing the system in interpretive-execution mode. A
few of the assists used by the VM/370 are highlighted below:

1. Virtual Machine Assist (VMA). The VMA provides specific instruc-
tions for accelerating aspects of the VMM. It consisted of 13 functions,
12 of which replaced guest virtual machine instructions that would have
otherwise been simulated by the VMM, and another function that man-
aged certain data structures used by the VMM. VMA alone offered a
35% performance increase for most applications.

2. Extended Control Program Support (ECPS). ECPS assists were a collec-
tion of 35 functions that targeted specific application programs. ECPS
took advantage of how certain programs utilized the System/370 ar-
chitecture to accelerate common tasks, and took over some of these
functions that were previously handled by the VMM.

3. Shadow-table-bypass. The VM/370 architecture used a “shadow table”
to map virtual memory in the virtual machine space to actual memory
in the physical machine space. This multi-level mapping was very ex-
pensive, so the VM/370 opened up assists in the hardware that allowed
trusted guests direct access to the memory mapping tables. Although
this is a significant risk–one incorrect memory access made by on vir-
tual machine could influence other virtual machines–IBM found that
for most guest operating systems of their own design they could expect
them to be well behaved.1

1Popek and Goldberg may have reservations about this arrangement, as this violates
their requirement that the VMM be in complete control of machine resources.
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In all, IBM developed over 100 assists to enhance the performance of
the VM/370 system. Many of the assists were developed to speed specific
application programs. The development of assists greatly improved the per-
formance of the System/370 virtual machine systems, and did not require
the code running in the virtual machine environments to be modified.

2.2 Virtualizing IA-32

IA-32 (x86) is the most dominate computer architecture today. IA-32 is
used everywhere from client applications to high-end 24x7 reliability server
applications. Virtualizing IA-32, especially in the Internet Services domain
mentioned previously, would have tremendous benefits. But IA-32 was never
intended to be virtualized. This design decision is most apparent in a small
set of essential IA-32 instructions that are not required to be executed in
privileged mode, but can severely damage the stability of the system. On
a system running only one operating system this is not an issue, but when
attempting to run multiple operating systems virtually it is very significant.
Another aspect of IA-32 that makes it difficult to be virtualized is the plat-
forms “open” nature–there are a great deal of different devices and device
drivers available for IA-32, which makes virtualization extremely difficult.

Creative programming however has overcome IA-32s virtualization weak-
nesses. Robin and Irvine outline the procedure typically used on IA-32 to
virtualize the system [8]:

1. Non-sensitive, non-privileged instructions may be run directly on the
processor. If an instruction is known to be safe it can be run directly
on the processor without intervention.

2. Sensitive, privileged instructions trap. The virtual machine is run in
user mode on the processor, so when the virtual machine attempts to
execute an instruction that is privileged it causes the CPU to issue an
interrupt. The VMM traps this interrupt and performs whatever steps
necessary to emulate the instruction for the virtual machine.

3. Sensitive, non-privileged instructions detected. Unfortunately, the IA-
32 architecture has 17 “problem instructions” that are extremely sensi-
tive to be running in a virtualized environment, but cannot be trapped.
The VMM must monitor the running virtual machine to insure it does
not execute these instructions.
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Obviously, because a VMM is required to go to these great lengths to
virtualize the IA-32 architecture, IA-32 does not meet the Popek and Gold-
berg requirements described above for a virtualizable architecture. But clever
hacking can overcome this, as is evident with products such as Plex86 [9],
User Mode Linux [10], Virtual PC [11], and VMWare [12].

2.3 VMWare

VMWare is a popular virtualization tool for the IA-32 platform [12]. VMWare
takes a unique approach to virtualization in that it runs it’s VMM entirely
within a host operating system. Rather than needing to support the wide
variety of devices available for IA-32, VMWare leaves it up to the host op-
erating system to provide abstractions for these devices. VMWare refers to
this as the Hosted Virtual Machine Architecture.

VMWare does not run completely in application space however, it also
installs a special operating system driver called the VMDriver that allows
virtual machines instantiated by VMWare to have faster access to the devices
on the system. VMDriver installs itself in the operating system kernel to
access devices, thus bypassing the need to support the wide array of devices
available on IA-32.

Providing a virtual replica of the IA-32 architecture for each virtual ma-
chine would also be difficult, so VMWare instead provides only a generic
set of devices to each virtual machine. Each virtual machine is exposed a
PS/2 keyboard, PS/2 mouse, floppy drive, IDE controller, ATAPI CD-ROM,
Soundblaster 16 audio card, serial ports, parallel ports, a standard graphics
display card, and any number of AMD PCNet ethernet adapters. Exposing
only a generic set of set of devices greatly simplifies the implementation of
VMWare.

VMWare’s network interface card implementation is particularly inter-
esting. VMDriver places the physical network card in promiscuous mode
and creates a virtual ethernet bridge that receives all of the network card’s
packets. VMDriver can then analyze each packet and either route it back
to the host operating system, os route it to a particular virtual machine’s
virtual network interface card. This implementation also allows VMWare to
provide Network Address Translation (NAT) in the virtual bridge so that
each virtual machine believes it has it’s own IP address.
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2.4 Virtualizing IA-64

While the IA-64 (Itanium) architecture is not widely popular yet, some
groups are beginning to asses the IA-64 platform’s ability to host virtual
machines. Hewlett-Packard has already developed an IA-64 framework for
virtualizing HP/UX and Linux, and is beginning work on Windows Server
[13]. Virtualizing IA-64 in part has similar issues as virtualization of IA-32,
probably the most troublesome of which is the wide array of devices available
that can be run on the platform.

IA-64 does provide one important feature not available on IA-32: ring
compression. Guest virtual machines can be run in a ring higher than the
host VMM, and on IA-64 traps on the higher rings can be captured by the
lower rings. This greatly eases virtualization of many common instructions.

2.5 Drawbacks of Full System Virtualization

Full system virtualization has the benefit that operating systems and appli-
cations may run on it unmodified, completely oblivious to the environment
in which they are actually running. This has it’s drawbacks however. For ex-
ample, full virtualization was never part of the IA-32 (x86) design goals, and
VMMs running on this platform must use special tricks (described above)
to virtualize the hardware for each virtual machine. Efficiently virtualiz-
ing virtual memory management (referred to as “shadow mapping” by the
VM/370 architecture described above) is also extremely difficult, especially
on the IA-32 architecture (Denali, described below, does away with virtual
memory).

The problems with virtualizing virtual memory cannot be understated.
Take, for example, what happens in a typical operating system that uses
virtual memory. When an application makes a request for a page of memory,
the operating system translates the memory address from the applications
“virtual” space into the system’s real space using a page table. Unused pages
can also be written to disk when they become inactive or when other appli-
cations require more memory. This is typically accomplished using special
instructions on the CPU for memory management.

Virtualizing virtual memory is difficult because the VMM must intercept
all virtual memory calls to the CPU, translate “virtual machine” space into
the system’s real space using yet another page table, retrieve the memory
(which may be in memory or on disk), and then return the memory to the
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virtual machine. On the surface this doesn’t sound too terrible, but keep in
mind that before the VMM received the memory access call the virtual ma-
chine already performed it’s own page table lookup to see where the memory
was located. By the time the virtual machine has received it’s memory at
least two context switches between the virtual machine and the VMM had
to take place. That’s very expensive for a simple memory access.

3 Paravirtualization

Numerous systems have been developed that use the techniques described
above: specialized architectures for running virtual machines in, or com-
pletely emulating a machine environment. These systems have the disadvan-
tage that they either require specialized hardware, offer less than desirable
performance, or cannot support commodity operating systems. Today, the
world where the PC architectures have come to dominate the server room,
supporting commodity operating systems has become extremely important.
There is a great wealth of server software written for commodity operating
systems, and porting it to a special architecture so it can be virtualized is un-
reasonable. The PC architecture however doesn’t lend itself to virtualization
very easily.

Full virtualization on PC architectures is extremely complex, as was dis-
cussed in the proceeding section. Fully virtualizing the IA-32 (x86) archi-
tecture, for example, yields very poor performance of the virtual machine
because the VMM software must intervene too often to perform protected
tasks–the architecture provides no assistance for virtualization. Paravirtual-
ization attempts to mitigate this problem by modifying the operating system
so that instead of going directly to the CPU to perform protected tasks it
goes to the VMM. The two paravirtualization systems discussed here, Denali
and Xen, have been shown to yield significantly better performance over full
system virtualization systems.

3.1 Denali

Denali is a paravirtualization system developed at the University of Washing-
ton [3]. Denali strives to provide “lightweight protection domains”–minimalistic,
fast containers for running virtual machines within.

The interface the Denali VMM provides for the virtual machines is not
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an exact replica of the system hardware, and thus violates Popek and Gold-
berg “identical behavior” requirement given above. Not providing an exact
replica requires the operating system and software running with that oper-
ating system to be modified to run in the Denali environment. However, by
not providing an exact replica, Denali has developed methods that substan-
tially improve performance over fully virtualized systems. The most notable
ways Denali has challenged the traditional view of virtual machines are given
below:

1. Idle loops. Many operating systems sit in a “busy wait” while they
are waiting for something to happen–disk I/O, network I/O, or simply
they have nothing else to do. The Denali VMM introduces a new “idle”
instruction that the operating system running in each virtual machine
is expected to call when it enters these states, rather than busy wait.
When the virtual machine calls the idle instruction a context switch to
the VMM occurs so that it can schedule other virtual machines. This
promotes a higher overall CPU utilization on the system, as the virtual
machine is no longer charged for busy waits. Denali’s idle instruction
also provides a time parameter, the maximum amount of time the vir-
tual machine is willing to wait.

2. Interrupt queueing. In a normal virtual machine environment, when
an interrupt arrives at the CPU, the VMM must take over and imme-
diately context switch to the correct virtual machine and dispatch the
interrupt. The probability that the interrupt is destined for the virtual
machine that is currently running substantially decreases as the number
of virtual machines increases. Because the cost of context switching to
the correct virtual machine is substantial, Denali does away with imme-
diately dispatching the interrupt. Instead, Denali queues the interrupt
so that the interrupt is dispatched the next time the virtual machine
is run.

3. Interrupt semantics. On most systems an interrupt means that some-
thing just happened. A side effect of interrupt queuing (above) is that
Denali must alter the semantics of the interrupt to mean something hap-
pened recently. This is actually beneficial to the speed of the system
when handling timers–rather than the operating system in the virtual
machine periodically checking the “elapsed ticks” timer in a CPU reg-
ister, it requests that a timer interrupt be scheduled with the VMM.
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This saves a lot of processor time context switching just to check a
timer.

4. No virtual memory. Supporting virtual memory between the VMM
and the virtual machine is extremely difficult, especially on architec-
tures that are not designed to be virtualized, as demonstrated in the
proceeding section by systems such as VMWare, Plex86, Virtual PC,
etc. Because Denali is not concerned with running commodity operat-
ing systems within the virtual machine, Denali does away with virtual
memory–constraining each virtual machine to a single address space.
Denali justifies this change because it targets uses where each virtual
machine runs very few, small applications. If an application is known
to cause problems, then simply run it in its own virtual machine.

5. No BIOS. Other system virtualization systems for IA-32 provide access
to the BIOS for backwards-compatibility and to provide bootstrapping
information for the operating system running in the virtual machine.
Denali does away with this, providing system information in read-only
virtual registers.

6. Generic I/O devices. Denali provides no specialized access to devices
on the physical system. Instead, Denali exposes only a small set of
“generic” devices, such as a network interface card, serial port, a timer,
and keyboard. This greatly improves the performance of the guest op-
erating systems–rather than going through complex drive I/O routines
to send a network packet, for example, Denali exposes a virtual I/O
instruction that handles everything for the guest OS.

Because of these significant deviations Denali makes from the typical
virtual machine paradigm, it is not trivial to port an operating system to run
on Denali. Denali instead provides a guest operating system named Ilwaco
that runs on the Denali architecture. Ilwaco provides a simple TCP/IP stack,
a subset of libc, and operating system assisted threading.

3.2 Xen

Xen is a paravirtualization system developed by the University of Cambridge
[1]. Xen has the unique goal of paravirtualizing commodity operating sys-
tems such as Linux, NetBSD and Windows XP, rather than support it’s own
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special operating system. Xen also aims for 100% binary compatibility for
applications running in it’s virtual machines. In other words, to run your
application on Xen, you only need a version of your operating system that
has been ported to Xen and everything should behave as expected.

Xen’s approach to paravirtualizing the IA-32 architecture can be summa-
rized as follows:

1. Partial access to hardware page tables. Each virtual machine is given
read-only access to the hardware page tables; updates to the page tables
are queued and processed by the VMM.

2. Lower privilege levels. Xen runs it’s guest virtual machines one ring
lower than the VMM.

3. Trap handlers registered with VMM. Rather than registering trap han-
dlers directly with the (virtual) CPU, guest operating systems must
register them with the Xen VMM.

4. System calls registered with processor. On most operating systems sys-
tem calls are processed using a lookup table and a special trap sequence.
When virtualized, the trap sequence causes the VMM to be invoked on
every system call. Xen sidesteps this inefficiency by allowing guest op-
erating systems to install their system call handlers directly with the
processor, bypassing the context switches necessary for the VMM to
process the trap sequence.

5. No hardware interrupts. Hardware interrupts are replaced by a lightweight
event system.

6. Generic devices. Like Denali, Xen only provides to the guest virtual
machine a small set of fast, generic devices.

Xen’s ambitious goals appear to have been met. Today, a special Xen-
compatible version of Linux, XenoLinux [14], is available that runs in the Xen
environment. According to the Xen researchers, 100 XenoLinux instances
can be run simultaneously on a single Xen VMM with minimal performance
degradation. Xen-compatible versions of Windows XP and NetBSD are ac-
tively being developed at the time of this writing.
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4 Conclusion

System virtualization is an age-old art that will continue as long as applica-
tions need isolation and performance independence. Because the dominant
system architecture of today, IA-32, is not an architecture designed to be
virtualized, clever programming and techniques that push the boundaries of
what virtualization means will continue to be employed.
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