
15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

Study Guide: Data Manipulation with R

Afshine Amidi and Shervine Amidi

August 21, 2020

Main concepts

r File management – The table below summarizes the useful commands to make sure the
working directory is correctly set:

Category Action Command

Paths

Change directory to another path setwd(path)

Get current working directory getwd()

Join paths file.path(path_1, ..., path_n)

Files

List files and folders in
a given directory list.files(path, include.dirs = TRUE)

Check if path is a file / folder
file_test(’-f’, path)

file_test(’-d’, path)

Read / write csv file
read.csv(path_to_csv_file)

write.csv(df, path_to_csv_file)

r Chaining – The symbol %>%, also called "pipe", enables to have chained operations and
provides better legibility. Here are its different interpretations:

• f(arg_1, arg_2, ..., arg_n) is equivalent to arg_1 %>% f(arg_2, arg_3, ..., arg_n),
and also to:

– arg_1 %>% f(., arg_2, ..., arg_n)

– arg_2 %>% f(arg_1, ., arg_3, ..., arg_n)

– arg_n %>% f(arg_1, ..., arg_n-1,...)

• A common use of pipe is when a dataframe df gets first modified by some_operation_1,
then some_operation_2, until some_operation_n in a sequential way. It is done as follows:

R

# df gets some_operation_1, then some_operation_2, ...,
# then some_operation_n
df %>%
..some_operation_1 %>%
..some_operation_2 %>%
...................%>%
..some_operation_n

r Exploring the data – The table below summarizes the main functions used to get a complete
overview of the data:

Category Action Command

Look at data

Select columns of interest df %>% select(col_list)

Remove unwanted columns df %>% select(-col_list)

Look at n first rows / last rows df %>% head(n) / df %>% tail(n)

Summary statistics of columns df %>% summary()

Data types
Data types of columns df %>% str()

Number of rows / columns df %>% NROW() / df %>% NCOL()

r Data types – The table below sums up the main data types that can be contained in columns:

Data type Description Example

character String-related data ’teddy bear’

factor
String-related data that can be
put in bucket, or ordered ’high’

numeric Numerical data 24.0

int Numeric data that are integer 24

Date Dates ’2020-01-01’

POSIXct Timestamps ’2020-01-01 00:01:00’

Data preprocessing

r Filtering – We can filter rows according to some conditions as follows:

R

df %>%
..filter(some_col some_operation some_value_or_list_or_col)

where some_operation is one of the following:

Category Operation Command

Basic

Equality / non-equality == / !=

Inequalities <, <=, >=, >

And / or & / |

Advanced

Check for missing value is.na()

Belonging %in% (val_1, ..., val_n)

Pattern matching %like% ’val’

Massachusetts Institute of Technology 1 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi


15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

Remark: we can filter columns with the select_if command.

r Changing columns – The table below summarizes the main column operations:

Action Command

Add new columns
on top of old ones df %>% mutate(new_col = operation(other_cols))

Add new columns
and discard old ones df %>% transmute(new_col = operation(other_cols))

Modify several columns
in-place df %>% mutate_at(vars, funs)

Modify all columns
in-place df %>% mutate_all(funs)

Modify columns fitting
a specific condition df %>% mutate_if(condition, funs)

Unite columns df %>% unite(new_merged_col, old_cols_list)

Separate columns df %>% separate(col_to_separate, new_cols_list)

r Conditional column – A column can take different values with respect to a particular set
of conditions with the case_when() command as follows:

R

case_when(condition_1 ∼ value_1,..# If condition_1 then value_1
..........condition_2 ∼ value_2,..# If condition_2 then value_2
...................
..........TRUE ∼ value_n).........# Otherwise, value_n

Remark: the ifelse(condition_if_true, value_true, value_other) can be used and is easier to
manipulate if there is only one condition.

r Mathematical operations – The table below sums up the main mathematical operations
that can be performed on columns:

Operation Command
√

x sqrt(x)

bxc floor(x)

dxe ceiling(x)

r Datetime conversion – Fields containing datetime values can be stored in two different
POSIXt data types:

Action Command

Converts to datetime with seconds since origin as.POSIXct(col, format)

Converts to datetime with attributes (e.g. time zone) as.POSIXlt(col, format)

where format is a string describing the structure of the field and using the commands summarized
in the table below:

Category Command Description Example

Year ’%Y’ / ’%y’ With / without century 2020 / 20

Month ’%B’ / ’%b’ / ’%m’ Full / abbreviated / numerical August / Aug / 8

Weekday
’%A’ / ’%a’ Full / abbreviated Sunday / Sun

’%u’ / ’%w’ Number (1-7) / Number (0-6) 7 / 0

Day ’%d’ / ’%j’ Of the month / of the year 09 / 222

Time ’%H’ / ’%M’ Hour / minute 09 / 40

Timezone ’%Z’ / ’%z’ String / Number of hours from UTC EST / -0400

Remark: data frames only accept datetime in POSIXct format.

r Date properties – In order to extract a date-related property from a datetime object, the
following command is used:

R

format(datetime_object, format)

where format follows the same convention as in the table above.

Data frame transformation

r Merging data frames – We can merge two data frames by a given field as follows:

R

merge(df_1, df_2, join_field, join_type)

where join_field indicates fields where the join needs to happen:

Case Fields are equal Different field names

Command by = ’field’ by.x = ’field_1’, by.y = ’field_2’

and where join_type indicates the join type, and is one of the following:

Massachusetts Institute of Technology 2 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi


15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

Join type Option Illustration

Inner join default

Left join all.x = TRUE

Right join all.y = TRUE

Full join all = TRUE

Remark: if the by parameter is not specified, the merge will be a cross join.

r Concatenation – The table below summarizes the different ways data frames can be con-
catenated:

Type Command Illustration

Rows rbind(df_1, ..., df_n)

Columns cbind(df_1, ..., df_n)

r Common transformations – The common data frame transformations are summarized in
the table below:

Type
Illustration

Command
Before After

Long to wide

spread(

df, key = ’key’,

value = ’value’
)

Wide to long

gather(

df, key = ’key’

value = ’value’,

c(key_1, ..., key_n)

)

r Row operations – The following actions are used to make operations on rows of the data
frame:

Action
Illustration

Command
Before After

Sort with
respect
to columns

df %>%

arrange(col_1, ..., col_n)

Dropping
duplicates df %>% unique()

Drop rows
with at
least a
null value

df %>% na.omit()

Remark: by default, the arrange command sorts in ascending order. If we want to sort it in
descending order, the - command needs to be used before a column.

Aggregations

r Grouping data – Aggregate metrics are computed across groups as follows:

Massachusetts Institute of Technology 3 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi


15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

The R command is as follows:

R

df %>%..................................................# Ungrouped data frame
..group_by(col_1, ..., col_n) %>%.......................# Group by some columns
..summarize(agg_metric = some_aggregation(some_cols))...# Aggregation step

r Aggregate functions – The table below summarizes the main aggregate functions that can
be used in an aggregation query:

Category Action Command

Properties Count of observations n()

Values

Sum of values of observations sum()

Max / min of values of observations max() / min()

Mean / median of values of observations mean() / median()

Standard deviation / variance across observations sd() / var()

Window functions

r Definition – A window function computes a metric over groups and has the following struc-
ture:

The R command is as follows:

R

df %>%........................................# Ungrouped data frame
..group_by(col_1, ..., col_n) %>%.............# Group by some columns
..mutate(win_metric = window_function(col))...# Window function

Remark: applying a window function will not change the initial number of rows of the data
frame.

r Row numbering – The table below summarizes the main commands that rank each row
across specified groups, ordered by a specific field:

Join type Command Example

row_number(x) Ties are given different ranks 1, 2, 3, 4

rank(x)
Ties are given same rank
and skip numbers 1, 2.5, 2.5, 4

dense_rank(x)
Ties are given same rank
and do not skip numbers 1, 2, 2, 3

r Values – The following window functions allow to keep track of specific types of values with
respect to the group:

Command Description

first(x) Takes the first value of the column

last(x) Takes the last value of the column

lag(x, n) Takes the nth previous value of the column

lead(x, n) Takes the nth following value of the column

nth(x, n) Takes the nth value of the column

Massachusetts Institute of Technology 4 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi

