
Virtualization

24	 Published by the IEEE Computer Society ■ 1540-7993/08/$25.00 © 2008 IEEE ■ IEEE Security & Privacy

Virtualization and
Hardware-Based Security

Ronald Perez
and Reiner
Sailer

IBM T.J.
Watson
Research
Center

Leendert van
Doorn

Advanced
Micro Devices

Hypervisors allow virtualization at the hardware level.

These technologies have security-related strengths as well

as weaknesses. The authors examine emerging hardware

and software virtualization technologies in the context of

modern computing environments and requirements.

V irtualization is the process of presenting
something as being genuine when in fact it
isn’t. Virtualization in the computer archi-
tecture domain is the presentation of an en-

vironment to one layer in an information technology
stack that abstracts or represents a lower layer. System
architects typically insert this layer of indirection be-
tween existing layers in a hardware or software stack
to address specific problems, such as providing support
for legacy functionality, standardizing interfaces on
logical models, or transparently load balancing usage
of shared resources.

Virtualization might involve language-level run-
times that provide high-level abstract architectures
for applications, or a thin hardware virtualization
layer of software situated between system hardware
and the operating system layer that provide logical
views to physical resources. In either case, the prima-
ry justification for virtualization is efficiency, such as
the efficient use of programming resources achieved
with “write once, run everywhere” language run-
times in the first case, or the efficient use of hardware
resources that can be gained with the thin hardware
virtualization layer in the second case. Although vir-
tualization comes in many forms, including process,
storage, and network virtualization, here we focus on
security and hardware support for this thin hardware
virtualization layer, often termed a virtual machine
monitor (VMM) or hypervisor.

Hypervisor virtualization
Early virtual machines (VMs) were essentially com-
puting environments that simulated or emulated the

host system’s ex-
isting hardware
while arbitrating access to shared system resources.
This let multiple instances of operating systems run
on the same system, where each operating system was
originally designed to be the sole arbiter of system re-
sources. Because systems of the time—largely main-
frames designed in the 1960s and 1970s, such as the
IBM VM/370’s predecessors1—were expensive, these
early VMs gave companies distinct economic advan-
tages by letting them partition one physical system
into multiple logical systems. The same advantages
exist today for the IBM VM/370’s heirs, such as the
IBM PR/SM and z/VM VM monitors (VMMs) and
the S/390 and zSeries mainframes.2

Although hypervisors associated with high-end
systems have continued to evolve and remain critical
to maximizing these systems’ usage, increasing the use
of mid-range and high-volume systems has become an
additional factor driving hypervisor development and
deployment. These systems’ increased electrical power
requirements rival increases in computing power and
overall performance. The expense involved in hous-
ing and managing these systems hasn’t kept pace with
the decline of raw hardware and software resource
costs, including the increasing cost of managing the
security of ever more complex systems. Hypervisors
are therefore an attractive option for large data centers
and medium to small enterprises.

In addition to increased utilization, the general
flexibility afforded by modern hypervisors and their
support of systems that have become relative com-
modities is apparent. By checkpointing and repli-

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 25

cating VMs in a distributed systems environment,
hypervisors can potentially achieve continuous or
high-availability requirements with greater ease and
at less cost. Emerging tool chains are enabling the
rapid provisioning of workloads to VMs. The tool
chains enable the capability to load-balance an en-
terprise’s entire infrastructure by migrating exist-
ing VMs and their workloads to more appropriate
systems in support of system maintenance cycles or
to free up resources for critical workloads or peak
usage patterns.

Hypervisors are particularly well suited for a few
basic but strong security primitives—namely, separa-
tion and controlled sharing.

A system can achieve separation in several ways:

using different hardware facilities for different •	
workloads (physical separation),
running workloads at different times (temporal sep-•	
aration),
cryptographically protecting workload-specific data •	
(cryptographic separation), and
using a reference monitor•	 3 or security kernel to sep-
arate workloads and their resources (logical separa-
tion or isolation).

Hypervisors function as reference monitors, providing
workload isolation on an operating system instance
granularity (as opposed to operating systems, which
strive to provide process-level isolation).

In secure systems designs, the reference monitor
mediates all security-sensitive operations, such as ac-
cess to objects or communications between subjects. In
hypervisors, objects are system resources and subjects
are VMs. Reference monitors must be small enough
to be fully tested and analyzed and relatively immune
to compromise. In addition, the reference monitor
is always invoked, making it impossible to bypass its
mediation functionality. A hypervisor is also a key el-
ement in the entire system’s trusted computing base—
the hardware, firmware, and software components in
layered-system architectures that must be correct to
enforce the explicit or implicit system security policy.

Because the hypervisor reference monitor mediates
access to and between coarse-grained entities—such
as processors, memory (in addition to the memory
management performed at the operating-system lev-
el), disks, and VMs—hypervisors are often orders of
magnitude smaller in size and less complex than mod-
ern operating systems. They’re therefore less difficult
to test and analyze for correctness and to protect from
compromise. Hardware features, such as privileged
operating modes and protected memory support, of-
ten provide additional protection.

Together with hardware-architected hypervisor
calls (similar to operating system calls), these com-

ponents and features ensure that VMs cannot bypass
the hypervisor mediation functionality. Hypervisors
have traditionally supported strong isolation or sepa-
ration of VMs and their workloads, including fault
isolation—limiting an application or operating system
fault’s effects within a VM. Administrators have been
able to explicitly configure these systems to support
system resource sharing and communication between
VMs. However, hypervisors that support sharing
based on explicit security policies and labels associ-
ated with each VM and its resources, such as the DEC
VAX VMM4 and the KVM/3705 security-enhanced
version of the IBM VM/370, weren’t available on a
large scale. This is perhaps partly because of the com-
mercial requirements of the day and the systems’ high-
assurance government-/military-oriented design
targets. Because hypervisors must maintain isolation
while maximizing resource utilization and support
for the more distributed and interconnected nature of
contemporary workloads, policy-driven controlled-
sharing requirements for commercial hypervisors on
mid-range and high-volume systems are increasingly
becoming an issue.

Security’s performance impact has always been
an issue with applications, operating systems, and
other information technology infrastructure.
Whether workload owners require simple separa-
tion or controlled sharing between workloads, the
performance overhead associated with security
functionality has and will continue to have a ma-
jor role in hypervisor security’s acceptance. Keeping
the hypervisor’s code size relatively small (largely by
restricting functionality and complexity in the spirit
of a trusted computing base) and limiting higher-
level hypervisor management and flexibility to only
what is necessary to enforce security requirements
is key to minimizing security’s impact on perfor-
mance. Hardware support, such as management of
memory and other system and processor resources
and accelerated context switching between protec-
tion modes, is even more critical to maximizing
overall system performance.

Hardware virtualization support
Virtualization’s major disadvantage is its large per-
formance overhead. This is especially true when us-
ing interpretative or emulation techniques. A single
emulated machine instruction can easily expand to
thousands of real instructions and can cause signifi-
cant performance degradation. To counter this, CPU
manufacturers have been developing hardware sup-
port for virtualization in which part or all of the emu-
lation occurs in the CPU itself. Major vendors are also
working on virtualization capabilities for the CPU,
I/O, and some specialized devices.

Traditional computer systems consist of memory

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

26	IEEE Security & Privacy ■ September/October 2008

(RAM), a CPU, an I/O controller (typically a PCI
bridge), and one or more I/O devices, such as a disk
and network and video controllers. Virtualizing the
shared resources in this architecture, as Figure 1
shows, involves changing the CPU and the bus con-
troller that arbitrates accesses to the I/O bus. The I/O
devices themselves might also be virtualization aware,
but that’s beyond this article’s scope.

A typical CPU consists of many shared resourc-
es—such as interrupt vectors, page tables, interrupt
controllers, timers, and special descriptor tables. The
hypervisor must virtualize these resources, but its job
can be considerably easier when the right processor
abstractions are available.6 It must give the illusion of
a VM to the guest operating system that’s running
inside it. This involves managing physical memory,
interrupts, faults, and I/O devices.

Intel Vanderpool
and AMD Pacifica Technology
Until recently, hardware virtualization support was
available on only mainframe computers. Some of
these capabilities are now integrated into modern
commodity processors; for example, both Intel and
Advanced Micro Devices have designed and imple-
mented their own virtualization extensions—Intel’s
Vanderpool Technology7 and AMD’s Secure VM.8
Both VT and SVM provide roughly the same func-
tionality. Both create a container that’s a virtual CPU.
Inside the container, you can run an unmodified op-
erating system that’s unaware that it’s operating in a
controlled environment.

The only way out of this container is under well-
defined conditions, or exits. Exits are generated when-
ever the code in the container executes privileged
instructions, such as changing the CPU state or the
page tables, or causing a page fault. (Operating sys-
tems use privileged instructions to control critical

system resources; only the operating system kernel
can execute them.) These exits cause a trap into the
underlying hypervisor that executes in the root con-
tainer. The hypervisor must then emulate the cor-
rect behavior such that the operating system running
inside the container is unaware that it’s being virtu-
alized. For example, to access a specific physical mem-
ory location, the operating system creates a mapping
from a virtual to a physical address in the page table
structure. The operating system must then activate
the new page table by assigning it to a special CPU
register (cr3 on x86 type processors). The assignment
to this special register causes an exit. The hypervisor
must then validate the new page table structure, check
that the physical memory addresses are really assigned
to this container, instantiate the new page table, and
continue execution in the container after the assign-
ment instruction.

IBM’s approach in its Power Architecture server
processors (such as Power5)9 differs from that taken
by Intel and AMD. Rather than introduce a heavy-
weight container and exit concept, the Power proces-
sor duplicates certain key control registers in a new
hypervisor state (akin to user and supervisor state)
that operate independently from their supervisor-state
counterparts. In a way, it’s the complex instruction
set computer (CISC) versus reduced instruction set
computing (RISC) approach. Power introduced a few
lightweight concepts to support virtualization.

I/O memory management unit
I/O virtualization aims to give a VM direct device
access such that it can’t overwrite other VMs. This
isn’t a problem for most devices, but some have bus-
master capabilities that must be controlled. A bus-
master-capable device can initiate its own memory
transfers and write to every memory location in the
system, including memory that isn’t assigned to the
VM controlling the device. This is a common prob-
lem. CPUs therefore have an indirection layer and
provide a virtual-to-physical memory map abstrac-
tion. The CPU’s memory management unit (MMU)
provides this mapping. I/O uses something analo-
gous—the IOMMU9,10—which is typically part of
the bus controller (see Figure 1). The details will
depend on the specific design, but each I/O device
typically has its own address translation map.

The IOMMU maps I/O virtual addresses to
physical addresses. Whenever a device initiates
a memory transfer, the IOMMU first translates
the I/O virtual memory address into the physical
memory address. If the hypervisor ensures that the
memory mapping for the VM corresponds to the
IOMMU mappings for the devices the VM owns,
the VM can directly interact with its I/O devices
without affecting other VMs.

PCI bus

I/O
address

Physical
address

Physical
address

RAM

Virtual
CPU

CPU

PCI
bridge/

I/O memory
management
unit (IOMMU)

Disk
controller

Network
controller

Video
controller

Figure 1. Virtualized system architecture overview. Virtualizing a typical

computer system involves the system’s shared resources, in particular the

CPU and I/O.

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 27

Intel LaGrande and
AMD Presidio Technology
In 2002, Microsoft announced its Palladium initia-
tive, a project aimed at providing a secure client foun-
dation for its next version of Windows. For trademark
reasons, the company quickly renamed the initiative
the Next-Generation Secure Computing Base. NG-
SCB aimed to provide the following guarantees:

process isolation,•	
sealed storage, •	
platform attestation, and•	
secure I/O paths.•	

With NGSCB, Microsoft tried to define an envi-
ronment that was protected from malicious software
and peripheral cards. Unfortunately, it canceled the
project in mid-2004 for lack of customer traction.
Still, both Intel and AMD rallied around this ini-
tiative. Both defined platforms that embedded these
guarantees into their systems and both based the plat-
forms on their virtualization technology.

Intel’s secure computing platform—Lagrande
Technology11—consists of a VT core to provide
process isolation, special keyboard and video capabili-
ties for the secure I/O paths, a direct memory access
(DMA) exclusion vector to isolate I/O devices from
the security kernel, and tight integration with the
trusted platform module (TPM) version 1.2 specifica-
tion to provide sealed storage and platform attestation.
Although AMD’s Presidio12 secure computing plat-
form provides the same high-level functionality, its
technology roadmap differs significantly from Intel’s.
Unlike Intel, AMD integrates the TPM capabilities
and DMA exclusion capabilities directly into SVM.
Consequently, Presidio consists of an SVM and a set
of secure I/O capabilities.

Both Intel and AMD added two new features to
their CPUs and chipsets. The first, the DMA exclu-
sion vector, is an elementary version of an IOMMU. It
provides protection from rogue DMA, but no address
translation. This function will eventually disappear
and be subsumed by the IOMMU itself. The second
enhancement is the Trusted Computing Group’s dy-
namic root of trust.13 Traditional secure or authenticated
boot designs start with the assumption that the sys-
tem is unmodified and preserve this guarantee during
the bootstrap into the operating system. The dynamic
root of trust design, on the other hand, enables soft-
ware to securely initialize the system at any time—
that is, even when the system is already running an
operating system and its applications. For this, the
vendors added new instructions to the CPU: Intel’s
Senter instruction11 and AMD’s Skinit instruction.8
Both are conceptually similar. Here we describe the
Skinit behavior.

Upon executing a Skinit instruction, the proces-
sor is reinitialized into a well-known state in which it
can execute a secure loader such that the loader can’t
be tampered with during its execution. In this state,
the processor

disables the interrupts•	
inhibits DMA to the memory area containing the •	
secure loader, and
initializes the special-purpose registers controlling •	
memory accesses to safe values.

This environment guarantees that other programs
running on the CPU or external devices can’t modify
the loader while it’s running.

Once the processor has been reinitialized, it sends
a secure hash of the 64-Kbyte loader to the TPM,
which stores it in the platform configuration register
(PCR) of the TCM.7 Only the CPU, using special lo-
cality bus cycles that can’t be generated from software,
can write this PCR. This ensures that only the CPU
Skinit instruction can generate this hash value. The
secure loader’s hash value constitutes the dynamic root
of trust. As soon as the loader’s hash is stored inside the
TPM, control transfers to the loader. The loader is
arbitrary code, but it could, for example, measure the
rest of the system, store the result inside the TPM,
or resume execution where the operating system that
invoked Skinit left off. Applications running on the
operating system can then use these measurements to
unseal storage or attest to remote parties of the soft-
ware stack that’s running and the hardware platform
that it’s running on.

The secure I/O capabilities are the more chal-
lenging aspects of LT and Presidio. The first—secure
input—is straightforward. The perceived threat is one
in which an adversary intercepts or modifies the com-
munication from the keyboard and mouse into the
secure environment. To prevent this, trusted compo-
nents in the keyboard encrypt communication from
the keyboard to the data recipient—a keyboard de-
vice driver in the secure kernel. Secure output, such as
video, suffers from the same communication threats,
and also suffers from Trojan horse attacks. How can a
user distinguish between output from a secure envi-
ronment and output from an insecure environment?
Despite good research in this area, no practical solu-
tions yet exist. Intel has proposed a solution in which
the secure environment always displays on top of the
current screen and can be activated through a secure
attention key mechanism. Others have suggested ren-
dering a pass phrase that’s only available to secure
kernels and users into the window’s background to
convey to the user that he or she is interacting with a
secure environment. This too might prove too cum-
bersome for the end user. Whereas everyone agrees

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

28	IEEE Security & Privacy ■ September/October 2008

that secure user I/O is critical to securing client sys-
tems, little consensus exists in the industry as to what
form that should take.

sHype security architecture
Figure 2 illustrates the sHype14 security architecture
and its integration into a VMM environment. We im-
plemented sHype in various stages for multiple hyper-
visors, including the Xen15 open source hypervisor.

Building on the previously described hardware
support, our major design goal for sHype is to estab-
lish a secure foundation for server platforms, provid-
ing functions such as:

strong isolation and mediated sharing •	 between VMs,
strictly controlled by a flexible access-control en-
forcement engine;
attestation and integrity guarantees •	 for the hypervisor
and its VMs, supported by a virtual TPM architec-
ture (TPM-based attestation16 lets VMs generate
and report the running system’s properties);
resource control and accurate accounting guarantees•	 , letting
the hypervisor enforce quality-of-service agree-
ments between service provider and consumer; and
secure services•	 , providing the base infrastructure in
sHype for refining complex monolithic runtimes
by moving services such as security policy manage-
ment or distributed auditing into their own care-
fully protected VM.

The sHype access-control framework and the
virtual TPM architecture form the basis of IBM
Research’s Trusted Virtual Data Center,17 which sim-
plifies consistent and strong isolation guarantees in
distributed virtualized data centers.

Access-control architecture
The sHype access-control framework enforces a for-
mal security policy (mandatory access control, or
MAC) on information flow between VMs, indepen-

dently of generic user VMs. It moves the security state
from being defined by various ad hoc system adminis-
trator decisions to a state that’s formally defined by the
security policy and enforced by sHype, independently
of guest VMs.

Few VM monitors offer sufficient information
inside the hypervisor to distinguish the information
flow’s direction or the semantics of higher-level op-
erations inducing such an information flow. sHype
therefore aims to provide coarse-grained, robust,
and simple access control on VMs and resources
within the hypervisor and defers finer-grained ac-
cess control to higher layers (guest operating sys-
tems, middleware, and applications). It promotes a
layered security approach over a monolithic one.
Higher-layer policies exploit lower-layer security
policies and focus on refinement rather than reim-
plementation. This strategy is comparable to com-
munication stacks, where higher layers usually rely
on lower-layer functions to bridge physical differ-
ences (medium access or layer 2) or to limit network
exposure (IP firewalling or layer 3). Yet they some-
times decide to reimplement some of the lower-layer
functions (for example, error checks) in higher layers
based on additional information that isn’t available
to the lower-layer functions. The access-control ar-
chitecture’s major components are the policy man-
ager, which creates and updates the access-control
policy; the access-control module (ACM); and the
mediation hooks (see Figure 2).

The policy manager maintains the hypervisor se-
curity policy, which defines the rules the ACM uses
to decide which VMs can access which resources.
The policy manager is implemented inside a special-
purpose VM to keep related complexity out of the
hypervisor. It provides the ACM inside the hypervisor
with a precompiled security policy. Security media-
tion hooks mediate access to resources inside the hy-
pervisor that enable information flow between VMs.
Security hooks are located both within the hypervi-

Secure services
(Policy management, audit, and so on)

Resource control
Access control between VMs
Isolation of virtual resources
TPM-based attestation

Secure
services

Guest
OS

Guest
OS

. . .I/O
hosting VM

Policy
manager

sHype/hypervisor

Hardware

Hypervisor mediation hooks Callbacks

ACM

ACM: Access-control module

Figure 2. sHype hypervisor security architecture. The architecture’s major components are the policy manager, which oversees the

access-control policy; the access-control module (ACM); and the mediation hooks.

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 29

sor to mediate direct VM-to-VM sharing, and within
the I/O hosting VM and VMM to mediate access to
virtualized resources. A security hook implements a
redirection of access of VMs to shared virtual resourc-
es implemented inside the hypervisor or within the
I/O hosting VM. This redirection code either behaves
transparently (permits) or aborts (denies) the access re-
quest depending on the result of a callback into the
ACM. The ACM considers the labels on VMs and
resources to control information flow between VMs
as well as the collocation of VMs.

In effect, sHype acts as a reference monitor, lever-
aging existing isolation between virtual resources the
virtualized system offers. It achieves enterprise-grade
assurance guarantees with minimal changes to the
underlying system infrastructure and minimal perfor-
mance overhead.

TPM virtualization
The TPM13 is an emerging security building block
offering system-wide hardware roots of trust that the
system software can’t compromise. The sHype ar-
chitecture virtualizes the hardware TPM by creating
software TPM instances that are assigned to VMs.

Figure 3 shows the generic architecture built on top
of a cryptographic coprocessor (Figure 3a) and a hard-
ware TPM (Figure 3b). Both create a hardware root
of trust. The hypervisor extends the hardware root of
trust to build trust into the individual software TPM
instances (virtual TPMs), which in turn serve as roots
of trust for the individual guest VMs.

The TPM VM must start on such a system first,
even before any privileged I/O VM. The TPM VM

communicates with a dedicated TPM instance on the
IBM PCIX-Crypto coprocessor (PCIXCC)18 or the
hardware TPM. The vTPM manager19 in the TPM
VM creates guest virtual TPM instances on demand
whenever the hypervisor creates a guest VM with
configured TPM support. The guest virtual TPM
instance is contained within the coprocessor or the
TPM VM.

This architecture lets you use a TPM on systems
running multiple operating systems concurrently and
requiring TPM support. The TPM supports one op-
erating system at a time. Virtual TPM management
extensions specify the creation, deletion, and secure
relocation of independent instances of virtual TPMs,
based on the platform’s current configuration require-
ments. In this model, the vTPM manager associates
each created instance of a virtual TPM with a single
VM and securely relocates them.19

The tamper-sensing and responding PCIXCC
offers an ideal platform for hosting virtual TPM
functionality when the highest degree of security is
required. PCIXCC’s built-in tamper sensitivity pre-
vents intruders with physical access to the device from
gaining access to sensitive data (for example, private
keys) on the device. It’s powerful enough to run
multiple virtual TPM instances at the same time. It
includes hardware acceleration for cryptographic op-
erations such as RSA key generation, encryption, and
decryption. In this case, the multipurpose PCIXCC
replaces the hardware TPM.

Figure 3b shows virtual TPMs running in a TPM
VM. The TPM VM is associated with the system’s
hardware TPM. In this solution, the software TPM

PCIXCC embedded vTPM and manager TPM

(a) (b)

sw
TP

M

…

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

…

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

M
an

ag
er

…

Guest OS

/dev/TPM

Guest OS

/dev/TPM

TPM
VM

MPLEX

Hypervisor

Guest OS

/dev/TPM

Guest OS

/dev/TPM

TPM
VM

MPLEX

Hypervisor

MPLEX: Multiplexer
OS: Operating system
PCIXCC: IBM PCIX-Crypto coprocessor

TPM: Trusted platform module
swTPM: Software TPM

vTPM: Virtual TPM
VM: Virtual machine

Figure 3. Trusted platform module virtualization built on top of (a) an IBM PCIX-Crypto coprocessor and (b) a hardware TPM. The

hypervisor extends the hardware root of trust created by these systems to build trust into the virtual TPMs.

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

30	IEEE Security & Privacy ■ September/October 2008

instances rely on the TPM VM’s security. Terra, an-
other approach leveraging virtualization and trusted
computing to create protected systems, partitions a
tamper-resistant hardware platform into multiple,
isolated VMs, presenting multiple boxes on a single,
general-purpose platform.20 Unlike Terra, sHype de-
fines TPM virtualization and a complete MAC en-
forcement mechanism and basic MAC policies for
mediated sharing in distributed systems.

Future directions
Virtualization and hypervisor security aim to de-
velop secure computing foundations, combining
coarse-grained isolation and trusted computing
technologies to provide verifiable containment and
trust properties across large distributed environ-
ments. In such environments, hardware provides the
basis for these properties. The promise of realizing
quantifiable security and simplified operational se-
curity management for business and IT services will
drive progress across the spectrum, from low-level
hardware-related developments, to high-level dis-
tributed systems management.

At the processor and chip-set level, acceleration of
security and virtualization features is expected in the
near term. Examples include the acceleration of exits
and the propagation of page table entry changes when
a guest operating system running in a VM modifies
access bits to maintain consistency between VM and
hypervisor shadow page table entries. Heterogenous
multicore processors are emerging in the high-volume
market and chip designers will integrate security and
trusted-computing functions, such as cryptographic
acceleration engines and TPMs, into the proces-
sor complex. This trend may well continue into the
embedded processor and microcontroller space. As
hypervisors mature, processor support for recursive
virtualization (that is, a hypervisor’s ability to operate
within a VM that is itself supported by a hypervisor)
might be necessary to preserve the investment made in
these mature solutions.

An increasing number of peripherals will likely
support self-virtualization (that is, be able to sup-
port multiple logical adaptor instances within one
physical adaptor). Peripherals will also support
trusted-computing authentication and integrity goals
with the incorporation of TPMs and attestation capa-
bilities. The combination of these developments will
lead to the emergence of peripherals that can enforce
system-wide access control and information flow se-
curity policies in a verifiable manner, thus becoming
an extended part of the trusted computing base while
relieving the hypervisor of the policy-enforcement
obligations associated with these resources.

Utility and other distributed computing models,
such as cloud computing, will also continue to gain

acceptance. This increase is partly due to the econom-
ic advantages of having access to essentially unlimited
computing resources, paying only for what you use,
and being able to stipulate service-level agreements
or quality-of-service guarantees with little or no up-
front investment. Such infrastructure usage scenarios
will require reliable and secure resource monitoring
and metering that both workload and infrastruc-
ture owners can trust. We’ll need hardware support
for low-level monitoring and metering, such as vir-
tual processor cycle or storage bandwidth, to support
business-level requirements with minimum overhead.
We’ll need this same hardware support for resource
control to enforce resource usage limits that will de-
fend against denial-of-service attacks in mixed-use
environments (those with workloads from compet-
ing interests that are potentially hostile to each other).
Hardware support for reliable sanitization of frequent-
ly reused resources, such as accelerated zeroization of
memory pages and various system buffers, is also re-
quired for fast and efficient provisioning of workloads
into virtual environments.

E nabling and managing what will essentially be-
come a distributed trusted computing base, built

upon the secure hardware and virtualization founda-
tions we’ve discussed, is the greatest promise of these
technologies. The academic research and industry
communities must leverage emerging trusted comput-
ing technologies and virtualization capabilities to fur-
ther bridge the middleware-to-systems gap and relieve
application developers from the burden of implement-
ing and verifying security-related functionality.

Acknowledgments
We thank our colleagues Stefan Berger, Kenneth Goldman,
and Ray Valdez for their valuable discussions and support as
well as their contributions in implementing and improving
sHype and vTPM for the Xen open source hypervisor.

References
R.J. Creasy, “The Origin of the VM/370 Time-Shar-1.	
ing System,” IBM J. Research and Development, vol. 25,
no. 5, Sept. 1981, pp. 483–490.
IBM Processor Resource/Systems Management (PR/SM) 2.	
Planning Guide, SB10-7036-01, eServer zSeries 990.
J.P. Anderson et al., 3.	 Computer Security Technology Plan-
ning Study, tech. report ESD-TR-73-51, vols. I and II,
Air Force Systems Command, USAF, 1972.
P.A. Karger et al., “A Retrospective on the VAX VMM 4.	
Security Kernel,” IEEE Trans. Software Eng., vol. 17, no.
11, Nov. 1991, pp. 1147–1165.
B.D. Gold, R.R. Linde, and P.F. Cudney, “KVM/370 5.	
in Retrospect,” Proc. IEEE Symp. Security and Privacy,
IEEE CS Press, 1984, pp. 13–23.

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

Virtualization

	 www.computer.org/security/ ■ IEEE Security & Privacy� 31

J.S. Robin and C.E. Irvine, “Analysis of the Intel Pen-6.	
tium’s Ability to Support a Secure Virtual Machine
Monitor,” Proc. 9th Usenix Security Symp., Usenix As-
soc., 2000, p. 10.
Intel, 7.	 Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B: System Programming Guide, www.
intel.com/products/processor/manuals/.
AMD, 8.	 AMD64 Architecture Programmer’s Manual, Vol-
ume 2: System Programming, http://developer.amd.com/
documentation/guides/Pages/default.aspx.
W.J. Armstrong et al., “Advanced Virtualization Capa-9.	
bilities of Power5 Systems,” IBM J. Research and Devel-
opment, vol. 49, nos. 4/5, 2005, pp. 523–532.
Advanced Micro Devices,10.	 AMD I/O Virtualization
Technology (IOMMU) Specification, 2006; www.amd.
com/us-en/assets/content_type/white_papers_and
_tech_docs/34434.pdf
D. Grawrock, 11.	 The Intel Safer Computing Initiative: Build-
ing Blocks for Trusted Computing, Intel Press, 2006.
M. LaPedus, “AMD Tips ‘Pacifica’ and ‘Presidio’ Pro-12.	
cessors for ’06,” Nov. 2004; www.eetimes.com/semi/
news/showArticle.jhtml?articleID=52601317.
Trusted Computing Group, 13.	 TCG Specification Ar-
chitecture Overview, revision 1.2, Apr. 2004; www.
trustedcomputinggroup.org/downloads/TCG_1_0
_Architecture_Overview.pdf.
R. Sailer et al., “Building a MAC-Based 14.	
Security Architecture for the Xen Open-
Source Hypervisor,” Proc. 21st Ann. Com-
puter Security Applications Conf. (ACSAC),
IEEE CS Press, 2005, pp. 276–285.
P. Barham et al., “Xen and the Art of Vir-15.	
tualization,” Proc. 19th ACM Symp. Operat-
ing Systems Principles, ACM Press, 2003, pp.
164–177.
R. Sailer et al., “Design and Implementation 16.	
of a TCG-based Integrity Measurement Ar-
chitecture,” Proc. 13th Usenix Security Symp.,
Usenix Assoc., 2004, pp. 223–238.
S. Berger et al., “TVDc: Managing Security 17.	
in the Trusted Virtual Datacenter,” ACM
SIGOPS Operating Systems Rev., vol. 42, no.
1, 2008, pp. 40–47.
J. Dyer et al., “Building the IBM 4758 Se-18.	
cure Cryptographic Coprocessor,” Comput-
er, Oct. 2001, pp. 57–66.
S. Berger et al., “vTPM—Virtualizing the 19.	
Trusted Platform Module,” Proc. 15th Usenix
Security Symp., Usenix Assoc., 2006, pp.
305–320.
T. Garfinkel et al., “Terra: A Virtual 20.	
Machine-based Platform for Trusted Com-
puting,” Proc. ACM Symp. Operating System
Principles, ACM Press, 2003, pp. 193–206.

Ronald Perez is a senior manager and senior tech-

nical staff member at the IBM T.J. Watson Research Center,

where he leads the Systems Solutions and Architecture De-

partment, multiple teams of research scientists and engineers

pursuing advances in a diverse set of systems technologies in-

cluding virtualization and systems management, next-genera-

tion memory subsystems, stream processing, multimedia, and

information theory. His research interests also include systems

security. Perez has a BA in computer science from the Univer-

sity of Texas at Austin. Contact him at ronpz@us.ibm.com.

Leendert van Doorn is a senior fellow at Advanced Micro De-

vices, where he runs the Software Technology Office, System

Manageability Organization, and he is an adjunct professor

at Rice University. His research interests include virtualization,

operating systems, security, and system manageability. van

Doorn has a PhD in computer science from the Vrije Univer-

siteit in Amsterdam. He is a senior IEEE member. Contact him

at leendert@ieee.org.

Reiner Sailer is a research staff member and manager of the

Security Services (GSAL) group at the IBM T.J. Watson Re-

search Center. His research interests include systems security,

trusted computing, virtualization infrastructure security, and

virtualization-based security services. Sailer has a PhD in elec-

tronic engineering from the University of Stuttgart, Germany.

Contact him at sailer@us.ibm.com.

KUSTAR is a world class research and teaching institution offering a wide range of employment
opportunities. It is committed to attracting, developing and retaining a diverse workforce that
strengthens the University's leadership in research and education. Staff diversity offers a blend of
talents, experiences and differences that drive academic and professional success and
excellence.

KUSTAR – Sharjah Campus, United Arab Emirates, has an opening from September 2008 for:

Program Chair For M.Sc. in Information Security
[Ref. No. KU-018/2008]

Required Qualifications:

candidates.

information security).

careers@kustar.ac.ae

For further information: www.kustar.ac.ae

Only the short-listed candidates will be contacted

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore. Restrictions apply.

