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Hypervisors allow virtualization at the hardware level. 

These technologies have security-related strengths as well 

as weaknesses. The authors examine emerging hardware 

and software virtualization technologies in the context of 

modern computing environments and requirements.

V irtualization is the process of presenting 
something as being genuine when in fact it 
isn’t. Virtualization in the computer archi-
tecture domain is the presentation of an en-

vironment to one layer in an information technology 
stack that abstracts or represents a lower layer. System 
architects typically insert this layer of indirection be-
tween existing layers in a hardware or software stack 
to address specific problems, such as providing support 
for legacy functionality, standardizing interfaces on 
logical models, or transparently load balancing usage 
of shared resources. 

Virtualization might involve language-level run-
times that provide high-level abstract architectures 
for applications, or a thin hardware virtualization 
layer of software situated between system hardware 
and the operating system layer that provide logical 
views to physical resources. In either case, the prima-
ry justification for virtualization is efficiency, such as 
the efficient use of programming resources achieved 
with “write once, run everywhere” language run-
times in the first case, or the efficient use of hardware 
resources that can be gained with the thin hardware 
virtualization layer in the second case. Although vir-
tualization comes in many forms, including process, 
storage, and network virtualization, here we focus on 
security and hardware support for this thin hardware 
virtualization layer, often termed a virtual machine 
monitor (VMM) or hypervisor.

Hypervisor virtualization
Early virtual machines (VMs) were essentially com-
puting environments that simulated or emulated the 

host system’s ex-
isting hardware 
while arbitrating access to shared system resources. 
This let multiple instances of operating systems run 
on the same system, where each operating system was 
originally designed to be the sole arbiter of system re-
sources. Because systems of the time—largely main-
frames designed in the 1960s and 1970s, such as the 
IBM VM/370’s predecessors1—were expensive, these 
early VMs gave companies distinct economic advan-
tages by letting them partition one physical system 
into multiple logical systems. The same advantages 
exist today for the IBM VM/370’s heirs, such as the 
IBM PR/SM and z/VM VM monitors (VMMs) and 
the S/390 and zSeries mainframes.2

Although hypervisors associated with high-end 
systems have continued to evolve and remain critical 
to maximizing these systems’ usage, increasing the use 
of mid-range and high-volume systems has become an 
additional factor driving hypervisor development and 
deployment. These systems’ increased electrical power 
requirements rival increases in computing power and 
overall performance. The expense involved in hous-
ing and managing these systems hasn’t kept pace with 
the decline of raw hardware and software resource 
costs, including the increasing cost of managing the 
security of ever more complex systems. Hypervisors 
are therefore an attractive option for large data centers 
and medium to small enterprises.

In addition to increased utilization, the general 
flexibility afforded by modern hypervisors and their 
support of systems that have become relative com-
modities is apparent. By checkpointing and repli-
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cating VMs in a distributed systems environment, 
hypervisors can potentially achieve continuous or 
high-availability requirements with greater ease and 
at less cost. Emerging tool chains are enabling the 
rapid provisioning of workloads to VMs. The tool 
chains enable the capability to load-balance an en-
terprise’s entire infrastructure by migrating exist-
ing VMs and their workloads to more appropriate 
systems in support of system maintenance cycles or 
to free up resources for critical workloads or peak 
usage patterns.

Hypervisors are particularly well suited for a few 
basic but strong security primitives—namely, separa-
tion and controlled sharing. 

A system can achieve separation in several ways:

using different hardware facilities for different •	
workloads (physical separation), 
running workloads at different times (temporal sep-•	
aration), 
cryptographically protecting workload-specific data •	
(cryptographic separation), and 
using a reference monitor•	 3 or security kernel to sep-
arate workloads and their resources (logical separa-
tion or isolation). 

Hypervisors function as reference monitors, providing 
workload isolation on an operating system instance 
granularity (as opposed to operating systems, which 
strive to provide process-level isolation). 

In secure systems designs, the reference monitor 
mediates all security-sensitive operations, such as ac-
cess to objects or communications between subjects. In 
hypervisors, objects are system resources and subjects 
are VMs. Reference monitors must be small enough 
to be fully tested and analyzed and relatively immune 
to compromise. In addition, the reference monitor 
is always invoked, making it impossible to bypass its 
mediation functionality. A hypervisor is also a key el-
ement in the entire system’s trusted computing base—
the hardware, firmware, and software components in 
layered-system architectures that must be correct to 
enforce the explicit or implicit system security policy.

Because the hypervisor reference monitor mediates 
access to and between coarse-grained entities—such 
as processors, memory (in addition to the memory 
management performed at the operating-system lev-
el), disks, and VMs—hypervisors are often orders of 
magnitude smaller in size and less complex than mod-
ern operating systems. They’re therefore less difficult 
to test and analyze for correctness and to protect from 
compromise. Hardware features, such as privileged 
operating modes and protected memory support, of-
ten provide additional protection.

Together with hardware-architected hypervisor 
calls (similar to operating system calls), these com-

ponents and features ensure that VMs cannot bypass 
the hypervisor mediation functionality. Hypervisors 
have traditionally supported strong isolation or sepa-
ration of VMs and their workloads, including fault 
isolation—limiting an application or operating system 
fault’s effects within a VM. Administrators have been 
able to explicitly configure these systems to support 
system resource sharing and communication between 
VMs. However, hypervisors that support sharing 
based on explicit security policies and labels associ-
ated with each VM and its resources, such as the DEC 
VAX VMM4 and the KVM/3705 security-enhanced 
version of the IBM VM/370, weren’t available on a 
large scale. This is perhaps partly because of the com-
mercial requirements of the day and the systems’ high-
assurance government-/military-oriented design 
targets. Because hypervisors must maintain isolation 
while maximizing resource utilization and support 
for the more distributed and interconnected nature of 
contemporary workloads, policy-driven controlled-
sharing requirements for commercial hypervisors on 
mid-range and high-volume systems are increasingly 
becoming an issue.

Security’s performance impact has always been 
an issue with applications, operating systems, and 
other information technology infrastructure. 
Whether workload owners require simple separa-
tion or controlled sharing between workloads, the 
performance overhead associated with security 
functionality has and will continue to have a ma-
jor role in hypervisor security’s acceptance. Keeping 
the hypervisor’s code size relatively small (largely by 
restricting functionality and complexity in the spirit 
of a trusted computing base) and limiting higher-
level hypervisor management and flexibility to only 
what is necessary to enforce security requirements 
is key to minimizing security’s impact on perfor-
mance. Hardware support, such as management of 
memory and other system and processor resources 
and accelerated context switching between protec-
tion modes, is even more critical to maximizing 
overall system performance. 

Hardware virtualization support
Virtualization’s major disadvantage is its large per-
formance overhead. This is especially true when us-
ing interpretative or emulation techniques. A single 
emulated machine instruction can easily expand to 
thousands of real instructions and can cause signifi-
cant performance degradation. To counter this, CPU 
manufacturers have been developing hardware sup-
port for virtualization in which part or all of the emu-
lation occurs in the CPU itself. Major vendors are also 
working on virtualization capabilities for the CPU, 
I/O, and some specialized devices. 

Traditional computer systems consist of memory 
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(RAM), a CPU, an I/O controller (typically a PCI 
bridge), and one or more I/O devices, such as a disk 
and network and video controllers. Virtualizing the 
shared resources in this architecture, as Figure 1 
shows, involves changing the CPU and the bus con-
troller that arbitrates accesses to the I/O bus. The I/O 
devices themselves might also be virtualization aware, 
but that’s beyond this article’s scope.

A typical CPU consists of many shared resourc-
es—such as interrupt vectors, page tables, interrupt 
controllers, timers, and special descriptor tables. The 
hypervisor must virtualize these resources, but its job 
can be considerably easier when the right processor 
abstractions are available.6 It must give the illusion of 
a VM to the guest operating system that’s running 
inside it. This involves managing physical memory, 
interrupts, faults, and I/O devices.

Intel Vanderpool  
and AMD Pacifica Technology 
Until recently, hardware virtualization support was 
available on only mainframe computers. Some of 
these capabilities are now integrated into modern 
commodity processors; for example, both Intel and 
Advanced Micro Devices have designed and imple-
mented their own virtualization extensions—Intel’s 
Vanderpool Technology7 and AMD’s Secure VM.8 
Both VT and SVM provide roughly the same func-
tionality. Both create a container that’s a virtual CPU. 
Inside the container, you can run an unmodified op-
erating system that’s unaware that it’s operating in a 
controlled environment. 

The only way out of this container is under well-
defined conditions, or exits. Exits are generated when-
ever the code in the container executes privileged 
instructions, such as changing the CPU state or the 
page tables, or causing a page fault. (Operating sys-
tems use privileged instructions to control critical 

system resources; only the operating system kernel 
can execute them.) These exits cause a trap into the 
underlying hypervisor that executes in the root con-
tainer. The hypervisor must then emulate the cor-
rect behavior such that the operating system running 
inside the container is unaware that it’s being virtu-
alized. For example, to access a specific physical mem-
ory location, the operating system creates a mapping 
from a virtual to a physical address in the page table 
structure. The operating system must then activate 
the new page table by assigning it to a special CPU 
register (cr3 on x86 type processors). The assignment 
to this special register causes an exit. The hypervisor 
must then validate the new page table structure, check 
that the physical memory addresses are really assigned 
to this container, instantiate the new page table, and 
continue execution in the container after the assign-
ment instruction.

IBM’s approach in its Power Architecture server 
processors (such as Power5)9 differs from that taken 
by Intel and AMD. Rather than introduce a heavy-
weight container and exit concept, the Power proces-
sor duplicates certain key control registers in a new 
hypervisor state (akin to user and supervisor state) 
that operate independently from their supervisor-state 
counterparts. In a way, it’s the complex instruction 
set computer (CISC) versus reduced instruction set 
computing (RISC) approach. Power introduced a few 
lightweight concepts to support virtualization. 

I/O memory management unit
I/O virtualization aims to give a VM direct device 
access such that it can’t overwrite other VMs. This 
isn’t a problem for most devices, but some have bus-
master capabilities that must be controlled. A bus-
master-capable device can initiate its own memory 
transfers and write to every memory location in the 
system, including memory that isn’t assigned to the 
VM controlling the device. This is a common prob-
lem. CPUs therefore have an indirection layer and 
provide a virtual-to-physical memory map abstrac-
tion. The CPU’s memory management unit (MMU) 
provides this mapping. I/O uses something analo-
gous—the IOMMU9,10—which is typically part of 
the bus controller (see Figure 1). The details will 
depend on the specific design, but each I/O device 
typically has its own address translation map. 

The IOMMU maps I/O virtual addresses to 
physical addresses. Whenever a device initiates 
a memory transfer, the IOMMU first translates 
the I/O virtual memory address into the physical 
memory address. If the hypervisor ensures that the 
memory mapping for the VM corresponds to the 
IOMMU mappings for the devices the VM owns, 
the VM can directly interact with its I/O devices 
without affecting other VMs. 
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Figure 1. Virtualized system architecture overview. Virtualizing a typical 

computer system involves the system’s shared resources, in particular the 

CPU and I/O.
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Intel LaGrande and  
AMD Presidio Technology
In 2002, Microsoft announced its Palladium initia-
tive, a project aimed at providing a secure client foun-
dation for its next version of Windows. For trademark 
reasons, the company quickly renamed the initiative 
the Next-Generation Secure Computing Base. NG-
SCB aimed to provide the following guarantees:

process isolation,•	
sealed storage, •	
platform attestation, and•	
secure I/O paths.•	

With NGSCB, Microsoft tried to define an envi-
ronment that was protected from malicious software 
and peripheral cards. Unfortunately, it canceled the 
project in mid-2004 for lack of customer traction. 
Still, both Intel and AMD rallied around this ini-
tiative. Both defined platforms that embedded these 
guarantees into their systems and both based the plat-
forms on their virtualization technology. 

Intel’s secure computing platform—Lagrande 
Technology11—consists of a VT core to provide 
process isolation, special keyboard and video capabili-
ties for the secure I/O paths, a direct memory access 
(DMA) exclusion vector to isolate I/O devices from 
the security kernel, and tight integration with the 
trusted platform module (TPM) version 1.2 specifica-
tion to provide sealed storage and platform attestation. 
Although AMD’s Presidio12 secure computing plat-
form provides the same high-level functionality, its 
technology roadmap differs significantly from Intel’s. 
Unlike Intel, AMD integrates the TPM capabilities 
and DMA exclusion capabilities directly into SVM. 
Consequently, Presidio consists of an SVM and a set 
of secure I/O capabilities.

Both Intel and AMD added two new features to 
their CPUs and chipsets. The first, the DMA exclu-
sion vector, is an elementary version of an IOMMU. It 
provides protection from rogue DMA, but no address 
translation. This function will eventually disappear 
and be subsumed by the IOMMU itself. The second 
enhancement is the Trusted Computing Group’s dy-
namic root of trust.13 Traditional secure or authenticated 
boot designs start with the assumption that the sys-
tem is unmodified and preserve this guarantee during 
the bootstrap into the operating system. The dynamic 
root of trust design, on the other hand, enables soft-
ware to securely initialize the system at any time—
that is, even when the system is already running an 
operating system and its applications. For this, the 
vendors added new instructions to the CPU: Intel’s 
Senter instruction11 and AMD’s Skinit instruction.8 
Both are conceptually similar. Here we describe the 
Skinit behavior.

Upon executing a Skinit instruction, the proces-
sor is reinitialized into a well-known state in which it 
can execute a secure loader such that the loader can’t 
be tampered with during its execution. In this state, 
the processor

disables the interrupts•	
inhibits DMA to the memory area containing the •	
secure loader, and 
initializes the special-purpose registers controlling •	
memory accesses to safe values. 

This environment guarantees that other programs 
running on the CPU or external devices can’t modify 
the loader while it’s running.

Once the processor has been reinitialized, it sends 
a secure hash of the 64-Kbyte loader to the TPM, 
which stores it in the platform configuration register 
(PCR) of the TCM.7 Only the CPU, using special lo-
cality bus cycles that can’t be generated from software, 
can write this PCR. This ensures that only the CPU 
Skinit instruction can generate this hash value. The 
secure loader’s hash value constitutes the dynamic root 
of trust. As soon as the loader’s hash is stored inside the 
TPM, control transfers to the loader. The loader is 
arbitrary code, but it could, for example, measure the 
rest of the system, store the result inside the TPM, 
or resume execution where the operating system that 
invoked Skinit left off. Applications running on the 
operating system can then use these measurements to 
unseal storage or attest to remote parties of the soft-
ware stack that’s running and the hardware platform 
that it’s running on. 

The secure I/O capabilities are the more chal-
lenging aspects of LT and Presidio. The first—secure 
input—is straightforward. The perceived threat is one 
in which an adversary intercepts or modifies the com-
munication from the keyboard and mouse into the 
secure environment. To prevent this, trusted compo-
nents in the keyboard encrypt communication from 
the keyboard to the data recipient—a keyboard de-
vice driver in the secure kernel. Secure output, such as 
video, suffers from the same communication threats, 
and also suffers from Trojan horse attacks. How can a 
user distinguish between output from a secure envi-
ronment and output from an insecure environment? 
Despite good research in this area, no practical solu-
tions yet exist. Intel has proposed a solution in which 
the secure environment always displays on top of the 
current screen and can be activated through a secure 
attention key mechanism. Others have suggested ren-
dering a pass phrase that’s only available to secure 
kernels and users into the window’s background to 
convey to the user that he or she is interacting with a 
secure environment. This too might prove too cum-
bersome for the end user. Whereas everyone agrees 
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that secure user I/O is critical to securing client sys-
tems, little consensus exists in the industry as to what 
form that should take.

sHype security architecture 
Figure 2 illustrates the sHype14 security architecture 
and its integration into a VMM environment. We im-
plemented sHype in various stages for multiple hyper-
visors, including the Xen15 open source hypervisor. 

Building on the previously described hardware 
support, our major design goal for sHype is to estab-
lish a secure foundation for server platforms, provid-
ing functions such as:

strong isolation and mediated sharing •	 between VMs, 
strictly controlled by a flexible access-control en-
forcement engine;
attestation and integrity guarantees •	 for the hypervisor 
and its VMs, supported by a virtual TPM architec-
ture (TPM-based attestation16 lets VMs generate 
and report the running system’s properties); 
resource control and accurate accounting guarantees•	 , letting 
the hypervisor enforce quality-of-service agree-
ments between service provider and consumer; and
secure services•	 , providing the base infrastructure in 
sHype for refining complex monolithic runtimes 
by moving services such as security policy manage-
ment or distributed auditing into their own care-
fully protected VM.

The sHype access-control framework and the 
virtual TPM architecture form the basis of IBM 
Research’s Trusted Virtual Data Center,17 which sim-
plifies consistent and strong isolation guarantees in 
distributed virtualized data centers. 

Access-control architecture
The sHype access-control framework enforces a for-
mal security policy (mandatory access control, or 
MAC) on information flow between VMs, indepen-

dently of generic user VMs. It moves the security state 
from being defined by various ad hoc system adminis-
trator decisions to a state that’s formally defined by the 
security policy and enforced by sHype, independently 
of guest VMs.

Few VM monitors offer sufficient information 
inside the hypervisor to distinguish the information 
flow’s direction or the semantics of higher-level op-
erations inducing such an information flow. sHype 
therefore aims to provide coarse-grained, robust, 
and simple access control on VMs and resources 
within the hypervisor and defers finer-grained ac-
cess control to higher layers (guest operating sys-
tems, middleware, and applications). It promotes a 
layered security approach over a monolithic one. 
Higher-layer policies exploit lower-layer security 
policies and focus on refinement rather than reim-
plementation. This strategy is comparable to com-
munication stacks, where higher layers usually rely 
on lower-layer functions to bridge physical differ-
ences (medium access or layer 2) or to limit network 
exposure (IP firewalling or layer 3). Yet they some-
times decide to reimplement some of the lower-layer 
functions (for example, error checks) in higher layers 
based on additional information that isn’t available 
to the lower-layer functions. The access-control ar-
chitecture’s major components are the policy man-
ager, which creates and updates the access-control 
policy; the access-control module (ACM); and the 
mediation hooks (see Figure 2). 

The policy manager maintains the hypervisor se-
curity policy, which defines the rules the ACM uses 
to decide which VMs can access which resources. 
The policy manager is implemented inside a special-
purpose VM to keep related complexity out of the 
hypervisor. It provides the ACM inside the hypervisor 
with a precompiled security policy. Security media-
tion hooks mediate access to resources inside the hy-
pervisor that enable information flow between VMs. 
Security hooks are located both within the hypervi-

Secure services
(Policy management, audit, and so on)

Resource control
Access control between VMs
Isolation of virtual resources
TPM-based attestation

Secure
services

Guest
OS

Guest
OS

. . .I/O
hosting VM

Policy
manager

sHype/hypervisor

Hardware

Hypervisor mediation hooks Callbacks

ACM

ACM: Access-control module

Figure 2. sHype hypervisor security architecture. The architecture’s major components are the policy manager, which oversees the 

access-control policy; the access-control module (ACM); and the mediation hooks.
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sor to mediate direct VM-to-VM sharing, and within 
the I/O hosting VM and VMM to mediate access to 
virtualized resources. A security hook implements a 
redirection of access of VMs to shared virtual resourc-
es implemented inside the hypervisor or within the 
I/O hosting VM. This redirection code either behaves 
transparently (permits) or aborts (denies) the access re-
quest depending on the result of a callback into the 
ACM. The ACM considers the labels on VMs and 
resources to control information flow between VMs 
as well as the collocation of VMs.

In effect, sHype acts as a reference monitor, lever-
aging existing isolation between virtual resources the 
virtualized system offers. It achieves enterprise-grade 
assurance guarantees with minimal changes to the 
underlying system infrastructure and minimal perfor-
mance overhead. 

TPM virtualization
The TPM13 is an emerging security building block 
offering system-wide hardware roots of trust that the 
system software can’t compromise. The sHype ar-
chitecture virtualizes the hardware TPM by creating 
software TPM instances that are assigned to VMs.

Figure 3 shows the generic architecture built on top 
of a cryptographic coprocessor (Figure 3a) and a hard-
ware TPM (Figure 3b). Both create a hardware root 
of trust. The hypervisor extends the hardware root of 
trust to build trust into the individual software TPM 
instances (virtual TPMs), which in turn serve as roots 
of trust for the individual guest VMs.

The TPM VM must start on such a system first, 
even before any privileged I/O VM. The TPM VM 

communicates with a dedicated TPM instance on the 
IBM PCIX-Crypto coprocessor (PCIXCC)18 or the 
hardware TPM. The vTPM manager19 in the TPM 
VM creates guest virtual TPM instances on demand 
whenever the hypervisor creates a guest VM with 
configured TPM support. The guest virtual TPM 
instance is contained within the coprocessor or the 
TPM VM.

This architecture lets you use a TPM on systems 
running multiple operating systems concurrently and 
requiring TPM support. The TPM supports one op-
erating system at a time. Virtual TPM management 
extensions specify the creation, deletion, and secure 
relocation of independent instances of virtual TPMs, 
based on the platform’s current configuration require-
ments. In this model, the vTPM manager associates 
each created instance of a virtual TPM with a single 
VM and securely relocates them.19

The tamper-sensing and responding PCIXCC 
offers an ideal platform for hosting virtual TPM 
functionality when the highest degree of security is 
required. PCIXCC’s built-in tamper sensitivity pre-
vents intruders with physical access to the device from 
gaining access to sensitive data (for example, private 
keys) on the device. It’s powerful enough to run 
multiple virtual TPM instances at the same time. It 
includes hardware acceleration for cryptographic op-
erations such as RSA key generation, encryption, and 
decryption. In this case, the multipurpose PCIXCC 
replaces the hardware TPM.

Figure 3b shows virtual TPMs running in a TPM 
VM. The TPM VM is associated with the system’s 
hardware TPM. In this solution, the software TPM 
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Figure 3. Trusted platform module virtualization built on top of (a) an IBM PCIX-Crypto coprocessor and (b) a hardware TPM. The 

hypervisor extends the hardware root of trust created by these systems to build trust into the virtual TPMs.
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instances rely on the TPM VM’s security. Terra, an-
other approach leveraging virtualization and trusted 
computing to create protected systems, partitions a 
tamper-resistant hardware platform into multiple, 
isolated VMs, presenting multiple boxes on a single, 
general-purpose platform.20 Unlike Terra, sHype de-
fines TPM virtualization and a complete MAC en-
forcement mechanism and basic MAC policies for 
mediated sharing in distributed systems. 

Future directions
Virtualization and hypervisor security aim to de-
velop secure computing foundations, combining 
coarse-grained isolation and trusted computing 
technologies to provide verifiable containment and 
trust properties across large distributed environ-
ments. In such environments, hardware provides the 
basis for these properties. The promise of realizing 
quantifiable security and simplified operational se-
curity management for business and IT services will 
drive progress across the spectrum, from low-level 
hardware-related developments, to high-level dis-
tributed systems management.

At the processor and chip-set level, acceleration of 
security and virtualization features is expected in the 
near term. Examples include the acceleration of exits 
and the propagation of page table entry changes when 
a guest operating system running in a VM modifies 
access bits to maintain consistency between VM and 
hypervisor shadow page table entries. Heterogenous 
multicore processors are emerging in the high-volume 
market and chip designers will integrate security and 
trusted-computing functions, such as cryptographic 
acceleration engines and TPMs, into the proces-
sor complex. This trend may well continue into the 
embedded processor and microcontroller space. As 
hypervisors mature, processor support for recursive 
virtualization (that is, a hypervisor’s ability to operate 
within a VM that is itself supported by a hypervisor) 
might be necessary to preserve the investment made in 
these mature solutions. 

An increasing number of peripherals will likely 
support self-virtualization (that is, be able to sup-
port multiple logical adaptor instances within one 
physical adaptor). Peripherals will also support 
trusted-computing authentication and integrity goals 
with the incorporation of TPMs and attestation capa-
bilities. The combination of these developments will 
lead to the emergence of peripherals that can enforce 
system-wide access control and information flow se-
curity policies in a verifiable manner, thus becoming 
an extended part of the trusted computing base while 
relieving the hypervisor of the policy-enforcement 
obligations associated with these resources.

Utility and other distributed computing models, 
such as cloud computing, will also continue to gain 

acceptance. This increase is partly due to the econom-
ic advantages of having access to essentially unlimited 
computing resources, paying only for what you use, 
and being able to stipulate service-level agreements 
or quality-of-service guarantees with little or no up-
front investment. Such infrastructure usage scenarios 
will require reliable and secure resource monitoring 
and metering that both workload and infrastruc-
ture owners can trust. We’ll need hardware support 
for low-level monitoring and metering, such as vir-
tual processor cycle or storage bandwidth, to support 
business-level requirements with minimum overhead. 
We’ll need this same hardware support for resource 
control to enforce resource usage limits that will de-
fend against denial-of-service attacks in mixed-use 
environments (those with workloads from compet-
ing interests that are potentially hostile to each other). 
Hardware support for reliable sanitization of frequent-
ly reused resources, such as accelerated zeroization of 
memory pages and various system buffers, is also re-
quired for fast and efficient provisioning of workloads 
into virtual environments.

E nabling and managing what will essentially be-
come a distributed trusted computing base, built 

upon the secure hardware and virtualization founda-
tions we’ve discussed, is the greatest promise of these 
technologies. The academic research and industry 
communities must leverage emerging trusted comput-
ing technologies and virtualization capabilities to fur-
ther bridge the middleware-to-systems gap and relieve 
application developers from the burden of implement-
ing and verifying security-related functionality.  

Acknowledgments
We thank our colleagues Stefan Berger, Kenneth Goldman, 
and Ray Valdez for their valuable discussions and support as 
well as their contributions in implementing and improving 
sHype and vTPM for the Xen open source hypervisor.

References
R.J. Creasy, “The Origin of the VM/370 Time-Shar-1.	
ing System,” IBM J. Research and Development, vol. 25, 
no. 5, Sept. 1981, pp. 483–490.
IBM Processor Resource/Systems Management (PR/SM) 2.	
Planning Guide, SB10-7036-01, eServer zSeries 990.
J.P. Anderson et al., 3.	 Computer Security Technology Plan-
ning Study, tech. report ESD-TR-73-51, vols. I and II, 
Air Force Systems Command, USAF, 1972.
P.A. Karger et al., “A Retrospective on the VAX VMM 4.	
Security Kernel,” IEEE Trans. Software Eng., vol. 17, no. 
11, Nov. 1991, pp. 1147–1165.
B.D. Gold, R.R. Linde, and P.F. Cudney, “KVM/370 5.	
in Retrospect,” Proc. IEEE Symp. Security and Privacy, 
IEEE CS Press, 1984, pp. 13–23.

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore.  Restrictions apply. 



Virtualization

	 www.computer.org/security/       ■      IEEE Security & Privacy� 31 

J.S. Robin and C.E. Irvine, “Analysis of the Intel Pen-6.	
tium’s Ability to Support a Secure Virtual Machine 
Monitor,” Proc. 9th Usenix Security Symp., Usenix As-
soc., 2000, p. 10.
Intel, 7.	 Intel 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3B: System Programming Guide, www.
intel.com/products/processor/manuals/.
AMD, 8.	 AMD64 Architecture Programmer’s Manual, Vol-
ume 2: System Programming, http://developer.amd.com/ 
documentation/guides/Pages/default.aspx.
W.J. Armstrong et al., “Advanced Virtualization Capa-9.	
bilities of Power5 Systems,” IBM J. Research and Devel-
opment, vol. 49, nos. 4/5, 2005, pp. 523–532.
Advanced Micro Devices,10.	  AMD I/O Virtualization 
Technology (IOMMU) Specification, 2006; www.amd.
com/us-en/assets/content_type/white_papers_and 
_tech_docs/34434.pdf
D. Grawrock, 11.	 The Intel Safer Computing Initiative: Build-
ing Blocks for Trusted Computing, Intel Press, 2006.
M. LaPedus, “AMD Tips ‘Pacifica’ and ‘Presidio’ Pro-12.	
cessors for ’06,” Nov. 2004; www.eetimes.com/semi/
news/showArticle.jhtml?articleID=52601317.
Trusted Computing Group, 13.	 TCG Specification Ar-
chitecture Overview, revision 1.2, Apr. 2004; www.
trustedcomputinggroup.org/downloads/TCG_1_0 
_Architecture_Overview.pdf.
R. Sailer et al., “Building a MAC-Based 14.	
Security Architecture for the Xen Open-
Source Hypervisor,” Proc. 21st Ann. Com-
puter Security Applications Conf. (ACSAC), 
IEEE CS Press, 2005, pp. 276–285. 
P. Barham et al., “Xen and the Art of Vir-15.	
tualization,” Proc. 19th ACM Symp. Operat-
ing Systems Principles, ACM Press, 2003, pp. 
164–177.
R. Sailer et al., “Design and Implementation 16.	
of a TCG-based Integrity Measurement Ar-
chitecture,” Proc. 13th Usenix Security Symp., 
Usenix Assoc., 2004, pp. 223–238.
S. Berger et al., “TVDc: Managing Security 17.	
in the Trusted Virtual Datacenter,” ACM 
SIGOPS Operating Systems Rev., vol. 42, no. 
1, 2008, pp. 40–47.
J. Dyer et al., “Building the IBM 4758 Se-18.	
cure Cryptographic Coprocessor,” Comput-
er, Oct. 2001, pp. 57–66.
S. Berger et al., “vTPM—Virtualizing the 19.	
Trusted Platform Module,” Proc. 15th Usenix 
Security Symp., Usenix Assoc., 2006, pp. 
305–320.
T. Garfinkel et al., “Terra: A Virtual 20.	
Machine-based Platform for Trusted Com-
puting,” Proc. ACM Symp. Operating System 
Principles, ACM Press, 2003, pp. 193–206.

Ronald Perez is a senior manager and senior tech-

nical staff member at the IBM T.J. Watson Research Center, 

where he leads the Systems Solutions and Architecture De-

partment, multiple teams of research scientists and engineers 

pursuing advances in a diverse set of systems technologies in-

cluding virtualization and systems management, next-genera-

tion memory subsystems, stream processing, multimedia, and 

information theory. His research interests also include systems 

security. Perez has a BA in computer science from the Univer-

sity of Texas at Austin. Contact him at ronpz@us.ibm.com.

Leendert van Doorn is a senior fellow at Advanced Micro De-

vices, where he runs the Software Technology Office, System 

Manageability Organization, and he is an adjunct professor 

at Rice University. His research interests include virtualization, 

operating systems, security, and system manageability. van 

Doorn has a PhD in computer science from the Vrije Univer-

siteit in Amsterdam. He is a senior IEEE member. Contact him 

at leendert@ieee.org.

Reiner Sailer is a research staff member and manager of the 

Security Services (GSAL) group at the IBM T.J. Watson Re-

search Center. His research interests include systems security, 

trusted computing, virtualization infrastructure security, and 

virtualization-based security services. Sailer has a PhD in elec-

tronic engineering from the University of Stuttgart, Germany. 

Contact him at sailer@us.ibm.com.

KUSTAR is a world class research and teaching institution offering a wide range of employment 
opportunities. It is committed to attracting, developing and retaining a diverse workforce that 
strengthens the University's leadership in research and education. Staff diversity offers a blend of 
talents, experiences and differences that drive academic and professional success and 
excellence.

KUSTAR – Sharjah Campus, United Arab Emirates, has an opening from September 2008 for:

Program Chair For M.Sc. in Information Security
[Ref. No. KU-018/2008]

Required Qualifications:

candidates.

information security).

careers@kustar.ac.ae

For further information: www.kustar.ac.ae

Only the short-listed candidates will be contacted

Authorized licensed use limited to: National Central University. Downloaded on October 30, 2009 at 01:10 from IEEE Xplore.  Restrictions apply. 


