
Project Support Team - IT Division
C++ Coding Standard

Specification

Version: 1.1
Issue: 5
Status: FINAL
ID: CERN-UCO/1999/207
Date: 5 January 2000

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

C++ Coding Standard Specification
5 January 2000 Version/Issue: 1.1/5
page ii FINAL

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information please contact docsys@ptsun00.cern.ch.

C++ Coding Standard Specification
Abstract Version/Issue: 1.1/5
Abstract

This document defines a C++ coding standard, that should be adhered to when writing C++
code. It is the result of a work started in a Working Group, in the context of the SPIDER
project, formed by representatives from different LHC experiments, with the goal to bring
together their existing coding standards.

Document Control Sheet

Table 1 Document Control Sheet

Document Title: C++ Coding Standard Specification

Version: 1.1 ID: CERN-UCO/1999/207

Issue: 5 Status: FINAL

Edition: [Document Edition] Created:

Date: 5 January 2000

Available at: http://consult.cern.ch/writeup/cppstd/

Keywords: coding standard, C++

Tool Name: Adobe FrameMaker Version: 5.5

Template: Software Doc Layout Templates Version: Vb1

Authorship Written by: S.Paoli

Contributors: P.Binko (LHCb), D.Burckhart (ATLAS), S.M.Fisher (ATLAS), I.Hriv-
nacova (ALICE), M.Lamanna (COMPASS), M.Stavrianakou (ATLAS),
H.-P.Wellisch (CMS)

Reviewed by: S.Giani, A.Khodabandeh

Approved by: G.H.Pawlitzek
FINAL page iii

C++ Coding Standard Specification
Document Status Sheet Version/Issue: 1.1/5
Document Status Sheet

Table 2 Document Status Sheet

Title: C++ Coding Standard Specification

ID: CERN-UCO/1999/207

Version Issue Date Reason for change

1.0 0 5.3.1999 Release to the Review Board for review

1.1 1 4.8.1999 First public release

1.1 2 13.8.1999 Changed the item identifiers in paragraph 3.8

1.1 3 17.8.1999 Corrected title of item CB1

1.1 4 20.10.1999 Added CERN write-up reference on the front page

1.1 5 5.1.2000 Added missing “int” in item CA5.
Changed SPIDER to Project Support Team. New e-mail address:
Pst@cern.ch
page iv FINAL

C++ Coding Standard Specification
Table of Contents Version/Issue: 1.1/5
Table of Contents

Abstract . iii

Document Control Sheet. . iii

Document Status Sheet . iv

Table of Contents . v

1 Introduction . 1

1.1 Purpose . .1
1.2 Intended Audience . .1
1.3 Authors . .1
1.4 Evolution and updating responsibility 2
1.5 Approach .2

1.5.1 Naming . .3
1.5.2 Coding . .3
1.5.3 Style . .3
1.5.4 Information provided for the items 3

1.6 Organization of this document 4
1.7 References . .4
1.8 Definitions and Acronyms .5

2 Naming . 7

2.1 Naming of files .7
2.2 Meaningful Names . .8
2.3 Illegal Naming .8
2.4 Naming Conventions .9

3 Coding . 13

3.1 Organizing the Code . 13
3.2 Control Flow . 15
3.3 Object Life Cycle . 16

3.3.1 Initialization of Variables and Constants 16
3.3.2 Constructor Initializer Lists 18
3.3.3 Copying of Objects . 19

3.4 Conversions . 20
3.5 The Class Interface . 20

3.5.1 Inline Functions . 21
3.5.2 Argument Passing and Return Values 21
3.5.3 const Correctness . 22
3.5.4 Overloading and Default Arguments 23

3.6 new and delete 23
FINAL page v

C++ Coding Standard Specification
Table of Contents Version/Issue: 1.1/5
3.7 Static and Global Objects . 24
3.8 Object-Oriented Programming 24
3.9 Assertions and error conditions 26
3.10 Error Handling . 27
3.11 Parts of C++ to Avoid . 28
3.12 Readability and maintainability 31
3.13 Portability . 32

4 Style . . 35

4.1 General aspects of style . 35
4.2 Comments . 37

A Terminology . . 39

B List of the items of the standard . 43

C Correspondence of item numbers. 51
page vi FINAL

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
1 Introduction

This chapter describes the approach adopted for the definition of this document.

1.1 Purpose

The purpose of this document is to define a C++ coding standard that should be adhered to
when writing C++ code. ISO 9000 and the Capability Maturity Model (CMM) state that
coding standards are mandatory for any organization with quality goals. The standard
provides indications aimed at helping C++ programmers to meet the following requirements
on a program:

• be free of common types of errors

• be maintainable by different programmers

• be portable to other operating systems

• be easy to read and understand

• have a consistent style

Questions of design, such as how to design a class or a class hierarchy, are beyond the scope of
this document. It is also assumed that the code is hand-written and not generated; otherwise a
different standard would be needed for the input to the code generator.

This document does not substitute in any way the study of a book on C++ programming. To
learn the C++ language we refer you to the classical books: [9] for getting started, and [10] for
a complete and definitive guide. For more advanced readings on C++, we strongly
recommend the books [11], [12] and [13].

1.2 Intended Audience

This document is addressed to all people involved in the production of C++ code for the
experiments/projects at CERN.

1.3 Authors

This document originated in the context of the SPIDER project, where during summer 1998 a
working group was set up, formed by representatives from different experiments/projects:
ALICE, ATLAS, LHCb, CMS and COMPASS, and led by the IT/IPT group. Its goal was to
propose a common standard across experiments/projects in order to foster common
solutions, homogeneity of the C++ code produced in different experiments/projects, and save
resources for implementation and maintenance of products and services (coding standard,
FINAL page 1

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
code check utilities, help-desk, tutorials, etc.). The work started from the C++ coding
standards that were already in place in the experiments/projects participating to the Working
Group [1], [2], [3], [4], [5]; the working group did an important work of identification of all the
commonalities, and subsequent clarification, consolidation and agreement of the items to
include in the common standard.

The work group was interrupted in spring 1999 by the suspension of the SPIDER project. The
definition of the standard was completed by the IT/IPT group, taking into account feedback
received from various experiments and individuals. Its audience was extended to all people
involved in the production of C++ code at CERN.

1.4 Evolution and updating responsibility

Changes to this standard will be implemented according to a change management procedure,
defined in the context of the Project Support Team, the follow up to the SPIDER project.
Feedbacks and suggestion on how to improve this document are encouraged; they should be
sent to Pst@cern.ch.

A continuation related to this standard was the evaluation of available static analysis tools, to
support automatic checking of code against this standard. This evaluation has been
performed; the detailed evaluation report is available from [6].

1.5 Approach

The sources of this standard are the original experiments/projects’ documents [1], [2], [3], [4],
[5], and the well known ELLEMTEL standard (last edition) [7], the de-facto C++ coding
standard in the software industry; also the famous book by S.Meyers [11] has provided useful
inputs for this standard. The present document contains, no more or different items (see par.
1.8) than those contained in the above mentioned documents. A selection and, in some cases, a
rewording of the items have been necessary in order to achieve a coherent and comprehensive
coding standard (set of items).

The experiments/projects’ standards [1], [2], [3], [4], [5] can be found on the web, while the
books [7] and [11] can be consulted in the Reference Section of the IPT library (CERN, Meyrin,
building 1 R-017).

In any case, the standard cannot cover every issue of C++ programming, and cannot always
match the different choices that different experiments/projects have made on certain issues.
Therefore the different experiments/projects should, if necessary, tailor this standard to their
specific quality requirements; this could mean to suppress an item or to add additional items.

The items contained in this standard have been organized in three sections: Naming, Coding
and Style. The content of each section is described below.

Though usually items in coding standards are characterized with different levels of
importance (rules and guidelines/recommendations), the items of this standard have not
page 2 FINAL

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
been characterized in this way. The reason is that the different experiments/projects have
different quality criteria, which determine whether a certain item is a “rule” or a “guideline”,
as well as different implications of the importance levels (how “rules” or “guidelines” are
differently enforced). Avoiding to propose such a characterization in this standard allows
experiments/projects to adopt their own criteria.

This approach causes one problem: it seems that all the defined items have the same level of
importance. The reader should be aware that some items are very important, as they strongly
impact the quality of the produced code. On the other hand, some items are rather arbitrary
conventions whose importance is simply in fostering a common style and idiom across a wide
community of programmers; the benefit is clearly an increase in the readability and
maintainability of the produced code.

1.5.1 Naming

This section contains indications on how to choose names for all entities over which the
programmer has control, e.g. classes, typedefs, functions, variables, namespaces, files.

1.5.2 Coding

Indications in this section regard the syntax and related semantic of the code. Organization of
code, control flow, object life cycle, conversions, object-oriented programming, error handling,
parts of C++ to avoid, portability, are all examples of issues that are covered here. This section
is organized in different paragraphs, each one grouping items addressing the same subject.

1.5.3 Style

Code is always written in a particular style. This section contains indications aimed at
defining one, that should allow a common and consistent look and feel of the code. Style
relates to matters which anyway do not affect the output of the compiler.

1.5.4 Information provided for the items

Each item comprises at least two entities, an identifier and an item title. The identifier is
formed by two letters and a number (e.g. NF3); the first letter (N, C or S) indicates to which
section (Naming, Coding or Style) the item belongs, the second letter indicates the subsection,
while the number simply represent the order within the subsection. This kind of identification
should allow a minimal impact on the items numbering during the maintenance of the
standard, that is in the possible cases in which items are added or removed.

Whenever possible and appropriate, a statement and an example have been added to the
individual item; the statement is an explanation that expands the item title and clarifies its
meaning and scope.
FINAL page 3

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
For most items two other keywords, source and status, are also present; this information was
maintained until version 0.8 of the document, that is as long as the document was defined in
the SPIDER working group. For the items subsequently introduced, and therefore not
discussed in the working group, the status information is not present. The meaning of the two
keywords is the following:

• Source: provides the identifier of the items from which the item was derived (See
Table 1)

• Status: indicates whether the item was agreed by all experiments/project in the
working group (Status = Common), or by the majority of them (Status = Majority)

The two keywords source and status are temporary; they will stay for the time necessary to
help a possible migration to this standard, but will be removed as soon as they become
historical information.

1.6 Organization of this document

This document is organized as follows:

• Chapter 1: Introduction - this chapter

• Chapter 2: Naming - list of all items on naming, with explanation and examples

• Chapter 3: Coding - list of all items on coding, with explanation and examples

• Chapter 4: Style - list of all items on style, with explanation and examples

• Appendix A: Terminology

• Appendix B: List of the items of the standard

• Appendix C: Correspondence of item numbers, from this version to version 0.8

1.7 References

1 C++ coding standards for ATLAS, S.M.Fisher, L.A.Tuura.
Document on the WWW at the URL:
http://www.cern.ch/Atlas/GROUPS/SOFTWARE/OO/asp/cxx-rules/

Table 1 mapping between Identifier and the Source document

Identifier (n=number) Source document

n.RN (or RC, RS, GN, GC, GS) CMS

CXX-n ATLAS

Rn LHCb

COMPn COMPASS

ARNn ALICE
page 4 FINAL

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
2 C++ Coding Conventions, P.Binko. LHCb Computing Note: LHCb 98-049 COMP

3 The CMS coding and design guidelines, J.P.Wellisch.
CMS-NOTE 1998/070, CMS-NOTE 1998/071, and CMS-NOTE 1998/072

4 ALICE C++ Coding Conventions, I.Hrivnacova,
http://www1.cern.ch/ALICE/Projects/offline/CodingConv.html

5 COMPASS C++ Coding Conventions, M.Lamanna,
http://wwwcompass.cern.ch/compass/software/offline/coffee/codingRules.h
tml

6 C++ Coding Standard - Check Tools Evaluation Report, S.Paoli, E.Arderiu-Ribera,
G.Cosmo, S.M.Fisher, A.Khodabandeh, G.H.Pawlitzek, M.Stavrianakou,
Restricted access, for availability please contact CERN IT-PST Pst@cern.ch

7 Rules and Recommendations, Industrial Strength C++, M.Henricson, E.Nyquist.
Prentice Hall, 1996

8 Standard for the Programming Language C++, ISO/IEC 14882

9 C++ Primer, S.B.Lippman, Addison-Wesley, 1998

10 The C++ Programming Language, Third Edition, B.Stroustrup, Addison-Wesley,
1997

11 Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and
Designs, S.Meyers, Addison-Wesley

12 More Effective C++ : 35 New Ways to Improve Your Programs and Designs, S.Meyers,
Addison-Wesley

13 Advanced C++ Programming Styles and Idioms, J.O.Coplien, Addison-Wesley

1.8 Definitions and Acronyms

SPIDER Software Process Improvement for Documentation, Engineering, and Reuse of
LHC and HEP Software Systems, Applications and Components

Item Single statement addressing a specific issue (other terms typically used for that
are: rule, guideline, convention, recommendation; those are not used in this
document)

Standard Collection of items addressing the same subject (in this case coding of C++
software)
FINAL page 5

C++ Coding Standard Specification
1 Introduction Version/Issue: 1.1/5
page 6 FINAL

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
2 Naming

This section contains a set of conventions on how to choose, write and administer names for
all entities over which the programmer has control. This would guarantee that programs are
easier to understand, read and maintain.

2.1 Naming of files

NF1 The name of the header file should be the same as the name of the class it defines, with a suffix
".h" appended.

Source 1.RN, 1.GN, CXX-8, R4, ARN4, 4.RN, 4.GN, CXX-7, R7, R6
Status Common

NF2 The name of the implementation file should be the same as the name of the class it implements,
with a project dependent suffix appended.

Source 2.RN, 2.GN, CXX-19, R5, ARN5, 5.RN, 5.GN, CXX-18
Status Common

NF3 If the implementation of inline functions is put in a separate file, this should have the same
name of the class it implements, with a project dependent suffix appended.

Typical choices for the suffix are “.icc” and “.inl”.

Example:

The header file for the class CalorimeterCluster would have the name CalorimeterCluster.h

Example:

The implementation file for the class CalorimeterCluster would have the name
CalorimeterCluster.cxx if it were part of a project which had chosen the "cxx" suffix.

The different LHC experiments/projects have chosen the following suffixes:
ALICE, ATLAS: .cxx
LHCb, COMPASS: .cpp
CMS: .cc

Example:

If the class CalorimeterCluster contains inline methods, and those are implemented in a
separated file, this would have the name CalorimeterCluster.icc, or CalorimeterCluster.inl
depending on the choice made in the project.
FINAL page 7

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
2.2 Meaningful Names

NM1 Use pronounceable names, or acronyms used in the experiment.

They have big merits in discussion, and for newcomers.

Source 6.RN, 7.GN, 31.RC, 3.GS, R15
Status Common

NM2 Use names that are English and self-descriptive.

This would help anybody else to understand the meaning of the declared entities.

Source 7.RN, 8.GN, COMP16
Status Common

NM3 Names of classes, methods and important variables should be chosen with care, and should be
meaningful. Abbreviations are to be avoided, except where they are widely accepted.

This is very important to make the code easy to read and use.

Source CXX-50, R10, ARN1
Status Common

2.3 Illegal Naming

NI1 Do not create very similar names.

Very similar names might cause confusion in reading the code.

In particular do not create names that differ only by case.

Source R13, 26.RS, 5.GS
Status Common

Example:

Use nameLength instead of nLn.

Example:

track, Track, TRACK
cmlower, cslower
page 8 FINAL

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
NI2 Do not use identifiers that begin with an underscore.

Many identifiers of this kind are reserved C key words.

Source 35.RC, 1.GS
Status Common

NI3 Avoid single and simple character names (e.g. "j", "iii") except for local loop and array
indices.

Source R17, 27. RS, 6. GS
Status Common

2.4 Naming Conventions

NC1 Class names start with the prefix "XYZ".

The actual value for the prefix is a project/experiment convention. Of course it must not be
unique all over the complete project; for example it could rather be unique within each
component.

This is a way to improve the readability of the code; particularly when browsing over a large
set of classes from different components. But to avoid name conflicts it is preferable to use
namespaces, see item NC2.

NC2 Use namespaces to avoid name conflicts.

A name clash occurs when a name is defined in more than one place. For example, two
different class libraries could give two different classes the same name. If you try to use many
class libraries at the same time, there is a fair chance that you will be unable to compile and

Example:

A class Track could be present in different contexts, hence in different SW components. The
class will be easier to identify if the name has as prefix the component identifier:

MCTrack Monte Carlo
RecTrack Reconstruction
AnalTrack Analysis
FINAL page 9

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
link the program because of name clashes. You can avoid that by declaring and defining
names (that would otherwise be global) inside namespaces.

The following items could appear rather arbitrary. The importance of these conventions is
simply in fostering a common style and naming across a wide community of programmers.
The benefit is an increase in the readability and maintainability of the produced code,
especially when compared to a situation were each programmer adopts an own naming
convention.

NC3 Start class names, typedefs and enum types with an uppercase letter.

Source 9.RN, 11.GN, R11, ARN6
Status Common

Example:

A namespace is a declarative region in which classes, functions, types and templates can be
defined.

namespace Emc {

class Track { ... };
// ...

}

A name qualified with a namespace name refers to a member of the namespace.

Emc::Track electronTrack;

A using declaration makes it possible to use a name from a namespace without the scope
operator.

using Emc::Track; // using declaration
Track electronTrack;

It is possible to make all names from a namespace accessible with a using directive.

using namespace Emc; // using directive
Track electronTrack; // Emc::Track electronTrack;
Array<Track> allTracks; // Emc::Array<Emc::Track> allTracks;

Example:

class Track;
typedef vector<MCParticleKinematics*> TrackVector;
enum State { green, yellow, red };
page 10 FINAL

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
NC4 Start names of variables and functions with a lowercase letter.

NC5 In names that consist of more than one word, write the words together, and start each word that
follows the first one with an upper case letter.

Source 10.RN, 13.GN, R11, ARN2

Example:

double energy;
void extrapolate();

Example:

class OuterTrackerDigit;
double depositedEnergy;
void findTrack();
FINAL page 11

C++ Coding Standard Specification
2 Naming Version/Issue: 1.1/5
page 12 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3 Coding

This section contains a set of items regarding the “content” of the code. Organization of the
code, control flow, object life cycle, conversions, object-oriented programming, error handling,
parts of C++ to avoid, portability, are all examples of issues that are covered here.

The purpose of the following items is to highlight some useful ways to exploit the features of
the programming language, and to identify some common or potential errors to avoid.

3.1 Organizing the Code

CO1 Each header file should be self-contained.

If a header file is self-contained, nothing more than the inclusion of the single header file is
needed to use the full interface of the class defined.

One way to test your header file is to always include it first in the corresponding
implementation file.

Source 8.RC, 4.GC
Status Common

CO2 Avoid unnecessary inclusion.

This is necessary to guarantee that the dependencies present in the implementations are only
those foreseen in the design.

Source R57
Status Common

CO3 Header files should begin and end with multiple-inclusion protection.

Here below is showed how this is implemented:

#ifndef IDENTIFIER_H

Example A: unnecessary inclusion in the header file

file A.h: #include “B.h”

file C.h: #include “B.h” // NOT necessary, avoid
#include “A.h”

Example B: unnecessary inclusion in the implementation file

file A.h: #include “B.h”

file A.cc: #include “B.h” // NOT necessary, avoid
#include “A.h”
FINAL page 13

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
#define IDENTIFIER_H

// The text of the header goes in here ...

#endif // IDENTIFIER_H

The actual value for the IDENTIFIER is a project/experiment convention.

Header files are often included many times in a program. Because C++ does not allow
multiple definitions of a class, it is necessary to prevent the compiler from reading the
definitions more than once.

Source CXX-9, 7.RC, COMP8, R62, 1. GS, ARC3
Status Common

CO4 Use forward declaration instead of including a header file, if this is sufficient.

Source CXX-22, R58, 9. RC, 2. GC
Status Common

CO5 Each header file should contain one class (or embedded or very tightly coupled classes)
declaration only.

This makes easier to read your source code files. This also improves the version control of the
files; for example the file containing a stable class declaration can be committed and not
changed anymore.

CO6 Implementation files should hold the member function definitions for a single class (or
embedded or very tightly coupled classes) as defined in the corresponding header file.

This is for the same reason as for item CO5.

Example:

class Line;
class Point {

public:
Number distance(const Line& line) const; // Distance from a line

};

Here it is sufficient to say that Line is a class, without giving details which are inside its
header. This saves time in compilation and avoids an apparent dependency upon the Line
header file.
page 14 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.2 Control Flow

CF1 Do not change a loop variable inside a for loop block.

When you write a for loop, it is highly confusing and error-prone to change the loop variable
within the loop body rather than inside the expression executed after each iteration.

CF2 Follow all flow control primitives (if, else, while, for, do, switch, and case) by a block, even
if it is empty.

This make code much more reliable and easy to read.

CF3 All switch statements should have a default clause.

In some cases the default clause can never be reached because there are case labels for all
possible enum values in the switch statement, but by having such an unreachable default
clause you show a potential reader that you know what you are doing. You also provide for
future changes. If an additional enum value is added, the switch statement should not just
silently ignore the new value. Instead, it should in some way notify the programmer that the
switch statement must be changed; for example, you could throw an exception.

Example:

while (condition) {
statement;

}

Avoid the following error-prone form:

if (condition) // avoid! this omits the braces {}!
statement;

Example:

// somewhere specified: enum Colors { GREEN, RED }

// semaphore of type Colors

switch(semaphore) {
case GREEN:

// statement
// break;

case RED:
// statement
// break;

default:
// unforseen color; it is a bug
// do some action to signal it

}

FINAL page 15

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CF4 All if statements should have an else clause.

This makes code much more readable and reliable, by clearly showing the flow paths.

The addition of a final else is particularly important in the case where you have
if/else-if.

CF5 Do not use goto.

Use break or continue instead.

This statement remains valid also in the case of nested loops, where the use of control
variables can easily allow to break the loop, without using goto.

Source CXX-67, 9. GC, 24. RC
Status Common

CF6 Do not have overly complex functions.

The number of possible paths through a function, which depends on the number of control
flow primitives, is the main source of function complexity. Therefore you should be aware
that heavy use of control flow primitives will make your code more difficult to maintain.

As a rule of thumb, remember the 7±2 rule: typically methods should not be longer than 7±2
statements.

3.3 Object Life Cycle

In this paragraph it is suggested how objects are best declared, created, initialized, copied,
assigned and destroyed.

3.3.1 Initialization of Variables and Constants

CL1 Declare variables initialised to numeric values or strings in a highly visible position; whenever
possible collected them in one place.

It would be very hard to maintain a code in which numeric values or strings are spread over a
big file. If declaration and initialization of variable to numeric values or strings is put on the
most visible position, it will be easy to locate them, and maintain.

Example:

if (val==ThresholdMin) {
statement;

} else if (val==ThresholdMax) {
statement;

} else {
statement; // handles all other (unforseen)cases

}

page 16 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CL2 Declare each variable with the smallest possible scope and initialise it at the same time.

It is best to declare variables close to where they are used. Otherwise you may have trouble
finding out the type of a particular variable.

It also very important to initialise the variable immediately, so that its value is well defined.

Source 2.RC, R40, CXX-31, R74, 1.GC
Status Common

CL3 In the function implementation, do not use numeric values or strings; use symbolic values
instead.

For the definition of symbolic values see item CL1.

Source CXX-58, COMP6, R64, R88, 14. RC, 7.GC, 14. GC, 5.GS, 7.GS
Status Common

CL4 Do not use the same variable name in outer and inner scope.

Otherwise the code would be very hard to understand; and it would certainly be a major error
prone condition.

Source 32.RC, 1.GC
Status Common

CL5 Declare each variable in a separate declaration statement.

Declaring multiple variables on the same line is not recommended. The code will be difficult
to read and understand.

Some common mistakes are also avoided. Remember that when you declare a pointer, a unary
pointer is bound only to the variable that immediately follows.

Source CXX-32, R74
Status Majority
Not Common for CMS

Example:

int value = -1; // initial value clearly defined

int maxValue; // initial value undefined
// NOT recommended

Example:

int i, *ip, ia[100], (*ifp)(); // Not recommended

// recommended way:

LoadModule* oldLm = 0; // pointer to the old object
LoadModule* newLm = 0; // pointer to the new object
FINAL page 17

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.3.2 Constructor Initializer Lists

CL6 Initialise in the class constructors all data members.

And if you add a new data member, don’t forget to update accordingly all constructors,
operators and the destructor.

CL7 Let the order in the initializer list be the same as the order of declaration in the header file: first
base classes, then data members.

It is legal C++ to list initializer in any order you wish, but you should list them in the same
order as they will be called.

The order in the initializer list is irrelevant to the execution order of the initializers. Putting
initializers for data members and base classes in any order other than their actual
initialization order is therefore highly confusing and can lead to errors. A data member could
be accessed before it is initialized if the order in the initializer list is incorrect.

Virtual base classes are always initialized first, then base classes, data members, and finally
the constructor body for the most derived class is run.

Source CXX-35, CXX-36
Status Majority
Not Common for CMS (will be OK in the future)

Example:

class Derived : public Base { // Base is number 1

public:
explicit Derived(int i);
Derived();

private:
int jM; // jM is number 2
Base bM; // bM is number 3

};

Derived::Derived(int i) : Base(i), jM(i), bM(i) {
// Recommended order 1 2 3

// Empty
}

page 18 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.3.3 Copying of Objects

CL8 Avoid unnecessary copying of objects that are costly to copy.

Because a class could have other objects as data members or inherit from other classes, many
member function calls would be needed to copy the object. To improve performance, you
should not copy an object unless it is necessary.

It is possible to avoid copying by using pointers and references to objects, but then you will
instead have to worry about the lifetime of objects. You must understand when it is necessary
to copy an object and when it is not.

CL9 A function must never return, or in any other way give access to, references or pointers to local
variables outside the scope in which they are declared.

Returning a pointer or reference to a local variable is always wrong because it gives the user a
pointer or reference to an object that no longer exists.

CL10 If objects of a class should never be copied, then the copy constructor and the copy assignment
operator should be declared private and not implemented.

Ideally the question whether the class has a reasonable copy semantic will naturally come out
of the design process. Do not push copy semantics on a class that should not have it.

By declaring the copy constructor and copy assignment operator as private, you can make a
class noncopyable. They do not have to be implemented, only declared.

CL11 If objects of a class should be copied, then the copy constructor and the copy assignment
operator should be implemented, with the desired behaviour.

The compiler will generate a copy constructor, a copy assignment operator, and a destructor if
these member functions have not been declared. A compiler-generated copy constructor does
memberwise initialization and a compiler-generated copy assignment operator does
memberwise assignment of data members and base classes. For classes that manage resources
(examples: memory (new), files, sockets) the generated member functions have probably the
wrong behavior and must be implemented. You have to decide if the resources pointed to
must be copied as well (deep copy), and write the right behaviour in the operators.

Of course, constructor and destructor must be implemented as well, see item CB2.

Source CXX-38, R77, 6.RC, 6.GC, 7.GC, COMP2
Status Common
FINAL page 19

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CL12 Assignment member functions should work correctly when the left and right operands are the
same object.

This requires some care when writing assignment code, as the case when left and right
operands are the same may require that most of the code is bypassed.

Source CXX-41, 10GC
Status Common

3.4 Conversions

CC1 Use explicit rather then implicit type conversion.

Most conversions are bad in some way. They can make the code less portable, less robust, and
less readable. It is therefore important to use only explicit conversions. Implicit conversions
are almost always bad.

CC2 When the new casts are supported by the compiler, use the new cast operators (dynamic_cast
and static_cast) instead of the C-style casts.

The new cast operators give the user a way to distinguish between different types of casts.
Their behaviour is well-defined in situations where the behavior of an ordinary cast is
undefined, or at least ambiguous.

CC3 Do not convert const objects to non-const.

In general you should never cast away the constness of objects.

The only rare case when you have to do it is in the case where you need to invoke a function
that has incorrectly specified a parameter as non-const even if it does not modify it. If the
correction of this function is really impossible, then use the cast operator const_cast.

3.5 The Class Interface

The class interface is the most important part of the class. Sophisticated algorithms will not
help if the class interface is wrong.

Example:

A& A::operator=(const A& a) {

if (this != &a) { // beware of s=s

// ... implementation of operator=
}

}

page 20 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.5.1 Inline Functions

CI1 Inline access functions and forwarding functions.

Inline functions can improve the performance of your program; but they can increase the
overall size of the program and then, in some cases, have the opposite result. It can be hard to
know exactly when inlining is appropriate. In general, inline only very simple function.

Source 2.GC, 3.GC, COMP3
Status Common

3.5.2 Argument Passing and Return Values

CI2 Adopt the good practice of design functions without any side effects.

Source R66
Status Common

CI3 Pass arguments of built-in types by value unless the function should modify them.

A good practice is to pass built-in types such as char, int, and double by value because it is
cheap to copy such variables. This recommendation is also valid for some objects of classes
that are cheap to copy, such as simple aggregates of very small number of built-in types.

CI4 Pass arguments of class types by reference or pointer.

Arguments of class type are often costly to copy, so it is convenient to pass a reference (or in
some cases a pointer), preferably declared const, to such objects; in this way the argument is
not copied. Const access guarantees that the function will not change the argument.

CI5 Have operator= return a reference to *this.

This ensures that:

a = b = c;

Example:

No-one would expect sin(x) to modify x.

Example:

void func(char c); // OK
void func(int i); // OK
void func(double d); // OK
void func(complex<float> c); // OK

Example:

void func(const LongString& s); // const reference
FINAL page 21

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
will assign c to b and then b to a as is the case with built in objects.

Source CXX-40, R84, 15.RC, 4.GC
Status Common

3.5.3 const Correctness

CI6 Declare a pointer or reference argument, passed to a function, as const if the function does not
change the object bound to it.

An advantage of const-declared parameters is that the compiler will actually give you an
error if you modify such a parameter by mistake, thus helping you to avoid bugs in the
implementation.

CI7 The argument to a copy constructor and to an assignment operator should be a const
reference.

This ensures that the object being copied is not altered by the copy or assign.

Source CXX-39, R78
Status Common

CI8 In a class method do not return pointer or non-const reference to private data members.

Otherwise you break the principle of encapsulation.

If necessary you can return pointer to const or const reference.

Source 4.GC, 23.GC
Status Common

CI9 Declare as post const a member function that does not affect the state of the object.

Declaring a member function as const has two important implications:

• Only const member function can be called for const objects

• A const member function will not change data members

It is a common error to forget to const declare member functions that should be const.

Source 25.RC, 10.GC, R42, R66, CXX-26, 5.GC, 3. GC
Status Common

Example:

// operator<< does not modify the String parameter
ostream& operator<<(ostream& out, const String& s);
page 22 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CI10 Do not let const member functions change the state of the program.

A const member function promises not to change any of the data members of the object.
Usually this is not enough. It should be possible to call a const member function any number
of times without affecting the state of the complete program. It is therefore important that a
const member function refrains from changing static data members, global data, or other
objects to which the object has a pointer or reference.

3.5.4 Overloading and Default Arguments

CI11 Use function overloading only when methods differ in their argument list, but the task performed
is the same.

Using function name overloading for any other purpose than to group closely related member
functions is very confusing and is not recommended.

3.6 new and delete

CN1 Match every invocation of new with one invocation of delete in all possible control flows from
new.

A missing delete would cause a memory leak.

Source CXX-42, R80, 13. GC
Status Common

CN2 A function must not use the delete operator on any pointer passed to it as an argument.

NOTE: This is also to avoid dangling pointers, i.e. pointers to memory which has been given
back. Such code will often continue to work until the memory is re-allocated for another
object.

Source CXX-44, R82
Status Common

CN3 Do not access a pointer or reference to a deleted object.

A pointer that has been used as argument to a delete expression should not be used again
unless you have given it a new value, because the language does not define what should
happen if you access a deleted object. You could assign the pointer to 0 or a new valid object.
Otherwise you get a “dangling” pointer.

Example:

If you allocates memory in the constructor, you should take care of deallocate it in the
destructor.
FINAL page 23

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.7 Static and Global Objects

CS1 Do not declare global variables.

If necessary, encapsulate those variables in a class or in a namespace.

Source R19, R41, COMP15, 17.GC, 11.RC, 5.GC, ARC7
Status Majority
Not Common for ALICE

CS2 Use global functions only for symmetric binary operators.

This is the only way to get conversions of the left operand of binary operations to work. It is
common in implementing the symmetric operator to call the corresponding asymmetric
binary operator.

Source R43, CXX-17, CXX-46, R86, 5.GC
Status Common

3.8 Object-Oriented Programming

CB1 Declare data members private or protected.

This ensures that data members are only accessed from within member functions. Hiding data
makes it easier to change implementation and provides a uniform interface to the object.

Source 3. RC, R40, 4. GC, COMP3, 9.GC, R21, CXX-12, R51
Status Common

Example:

Complex operator* (const Complex & lhs, const Complex & rhs) {
Complex result(lhs);
return result *= rhs;

}

Here the * operator has been defined for Complex numbers in terms of the *= operator.

Example:

class Point {
public:

Number x() const; // Return the x coordinate
private:

Number m_x; // The x coordinate (safely hidden)
};

The fact that the class Point has a data member m_x which holds the x coordinate is
hidden.
page 24 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CB2 Always declare and implement constructor and destructor.

This is important to avoid possible memory leak problems that one would not expect.

CB3 A public base class must have either a public virtual destructor or a protected destructor.

The destructor is a member function that in most cases should be declared virtual. It is
necessary to declare it virtual in a base class if derived class objects are deleted through a base
class pointer. If the destructor is not declared virtual, only the base class destructor will be
called when an object is deleted that way.

However, there is a case where it is not appropriate to use virtual destructor: mix-in classes.
Such a class is used to define a small part of an interface, which is inherited (mixed in) by
subclasses. In these cases the destructor, and hence the possibility of a user deleting a pointer
to such a mix-in base class, should normally not to be part of the interface offered by the base
class. It is best in these cases to have a nonvirtual, nonpublic destructor because that will
prevent a user of a pointer to such a base class from claiming ownership of the object and
deciding to simply delete it. In such cases it is appropriate to make the destructor protected.
This will stop users from accidentally deleting an object through a pointer to the mix-in
base-class, so it is no longer necessary to require the destructor to be virtual.

Source CXX-48, R79
Status Majority
Not Common for CMS

CB4 Always redeclare virtual functions as virtual in derived classes.

This is just for clarity of code. The compiler will know it is virtual, but the human reader may
not. This, of course, also includes the destructor, as stated in item CB3.

Source CXX-49, R67

Example:

class Track {
public:

Track();
virtual ~Track();

private:
class1 c1;
class2 c2;
int i3;

};

Track::Track() : c1(), c2(), i3(0) {

// Empty
}
Track::~Track() {

// Empty
}

FINAL page 25

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CB5 Avoid multiple inheritance.

Multiple inheritance is seldom necessary, and it is rather complex and error prone.

The only valid exception is for inheriting interfaces or when the inherited behaviour is
completely decoupled from the classes responsibility.

CB6 Use public inheritance.

Private and protected inheritance is useful in rather specific cases only. As a rule of thumb use
aggregation instead.

CB7 Avoid the use of friend declarations.

Friends declarations are syntoms of bad design and they break encapsulation. Tipically you
can solve your problem in a different way.

Source CXX-D5, 26.RC, COMP4, 20. GC, 9. GC

3.9 Assertions and error conditions

CE1 Pre-conditions and post-conditions should be checked for validity.

You should validate your input and output data, whenever an invalid input can cause an
invalid output.

Example:

For a detailed example of a reasonable application of multiple inheritance see [11] item 43.

Example:

EmcString::EmcString(const char* cp) throw(bad_alloc)
: lengthM(strlen(cp)) {

// check of preconditions: cp != 0
// ...

// check of postconditions:
// operator new() will throw bad_alloc
// if allocation fails

cpM = new char[lenthM + 1];
strcpy(cpM, cp);

}

page 26 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CE2 Remove all assertions from production code.

Assertions should be used for the testing phase. The program will also run faster if
unnecessary checks are removed.

Some conditions are not checked by assertions. You should not use assertions to check
conditions that should always result in throwing an exception if the check fails. Such
exceptions are part of the production code and should not be removable.

3.10 Error Handling

CH1 Check for all errors reported from functions.

It is important to always check error conditions, regardless of how they are reported. If a
function throws exceptions, it is important to catch all of them.

CH2 Use exception handling instead of status values and error codes.

For error reporting, exception handling is a more powerful technique than returning status
values and error codes. It allows to separate code that handles errors from the ordinary flow
of control.
Because an exception is an object, an arbitrary amount of error information can be stored in an
exception object; the more information that is available, the greater the chance that the correct
decision is made for how to handle the error.
In certain cases, exception handling can be localized to one function along a call chain; this
implies that less code needs to be written, and it is more legible.

CH3 Do not throw exceptions as a way of reporting uncommon values from a function.

Your code can be difficult to understand if you throw exceptions in many different situations,
ranging from a way to report unusual threads in your code to reporting fatal runtime
problems.

Example:

try {
// ordinary flow of control
f();
g();

}
catch(...) { // handler for any kind of exception

// error handling
}

Example:

Take the case of a function find(). Is quite common that the object looked for is not found,
and it is certainly not a failure; it is therefore not reasonable in this case to throw an
exception. It is clearer if you return a well defined value.
FINAL page 27

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CH4 Use exception specifications to declare which exceptions might be thrown from a function.

If a function does not have an exception specification, that function is allowed to throw any
type of exception; that makes code unreliable and difficult to understand.

It is recommendable to use exception specification as much as possible. The compiler will
check that the exception classes exist and are available to the user. Compilers are also
sometimes able to detect inconsistent exception specification during compilation.

3.11 Parts of C++ to Avoid

Here below a set of different items are collected. They highlight parts of the language that
should be avoided, because there are better ways to achieve the desired results.

CA1 Use new and delete instead of malloc, calloc, realloc and free.

You should avoid all memory-handling functions from the standard C-library (malloc,
calloc, realloc and free) because they do not call constructors for new objects or
destructors for deleted objects.

Source CXX-71, R83, 12. GC
Status Common

CA2 Use the iostream functions rather than those defined in stdio.

scanf and printf are not type-safe and they are not extensible. Use operator>> and
operator<< instead.

Source CXX-69, R39
Status Common

Example:

char& EmcString::at(size_t index) throw(EmcIndexOutOfRange) {

if (index > lengthM) {
throw EmcIndexOutOfRange(index);

}
return cpM[index];

}

page 28 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CA3 Do not use the ellipsis notation.

Functions with an unspecified number of arguments should be avoided because they are a
common cause of bugs that are hard to find.

Source CXX-28, R71, 8.GC
Status Common

CA4 Do not use preprocessor macros, except for system provided macros.

Use templates or inline functions rather than the pre-processor macros.

Source 29.RC, 4.GC, CXX-59, R89, CXX-61, R90
Status Common

CA5 Do not use #define to define symbolic constants or enums.

Source CXX-58, COMP6, R64, R88, 14. RC, 7.GC, 14. GC
Status Common

Example:

// avoid to define functions like:

void error(int severity ...) // “severity” followed by a
// zero-terminated list of char*s

Example:

// NOT recommended to have function-like macro
#define SQUARE(x) x*x

Better to define an inline function:

inline int square(int x) {
return x*x;

};

Example:

#define levels 5 // NOT recommended

If you need to define a symbolic constant, use:

const int levels = 5;
FINAL page 29

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CA6 Use enum for related constants rather than const.

The enum construct allows a new type to be defined and hides the numerical values of the
enumeration constants.

Source CXX-78, R63
Status Majority
Not Common for CMS

CA7 Use the integer constant 0 for the null pointer; don’t use NULL.

No object is allocated with the address 0. Consequently, 0 acts as a pointer literal, indicating
that a pointer doesn’t refer to an object. In C, it has been popular to define a macro NULL to
represent the zero pointer. Because of C++’s tighter type checking, the use of plain 0, rather
than any suggested NULL macro, leads to fewer problems.

Source 4.GC, CXX-70, 13.RC
Status Common

CA8 Use the standard library (STL) whenever it has the desired functionality.

In particular, do not use const char* or built-in arrays “[]”.

Source 36.RC, 1.GC, CXX-75, 10.GC, R29, CXX-79, R30, 22.RS, 1.GS, 1.GC, 22.RC, 15.GC
Status Majority
Not Common for ATLAS Online

CA9 Do not use union types.

Unions can be an indication of a non-object-oriented design that is hard to extend. The usual
alternative to unions is inheritance and dynamic binding. The advantage of having a derived
class representing each type of value stored is that the set of derived class can be extended
without rewriting any code. Because code with unions is only slightly more efficient, but
much more difficult to maintain, you should avoid it.

Source CXX-77, R38
Status Majority
Not Common for CMS, ATLAS Online

CA10 Do not use asm (the assembler macro facility of C++).

NOTE: some exceptions might be necessary in Online.

Source 28.RC, 3.GC
Status Common

Example:

enum State {halted, starting, running, paused};
page 30 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CA11 Do not use the keyword struct.

The class is identical to the struct except that by default its contents are private rather
than public.

Source CXX-73, R37
Status Common

CA12 Do not use file scope objects; use class scope instead.

File scope is a useless complication that is better to avoid.

Source CXX-34
Status Majority
Not Common for CMS

CA13 Use the bool type of C++ for booleans.

Programmers may tend to use int instead of bool as this is a relatively new feature.

Source CXX-74, R36, 8. GC
Status Common

CA14 Avoid pointer arithmetic.

Pointer arithmetic makes readability very difficult and it is certainly one of the most error
prone parts.

3.12 Readability and maintainability

CR1 Avoid duplicated code and data.

This statement has a twofold meaning.

The first, and most evident, is that one must avoid simply cutting and pasting pieces of code.
When similar functionalities are necessary in different places, those should be collected in
class methods, and reused.

The second meaning is at the design level, and is the concept of code reuse.

Reuse of code has the benefit of making a program easier to understand and to maintain. An
additional benefit is better quality because code that is reused gets tested much better.

CR2 Optimise code only when you know you have a performance problem.

This means that during the implementation phase you should write code that is easy to read,
understand and maintain. Do not write cryptic code, just to improve its performance.

Performance problems are more likely solved at an architecture and design level.
FINAL page 31

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
3.13 Portability

CP1 All code must be adherent to the ANSI C++ standard.

Current edition: [8]

NOTE: Adhesion to the standard must be done to the extent that the selected compilers allow
it.

Source CXX-62, ARC1
Status Majority
Not Common for CMS (OK on the principle)

CP2 Make nonportable code easy to find and replace.

Isolate nonportable code as much as possible so that it is easy to find and replace. For that you
can use the directive #ifdef.

CP3 Headers supplied by the implementation (system or standard libraries header files) should go in
<> brackets; all other headers should go in ““ quotes.

CP4 Do not specify absolute directory names in include directives.

It is better to specify to the build environment where files may be located because then you do
not need to change any include directives if you switch to a different platform.

CP5 Always treat include file names as case-sensitive.

Some operating systems, e.g. Windows NT, do not have case-sensitive file names. You should
always include a file as if it were case-sensitive. Otherwise your code could be difficult to port
to an environment with case-sensitive file names.

Example:

// Include only standard header with <>
#include <iostream> // OK: standard header
#include <MyFyle.hh> // NO: nonstandard header

// Include any header with ““
#include “stdlib.h” // NO: better to use <>
#include “MyFyle.hh” // OK

Example:

// Includes the same file on Windows NT, but not on UNIX
#include <Iostream>
#include <iostream>
page 32 FINAL

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
CP6 Do not make assumptions about the size or layout in memory of an object.

The sizes of built-in types are different in different environment. For example, an int may be
16, 32 or even 64 bits long. The layout of objects is also different in different environments, so
it is unwise to make any kind of assumption about the layout in memory of objects, such as
when lumping together different data in a struct.

CP7 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.

Certain types have alignment requirements, which are requirements about the address of
objects. For example, some architectures require that objects of a certain size start at an even
address. It is a fatal error if a pointer to an object of that size points to an odd address. For
example, you might have a char pointer and want to convert to an int pointer. If the pointer
points to an address that it is illegal for an int, dereferencing the int pointer creates a
runtime error.

CP8 Take machine precision into account in your conditional statements. Have a look at the
numeric_limits<T> class, and make sure your code is not platform dependent. In particular, take
care when testing floating point values for equality.

CP9 Do not depend on the order of evaluation of arguments to a function.

The order of evaluation of function arguments is strongly compiler dependent.

In particular never use ++, -- operators on method arguments in function calls. The
behaviour of foo(a++, vec(a)); is platform dependent.

CP10 Avoid using system calls if there is another possibility (e.g. the C++ run time library).

For example, do not forget about non-unix platforms.

Example:

it is better to use:

const double TOLERANCE = 0.001;
...
#include <math.h>
if (fabs(value1 - value2) < TOLERANCE) ...

than

if (value1 == value2) ...

Example:

func(f1(), f2(), f3());
// f1 may be evaluated before f2 and f3,
// but don’t depend on it!
FINAL page 33

C++ Coding Standard Specification
3 Coding Version/Issue: 1.1/5
page 34 FINAL

C++ Coding Standard Specification
4 Style Version/Issue: 1.1/5
4 Style

Code is always written in a particular style. Discussing style is highly controversial. This
section contains indications aimed at defining one style; that should allow a common and
consistent “style of the code”, i.e. a common look. Style relates to matters which do not affect
the output of the compiler.

4.1 General aspects of style

SG1 The public, protected and private sections of a class should be declared in that order.
Within each section, nested types (e.g. enum or class) should appear at the top.

The public part should be most interesting to the user of the class, and should therefore come
first. The private part should be of no interest to the user and should therefore be listed last in
the class declaration.

Source CXX-16, ARC6, R52, R53, COMP10
Status Majority
Not Common for CMS

SG2 Keep the ordering of methods in the header file and in the source files identical.

This facilitates the readability of the class implementation.

Source 20.RS, 8.GS
Status Common

SG3 Arrange long statements on multiple lines in a way which maximises readability. If possible,
break long statements up into multiple ones.

Source CXX-3, 24.RS, 3.GS
Status Common

Example:

class Path {
public:

Path();
~Path();

protected:
void draw();

private:
class Internal {
// Path::Internal declarations go here ...
};

};
FINAL page 35

C++ Coding Standard Specification
4 Style Version/Issue: 1.1/5
SG4 Do not have any method bodies inside the class definitions (in header files).

The class definition will be more compact and comprehensible if no implementation can be
seen in the class interface.

This also applies to inline functions. You can either put them in a separate file, or at the end of
the header file, below the class definition.

Source CXX-13, R60, CXX-15
Status Majority
Not Common for CMS, ALICE (both experiments allow 2 lines of method body)

SG5 Include meaningful dummy argument names in function declarations.

Although they are not compulsory, dummy arguments improves a lot the understanding and
use of the class interface.

Source CXX-11, 3.GS
Status Common

Example:

class X
{

public:
// Not recommended: function definition in class
bool insideClass() const { return false; }
bool outsideClass() const;

};
// Recommended: function definition outside class
inline bool X::outsideClass() const
{

return true;
}

Example:

The constructor below takes 2 Numbers, but what are they?

class Point {
public:
 Point (Number, Number);
}

the following is clearer

class Point {
public:
 Point (Number x, Number y);
}

because it is explicitly indicated the meaning of the parameters.
page 36 FINAL

C++ Coding Standard Specification
4 Style Version/Issue: 1.1/5
SG6 Any dummy argument names used in function declarations should be the same as in the
definition.

Source 4.GS, 25.RS, 7.GS
Status Common

SG7 The code must be properly indented for readability reasons.

SG8 Do not use spaces in front of [], (), and to either side of . and ->.

4.2 Comments

SC1 Use "//" for comments.

The C-like comments "/**/" do not nest; therefore you would have problems if by accident
you nest them.

A special situation is if you adopt a code documentation tool, with specific conventions for
comments; in this case you could be forced to violate this item. In this case be careful to use
“#if 0” and #endif rather than /**/ comments to temporarily kill blocks of code.

Source CXX-72, R47, 5.GS, R48
Status Common

SC2 All comments should be written in complete (short and expressive) English sentences.

The quality of the comments is an important factor for the understanding of the code.

Source 7.RN, 15. GC, 22. GS
Status Common

Example:

a->foo(); // Recommended
b.bar(); // Recommended
FINAL page 37

C++ Coding Standard Specification
4 Style Version/Issue: 1.1/5
SC3 In the header file, provide a comment describing the use of a declared function and attributes, if
this is not completely obvious from its name.

Source CXX-10
Status Common

SC4 In the implementation file, above each method implementation, provide a comment describing
what the method does, how it does it (if not obvious), preconditions and postconditions.

The code in a method will be much easier to understand and maintain if it is well explained in
an initial comment.

SC5 All #else and #endif directives should carry a comment that tells what the corresponding #if
was about if the conditional section is longer than five lines.

The number five is obviously a reasonable arbitrary convention, in order to make the item
objective and checkable.

Source CXX-60, R49
Status Common

Example:

class Point {
public:

// Perpendicular distance of Point from Line
Number distance (Line);

}

the comment includes the fact that it is the perpendicular distance.

Example:

#ifndef GEOMETRY_POINT_H
#define GEOMETRY_POINT_H

class Point {
public:

Point(Number x, Number y); // Create from (x,y)
Number distance(Point point) const; // Distance to a point
Number distance(const Line & line) const; // Distance from a line

void translate(const Vector & vector); // Shift a point
};
#endif // GEOMETRY_POINT_H
page 38 FINAL

C++ Coding Standard Specification
A Terminology Version/Issue: 1.1/5
A Terminology

The terminology used by this book is as defined by the “Standard for the Programming
Language C++” [8], with some additions presented below.

Abstract base class An abstract base class is a class with at least one pure virtual
member function.

Built-in type A built-in type is one of the types defined by the language, such as
int, short, char, and bool.

Class invariant A class invariant is a condition that defines all valid states for an
object. An class invariant is both a precondition and post condition to
a member function of the class.

CONST correct A program is const correct if it has correctly declared functions,
parameters, return values, variables, and member functions as
const.

Copy assignment
operator The copy assignment operator of a class is the assignment operator

that takes a reference to an object of the same class as a parameter.

Copy constructor The copy constructor of a class is the constructor that takes a
reference to an object of the same class as a parameter.

Dangling pointer A dangling pointer points at an object that has been deleted.

Declarative region A declarative region is the largest part of a program where a name
declared can be used with its unqualified name.

Direct base class The direct base class of a class is the class explicitly mentioned as a
base class in its definition. All other base classes are indirect base
classes.

Dynamic binding A member function call is dynamically bound if different functions
will be called depending on the type of the object operated on.

Encapsulation Encapsulation allows a user to depend only on the class interface,
and not upon its implementation.

Exception safe A class is exception safe if its objects do not lose any resources, and
do not invalidate their class invariant or terminate the application
when they end their lifetimes because of an exception.

Explicit type conversion An explicit type conversion is the conversion of an object from one
type to another where you explicitly write the resulting type.

File scope An object with file scope is accessible only to functions within the
same translation unit.

Flow control primitive The flow control primitives are if-else, switch, do-while,
while, and for.

Forwarding function A forwarding function is a function that does nothing more than call
another function.

Free store An object on the free store is an object allocated with new.
FINAL page 39

C++ Coding Standard Specification
A Terminology Version/Issue: 1.1/5
Global object A global object is an object in global scope.

Global scope An object or type is in global scope if it can be accessed from within
any function of a program.

Implementation-defined
behaviour Code with implementation-defined behavior is completely legal

C++, but compilers may differ. Compiler vendors are required to
describe what their particular compiler does with such code.

Implicit type conversion An implicit type conversion occurs when an object is converted
from one type to another and when you do not explicitly write the
resulting type.

Inheritance A derived class inherits state and behavior from a base class.

Inline definition file An inline definition file is a file that contains only definitions of
inline functions.

Iterator An iterator is an object used to traverse through collections of objects.

Literal A literal is a sequence of digits or characters that represents a
constant value.

Member object The member objects of a class are its base classes and data members.

Modifying function
(modifier) A modifying function (modifier) is a member function that changes

the value of at least one data member.

Noncopyable class A class is noncopyable if its objects cannot be copied.

Object-Oriented
programming A language supports object-oriented programming if it provides

encapsulation, inheritance, and polymorphism.

Polymorphism Polymorphism means that an expression can have many different
interpretations depending on the context. This means that the same
piece of code can be used to operate on many types of objects, as
provided by dynamic binding and parameterization, for example.

Postcondition A postcondition is a condition that must be true on exit from a
member function if the precondition was valid on entry to that
function. A class is implemented correctly if postconditions are never
false.

Precondition A precondition is a condition that must be true on entry to a member
function. A class is used correctly if preconditions arc never false.

Resource A resource is something that more than one program needs, but of
which there is limited availability. Resources can be acquired and
released.

Self-contained A header file is self-contained if nothing more than its inclusion is
needed to use the full interface of a class.

Signature The signature of a function is defined by its return type, its
parameter types and their order, and whether it has been declared
const or volatile.
page 40 FINAL

C++ Coding Standard Specification
A Terminology Version/Issue: 1.1/5
Slicing Slicing means that the data added by a subclass are discarded when
an object of the subclass is passed or returned by value to or from a
function expecting a base class object.

Stack unwinding Stack unwinding is the process during exception handling when the
destructor is called for all local objects between the place where the
exception was thrown and where it is caught.

State The state of an object is the data members of the object, and possibly
also other data to which the object has access, which affects the
observable behavior of the object.

Substitutability Substitutability means that it is possible to use a pointer or reference
to an object of a derived class wherever a pointer or reference to an
object of a public base class is used.

Template definition file A template definition file is a file containing only definitions of
non-inline template functions.

Translation unit A translation unit is the result of merging an implementation file
with all its headers and header files.

Undefined behaviour Code with undefined behavior is not correct C++. The standard does
not specify what a compiler should do with such code. It may ignore
the problem completely, issue an error, or do something else.

Unspecified behaviour Code with unspecified behavior is completely legal C++, but
compilers may differ. Compiler vendors are not required to describe
what their particular compiler does with such code.

User-defined conversion AA user-defined conversion is a conversion from one type to
another introduced by a programmer; that is, it is not one of the
conversions defined by the language. Such user-defined conversions
are either nonexplicit constructors taking only one parameter, or
conversion operators.

Virtual table A virtual table is an array of pointers to all virtual member functions
of a class. Many compilers generate such tables to implement
dynamic binding of virtual functions.
FINAL page 41

C++ Coding Standard Specification
A Terminology Version/Issue: 1.1/5
page 42 FINAL

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
B List of the items of the standard

2.1 Naming of files

NF1 The name of the header file should be the same as the name of the class it defines,
with a suffix ".h" appended. 7

NF2 The name of the implementation file should be the same as the name of the class it
implements, with a project dependent suffix appended. 7

NF3 If the implementation of inline functions is put in a separate file, this should have the
same name of the class it implements, with a project dependent suffix appended. 7

2.2 Meaningful Names

NM1 Use pronounceable names, or acronyms used in the experiment. 8

NM2 Use names that are English and self-descriptive. 8

NM3 Names of classes, methods and important variables should be chosen with care, and
should be meaningful. Abbreviations are to be avoided, except where they are widely
accepted. 8

2.3 Illegal Naming

NI1 Do not create very similar names. 8

NI2 Do not use identifiers that begin with an underscore. 9

NI3 Avoid single and simple character names (e.g. "j", "iii") except for local loop and
array indices. 9

2.4 Naming Conventions

NC1 Class names start with the prefix "XYZ". 9

NC2 Use namespaces to avoid name conflicts. 9

NC3 Start class names, typedefs and enum types with an uppercase letter. . . 10

NC4 Start names of variables and functions with a lowercase letter. 11

NC5 In names that consist of more than one word, write the words together, and start each
word that follows the first one with an upper case letter. 11
FINAL page 43

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
3.1 Organizing the Code

CO1 Each header file should be self-contained. 13

CO2 Avoid unnecessary inclusion. 13

CO3 Header files should begin and end with multiple-inclusion protection. . . . 13

CO4 Use forward declaration instead of including a header file, if this is sufficient. . 14

CO5 Each header file should contain one class (or embedded or very tightly coupled
classes) declaration only. 14

CO6 Implementation files should hold the member function definitions for a single class (or
embedded or very tightly coupled classes) as defined in the corresponding header file.
14

3.2 Control Flow

CF1 Do not change a loop variable inside a for loop block. 15

CF2 Follow all flow control primitives (if, else, while, for, do, switch, and case) by a
block, even if it is empty. 15

CF3 All switch statements should have a default clause. 15

CF4 All if statements should have an else clause. 16

CF5 Do not use goto. 16

CF6 Do not have overly complex functions. 16

3.3 Object Life Cycle

3.3.1 Initialization of Variables and Constants

CL1 Declare variables initialised to numeric values or strings in a highly visible position;
whenever possible collected them in one place. 16

CL2 Declare each variable with the smallest possible scope and initialise it at the same
time. 17

CL3 In the function implementation, do not use numeric values or strings; use symbolic
values instead. 17

CL4 Do not use the same variable name in outer and inner scope. 17

CL5 Declare each variable in a separate declaration statement.. 17
page 44 FINAL

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
3.3.2 Constructor Initializer Lists

CL6 Initialise in the class constructors all data members. 18

CL7 Let the order in the initializer list be the same as the order of declaration in the header
file: first base classes, then data members. 18

3.3.3 Copying of Objects

CL8 Avoid unnecessary copying of objects that are costly to copy. 19

CL9 A function must never return, or in any other way give access to, references or pointers
to local variables outside the scope in which they are declared.. 19

CL10 If objects of a class should never be copied, then the copy constructor and the copy
assignment operator should be declared private and not implemented. . . 19

CL11 If objects of a class should be copied, then the copy constructor and the copy
assignment operator should be implemented, with the desired behaviour. . . 19

CL12 Assignment member functions should work correctly when the left and right operands
are the same object. 20

3.4 Conversions

CC1 Use explicit rather then implicit type conversion. 20

CC2 When the new casts are supported by the compiler, use the new cast operators
(dynamic_cast and static_cast) instead of the C-style casts.. . . . 20

CC3 Do not convert const objects to non-const. 20

3.5 The Class Interface

3.5.1 Inline Functions

CI1 Inline access functions and forwarding functions. 21

3.5.2 Argument Passing and Return Values

CI2 Adopt the good practice of design functions without any side effects. . . . 21

CI3 Pass arguments of built-in types by value unless the function should modify them. 21

CI4 Pass arguments of class types by reference or pointer. 21
FINAL page 45

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
CI5 Have operator= return a reference to *this. 21

3.5.3 const Correctness

CI6 Declare a pointer or reference argument, passed to a function, as const if the function
does not change the object bound to it. 22

CI7 The argument to a copy constructor and to an assignment operator should be a const
reference. 22

CI8 In a class method do not return pointer or non-const reference to private data
members. 22

CI9 Declare as post const a member function that does not affect the state of the object.
22

CI10 Do not let const member functions change the state of the program. . . . 23

3.5.4 Overloading and Default Arguments

CI11 Use function overloading only when methods differ in their argument list, but the task
performed is the same. 23

3.6 new and delete

CN1 Match every invocation of new with one invocation of delete in all possible control
flows from new. 23

CN2 A function must not use the delete operator on any pointer passed to it as an
argument. 23

CN3 Do not access a pointer or reference to a deleted object. 23

3.7 Static and Global Objects

CS1 Do not declare global variables. 24

CS2 Use global functions only for symmetric binary operators. 24

3.8 Object-Oriented Programming

CB1 Declare data members private or protected. 24

CB2 Always declare and implement constructor and destructor. 25

CB3 A public base class must have either a public virtual destructor or a protected
page 46 FINAL

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
destructor. 25

CB4 Always redeclare virtual functions as virtual in derived classes. 25

CB5 Avoid multiple inheritance. 26

CB6 Use public inheritance. 26

CB7 Avoid the use of friend declarations. 26

3.9 Assertions and error conditions

CE1 Pre-conditions and post-conditions should be checked for validity. 26

CE2 Remove all assertions from production code. 27

3.10 Error Handling

CH1 Check for all errors reported from functions. 27

CH2 Use exception handling instead of status values and error codes. 27

CH3 Do not throw exceptions as a way of reporting uncommon values from a function. 27

CH4 Use exception specifications to declare which exceptions might be thrown from a
function.. 28

3.11 Parts of C++ to Avoid

CA1 Use new and delete instead of malloc, calloc, realloc and free. . . 28

CA2 Use the iostream functions rather than those defined in stdio. 28

CA3 Do not use the ellipsis notation. 29

CA4 Do not use preprocessor macros, except for system provided macros. . . . 29

CA5 Do not use #define to define symbolic constants or enums. 29

CA6 Use enum for related constants rather than const. 30

CA7 Use the integer constant 0 for the null pointer; don’t use NULL. 30

CA8 Use the standard library (STL) whenever it has the desired functionality. . . 30

CA9 Do not use union types. 30

CA10 Do not use asm (the assembler macro facility of C++). 30
FINAL page 47

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
CA11 Do not use the keyword struct. 31

CA12 Do not use file scope objects; use class scope instead. 31

CA13 Use the bool type of C++ for booleans. 31

CA14 Avoid pointer arithmetic. 31

3.12 Readability and maintainability

CR1 Avoid duplicated code and data. 31

CR2 Optimise code only when you know you have a performance problem. . . . 31

3.13 Portability

CP1 All code must be adherent to the ANSI C++ standard. 32

CP2 Make nonportable code easy to find and replace. 32

CP3 Headers supplied by the implementation (system or standard libraries header files)
should go in <> brackets; all other headers should go in ““ quotes. 32

CP4 Do not specify absolute directory names in include directives. 32

CP5 Always treat include file names as case-sensitive. 32

CP6 Do not make assumptions about the size or layout in memory of an object. . . 33

CP7 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity. . . 33

CP8 Take machine precision into account in your conditional statements. Have a look at the
numeric_limits<T> class, and make sure your code is not platform dependent. In
particular, take care when testing floating point values for equality. 33

CP9 Do not depend on the order of evaluation of arguments to a function. . . . 33

CP10 Avoid using system calls if there is another possibility (e.g. the C++ run time library).
33

4.1 General aspects of style

SG1 The public, protected and private sections of a class should be declared in that
order. Within each section, nested types (e.g. enum or class) should appear at the
top. 35

SG2 Keep the ordering of methods in the header file and in the source files identical.. 35
page 48 FINAL

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
SG3 Arrange long statements on multiple lines in a way which maximises readability. If
possible, break long statements up into multiple ones. 35

SG4 Do not have any method bodies inside the class definitions (in header files). . 36

SG5 Include meaningful dummy argument names in function declarations. . . . 36

SG6 Any dummy argument names used in function declarations should be the same as in
the definition. 37

SG7 The code must be properly indented for readability reasons. 37

SG8 Do not use spaces in front of [], (), and to either side of . and ->. . . . 37

4.2 Comments

SC1 Use "//" for comments. 37

SC2 All comments should be written in complete (short and expressive) English sentences.
37

SC3 In the header file, provide a comment describing the use of a declared function and
attributes, if this is not completely obvious from its name. 38

SC4 In the implementation file, above each method implementation, provide a comment
describing what the method does, how it does it (if not obvious), preconditions and
postconditions. 38

SC5 All #else and #endif directives should carry a comment that tells what the
corresponding #if was about if the conditional section is longer than five lines. . 38
FINAL page 49

C++ Coding Standard Specification
B List of the items of the standard Version/Issue: 1.1/5
page 50 FINAL

C++ Coding Standard Specification
C Correspondence of item numbers Version/Issue: 1.1/5
C Correspondence of item numbers

This appendix contains a matrix of correspondence between the item numbers in this version
of the document and the version 0.8, that has been used by some projects. This
correspondence matrix should facilitate the migration to this new version; it will remain part
of the document until the migration has been completed.

Correspondance matrix

Current item number Item number in version 0.8

NF1 RN1

NF2 RN2

NF3 3.GS, 4.GS

NM1 RN5

NM2 RN6

NM3 RN18

NI1 RN29

NI2 RN30

NI3 GN3

NC1 RN9, ARN6, R20

NC2 -

NC3 RN9, RN10

NC4 ARN13

NC5 RN11

CO1 RC27

CO2 RC30B

CO3 RC2

CO4 RC30

CO5 COMP12, AEC4, 14.RS, 1.GS, CXX-20, R50

CO6 R65, ARC5, COMP13, CXX-20, R50, 2.GS, 15.RS

CF1 -

CF2 -

CF3 6.GC

CF4 -

CF5 RC19

CF6 -
FINAL page 51

C++ Coding Standard Specification
C Correspondence of item numbers Version/Issue: 1.1/5
CL1 -

CL2 RC3

CL3 RC15

CL4 RC29

CL5 RS7

CL6 9.GC

CL7 RS8, RS9

CL8 -

CL9 -

CL10 -

CL11 RC23

CL12 RC22

CC1 4.RC, 6.GC, CXX-76, COMP5, R33

CC2 12.GC

CC3 7.GC, 30.RC

CI1 RC24B

CI2 GC4

CI3 RC8

CI4 RC8

CI5 RC21

CI6 RC22B, RC8

CI7 RC22B

CI8 RC10

CI9 RC6

CI10 -

CI11 21.GC

CN1 RC34

CN2 RC25

CN3 -

CS1 RC4

CS2 RC5

CB1 RC9

Correspondance matrix

Current item number Item number in version 0.8
page 52 FINAL

C++ Coding Standard Specification
C Correspondence of item numbers Version/Issue: 1.1/5
CB2 -

CB3 RC11

CB4 CXX-49, R67

CB5 8.GC, 18.GC, 11.GC

CB6 7.GC

CB7 CXX-D5, 26.RC, COMP4, 20.GC, 9.GC

CE1 R72

CE2 -

CH1 -

CH2 -

CH3 -

CH4 -

CA1 RC37

CA2 RC36

CA3 RC31

CA4 RC12

CA5 RC15

CA6 RC17

CA7 RC13

CA8 RC18

CA9 RC39

CA10 RC28

CA11 RC41

CA12 RC32

CA13 RC38

CA14 9.GC

CR1 -

CR2 3.GC, 41.RC

CP1 RC1

CP2 -

CP3 -

CP4 -

Correspondance matrix

Current item number Item number in version 0.8
FINAL page 53

C++ Coding Standard Specification
C Correspondence of item numbers Version/Issue: 1.1/5
CP5 -

CP6 3.GC

CP7 -

CP8 6.GC, R92

CP9 9.GC, 38.RC

CP10 14.GC

SG1 RS1

SG2 RS2

SG3 RS4

SG4 RS6

SG5 RS6B

SG6 RS6C

SG7 5.GS, 29.RS, COMP11, R98, CXX-4

SG8 39.RS, 17.GS

SC1 RS6D

SC2 7.RN, 15.GC, 22.GS, 16.GC

SC3 RS6E

SC4 -

SC5 RS10

Correspondance matrix

Current item number Item number in version 0.8
page 54 FINAL

	Abstract
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	1�� Introduction
	1.1�� Purpose
	1.2�� Intended Audience
	1.3�� Authors
	1.4�� Evolution and updating responsibility
	1.5�� Approach
	1.5.1�� Naming
	1.5.2�� Coding
	1.5.3�� Style
	1.5.4�� Information provided for the items

	1.6�� Organization of this document
	1.7�� References
	1.8�� Definitions and Acronyms

	2�� Naming
	2.1�� Naming of files
	2.2�� Meaningful Names
	2.3�� Illegal Naming
	2.4�� Naming Conventions

	3�� Coding
	3.1�� Organizing the Code
	3.2�� Control Flow
	3.3�� Object Life Cycle
	3.3.1�� Initialization of Variables and Constants
	3.3.2�� Constructor Initializer Lists
	3.3.3�� Copying of Objects

	3.4�� Conversions
	3.5�� The Class Interface
	3.5.1�� Inline Functions
	3.5.2�� Argument Passing and Return Values
	3.5.3�� const Correctness
	3.5.4�� Overloading and Default Arguments

	3.6�� new and delete
	3.7�� Static and Global Objects
	3.8�� Object-Oriented Programming
	3.9�� Assertions and error conditions
	3.10�� Error Handling
	3.11�� Parts of C++ to Avoid
	3.12�� Readability and maintainability
	3.13�� Portability

	4�� Style
	4.1�� General aspects of style
	4.2�� Comments

	A�� Terminology
	B�� List of the items of the standard
	C�� Correspondence of item numbers

