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Preface

The FEniCS Project set out in 2003 with an idea to automate the solution of mathematical models based on differential equations.
Initially, the FEniCS Project consisted of two libraries: DOLFIN and FIAT. Since then, the project has grown and now consists of
the core components DOLFIN, FFC, FIAT, Instant, UFC and UFL. Other FEniCS components and applications described in this
book are SyFi/SFC, FErari, ASCoT, Unicorn, CBC.Block, CBC.RANS, CBC.Solve and DOLFWAVE.

This book is written by researchers and developers behind the FEniCS Project. The presentation spans mathematical
background, software design and the use of FEniCS in applications. The mathematical framework is outlined in Part I, the
implementation of central components is described in Part II, while Part III concerns a wide range of applications. New users
of FEniCS may find the tutorial included as the opening chapter particularly useful.

Feedback on this book is welcome, and can be given at https://launchpad.net/fenics-book. Use the Launchpad system
to file bug reports if you find errors in the text. For more information about the FEniCS Project, access to the software presented
in this book, documentation, articles and presentations, visit the FEniCS Project web site at http://fenicsproject.org. Some
of the chapters in this book are accompanied by supplementary material in the form of code examples. These code examples
can be downloaded from http://fenicsproject.org/book/.

Anders Logg, Kent-Andre Mardal and Garth N. Wells
Oslo and Cambridge, October 2011

This document (“The FEniCS Manual”) contains excerpts from the book “Automated Solution of Differential Equations by the Finite
Element Method” (“The FEniCS Book”). If you like this manual, buy the book.

https://launchpad.net/fenics-book
http://fenicsproject.org
http://fenicsproject.org/book/




1 A FEniCS tutorial
By Hans Petter Langtangen

This chapter presents a FEniCS tutorial to get new users quickly up and running with solving
differential equations. FEniCS can be programmed both in C++ and Python, but this tutorial focuses
exclusively on Python programming since this is the simplest approach to exploring FEniCS for
beginners and it does not compromise on performance. After having digested the examples in this
tutorial, the reader should be able to learn more from the FEniCS documentation and from the other
chapters in this book.

1.1 Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs). The goal of this tutorial
is to get you started with FEniCS through a series of simple examples that demonstrate

• how to define the PDE problem in terms of a variational problem,

• how to define simple domains,

• how to deal with Dirichlet, Neumann, and Robin conditions,

• how to deal with variable coefficients,

• how to deal with domains built of several materials (subdomains),

• how to compute derived quantities like the flux vector field or a functional of the solution,

• how to quickly visualize the mesh, the solution, the flux, etc.,

• how to solve nonlinear PDEs in various ways,

• how to deal with time-dependent PDEs,

• how to set parameters governing solution methods for linear systems,

• how to create domains of more complex shape.

The mathematics of the illustrations is kept simple to better focus on FEniCS functionality and syntax.
This means that we mostly use the Poisson equation and the time-dependent diffusion equation as
model problems, often with input data adjusted such that we get a very simple solution that can be
exactly reproduced by any standard finite element method over a uniform, structured mesh. This latter
property greatly simplifies the verification of the implementations. Occasionally we insert a physically
more relevant example to remind the reader that changing the PDE and boundary conditions to
something more real might often be a trivial task.

1



2 Chapter 1. A FEniCS tutorial

FEniCS may seem to require a thorough understanding of the abstract mathematical version of the
finite element method as well as familiarity with the Python programming language. Nevertheless, it
turns out that many are able to pick up the fundamentals of finite elements and Python programming
as they go along with this tutorial. Simply keep on reading and try out the examples. You will be
amazed of how easy it is to solve PDEs with FEniCS!

Reading this tutorial obviously requires access to a machine where the FEniCS software is installed.
Section 1.7.5 explains briefly how to install the necessary tools. All the examples discussed in the
following are available as executable Python source code files in a directory tree.

1.1.1 The Poisson equation

Our first example regards the Poisson problem,

−∆u = f in Ω,

u = u0 on ∂Ω.
(1.1)

Here, u = u(x) is the unknown function, f = f (x) is a prescribed function, ∆ is the Laplace operator
(also often written as ∇2), Ω is the spatial domain, and ∂Ω is the boundary of Ω. A stationary PDE
like this, together with a complete set of boundary conditions, constitute a boundary-value problem,
which must be precisely stated before it makes sense to start solving it with FEniCS.

In two space dimensions with coordinates x and y, we can write out the Poisson equation (1.1) as

−∂2u
∂x2 −

∂2u
∂y2 = f (x, y). (1.2)

The unknown u is now a function of two variables, u(x, y), defined over a two-dimensional domain Ω.
The Poisson equation (1.1) arises in numerous physical contexts, including heat conduction,

electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, and water waves.
Moreover, the equation appears in numerical splitting strategies of more complicated systems of PDEs,
in particular the Navier–Stokes equations.

Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.

2. Reformulate the PDE problem as a variational problem.

3. Make a Python program where the formulas in the variational problem are coded, along with
definitions of input data such as f , u0, and a mesh for Ω in (1.1).

4. Add statements in the program for solving the variational problem, computing derived quantities
such as ∇u, and visualizing the results.

We shall now go through steps 2–4 in detail. The key feature of FEniCS is that steps 3 and 4 result in
fairly short code, while most other software frameworks for PDEs require much more code and more
technically difficult programming.

1.1.2 Variational formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization in space and the
problem is expressed as a variational problem. Readers who are not familiar with variational problems
will get a brief introduction to the topic in this tutorial, and in the forthcoming chapter, but getting
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and reading a proper book on the finite element method in addition is encouraged. Section 1.7.6
contains a list of some suitable books.

The core of the recipe for turning a PDE into a variational problem is to multiply the PDE by a
function v, integrate the resulting equation over Ω, and perform integration by parts of terms with
second-order derivatives. The function v which multiplies the PDE is in the mathematical finite
element literature called a test function. The unknown function u to be approximated is referred to as
a trial function. The terms test and trial function are used in FEniCS programs too. Suitable function
spaces must be specified for the test and trial functions. For standard PDEs arising in physics and
mechanics such spaces are well known.

In the present case, we first multiply the Poisson equation by the test function v and integrate:

−
∫

Ω
(∆u)v dx =

∫
Ω

f v dx. (1.3)

Then we apply integration by parts to the integrand with second-order derivatives:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u
∂n

v ds, (1.4)

where ∂u/∂n is the derivative of u in the outward normal direction on the boundary. The test function
v is required to vanish on the parts of the boundary where u is known, which in the present problem
implies that v = 0 on the whole boundary ∂Ω. The second term on the right-hand side of (1.4)
therefore vanishes. From (1.3) and (1.4) it follows that∫

Ω
∇u · ∇v dx =

∫
Ω

f v dx. (1.5)

This equation is supposed to hold for all v in some function space V̂. The trial function u lies in some
(possibly different) function space V. We refer to (1.5) as the weak form of the original boundary-value
problem (1.1).

The proper statement of our variational problem now goes as follows: find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx ∀ v ∈ V̂. (1.6)

The trial and test spaces V and V̂ are in the present problem defined as

V = {v ∈ H1(Ω) : v = u0 on ∂Ω},
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

(1.7)

In short, H1(Ω) is the mathematically well-known Sobolev space containing functions v such that
v2 and |∇v|2 have finite integrals over Ω. The solution of the underlying PDE must lie in a function
space where also the derivatives are continuous, but the Sobolev space H1(Ω) allows functions with
discontinuous derivatives. This weaker continuity requirement of u in the variational statement (1.6),
caused by the integration by parts, has great practical consequences when it comes to constructing
finite elements.

To solve the Poisson equation numerically, we need to transform the continuous variational
problem (1.6) to a discrete variational problem. This is done by introducing finite-dimensional test
and trial spaces, often denoted as Vh ⊂ V and V̂h ⊂ V̂. The discrete variational problem reads: find
uh ∈ Vh ⊂ V such that ∫

Ω
∇uh · ∇v dx =

∫
Ω

f v dx ∀ v ∈ V̂h ⊂ V̂. (1.8)



4 Chapter 1. A FEniCS tutorial

The choice of Vh and V̂h follows directly from the kind of finite elements we want to apply in our
problem. For example, choosing the well-known linear triangular element with three nodes implies
that Vh and V̂h are the spaces of all piecewise linear functions over a mesh of triangles, where the
functions in V̂h are zero on the boundary and those in Vh equal u0 on the boundary.

The mathematics literature on variational problems writes uh for the solution of the discrete
problem and u for the solution of the continuous problem. To obtain (almost) a one-to-one relationship
between the mathematical formulation of a problem and the corresponding FEniCS program, we
shall use u for the solution of the discrete problem and ue for the exact solution of the continuous
problem, if we need to explicitly distinguish between the two. In most cases, we will introduce the
PDE problem with u as unknown, derive a variational equation a(u, v) = L(v) with u ∈ V and v ∈ V̂,
and then simply discretize the problem by saying that we choose finite-dimensional spaces for V
and V̂. This restriction of V implies that u becomes a discrete finite element function. In practice
this means that we turn our PDE problem into a continuous variational problem, create a mesh and
specify an element type, and then let V correspond to this mesh and element choice. Depending upon
whether V is infinite- or finite-dimensional, u will be the exact or approximate solution.

It turns out to be convenient to introduce a unified notation for a linear weak form like (1.8):

a(u, v) = L(v). (1.9)

In the present problem we have that

a(u, v) =
∫

Ω
∇u · ∇v dx, (1.10)

L(v) =
∫

Ω
f v dx. (1.11)

From the mathematics literature, a(u, v) is known as a bilinear form and L(v) as a linear form. We shall
in every linear problem we solve identify the terms with the unknown u and collect them in a(u, v),
and similarly collect all terms with only known functions in L(v). The formulas for a and L are then
coded directly in the program.

To summarize, before making a FEniCS program for solving a PDE, we must first perform two
steps:

1. Turn the PDE problem into a discrete variational problem: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂. (1.12)

2. Specify the choice of spaces (V and V̂), which means specifying the mesh and type of finite
elements.

1.1.3 Implementation

The test problem so far has a general domain Ω and general functions u0 and f . For our first
implementation we must decide on specific choices of Ω, u0, and f . It will be wise to construct a
specific problem where we can easily check that the computed solution is correct. Let us start with
specifying an exact solution

ue(x, y) = 1 + x2 + 2y2 (1.13)

on some 2D domain. By inserting (1.13) in our Poisson problem, we find that ue(x, y) is a solution if

f (x, y) = −6, u0(x, y) = ue(x, y) = 1 + x2 + 2y2,
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regardless of the shape of the domain. We choose here, for simplicity, the domain to be the unit
square,

Ω = [0, 1]× [0, 1].

The reason for specifying the solution (1.13) is that the finite element method, with a rectangular
domain uniformly partitioned into linear triangular elements, will exactly reproduce a second-order
polynomial at the vertices of the cells, regardless of the size of the elements. This property allows
us to verify the implementation by comparing the computed solution, called u in this document
(except when setting up the PDE problem), with the exact solution, denoted by ue: u should equal
u to machine precision at the nodes. Test problems with this property will be frequently constructed
throughout this tutorial.

A FEniCS program for solving the Poisson equation in 2D with the given choices of u0, f , and Ω
may look as follows:

Python code
from dolfin import *

# Create mesh and define function space

mesh = UnitSquare(6, 4)

V = FunctionSpace(mesh, "Lagrange", 1)

# Define boundary conditions

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

def u0_boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-6.0)

a = inner(nabla_grad(u), nabla_grad(v))*dx

L = f*v*dx

# Compute solution

u = Function(V)

solve(a == L, u, bc)

# Plot solution and mesh

plot(u)

plot(mesh)

# Dump solution to file in VTK format

file = File("poisson.pvd")

file << u

# Hold plot

interactive()

The complete code can be found in the file d1_p2D.py in the directory stationary/poisson.
We shall now dissect this FEniCS program in detail. The program is written in the Python

programming language. You may either take a quick look at a Python tutorial [The Python Tutorial]
to pick up the basics of Python if you are unfamiliar with the language, or you may learn enough
Python as you go along with the examples in the present tutorial. The latter strategy has proven to
work for many newcomers to FEniCS. Section 1.7.7 lists some relevant Python books.
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The listed FEniCS program defines a finite element mesh, the discrete function spaces V and V̂
corresponding to this mesh and the element type, boundary conditions for u (the function u0), a(u, v),
and L(v). Thereafter, the unknown trial function u is computed. Then we can investigate u visually or
analyze the computed values.

The first line in the program,

Python code
from dolfin import *

imports the key classes UnitSquare, FunctionSpace, Function, and so forth, from the DOLFIN library.
All FEniCS programs for solving PDEs by the finite element method normally start with this line.
DOLFIN is a software library with efficient and convenient C++ classes for finite element computing,
and dolfin is a Python package providing access to this C++ library from Python programs. You
can think of FEniCS as an umbrella, or project name, for a set of computational components, where
DOLFIN is one important component for writing finite element programs. The dolfin package applies
other components in the FEniCS suite under the hood, but newcomers to FEniCS programming do
not need to care about this.

The statement

Python code
mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1]× [0, 1]. The mesh consists of cells,
which are triangles with straight sides. The parameters 6 and 4 tell that the square is first divided into
6× 4 rectangles, and then each rectangle is divided into two triangles. The total number of triangles
then becomes 48. The total number of vertices in this mesh is 7 · 5 = 35. DOLFIN offers some classes
for creating meshes over very simple geometries. For domains of more complicated shape one needs
to use a separate preprocessor program to create the mesh (see Section 1.4). The FEniCS program will
then read the mesh from file.

Having a mesh, we can define a discrete function space V over this mesh:

Python code
V = FunctionSpace(mesh, "Lagrange", 1)

The second argument reflects the type of element, while the third argument is the degree of the basis
functions on the element. The type of element is here "Lagrange", implying the standard Lagrange
family of elements (some FEniCS programs use "CG", for Continuous Galerkin, as a synonym for
"Lagrange"). With degree 1, we simply get the standard linear Lagrange element, which is a triangle
with nodes at the three vertices. Some finite element practitioners refer to this element as the “linear
triangle”. The computed u will be continuous and linearly varying in x and y over each cell in the
mesh. Higher-degree polynomial approximations over each cell are trivially obtained by increasing
the third parameter in FunctionSpace. Changing the second parameter to "DG" creates a function
space for discontinuous Galerkin methods.

In mathematics, we distinguish between the trial and test spaces V and V̂. The only difference in
the present problem is the boundary conditions. In FEniCS we do not specify the boundary conditions
as part of the function space, so it is sufficient to work with one common space V for the test and trial
functions in the program:

Python code
u = TrialFunction(V)

v = TestFunction(V)
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The next step is to specify the boundary condition: u = u0 on ∂Ω. This is done by

Python code
bc = DirichletBC(V, u0, u0_boundary)

where u0 is an instance holding the u0 values, and u0_boundary is a function (or object) describing
whether a point lies on the boundary where u is specified.

Boundary conditions of the type u = u0 are known as Dirichlet conditions, and also as essential
boundary conditions in a finite element context. Naturally, the name of the DOLFIN class holding the
information about Dirichlet boundary conditions is DirichletBC.

The u0 variable refers to an Expression object, which is used to represent a mathematical function.
The typical construction is

Python code
u0 = Expression(formula)

where formula is a string containing the mathematical expression. This formula is written with
C++ syntax (the expression is automatically turned into an efficient, compiled C++ function, see
Section 1.7.3 and Chapter 3 for details on the syntax). The independent variables in the function
expression are supposed to be available as a point vector x, where the first element x[0] corresponds
to the x coordinate, the second element x[1] to the y coordinate, and (in a three-dimensional problem)
x[2] to the z coordinate. With our choice of u0(x, y) = 1 + x2 + 2y2, the formula string must be
written as 1 + x[0]*x[0] + 2*x[1]*x[1]:

Python code
u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

The information about where to apply the u0 function as boundary condition is coded in a function
u0_boundary:

Python code
def u0_boundary(x, on_boundary):

return on_boundary

A function like u0_boundary for marking the boundary must return a boolean value: True if the given
point x lies on the Dirichlet boundary and False otherwise. The argument on_boundary is supplied
by DOLFIN and equals True if x is on the physical boundary of the mesh. In the present case, where
we are supposed to return True for all points on the boundary, we can just return the supplied value
of on_boundary. The u0_boundary function will be called for every discrete point in the mesh, which
allows us to have boundaries where u are known also inside the domain, if desired.

One can also omit the on_boundary argument, but in that case we need to test on the value of the
coordinates in x:

Python code
def u0_boundary(x):

return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] == 1

As for the formula in Expression objects, x in the u0_boundary function represents a point in space
with coordinates x[0], x[1], etc. Comparing floating-point values using an exact match test with == is
not good programming practice, because small round-off errors in the computations of the x values
could make a test x[0] == 1 become false even though x lies on the boundary. A better test is to
check for equality with a tolerance:
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Python code
def u0_boundary(x):

tol = 1E-15

return abs(x[0]) < tol or \

abs(x[1]) < tol or \

abs(x[0] - 1) < tol or \

abs(x[1] - 1) < tol

Before defining a(u, v) and L(v) we have to specify the f function:

Python code
f = Expression("-6")

When f is constant over the domain, f can be more efficiently represented as a Constant object:

Python code
f = Constant(-6.0)

Now we have all the objects we need in order to specify this problem’s a(u, v) and L(v):

Python code
a = inner(nabla_grad(u), nabla_grad(v))*dx

L = f*v*dx

In essence, these two lines specify the PDE to be solved. Note the very close correspondence between
the Python syntax and the mathematical formulas ∇u · ∇v dx and f v dx. This is a key strength of
FEniCS: the formulas in the variational formulation translate directly to very similar Python code, a
feature that makes it easy to specify PDE problems with lots of PDEs and complicated terms in the
equations. The language used to express weak forms is called UFL (Unified Form Language) and is
an integral part of FEniCS.

Instead of nabla_grad we could also just have written grad in the examples in this tutorial.
However, when taking gradients of vector fields, grad and nabla_grad differ. The latter is consistent
with the tensor algebra commonly used to derive vector and tensor PDEs, where ∇ acts as a vector
operator, and therefore this author prefers to always use nabla_grad.

Having a and L defined, and information about essential (Dirichlet) boundary conditions in bc, we
can compute the solution, a finite element function u, by

Python code
u = Function(V)

solve(a == L, u, bc)

Some prefer to replace a and L by an equation variable, which is accomplished by this equivalent
code:

Python code
equation = inner(nabla_grad(u), nabla_grad(v))*dx == f*v*dx

u = Function(V)

solve(equation, u, bc)

Note that we first defined the variable u as a TrialFunction and used it to represent the unknown
in the form a. Thereafter, we redefined u to be a Function object representing the solution; that is, the
computed finite element function u. This redefinition of the variable u is possible in Python and often
done in FEniCS applications. The two types of objects that u refers to are equal from a mathematical
point of view, and hence it is natural to use the same variable name for both objects. In a program,
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Figure 1.1: Plot of the solution in the
first FEniCS example. (A bounding
box around the mesh is added by
pressing o in the plot window, and
the mouse buttons are then used to
rotate and move the plot, see Sec-
tion 1.1.8.)

however, TrialFunction objects must always be used for the unknowns in the problem specification
(the form a), while Function objects must be used for quantities that are computed (known).

The simplest way of quickly looking at u and the mesh is to say

Python code
plot(u)

plot(mesh)

interactive()

The interactive() call is necessary for the plot to remain on the screen. With the left, middle, and
right mouse buttons you can rotate, translate, and zoom (respectively) the plotted surface to better
examine what the solution looks like. Figures 1.1 and 1.2 display the resulting u function and the
finite element mesh, respectively.

It is also possible to dump the computed solution to file, e.g., in the VTK format:

Python code
file = File("poisson.pvd")

file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say ParaView or VisIt. The
plot function is intended for quick examination of the solution during program development. More
in-depth visual investigations of finite element solutions will normally benefit from using highly
professional tools such as ParaView and VisIt.

The next three sections deal with some technicalities about specifying the solution method for
linear systems (so that you can solve large problems) and examining array data from the computed
solution (so that you can check that the program is correct). These technicalities are scattered around
in forthcoming programs. However, the impatient reader who is more interested in seeing the
previous program being adapted to a real physical problem, and play around with some interesting
visualizations, can safely jump to Section 1.1.7. Information in the intermediate sections can be studied
on demand.

1.1.4 Controlling the solution process

Sparse LU decomposition (Gaussian elimination) is used by default to solve linear systems of equations
in FEniCS programs. This is a very robust and recommended method for a few thousand unknowns
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Figure 1.2: Plot of the mesh in the
first FEniCS example.

in the equation system, and may hence be the method of choice in many 2D and smaller 3D problems.
However, sparse LU decomposition becomes slow and memory demanding in large problems. This
fact forces the use of iterative methods, which are faster and require much less memory.

Preconditioned Krylov solvers is a type of popular iterative methods that are easily accessible in
FEniCS programs. The Poisson equation results in a symmetric, positive definite coefficient matrix, for
which the optimal Krylov solver is the Conjugate Gradient (CG) method. Incomplete LU factorization
(ILU) is a popular and robust all-round preconditioner, so let us try the CG–ILU pair:

Python code
solve(a == L, u, bc)

solver_parameters={"linear_solver": "cg",

"preconditioner": "ilu"})

# Alternative syntax

solve(a == L, u, bc,

solver_parameters=dict(linear_solver="cg",

preconditioner="ilu"))

Section 1.7.4 lists the most popular choices of Krylov solvers and preconditioners available in FEniCS.
The actual CG and ILU implementations that are brought into action depends on the choice of

linear algebra package. FEniCS interfaces several linear algebra packages, called linear algebra backends
in FEniCS terminology. PETSc is the default choice if DOLFIN is compiled with PETSc, otherwise
uBLAS. Epetra (Trilinos) and MTL4 are two other supported backends. Which backend to apply can
be controlled by setting

Python code
parameters["linear_algebra_backend"] = backendname

where backendname is a string, either "PETSc", "uBLAS", "Epetra", or "MTL4". All these backends offer
high-quality implementations of both iterative and direct solvers for linear systems of equations.

A common platform for FEniCS users is Ubuntu Linux. The FEniCS distribution for Ubuntu
contains PETSc, making this package the default linear algebra backend. The default solver is sparse
LU decomposition ("lu"), and the actual software that is called is then the sparse LU solver from
UMFPACK (which PETSc has an interface to).

We will normally like to control the tolerance in the stopping criterion and the maximum number
of iterations when running an iterative method. Such parameters can be set by accessing the global
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parameter database, which is called parameters and behaves as a nested dictionary. Write

Python code
info(parameters, True)

to list all parameters and their default values in the database. The nesting of parameter sets is indicated
through indentation in the output from info. According to this output, the relevant parameter set is
named "krylov_solver", and the parameters are set like this:

Python code
prm = parameters["krylov_solver"] # short form

prm["absolute_tolerance"] = 1E-10

prm["relative_tolerance"] = 1E-6

prm["maximum_iterations"] = 1000

Stopping criteria for Krylov solvers usually involve the norm of the residual, which must be smaller
than the absolute tolerance parameter and smaller than the relative tolerance parameter times the
initial residual.

To see the number of actual iterations to reach the stopping criterion, we can insert

Python code
set_log_level(PROGRESS)

# or

set_log_level(DEBUG)

A message with the equation system size, solver type, and number of iterations arises from specifying
the argument PROGRESS, while DEBUG results in more information, including CPU time spent in the
various parts of the matrix assembly and solve process.

The complete solution process with control of the solver parameters now contains the statements

Python code
prm = parameters["krylov_solver"] # short form

prm["absolute_tolerance"] = 1E-10

prm["relative_tolerance"] = 1E-6

prm["maximum_iterations"] = 1000

set_log_level(PROGRESS)

solve(a == L, u, bc,

solver_parameters={"linear_solver": "cg",

"preconditioner": "ilu"})

The demo program d2_p2D.py in the stationary/poisson directory incorporates the above shown
control of the linear solver and precnditioner, but is otherwise similar to the previous d1_p2D.py

program.
We remark that default values for the global parameter database can be defined in an XML file, see

the example file dolfin_parameters.xml in the directory stationary/poisson. If such a file is found
in the directory where a FEniCS program is run, this file is read and used to initialize the parameters

object. Otherwise, the file .config/fenics/dolfin_parameters.xml in the user’s home directory is
read, if it exists. The XML file can also be in gzip’ed form with the extension .xml.gz.

1.1.5 Linear variational problem and solver objects

The solve(a == L, u, bc) call is just a compact syntax alternative to a slightly more comprehensive
specification of the variational equation and the solution of the associated linear system. This
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alternative syntax is used in a lot of FEniCS applications and will also be used later in this tutorial, so
we show it already now:

Python code
u = Function(V)

problem = LinearVariationalProblem(a, L, u, bc)

solver = LinearVariationalSolver(problem)

solver.solve()

Many objects have an attribute parameters corresponding to a parameter set in the global
parameters database, but local to the object. Here, solver.parameters play that role. Setting the CG
method with ILU preconditiong as solution method and specifying solver-specific parameters can be
done like this:

Python code
solver.parameters["linear_solver"] = "cg"

solver.parameters["preconditioner"] = "ilu"

cg_prm = solver.parameters["krylov_solver"] # short form

cg_prm["absolute_tolerance"] = 1E-7

cg_prm["relative_tolerance"] = 1E-4

cg_prm["maximum_iterations"] = 1000

Calling info(solver.parameters, True) lists all the available parameter sets with default values
for each parameter. Settings in the global parameters database are propagated to parameter sets in
individual objects, with the possibility of being overwritten as done above.

The d3_p2D.py program modifies the d2_p2D.py file to incorporate objects for the variational
problem and solver.

1.1.6 Examining the discrete solution

We know that, in the particular boundary-value problem of Section 1.1.3, the computed solution u
should equal the exact solution at the vertices of the cells. An important extension of our first program
is therefore to examine the computed values of the solution, which is the focus of the present section.

A finite element function like u is expressed as a linear combination of basis functions φj, spanning
the space V:

N

∑
j=1

Ujφj. (1.14)

By writing solve(a == L, u, bc) in the program, a linear system will be formed from a and L, and
this system is solved for the U1, . . . , UN values. The U1, . . . , UN values are known as degrees of freedom
of u. For Lagrange elements (and many other element types) Uk is simply the value of u at the node
with global number k. (The nodes and cell vertices coincide for linear Lagrange elements, while for
higher-order elements there may be additional nodes at the facets and in the interior of cells.)

Having u represented as a Function object, we can either evaluate u(x) at any vertex x in the mesh,
or we can grab all the values Uj directly by

Python code
u_nodal_values = u.vector()

The result is a DOLFIN Vector object, which is basically an encapsulation of the vector object used in
the linear algebra package that is used to solve the linear system arising from the variational problem.
Since we program in Python it is convenient to convert the Vector object to a standard numpy array for
further processing:
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Python code
u_array = u_nodal_values.array()

With numpy arrays we can write “MATLAB-like” code to analyze the data. Indexing is done with
square brackets: u_array[i], where the index i always starts at 0.

Mesh information can be gathered from the mesh object, e.g.,

• mesh.coordinates() returns the coordinates of the vertices as an M× d numpy array, M being
the number of vertices in the mesh and d being the number of space dimensions,

• mesh.num_cells() returns the number of cells (triangles) in the mesh,

• mesh.num_vertices() returns the number of vertices in the mesh (with our choice of linear
Lagrange elements this equals the number of nodes),

• str(mesh) returns a short “pretty print” description of the mesh, e.g.,

Output
<Mesh of topological dimension 2 (triangles) with

16 vertices and 18 cells, ordered>

and print mesh is actually the same as print str(mesh).

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh in a terminal window
will give a list of methods1 that can be called through any Mesh object. In fact, pydoc dolfin.X shows
the documentation of any DOLFIN name X.

Writing out the solution on the screen can now be done by a simple loop:

Python code
coor = mesh.coordinates()

if mesh.num_vertices() == len(u_array):

for i in range(mesh.num_vertices()):

print ’u(%8g,%8g) = %g’ % (coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like this:

Output
u( 0, 0) = 1

u(0.166667, 0) = 1.02778

u(0.333333, 0) = 1.11111

u( 0.5, 0) = 1.25

u(0.666667, 0) = 1.44444

u(0.833333, 0) = 1.69444

u( 1, 0) = 2

For Lagrange elements of degree higher than one, the vertices do not correspond to all the nodal
points and the if-test fails.

For verification purposes we want to compare the values of the computed u at the nodes (given
by u_array) with the exact solution u0 evaluated at the nodes. The difference between the computed
and exact solution should be less than a small tolerance at all the nodes. The Expression object
u0 can be evaluated at any point x by calling u0(x). Specifically, u0(coor[i]) returns the value of
u0 at the vertex or node with global number i. Alternatively, we can make a finite element field
u_e, representing the exact solution, whose values at the nodes are given by the u0 function. With

1A method in Python (and other languages supporting the class construct) is simply a function in a class.
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mathematics, ue = ∑N
j=1 Ejφj, where Ej = u0(xj, yj), (xj, yj) being the coordinates of node number j.

This process is known as interpolation. FEniCS has a function for performing the operation:

Python code
u_e = interpolate(u0, V)

The maximum error can now be computed as

Python code
u_e_array = u_e.vector().array()

print "Max error:", numpy.abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10−16).
To demonstrate the use of point evaluations of Function objects, we write out the computed u at

the center point of the domain and compare it with the exact solution:

Python code
center = (0.5, 0.5)

print "numerical u at the center point:", u(center)

print "exact u at the center point:", u0(center)

Trying a 3× 3 mesh, the output from the previous snippet becomes

Output
numerical u at the center point: [ 1.83333333]

exact u at the center point: [ 1.75]

The discrepancy is due to the fact that the center point is not a node in this particular mesh, but a
point in the interior of a cell, and u varies linearly over the cell while u0 is a quadratic function.

We have seen how to extract the nodal values in a numpy array. If desired, we can adjust the nodal
values too. Say we want to normalize the solution such that the maximum value is 1. Then we must
divide all Uj values by max{U1, . . . , UN}. The following snippet performs the task:

Python code
max_u = u_array.max()

u_array /= max_u

u.vector()[:] = u_array

u.vector().set_local(u_array) # alternative

print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into u’s Vector object. The
/= operator implies an in-place modification of the object on the left-hand side: all elements of the
u_array are divided by the value max_u. Alternatively, one could write u_array = u_array/max_u,
which implies creating a new array on the right-hand side and assigning this array to the name
u_array.

A call like u.vector().array() returns a copy of the data in u.vector(). One must therefore
never perform assignments like u.vector.array()[:] = ..., but instead extract the numpy array
(that is, a copy), manipulate it, and insert it back with u.vector()[:] = or u.set_local(...).

All the code in this subsection can be found in the file d4_p2D.py in the stationary/poisson

directory.

1.1.7 Solving a real physical problem

Perhaps you are not particularly amazed by viewing the simple surface of u in the test problem from
Section 1.1.3. However, solving a real physical problem with a more interesting and amazing solution
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on the screen is only a matter of specifying a more exciting domain, boundary condition, and/or
right-hand side f .

One possible physical problem regards the deflection D(x, y) of an elastic circular membrane with
radius R, subject to a localized perpendicular pressure force, modeled as a Gaussian function. The
appropriate PDE model is

−T∆D = p(x, y) in Ω = {(x, y) | x2 + y2 6 R}, (1.15)

with

p(x, y) =
A

2πσ
exp

(
−1

2

(
x− x0

σ

)2
− 1

2

(
y− y0

σ

)2
)

. (1.16)

Here, T is the tension in the membrane (constant), p is the external pressure load, A the amplitude
of the pressure, (x0, y0) the localization of the Gaussian pressure function, and σ the “width” of this
function. The boundary of the membrane has no deflection, implying D = 0 as boundary condition.

For scaling and verification it is convenient to simplify the problem to find an analytical solution.
In the limit σ → ∞, p → A/(2πσ), which allows us to integrate an axi–symmetric version of the
equation in the radial coordinate r ∈ [0, R] and obtain D(r) = (r2 − R2)A/(8πσT). This result gives a
rough estimate of the characteristic size of the deflection: |D(0)| = AR2/(8πσT), which can be used to
scale the deflection. With R as characteristic length scale, we can derive the equivalent dimensionless
problem on the unit circle,

−∆w = f , (1.17)

with w = 0 on the boundary and with

f (x, y) = 4 exp

(
−1

2

(
Rx− x0

σ

)2
− 1

2

(
Ry− y0

σ

)2
)

. (1.18)

For notational convenience we have dropped introducing new symbols for the scaled coordinates in
(1.18). Now D is related to w through D = AR2w/(8πσT).

Let us list the modifications of the d1_p2D.py program that are needed to solve this membrane
problem:

1. Initialize T, A, R, x0, y0, and σ,

2. create a mesh over the unit circle,

3. make an expression object for the scaled pressure function f ,

4. define the a and L formulas in the variational problem for w and compute the solution,

5. plot the mesh, w, and f ,

6. write out the maximum real deflection D,

Some suitable values of T, A, R, x0, y0, and σ are

Python code
T = 10.0 # tension

A = 1.0 # pressure amplitude

R = 0.3 # radius of domain

theta = 0.2

x0 = 0.6*R*cos(theta)

y0 = 0.6*R*sin(theta)

sigma = 0.025
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A mesh over the unit circle can be created by

Python code
mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction.
The function f is represented by an Expression object. There are many physical parameters in

the formula for f that enter the expression string and these parameters must have their values set by
keyword arguments:

Python code
f = Expression("4*exp(-0.5*(pow((R*x[0] - x0)/sigma, 2)) "\

" - 0.5*(pow((R*x[1] - y0)/sigma, 2)))",

R=R, x0=x0, y0=y0, sigma=sigma)

The coordinates in Expression objects must be a vector with indices 0, 1, and 2, and with the name x.
Otherwise we are free to introduce names of parameters as long as these are given default values by
keyword arguments. All the parameters initialized by keyword arguments can at any time have their
values modified. For example, we may set

Python code
f.sigma = 50

f.x0 = 0.3

It would be of interest to visualize f along with w so that we can examine the pressure force and its
response. We must then transform the formula (Expression) to a finite element function (Function).
The most natural approach is to construct a finite element function whose degrees of freedom (values
at the nodes in this case) are calculated from f . That is, we interpolate f (see Section 1.1.6):

Python code
f = interpolate(f, V)

Calling plot(f) will produce a plot of f . Note that the assignment to f destroys the previous
Expression object f, so if it is of interest to still have access to this object another name must be used
for the Function object returned by interpolate.

We need some evidence that the program works, and to this end we may use the analytical solution
listed above for the case σ→ ∞. In scaled coordinates the solution reads

w(x, y) = 1− x2 − y2.

Practical values for an infinite σ may be 50 or larger, and in such cases the program will report the
maximum deviation between the computed w and the (approximate) exact we.

Note that the variational formulation remains the same as in the program from Section 1.1.3, except
that u is replaced by w and u0 = 0. The final program is found in the file membrane1.py, located in
the stationary/poisson directory, and also listed below. We have inserted capabilities for iterative
solution methods and hence large meshes (Section 1.1.4), used objects for the variational problem and
solver (Section 1.1.5), and made numerical comparison of the numerical and (approximate) analytical
solution (Section 1.1.6).

Python code
from dolfin import *

# Set pressure function:
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T = 10.0 # tension

A = 1.0 # pressure amplitude

R = 0.3 # radius of domain

theta = 0.2

x0 = 0.6*R*cos(theta)

y0 = 0.6*R*sin(theta)

sigma = 0.025

#sigma = 50 # large value for verification

n = 40 # approx no of elements in radial direction

mesh = UnitCircle(n)

V = FunctionSpace(mesh, "Lagrange", 1)

# Define boundary condition w=0

def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

# Define variational problem

w = TrialFunction(V)

v = TestFunction(V)

a = inner(nabla_grad(w), nabla_grad(v))*dx

f = Expression("4*exp(-0.5*(pow((R*x[0] - x0)/sigma, 2)) "\

" - 0.5*(pow((R*x[1] - y0)/sigma, 2)))",

R=R, x0=x0, y0=y0, sigma=sigma)

L = f*v*dx

# Compute solution

w = Function(V)

problem = LinearVariationalProblem(a, L, w, bc)

solver = LinearVariationalSolver(problem)

solver.parameters["linear_solver"] = "cg"

solver.parameters["preconditioner"] = "ilu"

solver.solve()

# Plot scaled solution, mesh and pressure

plot(mesh, title="Mesh over scaled domain")

plot(w, title="Scaled deflection")

f = interpolate(f, V)

plot(f, title="Scaled pressure")

# Find maximum real deflection

max_w = w.vector().array().max()

max_D = A*max_w/(8*pi*sigma*T)

print "Maximum real deflection is", max_D

# Verification for "flat" pressure (large sigma)

if sigma >= 50:

w_exact = Expression("1 - x[0]*x[0] - x[1]*x[1]")

w_e = interpolate(w_exact, V)

dev = numpy.abs(w_e.vector().array() - w.vector().array()).max()

print ’sigma=%g: max deviation=%e’ % dev

# Should be at the end

interactive()

Choosing a small width σ (say 0.01) and a location (x0, y0) toward the circular boundary (say
(0.6R cos θ, 0.6R sin θ) for any θ ∈ [0, 2π]), may produce an exciting visual comparison of w and f that
demonstrates the very smoothed elastic response to a peak force (or mathematically, the smoothing
properties of the inverse of the Laplace operator). One needs to experiment with the mesh resolution
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to get a smooth visual representation of f . You are strongly encouraged to play around with the plots
and different mesh resolutions.

1.1.8 Quick visualization with VTK

As we go along with examples it is fun to play around with plot commands and visualize what is
computed. This section explains some useful visualization features.

The plot(u) command launches a FEniCS component called Viper, which applies the VTK package
to visualize finite element functions. Viper is not a full-fledged, easy-to-use front-end to VTK (like
Mayavi2, ParaView, or VisIt), but rather a thin layer on top of VTK’s Python interface, allowing us
to quickly visualize a DOLFIN function or mesh, or data in plain Numerical Python arrays, within
a Python program. Viper is ideal for debugging, teaching, and initial scientific investigations. The
visualization can be interactive, or you can steer and automate it through program statements. More
advanced and professional visualizations are usually better done with advanced tools like MayaVi2,
ParaView, or VisIt.

We have made a program membrane1v.py for the membrane deflection problem in Section 1.1.7
and added various demonstrations of Viper capabilities. You are encouraged to play around with
membrane1v.py and modify the code as you read about various features.

The plot function can take additional arguments, such as a title of the plot, or a specification of a
wireframe plot (elevated mesh) instead of a colored surface plot:

Python code
plot(mesh, title="Finite element mesh")

plot(w, wireframe=True, title="solution")

The three mouse buttons can be used to rotate, translate, and zoom the surface. Pressing h in the
plot window makes a printout of several key bindings that are available in such windows. For example,
pressing m in the mesh plot window dumps the plot of the mesh to an Encapsulated PostScript (.eps)
file, while pressing i saves the plot in PNG format. All file names are automatically generated as
simulationX.eps, where X is a counter 0000, 0001, 0002, etc., being increased every time a new plot
file in that format is generated (the extension of PNG files is .png instead of .eps). Pressing o adds a
red outline of a bounding box around the domain.

One can alternatively control the visualization from the program code directly. This is done
through a Viper object returned from the plot command. Let us grab this object and use it to 1) tilt
the camera −65 degrees in the latitude direction, 2) add x and y axes, 3) change the default name of
the plot files, 4) change the color scale, and 5) write the plot to a PNG and an EPS file. Here is the
code:

Python code
viz_w = plot(w,

wireframe=False,

title="Scaled membrane deflection",

rescale=False,

axes=True, # include axes

basename="deflection", # default plotfile name

)

viz_w.elevate(-65) # tilt camera -65 degrees (latitude dir)

viz_w.set_min_max(0, 0.5*max_w) # color scale

viz_w.update(w) # bring settings above into action

viz_w.write_png("deflection.png")

viz_w.write_ps("deflection", format="eps")
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Figure 1.3: Plot of the deflection of
a membrane.
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The format argument in the latter line can also take the values "ps" for a standard PostScript file and
"pdf" for a PDF file. Note the necessity of the viz_w.update(w) call – without it we will not see the
effects of tilting the camera and changing the color scale. Figure 1.3 shows the resulting scalar surface.

1.1.9 Computing derivatives

In Poisson and many other problems the gradient of the solution is of interest. The computation is in
principle simple: since u = ∑N

j=1 Ujφj, we have that

∇u =
N

∑
j=1

Uj∇φj. (1.19)

Given the solution variable u in the program, its gradient is obtained by grad(u) or nabla_grad(u).
However, the gradient of a piecewise continuous finite element scalar field is a discontinuous vector
field since the φj has discontinuous derivatives at the boundaries of the cells. For example, using
Lagrange elements of degree 1, u is linear over each cell, and the numerical ∇u becomes a piecewise
constant vector field. On the contrary, the exact gradient is continuous. For visualization and data
analysis purposes we often want the computed gradient to be a continuous vector field. Typically, we
want each component of ∇u to be represented in the same way as u itself. To this end, we can project
the components of ∇u onto the same function space as we used for u. This means that we solve
w = ∇u approximately by a finite element method. This process is known as projection. Looking at
the component ∂u/∂x of the gradient, we project the (discrete) derivative ∑j Uj∂φj/∂x onto a function
space with basis φ1, φ2, . . . such that the derivative in this space is expressed by the standard sum
∑j Ūjφj, for suitable (new) coefficients Ūj.

The variational problem for w reads: find w ∈ V(g) such that

a(w, v) = L(v) ∀ v ∈ V̂(g), (1.20)
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Figure 1.4: Example of visualizing
the vector field ∇u by arrows at the
nodes.

where

a(w, v) =
∫

Ω
w · v dx, (1.21)

L(v) =
∫

Ω
∇u · v dx. (1.22)

The function spaces V(g) and V̂(g) (with the superscript g denoting “gradient”) are vector versions of
the function space for u, with boundary conditions removed (if V is the space we used for u, with no
restrictions on boundary values, V(g) = V̂(g) = [V]d, where d is the number of space dimensions).
For example, if we used piecewise linear functions on the mesh to approximate u, the variational
problem for w corresponds to approximating each component field of w by piecewise linear functions.

The variational problem for the vector field w, called grad_u in the code, is easy to solve in FEniCS:

Python code
V_g = VectorFunctionSpace(mesh, "Lagrange", 1)

w = TrialFunction(V_g)

v = TestFunction(V_g)

a = inner(w, v)*dx

L = inner(grad(u), v)*dx

grad_u = Function(V_g)

solve(a == L, grad_u)

plot(grad_u, title="grad(u)")

The boundary condition argument to solve is dropped since there are no essential boundary conditions
in this problem. The new thing is basically that we work with a VectorFunctionSpace, since the
unknown is now a vector field, instead of the FunctionSpace object for scalar fields. Figure 1.4 shows
an example of how Viper can visualize such a vector field.

The scalar component fields of the gradient can be extracted as separate fields and, e.g., visualized:

Python code
grad_u_x, grad_u_y = grad_u.split(deepcopy=True) # extract components

plot(grad_u_x, title="x-component of grad(u)")

plot(grad_u_y, title="y-component of grad(u)")
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The deepcopy=True argument signifies a deep copy, which is a general term in computer science
implying that a copy of the data is returned. (The opposite, deepcopy=False, means a shallow copy,
where the returned objects are just pointers to the original data.)

The grad_u_x and grad_u_y variables behave as Function objects. In particular, we can extract the
underlying arrays of nodal values by

Python code
grad_u_x_array = grad_u_x.vector().array()

grad_u_y_array = grad_u_y.vector().array()

The degrees of freedom of the grad_u vector field can also be reached by

Python code
grad_u_array = grad_u.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component of the gradient is
stored in the first part, then the degrees of freedom of the y component, and so on.

The program d5_p2D.py extends the code d4_p2D.py from Section 1.1.6 with computations and
visualizations of the gradient. Examining the arrays grad_u_x_array and grad_u_y_array, or looking
at the plots of grad_u_x and grad_u_y, quickly reveals that the computed grad_u field does not
equal the exact gradient (2x, 4y) in this particular test problem where u = 1 + x2 + 2y2. There are
inaccuracies at the boundaries, arising from the approximation problem for w. Increasing the mesh
resolution shows, however, that the components of the gradient vary linearly as 2x and 4y in the
interior of the mesh (as soon as we are one element away from the boundary). See Section 1.1.8 for
illustrations of this phenomenon.

Projecting some function onto some space is a very common operation in finite element programs.
The manual steps in this process have therefore been collected in a utility function project(q, W),
which returns the projection of some Function or Expression object named q onto the FunctionSpace

or VectorFunctionSpace named W. Specifically, the previous code for projecting each component of
grad(u) onto the same space that we use for u, can now be done by a one–line call:

Python code
grad_u = project(grad(u), VectorFunctionSpace(mesh, "Lagrange", 1))

The applications of projection are many, including turning discontinuous gradient fields into con-
tinuous ones, comparing higher- and lower-order function approximations, and transforming a
higher-order finite element solution down to a piecewise linear field, which is required by many
visualization packages.

1.1.10 A variable-coefficient Poisson problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in the boundary-value
problem

−∇ · [p(x, y)∇u(x, y)] = f (x, y) in Ω,

u(x, y) = u0(x, y) on ∂Ω.
(1.23)

We shall quickly demonstrate that this simple extension of our model problem only requires an equally
simple extension of the FEniCS program.

Let us continue to use our favorite solution u(x, y) = 1+ x2 + 2y2 and then prescribe p(x, y) = x+ y.
It follows that u0(x, y) = 1 + x2 + 2y2 and f (x, y) = −8x− 10y.

What are the modifications we need to do in the d4_p2D.py program from Section 1.1.6?
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1. f must be an Expression since it is no longer a constant,

2. a new Expression p must be defined for the variable coefficient,

3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in (1.23) and integrating by
parts now results in ∫

Ω
p∇u · ∇v dx−

∫
∂Ω

p
∂u
∂n

v ds =
∫

Ω
f v dx. (1.24)

The function spaces for u and v are the same as in Section 1.1.2, implying that the boundary integral
vanishes since v = 0 on ∂Ω where we have Dirichlet conditions. The weak form a(u, v) = L(v) then
has

a(u, v) =
∫

Ω
p∇u · ∇v dx, (1.25)

L(v) =
∫

Ω
f v dx. (1.26)

In the code from Section 1.1.3 we must replace

Python code
a = inner(nabla_grad(u), nabla_grad(v))*dx

by

Python code
a = p*inner(nabla_grad(u), nabla_grad(v))*dx

The definitions of p and f read

Python code
p = Expression("x[0] + x[1]")

f = Expression("-8*x[0] - 10*x[1]")

No additional modifications are necessary. The complete code can be found in in the file
vcp2D.py (variable-coefficient Poisson problem in 2D). You can run it and confirm that it recov-
ers the exact u at the nodes.

The flux −p∇u may be of particular interest in variable-coefficient Poisson problems as it often
has an interesting physical significance. As explained in Section 1.1.9, we normally want the piecewise
discontinuous flux or gradient to be approximated by a continuous vector field, using the same
elements as used for the numerical solution u. The approximation now consists of solving w = −p∇u
by a finite element method: find w ∈ V(g) such that

a(w, v) = L(v) ∀ v ∈ V̂(g), (1.27)

where

a(w, v) =
∫

Ω
w · v dx, (1.28)

L(v) =
∫

Ω
(−p∇u) · v dx. (1.29)

This problem is identical to the one in Section 1.1.9, except that p enters the integral in L.
The relevant Python statements for computing the flux field take the form
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Python code
V_g = VectorFunctionSpace(mesh, "Lagrange", 1)

w = TrialFunction(V_g)

v = TestFunction(V_g)

a = inner(w, v)*dx

L = inner(-p*grad(u), v)*dx

flux = Function(V_g)

solve(a == L, flux)

The following call to project is equivalent to the above statements:

Python code
flux = project(-p*nabla_grad(u),

VectorFunctionSpace(mesh, "Lagrange", 1))

Plotting the flux vector field is naturally as easy as plotting the gradient in Section 1.1.9:

Python code
plot(flux, title="flux field")

flux_x, flux_y = flux.split(deepcopy=True) # extract components

plot(flux_x, title="x-component of flux (-p*grad(u))")

plot(flux_y, title="y-component of flux (-p*grad(u))")

For data analysis of the nodal values of the flux field we can grab the underlying numpy arrays:

Python code
flux_x_array = flux_x.vector().array()

flux_y_array = flux_y.vector().array()

The program vcp2D.py contains in addition some plots, including a curve plot comparing flux_x

and the exact counterpart along the line y = 1/2. The associated programming details related to this
visualization are explained in Section 1.1.12.

1.1.11 Computing functionals

After the solution u of a PDE is computed, we occasionally want to compute functionals of u, for
example,

1
2
||∇u||2 ≡ 1

2

∫
Ω
∇u · ∇u dx, (1.30)

which often reflects some energy quantity. Another frequently occurring functional is the error

||ue − u|| =
(∫

Ω
(ue − u)2 dx

)1/2
, (1.31)

where ue is the exact solution. The error is of particular interest when studying convergence properties.
Sometimes the interest concerns the flux out of a part Γ of the boundary ∂Ω,

F = −
∫

Γ
p∇u · ds, (1.32)

where n is an outward unit normal at Γ and p is a coefficient (see the problem in Section 1.1.10 for a
specific example). All these functionals are easy to compute with FEniCS, and this section describes
how it can be done.
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Energy functional. The integrand of the energy functional (1.30) is described in the UFL language in
the same manner as we describe weak forms:

Python code
energy = 0.5*inner(grad(u), grad(u))*dx

E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the integration to subdomains,
or parts of the boundary, by using a mesh function to mark the subdomains (this technique will be
explained in Section 1.5.3). The program membrane2.py carries out the computation of the elastic
energy

1
2
||T∇D||2 =

1
2

(
AR
8πσ

)2
||∇w||2 (1.33)

in the membrane problem from Section 1.1.7.

Convergence estimation. To illustrate error computations and convergence of finite element solutions,
we modify the d5_p2D.py program from Section 1.1.9 and specify a more complicated solution,

u(x, y) = sin(ωπx) sin(ωπy) (1.34)

on the unit square. This choice implies f (x, y) = 2ω2π2u(x, y). With ω restricted to an integer it
follows that u0 = 0. We must define the appropriate boundary conditions, the exact solution, and the
f function in the code:

Python code
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

omega = 1.0

u_e = Expression("sin(omega*pi*x[0])*sin(omega*pi*x[1])",

omega=omega)

f = 2*pi**2*omega**2*u_e

The computation of (1.31) can be done by

Python code
error = (u - u_e)**2*dx

E = sqrt(assemble(error))

Here, u_e will be interpolated onto the function space V. This implies that the exact solution used
in the integral will vary linearly over the cells, and not as a sine function, if V corresponds to linear
Lagrange elements. This situation may yield a smaller error u - u_e than what is actually true.

More accurate representation of the exact solution is easily achieved by interpolating the formula
onto a space defined by higher-order elements, say of third degree:

Python code
Ve = FunctionSpace(mesh, "Lagrange", degree=3)

u_e_Ve = interpolate(u_e, Ve)

error = (u - u_e_Ve)**2*dx

E = sqrt(assemble(error))
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To achieve complete mathematical control of which function space the computations are carried out
in, we can explicitly interpolate u too:

Python code
u_Ve = interpolate(u, Ve)

error = (u_Ve - u_e_Ve)**2*dx

The square in the expression for error will be expanded and lead to a lot of terms that almost
cancel when the error is small, with the potential of introducing significant round-off errors. The
function errornorm is available for avoiding this effect by first interpolating u and u_e to a space with
higher-order elements, then subtracting the degrees of freedom, and then performing the integration
of the error field. The usage is simple:

Python code
E = errornorm(u_e, u, normtype="L2", degree=3)

It is illustrative to look at the short implementation of errornorm:

Python code
def errornorm(u_e, u, Ve):

u_Ve = interpolate(u, Ve)

u_e_Ve = interpolate(u_e, Ve)

e_Ve = Function(Ve)

# Subtract degrees of freedom for the error field

e_Ve.vector()[:] = u_e_Ve.vector().array() - \

u_Ve.vector().array()

error = e_Ve**2*dx

return sqrt(assemble(error))

The errornorm procedure turns out to be identical to computing the expression (u_e - u)**2*dx

directly in the present test case.
Sometimes it is of interest to compute the error of the gradient field: ||∇(u− ue)|| (often referred

to as the H1 seminorm of the error). Given the error field e_Ve above, we simply write

Python code
H1seminorm = sqrt(assemble(inner(grad(e_Ve), grad(e_Ve))*dx))

Finally, we remove all plot calls and printouts of u values in the original program, and collect the
computations in a function:

Python code
def compute(nx, ny, degree):

mesh = UnitSquare(nx, ny)

V = FunctionSpace(mesh, "Lagrange", degree=degree)

...

Ve = FunctionSpace(mesh, "Lagrange", degree=5)

E = errornorm(u_e, u, Ve)

return E

Calling compute for finer and finer meshes enables us to study the convergence rate. Define the
element size h = 1/n, where n is the number of divisions in x and y direction (nx=ny in the code).
We perform experiments with h0 > h1 > h2 · · · and compute the corresponding errors E0, E1, E3
and so forth. Assuming Ei = Chr

i for unknown constants C and r, we can compare two consecutive
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experiments, Ei = Chr
i and Ei−1 = Chr

i−1, and solve for r:

r =
ln(Ei/Ei−1)

ln(hi/hi−1)
. (1.35)

The r values should approach the expected convergence rate degree+1 as i increases.
The procedure above can easily be turned into Python code:

Python code
import sys

degree = int(sys.argv[1]) # read degree as 1st command-line arg

h = [] # element sizes

E = [] # errors

for nx in [4, 8, 16, 32, 64, 128, 264]:

h.append(1.0/nx)

E.append(compute(nx, nx, degree))

# Convergence rates

from math import log as ln # (log is a dolfin name too)

for i in range(1, len(E)):

r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])

print "h=%10.2E r=%.2f" % (h[i], r)

The resulting program has the name d6_p2D.py and computes error norms in various ways. Running
this program for elements of first degree and ω = 1 yields the output

Output
h=1.25E-01 E=3.25E-02 r=1.83

h=6.25E-02 E=8.37E-03 r=1.96

h=3.12E-02 E=2.11E-03 r=1.99

h=1.56E-02 E=5.29E-04 r=2.00

h=7.81E-03 E=1.32E-04 r=2.00

h=3.79E-03 E=3.11E-05 r=2.00

That is, we approach the expected second-order convergence of linear Lagrange elements as the
meshes become sufficiently fine.

Running the program for second-degree elements results in the expected value r = 3,

Output
h=1.25E-01 E=5.66E-04 r=3.09

h=6.25E-02 E=6.93E-05 r=3.03

h=3.12E-02 E=8.62E-06 r=3.01

h=1.56E-02 E=1.08E-06 r=3.00

h=7.81E-03 E=1.34E-07 r=3.00

h=3.79E-03 E=1.53E-08 r=3.00

However, using (u - u_e)**2 for the error computation, which implies interpolating u_e onto the
same space as u, results in r = 4 (!). This is an example where it is important to interpolate u_e to a
higher-order space (polynomials of degree 3 are sufficient here) to avoid computing a too optimistic
convergence rate.

Running the program for third-degree elements results in the expected value r = 4:

Output
h=1.25E-01 r=4.09

h=6.25E-02 r=4.03

h=3.12E-02 r=4.01

h=1.56E-02 r=4.00

h=7.81E-03 r=4.00
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Checking convergence rates is the next best method for verifying PDE codes (the best being exact
recovery of a solution as in Section 1.1.6 and many other places in this tutorial).

Flux functionals. To compute flux integrals like (1.32) we need to define the n vector, referred to as
facet normal in FEniCS. If Γ is the complete boundary we can perform the flux computation by

Python code
n = FacetNormal(mesh)

flux = -p*dot(nabla_grad(u), n)*ds

total_flux = assemble(flux)

Although nabla_grad(u) and grad(u) are interchangeable in the above expression when u is a scalar
function, we have chosen to write nabla_grad(u) because this is the right expression if we generalize
the underlying equation to a vector Laplace/Poisson PDE. With grad(u) we must in that case write
dot(n, grad(u)).

It is possible to restrict the integration to a part of the boundary using a mesh function to mark
the relevant part, as explained in Section 1.5.3. Assuming that the part corresponds to subdomain
number i, the relevant form for the flux is -p*dot(nabla_grad(u), n)*ds(i).

1.1.12 Visualization of structured mesh data

When finite element computations are done on a structured rectangular mesh, maybe with uniform
partitioning, VTK-based tools for completely unstructured 2D/3D meshes are not required. Instead
we can use visualization and data analysis tools for structured data. Such data typically appear in
finite difference simulations and image analysis. Analysis and visualization of structured data are
faster and easier than doing the same with data on unstructured meshes, and the collection of tools to
choose among is much larger. We shall demonstrate the potential of such tools and how they allow
for tailored and flexible visualization and data analysis.

A necessary first step is to transform our mesh object to an object representing a rectangle with
equally-shaped rectangular cells. The Python package scitools has this type of structure, called a
UniformBoxGrid. The second step is to transform the one-dimensional array of nodal values to a
two-dimensional array holding the values at the corners of the cells in the structured grid. In such
grids, we want to access a value by its i and j indices, i counting cells in the x direction, and j counting
cells in the y direction. This transformation is in principle straightforward, yet it frequently leads
to obscure indexing errors. The BoxField object in scitools takes conveniently care of the details
of the transformation. With a BoxField defined on a UniformBoxGrid it is very easy to call up more
standard plotting packages to visualize the solution along lines in the domain or as 2D contours or
lifted surfaces.

Let us go back to the vcp2D.py code from Section 1.1.10 and map u onto a BoxField object:

Python code
import scitools.BoxField

u2 = u if u.ufl_element().degree() == 1 else \

interpolate(u, FunctionSpace(mesh, "Lagrange", 1))

u_box = scitools.BoxField.dolfin_function2BoxField(

u2, mesh, (nx,ny), uniform_mesh=True)

The function dolfin_function2BoxField can only work with finite element fields with linear (degree
1) elements, so for higher-degree elements we here simply interpolate the solution onto a mesh with
linear elements. We could also interpolate/project onto a finer mesh in the higher-degree case. Such
transformations to linear finite element fields are very often needed when calling up plotting packages
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or data analysis tools. The u.ufl_element() method returns an object holding the element type, and
this object has a method degree() for returning the element degree as an integer. The parameters nx

and ny are the number of divisions in each space direction that were used when calling UnitSquare to
make the mesh object. The result u_box is a BoxField object that supports “finite difference” indexing
and an underlying grid suitable for numpy operations on 2D data. Also 1D and 3D meshes (with linear
elements) can be turned into BoxField objects.

The ability to access a finite element field in the way one can access a finite difference-type of field
is handy in many occasions, including visualization and data analysis. Here is an example of writing
out the coordinates and the field value at a grid point with indices i and j (going from 0 to nx and ny,
respectively, from lower left to upper right corner):

Python code
X = 0; Y = 1; Z = 0 # convenient indices

i = nx; j = ny # upper right corner

print "u(%g,%g)=%g" % (u_box.grid.coor[X][i],

u_box.grid.coor[Y][j],

u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X]. The grid attribute is an instance
of class UniformBoxGrid.

Many plotting programs can be used to visualize the data in u_box. Matplotlib is now a very
popular plotting program in the Python world and could be used to make contour plots of u_box.
However, other programs like Gnuplot, VTK, and MATLAB have better support for surface plots at
the time of this writing. Our choice in this tutorial is to use the Python package scitools.easyviz,
which offers a uniform MATLAB-like syntax as interface to various plotting packages such as Gnuplot,
matplotlib, VTK, OpenDX, MATLAB, and others. With scitools.easyviz we write one set of
statements, close to what one would do in MATLAB or Octave, and then it is easy to switch between
different plotting programs, at a later stage, through a command-line option, a line in a configuration
file, or an import statement in the program.

A contour plot is made by the following scitools.easyviz command:

Python code
import scitools.easyviz as ev

ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels="on")

ev.title("Contour plot of u")

ev.savefig("u_contours.eps")

# or more compact syntax:

ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels="on",

savefig="u_contours.eps", title="Contour plot of u")

The resulting plot can be viewed in Figure 1.5a. The contour function needs arrays with the x and y
coordinates expanded to 2D arrays (in the same way as demanded when making vectorized numpy

calculations of arithmetic expressions over all grid points). The correctly expanded arrays are stored in
grid.coorv. The above call to contour creates 5 equally spaced contour lines, and with clabels="on"

the contour values can be seen in the plot.

Other functions for visualizing 2D scalar fields are surf and mesh as known from MATLAB:
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Python code
import scitools.easyviz as ev

ev.figure()

ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

shading="interp", colorbar="on",

title="surf plot of u", savefig="u_surf.eps")

ev.figure()

ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

title="mesh plot of u", savefig="u_mesh.eps")

Figure 1.6 exemplifies the surfaces arising from the two plotting commands above. You can type
pydoc scitools.easyviz in a terminal window to get a full tutorial. Note that scitools.easyviz
offers function names like plot and mesh, which clash with plot from dolfin and the mesh variable
in our programs. Therefore, we recommend the ev prefix.

A handy feature of BoxField is the ability to give a start point in the grid and a direction, and then
extract the field and corresponding coordinates along the nearest grid line. In 3D fields one can also
extract data in a plane. Say we want to plot u along the line y = 1/2 in the grid. The grid points, x,
and the u values along this line, uval, are extracted by

Python code
start = (0, 0.5)

x, uval, y_fixed, snapped = u_box.gridline(start, direction=X)

The variable snapped is true if the line had to be snapped onto a grid line and in that case y_fixed

holds the snapped (altered) y value. Plotting u versus the x coordinate along this line, using
scitools.easyviz, is now a matter of

Python code
ev.figure() # new plot window

ev.plot(x, uval, "r-") # "r--: red solid line

ev.title("Solution")

ev.legend("finite element solution")

# or more compactly:

ev.plot(x, uval, "r-", title="Solution",

legend="finite element solution")

A more exciting plot compares the projected numerical flux in x direction along the line y = 1/2
with the exact flux:

Python code
ev.figure()

flux2_x = flux_x if flux_x.ufl_element().degree() == 1 else \

interpolate(flux_x, FunctionSpace(mesh, "Lagrange", 1))

flux_x_box = scitools.BoxField.dolfin_function2BoxField(

flux2_x, mesh, (nx,ny), uniform_mesh=True)

x, fluxval, y_fixed, snapped = \

flux_x_box.gridline(start, direction=X)

y = y_fixed

flux_x_exact = -(x + y)*2*x

ev.plot(x, fluxval, "r-",

x, flux_x_exact, "b-",

legend=("numerical (projected) flux", "exact flux"),

title="Flux in x-direction (at y=%g)" % y_fixed,

savefig="flux.eps")
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Figure 1.5: Examples of plots cre-
ated by transforming the finite ele-
ment field to a field on a uniform,
structured 2D grid: (a) contour plot
of the solution; (b) curve plot of
the exact flux −p∂u/∂x against the
corresponding projected numerical
flux.
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Figure 1.6: Examples of plots cre-
ated by transforming the finite ele-
ment field to a field on a uniform,
structured 2D grid: (a) a surface plot
of the solution; (b) lifted mesh plot
of the solution.

As seen from Figure 1.5b, the numerical flux is accurate except in the elements closest to the boundaries.

The visualization constructions shown above and used to generate the figures are found in the
program vcp2D.py in the stationary/poisson directory.

It should be easy with the information above to transform a finite element field over a uniform
rectangular or box-shaped mesh to the corresponding BoxField object and perform MATLAB-style
visualizations of the whole field or the field over planes or along lines through the domain. By the
transformation to a regular grid we have some more flexibility than what Viper offers. However, we
must remark that comprehensive tools like VisIt, MayaVi2, or ParaView also have the possibility for
plotting fields along lines and extracting planes in 3D geometries, though usually with less degree of
control compared to Gnuplot, MATLAB, and matplotlib.

1.1.13 Combining Dirichlet and Neumann conditions

Let us make a slight extension of our two-dimensional Poisson problem from Section 1.1.1 and add
a Neumann boundary condition. The domain is still the unit square, but now we set the Dirichlet
condition u = u0 at the left and right sides, x = 0 and x = 1, while the Neumann condition

−∂u
∂n

= g (1.36)

is applied to the remaining sides y = 0 and y = 1. The Neumann condition is also known as a natural
boundary condition (in contrast to an essential boundary condition).

Let ΓD and ΓN denote the parts of ∂Ω where the Dirichlet and Neumann conditions apply,
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respectively. The complete boundary-value problem can be written as

−∆u = f in Ω, (1.37)

u = u0 on ΓD, (1.38)

−∂u
∂n

= g on ΓN. (1.39)

Again we choose u = 1 + x2 + 2y2 as the exact solution and adjust f , g, and u0 accordingly:

f = −6, (1.40)

g =

{ −4, y = 1
0, y = 0

(1.41)

u0 = 1 + x2 + 2y2. (1.42)

For ease of programming we may introduce a g function defined over the whole of Ω such that g
takes on the right values at y = 0 and y = 1. One possible extension is

g(x, y) = −4y. (1.43)

The first task is to derive the variational problem. This time we cannot omit the boundary term
arising from the integration by parts, because v is only zero on ΓD. We have

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u
∂n

v ds, (1.44)

and since v = 0 on ΓD,

−
∫

∂Ω

∂u
∂n

v ds = −
∫

ΓN

∂u
∂n

v ds =
∫

ΓN

gv ds, (1.45)

by applying the boundary condition on ΓN. The resulting weak form reads∫
Ω
∇u · ∇v dx +

∫
ΓN

gv ds =
∫

Ω
f v dx. (1.46)

Expressing (1.46) in the standard notation a(u, v) = L(v) is straightforward with

a(u, v) =
∫

Ω
∇u · ∇v dx, (1.47)

L(v) =
∫

Ω
f v dx−

∫
ΓN

gv ds. (1.48)

How does the Neumann condition impact the implementation? The code in the file d4_p2D.py in
the directory stationary/poisson remains almost the same. Only two adjustments are necessary:

1. The function describing the boundary where Dirichlet conditions apply must be modified.

2. The new boundary term must be added to the expression in L.

Step 1 can be coded as

Python code
def Dirichlet_boundary(x, on_boundary):

if on_boundary:
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if x[0] == 0 or x[0] == 1:

return True

else:

return False

else:

return False

A more compact implementation reads

Python code
def Dirichlet_boundary(x, on_boundary):

return on_boundary and (x[0] == 0 or x[0] == 1)

As pointed out already in Section 1.1.3, testing for an exact match of real numbers is not good
programming practice so we introduce a tolerance in the test:

Python code
def Dirichlet_boundary(x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and \

(abs(x[0]) < tol or abs(x[0] - 1) < tol)

The second adjustment of our program concerns the definition of L, where we have to add a
boundary integral and a definition of the g function to be integrated:

Python code
g = Expression("-4*x[1]")

L = f*v*dx - g*v*ds

The ds variable implies a boundary integral, while dx implies an integral over the domain Ω. No
more modifications are necessary.

The file dn1_p2D.py in the stationary/poisson directory implements this problem. Running the
program verifies the implementation: u equals the exact solution at all the nodes, regardless of how
many elements we use.

1.1.14 Multiple Dirichlet conditions

The PDE problem from the previous section applies a function u0(x, y) for setting Dirichlet conditions
at two parts of the boundary. Having a single function to set multiple Dirichlet conditions is seldom
possible. The more general case is to have m functions for setting Dirichlet conditions on m parts of
the boundary. The purpose of this section is to explain how such multiple conditions are treated in
FEniCS programs.

Let us return to the case from Section 1.1.13 and define two separate functions for the two Dirichlet
conditions:

−∆u = −6 in Ω, (1.49)

u = uL on Γ0, (1.50)

u = uR on Γ1, (1.51)

−∂u
∂n

= g on ΓN. (1.52)

Here, Γ0 is the boundary x = 0, while Γ1 corresponds to the boundary x = 1. We have that
uL = 1 + 2y2, uR = 2 + 2y2, and g = −4y. For the left boundary Γ0 we define the usual triple of a
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function for the boundary value, a function for defining the boundary of interest, and a DirichletBC

object:

Python code
u_L = Expression("1 + 2*x[1]*x[1]")

def left_boundary(x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, left_boundary)

For the boundary x = 1 we define a similar code:

Python code
u_R = Expression("2 + 2*x[1]*x[1]")

def right_boundary(x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, right_boundary)

The various essential conditions are then collected in a list and used in the solution process:

Python code
bcs = [Gamma_0, Gamma_1]

...

solve(a == L, u, bcs)

# or

problem = LinearVariationalProblem(a, L, u, bcs)

solver = LinearVariationalSolver(problem)

solver.solve()

If the u values are constant at a part of the boundary, we may use a simple Constant object instead
of an Expression object.

The file dn2_p2D.py contains a complete program which demonstrates the constructions above. An
extended example with multiple Neumann conditions would have been quite natural now, but this
requires marking various parts of the boundary using the mesh function concept and is therefore left
to Section 1.5.3.

1.1.15 A linear algebra formulation

Given a(u, v) = L(v), the discrete solution u is computed by inserting u = ∑N
j=1 Ujφj into a(u, v) and

demanding a(u, v) = L(v) to be fulfilled for N test functions φ̂1, . . . , φ̂N . This implies

N

∑
j=1

a(φj, φ̂i)Uj = L(φ̂i), i = 1, . . . , N, (1.53)

which is nothing but a linear system,
AU = b, (1.54)
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where the entries in A and b are given by

Aij = a(φj, φ̂i),

bi = L(φ̂i).
(1.55)

The examples so far have specified the left- and right-hand side of the variational formulation
and then asked FEniCS to assemble the linear system and solve it. An alternative to is explicitly call
functions for assembling the coefficient matrix A and the right-side vector b, and then solve the linear
system AU = b with respect to the U vector. Instead of solve(a == L, u, b) we now write

Python code
A = assemble(a)

b = assemble(L)

bc.apply(A, b)

u = Function(V)

U = u.vector()

solve(A, U, b)

The variables a and L are as before; that is, a refers to the bilinear form involving a TrialFunction

object (say u) and a TestFunction object (v), and L involves a TestFunction object (v). From a and L,
the assemble function can compute the matrix elements Ai,j and the vector elements bi.

The matrix A and vector b are first assembled without incorporating essential (Dirichlet) boundary
conditions. Thereafter, the bc.apply(A, b) call performs the necessary modifications to the linear
system. When we have multiple Dirichlet conditions stored in a list bcs, as explained in Section 1.1.14,
we must apply each condition in bcs to the system:

Python code
# bcs is a list of DirichletBC objects

for bc in bcs:

bc.apply(A, b)

There is an alternative function assemble_system that can assemble the system and take boundary
conditions into account in one call:

Python code
A, b = assemble_system(a, L, bcs)

The assemble_system function incorporates the boundary conditions in the element matrices and
vectors, prior to assembly. The conditions are also incorporated in a symmetric way to preserve
eventual symmetry of the coefficient matrix. With bc.apply(A,b) the matrix A is modified in an
unsymmetric way.

Note that the solution u is, as before, a Function object. The degrees of freedom, U = A−1b, are
filled into u’s Vector object (u.vector()) by the solve function.

The object A is of type Matrix, while b and u.vector() are of type Vector. We may convert the
matrix and vector data to numpy arrays by calling the array() method as shown before. If you wonder
how essential boundary conditions are incorporated in the linear system, you can print out A and b

before and after the bc.apply(A, b) call:

Python code
if mesh.num_cells() < 16: # print for small meshes only

print A.array()

print b.array()

bc.apply(A, b)
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if mesh.num_cells() < 16:

print A.array()

print b.array()

With access to the elements in A as a numpy array we can easily do computations on this matrix,
such as computing the eigenvalues (using the numpy.linalg.eig function). We can alternatively
dump A and b to file in MATLAB format and invoke MATLAB or Octave to analyze the linear system.
Dumping the arrays A and b to MATLAB format is done by

Python code
import scipy.io

scipy.io.savemat("Ab.mat", {"A": A, "b": b})

Writing load Ab.mat in MATLAB or Octave will then make the variables A and b available for
computations.

Matrix processing in Python or MATLAB/Octave is only feasible for small PDE problems since
the numpy arrays or matrices in MATLAB file format are dense matrices. DOLFIN also has an interface
to the eigensolver package SLEPc, which is a preferred tool for computing the eigenvalues of large,
sparse matrices of the type encountered in PDE problems (see demo/la/eigenvalue in the DOLFIN
source code tree for a demo).

A complete code where the linear system AU = b is explicitly assembled and solved is found in
the file dn3_p2D.py in the directory stationary/poisson. This code solves the same problem as in
dn2_p2D.py (Section 1.1.14). For small linear systems, the program writes out A and b before and after
incorporation of essential boundary conditions and illustrates the difference between assemble and
assemble_system. The reader is encouraged to run the code for a 2× 1 mesh (UnitSquare(2, 1) and
study the output of A.

By default, solve(A, U, b) applies sparse LU decomposition as solver. Specification of an iterative
solver and preconditioner is done through two optional arguments:

Python code
solve(A, U, b, "cg", "ilu")

Appropriate names of solvers and preconditioners are found in Section 1.7.4.
To control tolerances in the stopping criterion and the maximum number of iterations, one can

explicitly form a KrylovSolver object and set items in its parameters attribute (see Section 1.1.5):

Python code
solver = KrylovSolver("cg", "ilu")

solver.parameters["absolute_tolerance"] = 1E-7

solver.parameters["relative_tolerance"] = 1E-4

solver.parameters["maximum_iterations"] = 1000

u = Function(V)

U = u.vector()

set_log_level(DEBUG)

solver.solve(A, U, b)

The program dn4_p2D.py is a modification of dn3_p2D.py illustrating this latter approach.
The choice of start vector for the iterations in a linear solver is often important. With the solve(A,

U, b) function the start vector is the vector U we feed in for the solution. A start vector with random
numbers in the interval [−100, 100] can be computed as

Python code
n = u.vector().array().size

U = u.vector()
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U[:] = numpy.random.uniform(-100, 100, n)

solver.parameters[’nonzero_initial_guess’] = True

solver.solve(A, U, b)

Note that we must turn off the default behavior of setting the start vector (“initial guess”) to zero. A
random start vector is included in the dn4_p2D.py code.

Creating the linear system explicitly in a program can have some advantages in more advanced
problem settings. For example, A may be constant throughout a time-dependent simulation, so
we can avoid recalculating A at every time level and save a significant amount of simulation time.
Sections 1.3.2 and 1.3.3 deal with this topic in detail.

1.1.16 Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in 1D, 2D, and 3D.
We will conveniently make use of this feature in forthcoming examples. As an appetizer, go back
to the introductory program d1_p2D.py in the stationary/poisson directory and change the mesh
construction from UnitSquare(6, 4) to UnitCube(6, 4, 5). Now the domain is the unit cube with
6× 4× 5 cells. Run the program and observe that we can solve a 3D problem without any other
modifications (!). The visualization allows you rotate to the cube and observe the function values as
colors on the boundary.

The forthcoming material introduces some convenient technicalities such that the same program
can run in 1D, 2D, or 3D without any modifications. Consider the simple problem

u′′(x) = 2 in [0, 1], u(0) = 0, u(1) = 1, (1.56)

with exact solution u(x) = x2. Our aim is to formulate and solve this problem in a 2D and a 3D
domain as well. We may generalize the domain [0, 1] to a box of any size in the y and z directions
and pose homogeneous Neumann conditions ∂u/∂n = 0 at all additional boundaries y = const and
z = const to ensure that u only varies with x. For example, let us choose a unit hypercube as domain:
Ω = [0, 1]d, where d is the number of space dimensions. The generalized d-dimensional Poisson
problem then reads

∆u = 2 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,

∂u
∂n = 0 on ∂Ω\ (Γ0 ∪ Γ1) ,

(1.57)

where Γ0 is the side of the hypercube where x = 0, and where Γ1 is the side where x = 1.
Implementing (1.57) for any d is no more complicated than solving a problem with a specific

number of dimensions. The only non-trivial part of the code is actually to define the mesh. We
use the command-line to provide user-input to the program. The first argument can be the degree
of the polynomial in the finite element basis functions. Thereafter, we supply the cell divisions in
the various spatial directions. The number of command-line arguments will then imply the number
of space dimensions. For example, writing 3 10 3 4 on the command-line means that we want to
approximate u by piecewise polynomials of degree 3, and that the domain is a three-dimensional cube
with 10× 3× 4 divisions in the x, y, and z directions, respectively. Each of the 10× 3× 4 = 120 boxes
will be divided into six tetrahedra. The Python code can be quite compact:

Python code
degree = int(sys.argv[1])

divisions = [int(arg) for arg in sys.argv[2:]]

d = len(divisions)

domain_type = [UnitInterval, UnitSquare, UnitCube]
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mesh = domain_type[d-1](*divisions)

V = FunctionSpace(mesh, "Lagrange", degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all elements of the list
sys.argv[2:] are string objects, so we need to explicitly convert each element to an integer. The
construction domain_type[d-1] will pick the right name of the object used to define the domain and
generate the mesh. Moreover, the argument *divisions sends each component of the list divisions as
a separate argument. For example, in a 2D problem where divisions has two elements, the statement

Python code
mesh = domain_type[d-1](*divisions)

is equivalent to

Python code
mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since the Neumann conditions
have ∂u/∂n = 0 we can omit the boundary integral from the weak form. We then only need to take
care of Dirichlet conditions at two sides:

Python code
tol = 1E-14 # tolerance for coordinate comparisons

def Dirichlet_boundary0(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def Dirichlet_boundary1(x, on_boundary):

return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(0), Dirichlet_boundary0)

bc1 = DirichletBC(V, Constant(1), Dirichlet_boundary1)

bcs = [bc0, bc1]

Note that this code is independent of the number of space dimensions. So are the statements defining
and solving the variational problem:

Python code
u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-2)

a = inner(nabla_grad(u), nabla_grad(v))*dx

L = f*v*dx

u = Function(V)

solve(a == L, u, bcs)

The complete code is found in paD.py (Poisson problem in any–D).

If we want to parameterize the direction in which u varies, say by the space direction number
e, we only need to replace x[0] in the code by x[e]. The parameter e could be given as a second
command-line argument. The reader is encouraged to perform this modification.
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1.2 Nonlinear problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE for implementation
is taken as a nonlinear Poisson equation:

−∇ · (q(u)∇u) = f . (1.58)

The coefficient q(u) makes the equation nonlinear (unless q(u) is constant in u).
To be able to easily verify our implementation, we choose the domain, q(u), f , and the boundary

conditions such that we have a simple, exact solution u. Let Ω be the unit hypercube [0, 1]d in d
dimensions, q(u) = (1 + u)m, f = 0, u = 0 for x0 = 0, u = 1 for x0 = 1, and ∂u/∂n = 0 at all other
boundaries xi = 0 and xi = 1, i = 1, . . . , d− 1. The coordinates are now represented by the symbols
x0, . . . , xd−1. The exact solution is then

u(x0, . . . , xd) =
(
(2m+1 − 1)x0 + 1

)1/(m+1)
− 1. (1.59)

The variational formulation of our model problem reads: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂, (1.60)

where
F(u; v) =

∫
Ω

q(u)∇u · ∇v dx, (1.61)

and

V̂ = {v ∈ H1(Ω) : v = 0 on x0 = 0 and x0 = 1},
V = {v ∈ H1(Ω) : v = 0 on x0 = 0 and v = 1 on x0 = 1}.

(1.62)

The discrete problem arises as usual by restricting V and V̂ to a pair of discrete spaces. As usual, we
omit any subscript on discrete spaces and simply say V and V̂ are chosen finite dimensional according
to some mesh and element type. The nonlinear problem then reads: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂, (1.63)

with u = ∑N
j=1 Ujφj. Since F is a nonlinear function of u, (1.63) gives rise to a system of nonlinear

algebraic equations. From now on the interest is only in the discrete problem, and as mentioned in
Section 1.1.2, we simply write u instead of uh to get a closer resemblance in notation between the
mathematics and the Python code. When the exact solution needs to be distinguished, we denote it by
ue.

FEniCS can be used in alternative ways for solving a nonlinear PDE problem. We shall in the
following subsections go through four solution strategies: 1) a simple Picard-type iteration, 2) a
Newton method at the algebraic level, 3) a Newton method at the PDE level, and 4) an automatic
approach where FEniCS attacks the nonlinear variational problem directly. The “black box” strategy
4) is definitely the simplest one from a programmer’s point of view, but the others give more control
of the solution process for nonlinear equations (which also has some pedagogical advantages).

1.2.1 Picard iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use a known, previous solution
in the nonlinear terms so that these terms become linear in the unknown u. The strategy is also known
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as the method of successive substitutions. For our particular problem, we use a known, previous
solution in the coefficient q(u). More precisely, given a solution uk from iteration k, we seek a new
(hopefully improved) solution uk+1 in iteration k + 1 such that uk+1 solves the linear problem

∇ ·
(

q(uk)∇uk+1
)
= 0, k = 0, 1, . . . (1.64)

The iterations require an initial guess u0. The hope is that uk → u as k → ∞, and that uk+1 is
sufficiently close to the exact solution u of the discrete problem after just a few iterations.

We can easily formulate a variational problem for uk+1 from Equation (1.64). Equivalently, we can
approximate q(u) by q(uk) in (1.61) to obtain the same linear variational problem. In both cases, the
problem consists of seeking uk+1 ∈ V such that

F̃(uk+1; v) = 0 ∀ v ∈ V̂, k = 0, 1, . . . , (1.65)

with
F̃(uk+1; v) =

∫
Ω

q(uk)∇uk+1 · ∇v dx. (1.66)

Since this is a linear problem in the unknown uk+1, we can equivalently use the formulation

a(uk+1, v) = L(v), (1.67)

with

a(u, v) =
∫

Ω
q(uk)∇u · ∇v dx, (1.68)

L(v) = 0. (1.69)

The iterations can be stopped when ε ≡ ||uk+1 − uk|| < tol, where tol is small, say 10−5, or when
the number of iterations exceed some critical limit. The latter case will pick up divergence of the
method or unacceptable slow convergence.

In the solution algorithm we only need to store uk and uk+1, called u_k and u in the code below.
The algorithm can then be expressed as follows:

Python code
def q(u):

return (1+u)**m

# Define variational problem for Picard iteration

u = TrialFunction(V)

v = TestFunction(V)

u_k = interpolate(Constant(0.0), V) # previous (known) u

a = inner(q(u_k)*nabla_grad(u), nabla_grad(v))*dx

f = Constant(0.0)

L = f*v*dx

# Picard iterations

u = Function(V) # new unknown function

eps = 1.0 # error measure ||u-u_k||

tol = 1.0E-5 # tolerance

iter = 0 # iteration counter

maxiter = 25 # max no of iterations allowed

while eps > tol and iter < maxiter:

iter += 1

solve(a == L, u, bcs)
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diff = u.vector().array() - u_k.vector().array()

eps = numpy.linalg.norm(diff, ord=numpy.Inf)

print "iter=%d: norm=%g" % (iter, eps)

u_k.assign(u) # update for next iteration

We need to define the previous solution in the iterations, u_k, as a finite element function so that u_k
can be updated with u at the end of the loop. We may create the initial Function u_k by interpolating
an Expression or a Constant to the same vector space as u lives in (V).

In the code above we demonstrate how to use numpy functionality to compute the norm of the
difference between the two most recent solutions. Here we apply the maximum norm (`∞ norm) on
the difference of the solution vectors (ord=1 and ord=2 give the `1 and `2 vector norms – other norms
are possible for numpy arrays, see pydoc numpy.linalg.norm).

The file picard_np.py (Picard iteration for a nonlinear Poisson problem) contains the complete
code for this problem. The implementation is d dimensional, with mesh construction and setting of
Dirichlet conditions as explained in Section 1.1.16. For a 33× 33 grid with m = 2 we need 9 iterations
for convergence when the tolerance is 10−5.

1.2.2 A Newton method at the algebraic level

After having discretized our nonlinear PDE problem, we may use Newton’s method to solve the
system of nonlinear algebraic equations. From the continuous variational problem (1.60), the discrete
version (1.63) results in a system of equations for the unknown parameters U1, . . . , UN (by inserting
u = ∑N

j=1 Ujφj and v = φ̂i in (1.63)):

Fi(U1, . . . , UN) ≡
N

∑
j=1

∫
Ω

(
q

(
N

∑
`=1

U`φ`

)
∇φjUj

)
· ∇φ̂i dx = 0, i = 1, . . . , N. (1.70)

Newton’s method for the system Fi(U1, . . . , Uj) = 0, i = 1, . . . , N can be formulated as

N

∑
j=1

∂

∂Uj
Fi(Uk

1 , . . . , Uk
N)δUj = −Fi(Uk

1 , . . . , Uk
N), i = 1, . . . , N, (1.71)

Uk+1
j = Uk

j + ωδUj, j = 1, . . . , N, (1.72)

where ω ∈ [0, 1] is a relaxation parameter, and k is an iteration index. An initial guess u0 must be
provided to start the algorithm. The original Newton method has ω = 1, but in problems where it is
difficult to obtain convergence, so-called under-relaxation with ω < 1 may help.

We need, in a program, to compute the Jacobian matrix ∂Fi/∂Uj and the right-hand side vector
−Fi. Our present problem has Fi given by (1.70). The derivative ∂Fi/∂Uj becomes

∫
Ω

[
q′(

N

∑
`=1

Uk
`φ`)φj∇(

N

∑
j=1

Uk
j φj) · ∇φ̂i + q

(
N

∑
`=1

Uk
`φ`

)
∇φj · ∇φ̂i

]
dx. (1.73)

The following results were used to obtain (1.73):

∂u
∂Uj

=
∂

∂Uj

N

∑
j=1

Ujφj = φj,
∂

∂Uj
∇u = ∇φj,

∂

∂Uj
q(u) = q′(u)φj. (1.74)
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We can reformulate the Jacobian matrix in (1.73) by introducing the short notation uk = ∑N
j=1 Uk

j φj:

∂Fi
∂Uj

=
∫

Ω

[
q′(uk)φj∇uk · ∇φ̂i + q(uk)∇φj · ∇φ̂i

]
dx. (1.75)

In order to make FEniCS compute this matrix, we need to formulate a corresponding variational
problem. Looking at the linear system of equations in Newton’s method,

N

∑
j=1

∂Fi
∂Uj

δUj = −Fi, i = 1, . . . , N,

we can introduce v as a general test function replacing φ̂i, and we can identify the unknown δu =

∑N
j=1 δUjφj. From the linear system we can now go “backwards” to construct the corresponding

discrete weak form∫
Ω

[
q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v

]
dx = −

∫
Ω

q(uk)∇uk · ∇v dx. (1.76)

Equation (1.76) fits the standard form a(δu, v) = L(v) with

a(δu, v) =
∫

Ω

[
q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v

]
dx (1.77)

L(v) = −
∫

Ω
q(uk)∇uk · ∇v dx. (1.78)

Note the important feature in Newton’s method that the previous solution uk replaces u in the
formulas when computing the matrix ∂Fi/∂Uj and vector Fi for the linear system in each Newton
iteration.

We now turn to the implementation. To obtain a good initial guess u0, we can solve a simplified,
linear problem, typically with q(u) = 1, which yields the standard Laplace equation ∆u0 = 0. The
recipe for solving this problem appears in Sections 1.1.2, 1.1.3, and 1.1.13. The code for computing u0

becomes as follows:

Python code
tol = 1E-14

def left_boundary(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def right_boundary(x, on_boundary):

return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(0.0), left_boundary)

Gamma_1 = DirichletBC(V, Constant(1.0), right_boundary)

bcs = [Gamma_0, Gamma_1]

# Define variational problem for initial guess (q(u)=1, m=0)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(nabla_grad(u), nabla_grad(v))*dx

f = Constant(0.0)

L = f*v*dx

A, b = assemble_system(a, L, bcs)

u_k = Function(V)

U_k = u_k.vector()

solve(A, U_k, b)
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Here, u_k denotes the solution function for the previous iteration, so that the solution after each
Newton iteration is u = u_k + omega*du. Initially, u_k is the initial guess we call u0 in the mathematics.

The Dirichlet boundary conditions for the problem to be solved in each Newton iteration are
somewhat different than the conditions for u. Assuming that uk fulfills the Dirichlet conditions for u,
δu must be zero at the boundaries where the Dirichlet conditions apply, in order for uk+1 = uk + ωδu
to fulfill the right Dirichlet values. We therefore define an additional list of Dirichlet boundary
conditions objects for δu:

Python code
Gamma_0_du = DirichletBC(V, Constant(0), left_boundary)

Gamma_1_du = DirichletBC(V, Constant(0), right_boundary)

bcs_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the weak form of the
Newton system:

Python code
def q(u):

return (1+u)**m

def Dq(u):

return m*(1+u)**(m-1)

du = TrialFunction(V) # u = u_k + omega*du

a = inner(q(u_k)*nabla_grad(du), nabla_grad(v))*dx + \

inner(Dq(u_k)*du*nabla_grad(u_k), nabla_grad(v))*dx

L = -inner(q(u_k)*nabla_grad(u_k), nabla_grad(v))*dx

The Newton iteration loop is very similar to the Picard iteration loop in Section 1.2.1:

Python code
du = Function(V)

u = Function(V) # u = u_k + omega*du

omega = 1.0 # relaxation parameter

eps = 1.0

tol = 1.0E-5

iter = 0

maxiter = 25

while eps > tol and iter < maxiter:

iter += 1

A, b = assemble_system(a, L, bcs_du)

solve(A, du.vector(), b)

eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)

print "Norm:", eps

u.vector()[:] = u_k.vector() + omega*du.vector()

u_k.assign(u)

There are other ways of implementing the update of the solution as well:

Python code
u.assign(u_k) # u = u_k

u.vector().axpy(omega, du.vector())

# or

u.vector()[:] += omega*du.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector object. It is usually a fast
operation calling up an optimized BLAS routine for the calculation.
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Mesh construction for a d-dimensional problem with arbitrary degree of the Lagrange elements can
be done as explained in Section 1.1.16. The complete program appears in the file alg_newton_np.py.

1.2.3 A Newton method at the PDE level

Although Newton’s method in PDE problems is normally formulated at the linear algebra level; that
is, as a solution method for systems of nonlinear algebraic equations, we can also formulate the
method at the PDE level. This approach yields a linearization of the PDEs before they are discretized.
FEniCS users will probably find this technique simpler to apply than the more standard method of
Section 1.2.2.

Given an approximation to the solution field, uk, we seek a perturbation δu so that

uk+1 = uk + δu (1.79)

fulfills the nonlinear PDE. However, the problem for δu is still nonlinear and nothing is gained. The
idea is therefore to assume that δu is sufficiently small so that we can linearize the problem with
respect to δu. Inserting uk+1 in the PDE, linearizing the q term as

q(uk+1) = q(uk) + q′(uk)δu +O((δu)2) ≈ q(uk) + q′(uk)δu, (1.80)

and dropping other nonlinear terms in δu, we get

∇ ·
(

q(uk)∇uk
)
+∇ ·

(
q(uk)∇δu

)
+∇ ·

(
q′(uk)δu∇uk

)
= 0.

We may collect the terms with the unknown δu on the left-hand side,

∇ ·
(

q(uk)∇δu
)
+∇ ·

(
q′(uk)δu∇uk

)
= −∇ ·

(
q(uk)∇uk

)
, (1.81)

The weak form of this PDE is derived by multiplying by a test function v and integrating over Ω,
integrating the second-order derivatives by parts:∫

Ω

(
q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v

)
dx = −

∫
Ω

q(uk)∇uk · ∇v dx. (1.82)

The variational problem reads: find δu ∈ V such that a(δu, v) = L(v) for all v ∈ V̂, where

a(δu, v) =
∫

Ω

(
q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v

)
dx, (1.83)

L(v) = −
∫

Ω
q(uk)∇uk · ∇v dx. (1.84)

The function spaces V and V̂, being continuous or discrete, are as in the linear Poisson problem from
Section 1.1.2.

We must provide some initial guess, e.g., the solution of the PDE with q(u) = 1. The corresponding
weak form a0(u0, v) = L0(v) has

a0(u, v) =
∫

Ω
∇u · ∇v dx, L(v) = 0. (1.85)

Thereafter, we enter a loop and solve a(δu, v) = L(v) for δu and compute a new approximation
uk+1 = uk + δu. Note that δu is a correction, so if u0 satisfies the prescribed Dirichlet conditions on
some part ΓD of the boundary, we must demand δu = 0 on ΓD.
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Looking at (1.83) and (1.84), we see that the variational form is the same as for the Newton method
at the algebraic level in Section 1.2.2. Since Newton’s method at the algebraic level required some
“backward” construction of the underlying weak forms, FEniCS users may prefer Newton’s method
at the PDE level, which is more straightforward. There is seemingly no need for differentiations to
derive a Jacobian matrix, but a mathematically equivalent derivation is done when nonlinear terms
are linearized using the first two Taylor series terms and when products in the perturbation δu are
neglected.

The implementation is identical to the one in Section 1.2.2 and is found in the file
pde_newton_np.py. The reader is encouraged to go through this code to be convinced that the
present method actually ends up with the same program as needed for the Newton method at the
linear algebra level in Section 1.2.2.

1.2.4 Solving the nonlinear variational problem directly

The previous hand-calculations and manual implementation of Picard or Newton methods can be
automated by tools in FEniCS. In a nutshell, one can just write

Python code
problem = NonlinearVariationalProblem(F, u, bcs, J)

solver = NonlinearVariationalSolver(problem)

solver.solve()

where F corresponds to the nonlinear form F(u; v), u is the unknown Function object, bcs represents
the essential boundary conditions (list of DirichletBC objects), and J is a variational form for the
Jacobian of F.

Let us explain in detail how to use the built-in tools for nonlinear variational problems and their
solution. The F form corresponding to (1.61) is straightforwardly defined as follows, assuming q(u) is
coded as a Python function:

Python code
v = TestFunction(V)

u_ = Function(V) # the unknown

F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

Note here that u_ is a Function (not a TrialFunction). An alternative and perhaps more intuitive
formula for F is to define F(u; v) directly in terms of a trial function for u and a test function for v,
and then create the proper F by

Python code
u = TrialFunction(V)

v = TestFunction(V)

F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx

u_ = Function(V) # most recently computed solution

F = action(F, u_)

The latter statement is equivalent to F(u = u−; v), where u− is an existing finite element function
representing the most recently computed approximation to the solution.

The Jacobian or derivative J (J) of F (F) is formally the Gateaux derivative DF(uk; δu, v) of F(u; v)
at u = uk in the direction of δu. Technically, this Gateaux derivative is derived by computing

lim
ε→0

d
dε

Fi(uk + εδu; v) (1.86)
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The δu is now the trial function and uk is as usual the previous approximation to the solution u. We
start with

d
dε

∫
Ω
∇v ·

(
q(uk + εδu)∇(uk + εδu)

)
dx (1.87)

and obtain ∫
Ω
∇v ·

[
q′(uk + εδu)δu∇(uk + εδu) + q(uk + εδu)∇δu

]
dx, (1.88)

which leads to ∫
Ω
∇v ·

[
q′(uk)δu∇(uk) + q(uk)∇δu

]
dx, (1.89)

as ε → 0. This last expression is the Gateaux derivative of F. We may use J or a(δu, v) for this
derivative, the latter having the advantage that we easily recognize the expression as a bilinear form.
However, in the forthcoming code examples J is used as variable name for the Jacobian.

The specification of J goes as follows if du is the TrialFunction:

Python code
du = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution

F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

J = inner(q(u_)*nabla_grad(du), nabla_grad(v))*dx + \

inner(Dq(u_)*du*nabla_grad(u_), nabla_grad(v))*dx

The alternative specification of F, with u as TrialFunction, leads to

Python code
u = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution

F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx

F = action(F, u_)

J = inner(q(u_)*nabla_grad(u), nabla_grad(v))*dx + \

inner(Dq(u_)*u*nabla_grad(u_), nabla_grad(v))*dx

The UFL language, used to specify weak forms, supports differentiation of forms. This feature
facilitates automatic symbolic computation of the Jacobian J by calling the function derivative with F,
the most recently computed solution (Function), and the unknown (TrialFunction) as parameters:

Python code
du = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution

F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

J = derivative(F, u_, du) # Gateaux derivative in dir. of du

or

Python code
u = TrialFunction(V)

v = TestFunction(V)

u_ = Function(V) # the most recently computed solution

F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx

F = action(F, u_)
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J = derivative(F, u_, u) # Gateaux derivative in dir. of u

The derivative function is obviously very convenient in problems where differentiating F by hand
implies lengthy calculations.

The preferred implementation of F and J, depending on whether du or u is the TrialFunction

object, is a matter of personal taste. Derivation of the Gateaux derivative by hand, as shown above,
is most naturally matched by an implementation where du is the TrialFunction, while use of
automatic symbolic differentiation through the derivative function is most naturally matched with
an implementation where u is the TrialFunction. We have implemented both approaches in two files:
vp1_np.py with u as TrialFunction, and vp2_np.py with du as TrialFunction. Both files are located
in the stationary/nonlinear_poisson directory. The first command-line argument determines if the
Jacobian is to be automatically derived or computed from the hand-derived formula.

The following code defines the nonlinear variational problem and an associated solver based on
Newton’s method. We also demonstrate how key parameters in Newton’s method can be set, as well
as the choice of solver and preconditioner, and associated parameters, for the linear system occurring
in the Newton iteration.

Python code
problem = NonlinearVariationalProblem(F, u_, bcs, J)

solver = NonlinearVariationalSolver(problem)

prm = solver.parameters

prm["newton_solver"]["absolute_tolerance"] = 1E-8

prm["newton_solver"]["relative_tolerance"] = 1E-7

prm["newton_solver"]["maximum_iterations"] = 25

prm["newton_solver"]["relaxation_parameter"] = 1.0

if iterative_solver:

prm["linear_solver"] = "gmres"

prm["preconditioner"] = "ilu"

prm["krylov_solver"]["absolute_tolerance"] = 1E-9

prm["krylov_solver"]["relative_tolerance"] = 1E-7

prm["krylov_solver"]["maximum_iterations"] = 1000

prm["krylov_solver"]["gmres"]["restart"] = 40

prm["krylov_solver"]["preconditioner"]["ilu"]["fill_level"] = 0

set_log_level(PROGRESS)

solver.solve()

A list of available parameters and their default values can as usual be printed by calling info(prm,

True). The u_ we feed to the nonlinear variational problem object is filled with the solution by the call
solver.solve().

1.3 Time-dependent problems

The examples in Section 1.1 illustrate that solving linear, stationary PDE problems with the aid of
FEniCS is easy and requires little programming. That is, FEniCS automates the spatial discretization
by the finite element method. The solution of nonlinear problems, as we showed in Section 1.2, can
also be automated (see Section 1.2.4), but many scientists will prefer to code the solution strategy of
the nonlinear problem themselves and experiment with various combinations of strategies in difficult
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problems. Time-dependent problems are somewhat similar in this respect: we have to add a time
discretization scheme, which is often quite simple, making it natural to explicitly code the details of
the scheme so that the programmer has full control. We shall explain how easily this is accomplished
through examples.

1.3.1 A diffusion problem and its discretization

Our time-dependent model problem for teaching purposes is naturally the simplest extension of the
Poisson problem into the time domain; that is, the diffusion problem

∂u
∂t

= ∆u + f in Ω, for t > 0, (1.90)

u = u0 on ∂Ω, for t > 0, (1.91)

u = I at t = 0. (1.92)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Ω is two-dimensional.
The source function f and the boundary values u0 may also vary with space and time. The initial
condition I is a function of space only.

A straightforward approach to solving time-dependent PDEs by the finite element method is to
first discretize the time derivative by a finite difference approximation, which yields a recursive set of
stationary problems, and then turn each stationary problem into a variational formulation.

Let superscript k denote a quantity at time tk, where k is an integer counting time levels. For
example, uk means u at time level k. A finite difference discretization in time first consists in sampling
the PDE at some time level, say k:

∂

∂t
uk = ∆uk + f k. (1.93)

The time-derivative can be approximated by a finite difference. For simplicity and stability reasons we
choose a simple backward difference:

∂

∂t
uk ≈ uk − uk−1

dt
, (1.94)

where dt is the time discretization parameter. Inserting (1.94) in (1.93) yields

uk − uk−1

dt
= ∆uk + f k. (1.95)

This is our time-discrete version of the diffusion PDE (1.90). Reordering (1.95) so that uk appears
on the left-hand side only, shows that (1.95) is a recursive set of spatial (stationary) problems for uk

(assuming uk−1 is known from computations at the previous time level):

u0 = I, (1.96)

uk − dt∆uk = uk−1 + dt f k, k = 1, 2, . . . (1.97)

Given I, we can solve for u0, u1, u2, and so on.
We use a finite element method to solve the equations (1.96) and (1.97). This requires turning the

equations into weak forms. As usual, we multiply by a test function v ∈ V̂ and integrate second-
derivatives by parts. Introducing the symbol u for uk (which is natural in the program too), the
resulting weak form can be conveniently written in the standard notation: a0(u, v) = L0(v) for (1.96)
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and a(u, v) = L(v) for (1.97), where

a0(u, v) =
∫

Ω
uv dx, (1.98)

L0(v) =
∫

Ω
Iv dx, (1.99)

a(u, v) =
∫

Ω
(uv + dt∇u · ∇v) dx, (1.100)

L(v) =
∫

Ω

(
uk−1 + dt f k

)
v dx. (1.101)

The continuous variational problem is to find u0 ∈ V such that a0(u0, v) = L0(v) holds for all v ∈ V̂,
and then find uk ∈ V such that a(uk, v) = L(v) for all v ∈ V̂, k = 1, 2, . . ..

Approximate solutions in space are found by restricting the functional spaces V and V̂ to finite-
dimensional spaces, exactly as we have done in the Poisson problems. We shall use the symbol u for
the finite element approximation at time tk. In case we need to distinguish this space-time discrete
approximation from the exact solution of the continuous diffusion problem, we use ue for the latter.
By uk−1 we mean, from now on, the finite element approximation of the solution at time tk−1.

Note that the forms a0 and L0 are identical to the forms met in Section 1.1.9, except that the test and
trial functions are now scalar fields and not vector fields. Instead of solving (1.96) by a finite element
method; that is, projecting I onto V via the problem a0(u, v) = L0(v), we could simply interpolate u0

from I. That is, if u0 = ∑N
j=1 U0

j φj, we simply set Uj = I(xj, yj), where (xj, yj) are the coordinates of
node number j. We refer to these two strategies as computing the initial condition by either projecting
I or interpolating I. Both operations are easy to compute through one statement, using either the
project or interpolate function.

1.3.2 Implementation

Our program needs to perform the time stepping explicitly, but can rely on FEniCS to easily compute
a0, L0, a, and L, and solve the linear systems for the unknowns. We realize that a does not depend on
time, which means that its associated matrix also will be time independent. Therefore, it is wise to
explicitly create matrices and vectors as in Section 1.1.15. The matrix A arising from a can be computed
prior to the time stepping, so that we only need to compute the right-hand side b, corresponding to L,
in each pass in the time loop. Let us express the solution procedure in algorithmic form, writing u for
the unknown spatial function at the new time level (uk) and u1 for the spatial solution at one earlier
time level (uk−1):

define Dirichlet boundary condition (u0, Dirichlet boundary, etc.)
if u1 is to be computed by projecting I:

define a0 and L0
assemble matrix M from a0 and vector b from L0
solve MU = b and store U in u1

else: (interpolation)
let u1 interpolate I

define a and L
assemble matrix A from a
set some stopping time T
t = dt
while t 6 T

assemble vector b from L
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apply essential boundary conditions
solve AU = b for U and store in u
t← t + dt
u1 ← u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to determine if the
calculations are correct. The simple backward time difference is exact for linear functions, so we
decide to have a linear variation in time. Combining a second-degree polynomial in space with a
linear term in time,

u = 1 + x2 + αy2 + βt, (1.102)

yields a function whose computed values at the nodes may be exact, regardless of the size of
the elements and dt, as long as the mesh is uniformly partitioned. Inserting (1.102) in the PDE
problem (1.90), it follows that u0 must be given as (1.102) and that f (x, y, t) = β − 2 − 2α and
I(x, y) = 1 + x2 + αy2.

A new programming issue is how to deal with functions that vary in space and time, such as the
boundary condition u0 given by (1.102). A natural solution is to apply an Expression object with time
t as a parameter, in addition to the parameters α and β (see Section 1.1.7 for Expression objects with
parameters):

Python code
alpha = 3; beta = 1.2

u0 = Expression("1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t",

alpha=alpha, beta=beta, t=0)

The time parameter can later be updated by assigning values to u0.t.
The essential boundary conditions, along the whole boundary in this case, are set in the usual way,

Python code
def boundary(x, on_boundary): # define the Dirichlet boundary

return on_boundary

bc = DirichletBC(V, u0, boundary)

We shall use u for the unknown u at the new time level and u_1 for u at the previous time level.
The initial value of u_1, implied by the initial condition on u, can be computed by either projecting or
interpolating I. The I(x, y) function is available in the program through u0, as long as u0.t is zero.
We can then do

Python code
u_1 = interpolate(u0, V)

# or

u_1 = project(u0, V)

Note that we could, as an equivalent alternative to using project, define a0 and L0 as we did in
Section 1.1.9 and solve the associated variational problem. To actually recover (1.102) to machine pre-
cision, it is important not to compute the discrete initial condition by projecting I, but by interpolating
I so that the nodal values are exact at t = 0 (projection results in approximative values at the nodes).

The definition of a and L goes as follows:

Python code
dt = 0.3 # time step

u = TrialFunction(V)
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v = TestFunction(V)

f = Constant(beta - 2 - 2*alpha)

a = u*v*dx + dt*inner(nabla_grad(u), nabla_grad(v))*dx

L = (u_1 + dt*f)*v*dx

A = assemble(a) # assemble only once, before the time stepping

Finally, we perform the time stepping in a loop:

Python code
u = Function(V) # the unknown at a new time level

T = 2 # total simulation time

t = dt

while t <= T:

b = assemble(L)

u0.t = t

bc.apply(A, b)

solve(A, u.vector(), b)

t += dt

u_1.assign(u)

Observe that u0.t must be updated before the bc.apply statement, to enforce computation of Dirichlet
conditions at the current time level.

The time loop above does not contain any comparison of the numerical and the exact solution,
which we must include in order to verify the implementation. As in many previous examples, we
compute the difference between the array of nodal values of u and the array of the interpolated exact
solution. The following code is to be included inside the loop, after u is found:

Python code
u_e = interpolate(u0, V)

maxdiff = numpy.abs(u_e.vector().array()-u.vector().array()).max()

print "Max error, t=%.2f: %-10.3f" % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time level. With the construc-
tion b = assemble(L), a new vector for b is allocated in memory in every pass of the time loop. It
would be much more memory friendly to reuse the storage of the b we already have. This is easily
accomplished by

Python code
b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and returned from assemble.
Now there will be only a single memory allocation of the right-hand side vector. Before the time loop
we set b = None such that b is defined in the first call to assemble.

The complete program code for this time-dependent case is stored in the file d1_d2D.py in the
directory transient/diffusion.

1.3.3 Avoiding assembly

The purpose of this section is to present a technique for speeding up FEniCS simulators for time-
dependent problems where it is possible to perform all assembly operations prior to the time loop.
There are two costly operations in the time loop: assembly of the right-hand side b and solution of



Chapter 1. A FEniCS tutorial 51

the linear system via the solve call. The assembly process involves work proportional to the number
of degrees of freedom N, while the solve operation has a work estimate of O(Nα), for some α > 1.
As N → ∞, the solve operation will dominate for α > 1, but for the values of N typically used on
smaller computers, the assembly step may still represent a considerable part of the total work at each
time level. Avoiding repeated assembly can therefore contribute to a significant speed-up of a finite
element code in time-dependent problems.

To see how repeated assembly can be avoided, we look at the L(v) form in (1.101), which in general
varies with time through uk−1, f k, and possibly also with dt if the time step is adjusted during the
simulation. The technique for avoiding repeated assembly consists in expanding the finite element
functions in sums over the basis functions φi, as explained in Section 1.1.15, to identify matrix-vector
products that build up the complete system. We have uk−1 = ∑N

j=1 Uk−1
j φj, and we can expand f k as

f k = ∑N
j=1 Fk

j φj. Inserting these expressions in L(v) and using v = φ̂i result in

∫
Ω

(
uk−1 + dt f k

)
v dx =

∫
Ω

(
N

∑
j=1

Uk−1
j φj + dt

N

∑
j=1

Fk
j φj

)
φ̂i dx,

=
N

∑
j=1

(∫
Ω

φ̂iφj dx
)

Uk−1
j + dt

N

∑
j=1

(∫
Ω

φ̂iφj dx
)

Fk
j .

(1.103)

Introducing Mij =
∫

Ω φ̂iφj dx, we see that the last expression can be written

N

∑
j=1

MijUk−1
j + dt

N

∑
j=1

MijFk
j , (1.104)

which is nothing but two matrix-vector products,

MUk−1 + dtMFk, (1.105)

if M is the matrix with entries Mij and

Uk−1 = (Uk−1
1 , . . . , Uk−1

N )>, (1.106)

and
Fk = (Fk

1 , . . . , Fk
N)
>. (1.107)

We have immediate access to Uk−1 in the program since that is the vector in the u_1 function. The
Fk vector can easily be computed by interpolating the prescribed f function (at each time level if f
varies with time). Given M, Uk−1, and Fk, the right-hand side b can be calculated as

b = MUk−1 + dtMFk. (1.108)

That is, no assembly is necessary to compute b.

The coefficient matrix A can also be split into two terms. We insert v = φ̂i and uk = ∑N
j=1 Uk

j φj in
the expression (1.100) to get

N

∑
j=1

(∫
Ω

φ̂iφj dx
)

Uk
j + dt

N

∑
j=1

(∫
Ω
∇φ̂i · ∇φj dx

)
Uk

j , (1.109)
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which can be written as a sum of matrix-vector products,

MUk + dtKUk = (M + dtK)Uk, (1.110)

if we identify the matrix M with entries Mij as above and the matrix K with entries

Kij =
∫

Ω
∇φ̂i · ∇φj dx. (1.111)

The matrix M is often called the “mass matrix” while “stiffness matrix” is a common nickname for
K. The associated bilinear forms for these matrices, as we need them for the assembly process in a
FEniCS program, become

aK(u, v) =
∫

Ω
∇u · ∇v dx, (1.112)

aM(u, v) =
∫

Ω
uv dx. (1.113)

The linear system at each time level, written as AUk = b, can now be computed by first computing
M and K, and then forming A = M + dtK at t = 0, while b is computed as b = MUk−1 + dtMFk at
each time level.

The following modifications are needed in the d1_d2D.py program from the previous section in
order to implement the new strategy of avoiding assembly at each time level:

1. Define separate forms aM and aK

2. Assemble aM to M and aK to K

3. Compute A = M + dt K

4. Define f as an Expression

5. Interpolate the formula for f to a finite element function Fk

6. Compute b = MUk−1 + dtMFk

The relevant code segments become

Python code
# 1.

a_K = inner(nabla_grad(u), nabla_grad(v))*dx

a_M = u*v*dx

# 2. and 3.

M = assemble(a_M)

K = assemble(a_K)

A = M + dt*K

# 4.

f = Expression("beta - 2 - 2*alpha", beta=beta, alpha=alpha)

# 5. and 6.

while t <= T:

f_k = interpolate(f, V)

F_k = fk.vector()

b = M*u_1.vector() + dt*M*F_k

The complete program appears in the file d2_d2D.py.
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Figure 1.7: Sketch of a (2D) problem
involving heating and cooling of the
ground due to an oscillating surface
temperature

∂u/∂n = 0∂u/∂n = 0

y

x

T0(t) = TR + TA sin(ωt)

D

W

κ ≪ κ0

̺, c, κ0

∂u/∂n = 0

1.3.4 A physical example

With the basic programming techniques for time-dependent problems from Sections 1.3.3–1.3.2 we are
ready to attack more physically realistic examples. The next example concerns the question: How is
the temperature in the ground affected by day and night variations at the earth’s surface? We consider
some box-shaped domain Ω in d dimensions with coordinates x0, . . . , xd−1 (the problem is meaningful
in 1D, 2D, and 3D). At the top of the domain, xd−1 = 0, we have an oscillating temperature

T0(t) = TR + TA sin(ωt), (1.114)

where TR is some reference temperature, TA is the amplitude of the temperature variations at the
surface, and ω is the frequency of the temperature oscillations. At all other boundaries we assume
that the temperature does not change anymore when we move away from the boundary; that is,
the normal derivative is zero. Initially, the temperature can be taken as TR everywhere. The heat
conductivity properties of the soil in the ground may vary with space so we introduce a variable
coefficient κ reflecting this property. Figure 1.7 shows a sketch of the problem, with a small region
where the heat conductivity is much lower.

The initial-boundary value problem for this problem reads

$c
∂T
∂t

= ∇ · (κ∇T) in Ω× (0, tstop], (1.115)

T = T0(t) on Γ0, (1.116)
∂T
∂n

= 0 on ∂Ω\Γ0, (1.117)

T = TR at t = 0. (1.118)

Here, $ is the density of the soil, c is the heat capacity, κ is the thermal conductivity (heat conduction
coefficient) in the soil, and Γ0 is the surface boundary xd−1 = 0.
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We use a θ-scheme in time; that is, the evolution equation ∂P/∂t = Q(t) is discretized as

Pk − Pk−1

dt
= θQk + (1− θ)Qk−1, (1.119)

where θ ∈ [0, 1] is a weighting factor: θ = 1 corresponds to the backward difference scheme, θ = 1/2
to the Crank–Nicolson scheme, and θ = 0 to a forward difference scheme. The θ-scheme applied to
our PDE results in

$c
Tk − Tk−1

dt
= θ∇ ·

(
κ∇Tk

)
+ (1− θ)∇ ·

(
k∇Tk−1

)
. (1.120)

Bringing this time-discrete PDE into weak form follows the technique shown many times earlier in
this tutorial. In the standard notation a(T, v) = L(v) the weak form has

a(T, v) =
∫

Ω
($cTv + θ dtκ∇T · ∇v) dx, (1.121)

L(v) =
∫

Ω

(
$cTk−1v− (1− θ)dtκ∇Tk−1 · ∇v

)
dx. (1.122)

Observe that boundary integrals vanish because of the Neumann boundary conditions.
The size of a 3D box is taken as W ×W × D, where D is the depth and W = D/2 is the width.

We give the degree of the basis functions at the command-line, then D, and then the divisions of the
domain in the various directions. To make a box, rectangle, or interval of arbitrary (not unit) size, we
have the DOLFIN classes Box, Rectangle, and Interval at our disposal. The mesh and the function
space can be created by the following code:

Python code
degree = int(sys.argv[1])

D = float(sys.argv[2])

W = D/2.0

divisions = [int(arg) for arg in sys.argv[3:]]

d = len(divisions) # no of space dimensions

if d == 1:

mesh = Interval(divisions[0], -D, 0)

elif d == 2:

mesh = Rectangle(-W/2, -D, W/2, 0, divisions[0], divisions[1])

elif d == 3:

mesh = Box(-W/2, -W/2, -D, W/2, W/2, 0,

divisions[0], divisions[1], divisions[2])

V = FunctionSpace(mesh, "Lagrange", degree)

The Rectangle and Box objects are defined by the coordinates of the “minimum” and “maximum”
corners.

Setting Dirichlet conditions at the upper boundary can be done by

Python code
T_R = 0; T_A = 1.0; omega = 2*pi

T_0 = Expression("T_R + T_A*sin(omega*t)",

T_R=T_R, T_A=T_A, omega=omega, t=0.0)

def surface(x, on_boundary):

return on_boundary and abs(x[d-1]) < 1E-14

bc = DirichletBC(V, T_0, surface)
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The κ function can be defined as a constant κ1 inside the particular rectangular area with a special
soil composition, as indicated in Figure 1.7. Outside this area κ is a constant κ0. The domain of the
rectangular area is taken as

[−W/4, W/4]× [−W/4, W/4]× [−D/2,−D/2 + D/4]

in 3D, with [−W/4, W/4]× [−D/2,−D/2 + D/4] in 2D and [−D/2,−D/2 + D/4] in 1D. Since we
need some testing in the definition of the κ(x) function, the most straightforward approach is to
define a subclass of Expression, where we can use a full Python method instead of just a C++ string
formula for specifying a function. The method that defines the function is called eval:

Python code
class Kappa(Function):

def eval(self, value, x):

"""x: spatial point, value[0]: function value."""

d = len(x) # no of space dimensions

material = 0 # 0: outside, 1: inside

if d == 1:

if -D/2. < x[d-1] < -D/2. + D/4.:

material = 1

elif d == 2:

if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4.:

material = 1

elif d == 3:

if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:

material = 1

value[0] = kappa_0 if material == 0 else kappa_1

The eval method gives great flexibility in defining functions, but a downside is that C++ calls up
eval in Python for each point x, which is a slow process, and the number of calls is proportional to
the number of nodes in the mesh. Function expressions in terms of strings are compiled to efficient
C++ functions, being called from C++, so we should try to express functions as string expressions if
possible. (The eval method can also be defined through C++ code, but this is more complicated and
not covered here.) Using inline if-tests in C++, we can make string expressions for κ:

Python code
kappa_str = {}

kappa_str[1] = "x[0] > -D/2 && x[0] < -D/2 + D/4 ? kappa_1 : kappa_0"

kappa_str[2] = "x[0] > -W/4 && x[0] < W/4 "\

"&& x[1] > -D/2 && x[1] < -D/2 + D/4 ? "\

"kappa_1 : kappa_0"

kappa_str[3] = "x[0] > -W/4 && x[0] < W/4 "\

"x[1] > -W/4 && x[1] < W/4 "\

"&& x[2] > -D/2 && x[2] < -D/2 + D/4 ?"\

"kappa_1 : kappa_0"

kappa = Expression(kappa_str[d],

D=D, W=W, kappa_0=kappa_0, kappa_1=kappa_1)

Let T denote the unknown spatial temperature function at the current time level, and let T_1 be the
corresponding function at one earlier time level. We are now ready to define the initial condition and
the a and L forms of our problem:
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Python code
T_1 = interpolate(Constant(T_R), V)

rho = 1

c = 1

period = 2*pi/omega

t_stop = 5*period

dt = period/20 # 20 time steps per period

theta = 1

T = TrialFunction(V)

v = TestFunction(V)

f = Constant(0)

a = rho*c*T*v*dx + theta*dt*kappa*\

inner(nabla_grad(T), nabla_grad(v))*dx

L = (rho*c*T_prev*v + dt*f*v -

(1-theta)*dt*kappa*inner(nabla_grad(T), nabla_grad(v)))*dx

A = assemble(a)

b = None # variable used for memory savings in assemble calls

T = Function(V) # unknown at the current time level

We could, alternatively, break a and L up in subexpressions and assemble a mass matrix and stiffness
matrix, as exemplified in Section 1.3.3, to avoid assembly of b at every time level. This modification is
straightforward and left as an exercise. The speed-up can be significant in 3D problems.

The time loop is very similar to what we have displayed in Section 1.3.2:

Python code
t = dt

while t <= t_stop:

b = assemble(L, tensor=b)

T_0.t = t

bc.apply(A, b)

solve(A, T.vector(), b)

# visualization statements

t += dt

T_prev.assign(T)

The complete code in sin_daD.py contains several statements related to visualization and animation
of the solution, both as a finite element field (plot calls) and as a curve in the vertical direction. The
code also plots the exact analytical solution,

T(x, t) = TR + TAeax sin(ωt + ax), a =

√
ω$c
2κ

, (1.123)

which is valid when κ = κ0 = κ1.
Implementing this analytical solution as a Python function taking scalars and numpy arrays as

arguments requires a word of caution. A straightforward function like

Python code
def T_exact(x):

a = sqrt(omega*rho*c/(2*kappa_0))

return T_R + T_A*exp(a*x)*sin(omega*t + a*x)

will not work and result in an error message from UFL. The reason is that the names exp and sin are
those imported by the from dolfin import * statement, and these names come from UFL and are
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aimed at being used in variational forms. In the T_exact function where x may be a scalar or a numpy

array, we therefore need to explicitly specify numpy.exp and numpy.sin:

Python code
def T_exact(x):

a = sqrt(omega*rho*c/(2*kappa_0))

return T_R + T_A*numpy.exp(a*x)*numpy.sin(omega*t + a*x)

The reader is encouraged to play around with the code and test out various parameter sets:

1. TR = 0, TA = 1, κ0 = κ1 = 0.2, $ = c = 1, ω = 2π

2. TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.01, $ = c = 1, ω = 2π

3. TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.001, $ = c = 1, ω = 2π

4. TR = 10 C, TA = 10 C, κ0 = 2.3 K−1Ns−1, κ1 = 100 K−1Ns−1, $ = 1500 kg/m3, c =
1600 Nm kg−1K−1, ω = 2π/24 1/h = 7.27 · 10−5 1/s, D = 1.5 m

5. As above, but κ0 = 12.3 K−1Ns−1 and κ1 = 104 K−1Ns−1

Data set no. 4 is relevant for real temperature variations in the ground (not necessarily the large value
of κ1), while data set no. 5 exaggerates the effect of a large heat conduction contrast so that it becomes
clearly visible in an animation.

1.4 Creating more complex domains

Up to now we have been very fond of the unit square as domain, which is an appropriate choice for
initial versions of a PDE solver. The strength of the finite element method, however, is its ease of
handling domains with complex shapes. This section shows some methods that can be used to create
different types of domains and meshes.

Domains of complex shape must normally be constructed in separate preprocessor programs. Two
relevant preprocessors are Triangle for 2D domains and NETGEN for 3D domains.

1.4.1 Built-in mesh generation tools

DOLFIN has a few tools for creating various types of meshes over domains with simple shape:
UnitInterval, UnitSquare, UnitCube, Interval, Rectangle, Box, UnitCircle, and UnitSphere. Some
of these names have been briefly met in previous sections. The hopefully self-explanatory code snippet
below summarizes typical constructions of meshes with the aid of these tools:

Python code
# 1D domains

mesh = UnitInterval(20) # 20 cells, 21 vertices

mesh = Interval(20, -1, 1) # domain [-1,1]

# 2D domains (6x10 divisions, 120 cells, 77 vertices)

mesh = UnitSquare(6, 10) # "right" diagonal is default

# The diagonals can be right, left or crossed

mesh = UnitSquare(6, 10, "left")

mesh = UnitSquare(6, 10, "crossed")

# Domain [0,3]x[0,2] with 6x10 divisions and left diagonals

mesh = Rectangle(0, 0, 3, 2, 6, 10, "left")
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# 6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:

mesh = UnitCube(6, 10, 5)

# Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions

mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

# 10 divisions in radial directions

mesh = UnitCircle(10)

mesh = UnitSphere(10)

1.4.2 Transforming mesh coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy in that region.
Given a mesh with uniformly spaced coordinates x0, . . . , xM−1 in [a, b], the coordinate transformation
ξ = (x− a)/(b− a) maps x onto ξ ∈ [0, 1]. A new mapping η = ξs, for some s > 1, stretches the mesh
toward ξ = 0 (x = a), while η = ξ1/s makes a stretching toward ξ = 1 (x = b). Mapping the η ∈ [0, 1]
coordinates back to [a, b] gives new, stretched x coordinates,

x̄ = a + (b− a) ((x− a) b− a)s (1.124)

toward x = a, or

x̄ = a + (b− a)
(

x− a
b− a

)1/s
(1.125)

toward x = b
One way of creating more complex geometries is to transform the vertex coordinates in a rectangu-

lar mesh according to some formula. Say we want to create a part of a hollow cylinder of Θ degrees,
with inner radius a and outer radius b. A standard mapping from polar coordinates to Cartesian
coordinates can be used to generate the hollow cylinder. Given a rectangle in (x̄, ȳ) space such that
a 6 x̄ 6 b and 0 6 ȳ 6 1, the mapping

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ), (1.126)

takes a point in the rectangular (x̄, ȳ) geometry and maps it to a point (x̂, ŷ) in a hollow cylinder.
The corresponding Python code for first stretching the mesh and then mapping it onto a hollow

cylinder looks as follows:

Python code
Theta = pi/2

a, b = 1, 5.0

nr = 10 # divisions in r direction

nt = 20 # divisions in theta direction

mesh = Rectangle(a, 0, b, 1, nr, nt, "crossed")

# First make a denser mesh towards r=a

x = mesh.coordinates()[:,0]

y = mesh.coordinates()[:,1]

s = 1.3

def denser(x, y):

return [a + (b-a)*((x-a)/(b-a))**s, y]

x_bar, y_bar = denser(x, y)

xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()

mesh.coordinates()[:] = xy_bar_coor
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Figure 1.8: A hollow cylinder gener-
ated by mapping a rectangular mesh,
stretched toward the left side.

plot(mesh, title="stretched mesh")

def cylinder(r, s):

return [r*numpy.cos(Theta*s), r*numpy.sin(Theta*s)]

x_hat, y_hat = cylinder(x_bar, y_bar)

xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()

mesh.coordinates()[:] = xy_hat_coor

plot(mesh, title="hollow cylinder")

interactive()

The result of calling denser and cylinder above is a list of two vectors, with the x and y coordinates,
respectively. Turning this list into a numpy array object results in a 2×M array, M being the number
of vertices in the mesh. However, mesh.coordinates() is by a convention an M× 2 array so we need
to take the transpose. The resulting mesh is displayed in Figure 1.8.

Setting boundary conditions in meshes created from mappings like the one illustrated above is
most conveniently done by using a mesh function to mark parts of the boundary. The marking is
easiest to perform before the mesh is mapped since one can then conceptually work with the sides in
a pure rectangle.

1.5 Handling domains with different materials

Solving PDEs in domains made up of different materials is a frequently encountered task. In FEniCS,
these kind of problems are handled by defining subdomains inside the domain. The subdomains
may represent the various materials. We can thereafter define material properties through functions,
known in FEniCS as mesh functions, that are piecewise constant in each subdomain. A simple example
with two materials (subdomains) in 2D will demonstrate the basic steps in the process.

1.5.1 Working with two subdomains

Suppose we want to solve
∇ · [k(x, y)∇u(x, y)] = 0, (1.127)

in a domain Ω consisting of two subdomains where k takes on a different value in each subdomain.
For simplicity, yet without loss of generality, we choose for the current implementation the domain



60 Chapter 1. A FEniCS tutorial

6

-
x

y

u = 0

u = 1

Ω1

Ω0

∂u
∂n = 0 ∂u

∂n = 0

Figure 1.9: Sketch of a Poisson prob-
lem with a variable coefficient that
is constant in each of the two subdo-
mains Ω0 and Ω1.

Ω = [0, 1]× [0, 1] and divide it into two equal subdomains, as depicted in Figure 1.9,

Ω0 = [0, 1]× [0, 1/2], Ω1 = [0, 1]× (1/2, 1]. (1.128)

We define k(x, y) = k0 in Ω0 and k(x, y) = k1 in Ω1, where k0 > 0 and k1 > 0 are given constants. As
boundary conditions, we choose u = 0 at y = 0, u = 1 at y = 1, and ∂u/∂n = 0 at x = 0 and x = 1.
One can show that the exact solution is now given by

u(x, y) =

{ 2yk1
k0+k1

, y 6 1/2
(2y−1)k0+k1

k0+k1
, y > 1/2

(1.129)

As long as the element boundaries coincide with the internal boundary y = 1/2, this piecewise linear
solution should be exactly recovered by Lagrange elements of any degree. We use this property to
verify the implementation.

Physically, the present problem may correspond to heat conduction, where the heat conduction in
Ω1 is ten times more efficient than in Ω0. An alternative interpretation is flow in porous media with
two geological layers, where the layers’ ability to transport the fluid differs by a factor of 10.

1.5.2 Implementation

The new functionality in this subsection regards how to define the subdomains Ω0 and Ω1. For this
purpose we need to use subclasses of class SubDomain, not only plain functions as we have used so far
for specifying boundaries. Consider the boundary function

Python code
def boundary(x, on_boundary):

tol = 1E-14

return on_boundary and abs(x[0]) < tol

for defining the boundary x = 0. Instead of using such a stand-alone function, we can create an
instance2 of a subclass of SubDomain, which implements the inside method as an alternative to the

2The term instance means a Python object of a particular type (such as SubDomain, Function, FunctionSpace, etc.). Many use
instance and object as interchangeable terms. In other computer programming languages one may also use the term variable for
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boundary function:

Python code
class Boundary(SubDomain):

def inside(x, on_boundary):

tol = 1E-14

return on_boundary and abs(x[0]) < tol

boundary = Boundary()

bc = DirichletBC(V, Constant(0), boundary)

A subclass of SubDomain with an inside method offers functionality for marking parts of the
domain or the boundary. Now we need to define one class for the subdomain Ω0 where y 6 1/2 and
another for the subdomain Ω1 where y > 1/2:

Python code
class Omega0(SubDomain):

def inside(self, x, on_boundary):

return True if x[1] <= 0.5 else False

class Omega1(SubDomain):

def inside(self, x, on_boundary):

return True if x[1] >= 0.5 else False

Notice the use of <= and >= in both tests. For a cell to belong to, e.g., Ω1, the inside method must
return True for all the vertices x of the cell. So to make the cells at the internal boundary y = 1/2
belong to Ω1, we need the test x[1] >= 0.5.

The next task is to use a MeshFunction to mark all cells in Ω0 with the subdomain number 0 and
all cells in Ω1 with the subdomain number 1. Our convention is to number subdomains as 0, 1, 2, . . ..

A MeshFunction is a discrete function that can be evaluated at a set of so-called mesh entities.
Examples of mesh entities are cells, facets, and vertices. A MeshFunction over cells is suitable to
represent subdomains (materials), while a MeshFunction over facets is used to represent pieces of
external or internal boundaries. Mesh functions over vertices can be used to describe continuous
fields.

Since we need to define subdomains of Ω in the present example, we must make use of a
MeshFunction over cells. The MeshFunction constructor is fed with three arguments: 1) the type of
value: "int" for integers, "uint" for positive (unsigned) integers, "double" for real numbers, and
"bool" for logical values; 2) a Mesh object, and 3) the topological dimension of the mesh entity in
question: cells have topological dimension equal to the number of space dimensions in the PDE
problem, and facets have one dimension lower. Alternatively, the constructor can take just a filename
and initialize the MeshFunction from data in a file.

We start with creating a MeshFunction whose values are non-negative integers ("uint") for num-
bering the subdomains. The mesh entities of interest are the cells, which have dimension 2 in a
two-dimensional problem (1 in 1D, 3 in 3D). The appropriate code for defining the MeshFunction for
two subdomains then reads

Python code
subdomains = MeshFunction("uint", mesh, 2)

# Mark subdomains with numbers 0 and 1

subdomain0 = Omega0()

subdomain0.mark(subdomains, 0)

subdomain1 = Omega1()

subdomain1.mark(subdomains, 1)

the same thing. We mostly use the well-known term object in this text.
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Calling subdomains.array() returns a numpy array of the subdomain values. That is,
subdomain.array()[i] is the subdomain value of cell number i. This array is used to look up
the subdomain or material number of a specific element.

We need a function k that is constant in each subdomain Ω0 and Ω1. Since we want k to be a finite
element function, it is natural to choose a space of functions that are constant over each element. The
family of discontinuous Galerkin methods, in FEniCS denoted by "DG", is suitable for this purpose.
Since we want functions that are piecewise constant, the value of the degree parameter is zero:

Python code
V0 = FunctionSpace(mesh, "DG", 0)

k = Function(V0)

To fill k with the right values in each element, we loop over all cells (the indices in subdomain.array()),
extract the corresponding subdomain number of a cell, and assign the corresponding k value to the
k.vector() array:

Python code
k_values = [1.5, 50] # values of k in the two subdomains

for cell_no in range(len(subdomains.array())):

subdomain_no = subdomains.array()[cell_no]

k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes it is preferable to avoid such
loops and instead use vectorized code. Normally this implies that the loop must be replaced by calls to
functions from the numpy library that operate on complete arrays (in efficient C code). The functionality
we want in the present case is to compute an array of the same size as subdomain.array(), but where
the value i of an entry in subdomain.array() is replaced by k_values[i]. Such an operation is carried
out by the numpy function choose:

Python code
help = numpy.asarray(subdomains.array(), dtype=numpy.int32)

k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.array() because this array has
elements of type uint32. We must therefore transform this array to an array help with standard int32

integers.
Having the k function ready for finite element computations, we can proceed in the normal manner

with defining essential boundary conditions, as in Section 1.1.14, and the a(u, v) and L(v) forms, as in
Section 1.1.10. All the details can be found in the file mat2_p2D.py.

1.5.3 Multiple Neumann, Robin, and Dirichlet conditions

Let us go back to the model problem from Section 1.1.14 where we had both Dirichlet and Neumann
conditions. The term v*g*ds in the expression for L implies a boundary integral over the complete
boundary, or in FEniCS terms, an integral over all exterior facets. However, the contributions from
the parts of the boundary where we have Dirichlet conditions are erased when the linear system is
modified by the Dirichlet conditions. We would like, from an efficiency point of view, to integrate
v*g*ds only over the parts of the boundary where we actually have Neumann conditions. And more
importantly, in other problems one may have different Neumann conditions or other conditions
like the Robin type condition. With the mesh function concept we can mark different parts of the
boundary and integrate over specific parts. The same concept can also be used to treat multiple
Dirichlet conditions. The forthcoming text illustrates how this is done.
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Essentially, we still stick to the model problem from Section 1.1.14, but replace the Neumann
condition at y = 0 by a Robin condition3:

−∂u
∂n

= p(u− q), (1.130)

where p and q are specified functions. Since we have prescribed a simple solution in our model
problem, u = 1 + x2 + 2y2, we adjust p and q such that the condition holds at y = 0. This implies that
q = 1+ x2 + 2y2 and p can be arbitrary (the normal derivative at y = 0: ∂u/∂n = −∂u/∂y = −4y = 0).

Now we have four parts of the boundary: ΓN which corresponds to the upper side y = 1, ΓR
which corresponds to the lower part y = 0, Γ0 which corresponds to the left part x = 0, and Γ1 which
corresponds to the right part x = 1. The complete boundary-value problem reads

−∆u = −6 in Ω, (1.131)

u = uL on Γ0, (1.132)

u = uR on Γ1, (1.133)

−∂u
∂n

= p(u− q) on ΓR, (1.134)

−∂u
∂n

= g on ΓN. (1.135)

The involved prescribed functions are uL = 1 + 2y2, uR = 2 + 2y2, q = 1 + x2 + 2y2, p is arbitrary, and
g = −4y.

Integration by parts of −
∫

Ω v∆u dx becomes as usual

−
∫

Ω
v∆u dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u
∂n

v ds. (1.136)

The boundary integral vanishes on Γ0 ∪ Γ1, and we split the parts over ΓN and ΓR since we have
different conditions at those parts:

−
∫

∂Ω
v

∂u
∂n

ds = −
∫

ΓN

v
∂u
∂n

ds−
∫

ΓR

v
∂u
∂n

ds =
∫

ΓN

vg ds +
∫

ΓR

vp(u− q)ds. (1.137)

The weak form then becomes∫
Ω
∇u · ∇v dx +

∫
ΓN

gv ds +
∫

ΓR

p(u− q)v ds =
∫

Ω
f v dx, (1.138)

We want to write this weak form in the standard notation a(u, v) = L(v), which requires that we
identify all integrals with both u and v, and collect these in a(u, v), while the remaining integrals with
v and not u go into L(v). The integral from the Robin condition must of this reason be split in two
parts: ∫

ΓR

p(u− q)v ds =
∫

ΓR

puv ds−
∫

ΓR

pqv ds. (1.139)

3The Robin condition is most often used to model heat transfer to the surroundings and arise naturally from Newton’s
cooling law.
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We then have

a(u, v) =
∫

Ω
∇u · ∇v dx +

∫
ΓR

puv ds, (1.140)

L(v) =
∫

Ω
f v dx−

∫
ΓN

gv ds +
∫

ΓR

pqv ds. (1.141)

A natural starting point for implementation is the file stationary/poisson/dn2_p2D.py. The new
aspects are

1. definition of a mesh function over the boundary,

2. marking each side as a subdomain, using the mesh function,

3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Section 1.5.2, this is not a function
over cells, but a function over cell facets. The topological dimension of cell facets is one lower than
the cell interiors, so in a two-dimensional problem the dimension becomes 1. In general, the facet
dimension is given as mesh.topology().dim()-1, which we use in the code for ease of direct reuse in
other problems. The construction of a MeshFunction object to mark boundary parts now reads

Python code
boundary_parts = \

MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Section 1.5.2 we use a subclass of SubDomain to identify the various parts of the mesh function.
Problems with domains of more complicated geometries may set the mesh function for marking
boundaries as part of the mesh generation. In our case, the y = 0 boundary can be marked by

Python code
class LowerRobinBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()

Gamma_R.mark(boundary_parts, 0)

The code for the y = 1 boundary is similar and is seen in dnr_p2D.
The Dirichlet boundaries are marked similarly, using subdomain number 2 for Γ0 and 3 for Γ1:

Python code
class LeftBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftBoundary()

Gamma_0.mark(boundary_parts, 2)

class RightBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightBoundary()

Gamma_1.mark(boundary_parts, 3)
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Specifying the DirichletBC objects may now make use of the mesh function (instead of a SubDomain

subclass object) and an indicator for which subdomain each condition should be applied to:

Python code
u_L = Expression("1 + 2*x[1]*x[1]")

u_R = Expression("2 + 2*x[1]*x[1]")

bcs = [DirichletBC(V, u_L, boundary_parts, 2),

DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of the variational problem:

Python code
g = Expression("-4*x[1]")

q = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

p = Constant(100) # arbitrary function can go here

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-6.0)

The new aspect of the variational problem is the two distinct boundary integrals. Having a mesh
function over exterior cell facets (our boundary_parts object), where subdomains (boundary parts)
are numbered as 0, 1, 2, . . ., the special symbol ds(0) implies integration over subdomain (part) 0,
ds(1) denotes integration over subdomain (part) 1, and so on. The idea of multiple ds-type objects
generalizes to volume integrals too: dx(0), dx(1), etc., are used to integrate over subdomain 0, 1, etc.,
inside Ω.

The variational problem can be defined as

Python code
a = inner(nabla_grad(u), nabla_grad(v))*dx + p*u*v*ds(0)

L = f*v*dx - g*v*ds(1) + p*q*v*ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them (or a and L) to the mesh
function marking parts of the boundary. This is done by a certain keyword argument to the assemble

function:

Python code
A = assemble(a, exterior_facet_domains=boundary_parts)

b = assemble(L, exterior_facet_domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved in the usual way:

Python code
for bc in bcs: bc.apply(A, b)

u = Function(V)

U = u.vector()

solve(A, U, b)

The complete code is in the dnr_p2D.py file in the stationary/poisson directory.

1.6 More examples

Many more topics could be treated in a FEniCS tutorial, e.g., how to solve systems of PDEs, how
to work with mixed finite element methods, how to create more complicated meshes and mark
boundaries, and how to create more advanced visualizations. However, to limit the size of this tutorial,
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the examples end here. There are, fortunately, a rich set of FEniCS demos. The FEniCS documentation
explains a collection of PDE solvers in detail: the Poisson equation, the mixed formulation for
the Poisson equation, the Biharmonic equation, the equations of hyperelasticity, the Cahn-Hilliard
equation, and the incompressible Navier–Stokes equations. Both Python and C++ versions of these
solvers are explained. An eigenvalue solver is also documented. In the dolfin/demo directory of
the DOLFIN source code tree you can find programs for these and many other examples, including
the advection-diffusion equation, the equations of elastodynamics, a reaction-diffusion equation,
various finite element methods for the Stokes problem, discontinuous Galerkin methods for the
Poisson and advection-diffusion equations, and an eigenvalue problem arising from electromagnetic
waveguide problem with Nédélec elements. There are also numerous demos on how to apply various
functionality in FEniCS, e.g., mesh refinement and error control, moving meshes (for ALE methods),
computing functionals over subsets of the mesh (such as lift and drag on bodies in flow), and creating
separate subdomain meshes from a parent mesh.

The project CBC.Solve (https://launchpad.net/cbc.solve) offers more complete PDE solvers for
the Navier–Stokes equations (Chapter 5), the equations of hyperelasticity (Chapter 5), fluid–structure
interaction (Chapter 5), viscous mantle flow (Chapter 5), and the bidomain model of electrophysiology.
Another project, CBC.RANS (https://launchpad.net/cbc.rans), offers an environment for very
flexible and easy implementation of Navier–Stokes solvers and turbulence [Mortensen et al., 2011b,a].
For example, CBC.RANS contains an elliptic relaxation model for turbulent flow involving 18 nonlinear
PDEs. FEniCS proved to be an ideal environment for implementing such complicated PDE models.
The easy construction of systems of nonlinear PDEs in CBC.RANS has been further generalized to
simplify the implementation of large systems of nonlinear PDEs in general. The functionality is found
in the CBC.PDESys package (https://launchpad.net/cbcpdesys).

1.7 Miscellaneous topics

1.7.1 Glossary

Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software components (see
fenicsproject.org). Some components are DOLFIN and Viper, explicitly referred to in this tu-
torial. Others are FFC and FIAT, heavily used by the programs appearing in this tutorial, but never
explicitly used from the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a Python interface, for performing
important actions in finite element programs. DOLFIN makes use of many other FEniCS components
and many external software packages.

Viper: a FEniCS component for quick visualization of finite element meshes and solutions.

UFL: a FEniCS component implementing the unified form language for specifying finite element forms
in FEniCS programs. The definition of the forms, typically called a and L in this tutorial, must have
legal UFL syntax. The same applies to the definition of functionals (see Section 1.1.11).

Class (Python): a programming construction for creating objects containing a set of variables and
functions. Most types of FEniCS objects are defined through the class concept.

Instance (Python): an object of a particular type, where the type is implemented as a class. For
instance, mesh = UnitInterval(10) creates an instance of class UnitInterval, which is reached by
the name mesh. (Class UnitInterval is actually just an interface to a corresponding C++ class in the
DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation: instance_name.method_name.



Chapter 1. A FEniCS tutorial 67

self parameter (Python): required first parameter in class methods, representing a particular object
of the class. Used in method definitions, but never in calls to a method. For example, if method(self,
x) is the definition of method in a class Y, method is called as y.method(x), where y is an instance of
class Y. In a call like y.method(x), method is invoked with self=y.

Class attribute (Python): a variable in a class, reached by dot notation: instance_name.attribute_
name.

1.7.2 Overview of objects and functions

Most classes in FEniCS have an explanation of the purpose and usage that can be seen by using the
general documentation command pydoc for Python objects. You can type

Output
pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X can be UnitSquare, Function,
FunctionSpace, etc.). Below is an overview of the most important classes and functions in FEniCS
programs, in the order they typically appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0, 1]× [0, 1] using nx divisions in x direction
and ny divisions in y direction. Each of the nx*ny squares are divided into two cells of triangular
shape.

UnitInterval, UnitCube, UnitCircle, UnitSphere, Interval, Rectangle, and Box: generate mesh over
domains of simple geometric shape, see Section 1.4.

FunctionSpace(mesh, element_type, degree): a function space defined over a mesh, with a given
element type (e.g., "Lagrange" or "DG"), with basis functions as polynomials of a specified degree.

Expression(formula, p1=v1, p2=v2, ...): a scalar- or vector-valued function, given as a mathemat-
ical expression formula (string) written in C++ syntax. The spatial coordinates in the expression
are named x[0], x[1], and x[2], while time and other physical parameters can be represented as
symbols p1, p2, etc., with corresponding values v1, v2, etc., initialized through keyword arguments.
These parameters become attributes, whose values can be modified when desired.

Function(V): a scalar- or vector-valued finite element field in the function space V. If V is a Function

Space object, Function(V) becomes a scalar field, and with V as a VectorFunctionSpace object,
Function(V) becomes a vector field.

SubDomain: class for defining a subdomain, either a part of the boundary, an internal boundary, or a
part of the domain. The programmer must subclass SubDomain and implement the inside(self, x,

on_boundary) function (see Section 1.1.3) for telling whether a point x is inside the subdomain or not.

Mesh: class for representing a finite element mesh, consisting of cells, vertices, and optionally faces,
edges, and facets.

MeshFunction: tool for marking parts of the domain or the boundary. Used for variable coefficients
(“material properties”, see Section 1.5.1) or for boundary conditions (see Section 1.5.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) boundary conditions via a func-
tion space V, a function value(x) for computing the value of the condition at a point x, and a
specification where of the boundary, either as a SubDomain subclass instance, a plain function, or as a
MeshFunction instance. In the latter case, a 4th argument is provided to describe which subdomain
number that describes the relevant boundary.

TrialFunction(V): define a trial function on a space V to be used in a variational form to represent
the unknown in a finite element problem.
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TestFunction(V): define a test function on a space V to be used in a variational form.

assemble(X): assemble a matrix, a right-hand side, or a functional, given a from X written with UFL
syntax.

assemble_system(a, L, bcs): assemble the matrix and the right-hand side from a bilinear (a) and
linear (L) form written with UFL syntax. The bcs parameter holds one or more DirichletBC objects.

LinearVariationalProblem(a, L, u, bcs): define a variational problem, given a bilinear (a) and
linear (L) form, written with UFL syntax, and one or more DirichletBC objects stored in bcs.

LinearVariationalSolver(problem): create solver object for a a linear variational problem object
(problem).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix object), U as unknown
(Vector object), and b as right-hand side (Vector object). Usually, U = u.vector(), where u is a
Function object representing the unknown finite element function of the problem, while A and b are
computed by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function q, using the Viper component in
FEniCS.

interpolate(func, V): interpolate a formula or finite element function func onto the function space
V.

project(func, V): project a formula or finite element function func onto the function space V.

1.7.3 User-defined functions

When defining a function in terms of a mathematical expression inside a string formula, e.g.,

Python code
myfunc = Expression("sin(x[0])*cos(x[1])")

the expression contained in the first argument will be turned into a C++ function and compiled to gain
efficiency. Therefore, the syntax used in the expression must be valid C++ syntax. Most Python syntax
for mathematical expressions are also valid C++ syntax, but power expressions make an exception:
p**a must be written as pow(p,a) in C++ (this is also an alternative Python syntax). The following
mathematical functions can be used directly in C++ expressions when defining Expression objects:
cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp, log, log10, modf, pow, sqrt,
ceil, fabs, floor, and fmod. Moreover, the number π is available as the symbol pi. All the listed
functions are taken from the cmath C++ header file, and one may hence consult documentation of
cmath for more information on the various functions.

1.7.4 Linear solvers and preconditioners

The following solution methods for linear systems can be accessed in FEniCS programs:

Name Method
"lu" sparse LU factorization (Gaussian elim.)
"cholesky" sparse Cholesky factorization
"cg" Conjugate gradient method
"gmres" Generalized minimal residual method
"bicgstab" Biconjugate gradient stabilized method
"minres" Minimal residual method
"tfqmr" Transpose-free quasi-minimal residual method
"richardson" Richardson method
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Possible choices of preconditioners include

Name Method
"none" No preconditioner
"ilu" Incomplete LU factorization
"icc" Incomplete Cholesky factorization
"jacobi" Jacobi iteration
"bjacobi" Block Jacobi iteration
"sor" Successive over-relaxation
"amg" Algebraic multigrid (BoomerAMG or ML)
"additive_schwarz" Additive Schwarz
"hypre_amg" Hypre algebraic multigrid (BoomerAMG)
"hypre_euclid" Hypre parallel incomplete LU factorization
"hypre_parasails" Hypre parallel sparse approximate inverse
"ml_amg" ML algebraic multigrid

Many of the choices listed above are only offered by a specific backend, so setting the backend
appropriately is necessary for being able to choose a desired linear solver or preconditioner.

An up-to-date list of the available solvers and preconditioners in FEniCS can be produced by

Python code
list_linear_solver_methods()

list_krylov_solver_preconditioners()

1.7.5 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac OS X platforms. Detailed
information on how to get FEniCS running on such machines are available at the fenicsproject.org

website. Here are just some quick descriptions and recommendations by the author.
To make the installation of FEniCS as painless and reliable as possible, the reader is strongly

recommended to use Ubuntu Linux4. Any standard PC can easily be equipped with Ubuntu Linux,
which may live side by side with either Windows or Mac OS X or another Linux installation. Basically,
you download Ubuntu from http://www.ubuntu.com/getubuntu/download, burn the file on a CD or
copy it to a memory stick, reboot the machine with the CD or memory stick, and answer some usually
straightforward questions (if necessary). On Windows, Wubi is a tool that automatically installs
Ubuntu on the machine. Just give a user name and password for the Ubuntu installation, and Wubi
performs the rest. The graphical user interface (GUI) of Ubuntu is quite similar to both Windows 7
and Mac OS X, but to be efficient when doing science with FEniCS this author recommends to run
programs in a terminal window and write them in a text editor like Emacs or Vim. You can employ
integrated development environment such as Eclipse, but intensive FEniCS developers and users tend
to find terminal windows and plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu operating system, you
can run Ubuntu in a separate window in your existing operation system. There are several solutions
to chose among: the free VirtualBox and VMWare Player, or the commercial tools VMWare Fusion and
Parallels (just search for the names to download the programs).

Once the Ubuntu window is up and running, FEniCS is painlessly installed by

4Even though Mac users now can get FEniCS by a one-click install, I recommend using Ubuntu on Mac, unless you have
high Unix competence and much experience with compiling and linking C++ libraries on Mac OS X.

http://www.ubuntu.com/getubuntu/download
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Bash code
sudo apt-get install fenics

Sometimes the FEniCS software in a standard Ubuntu installation lacks some recent features and bug
fixes. Visiting the detailed download page on fenicsproject.org and copying a few Unix commands
is all you have to do to install a newer version of the software.

1.7.6 Books on the finite element method

There are a large number of books on the finite element method. The books typically fall in either
of two categories: the abstract mathematical version of the method and the engineering “structural
analysis” formulation. FEniCS builds heavily on concepts in the abstract mathematical exposition.
An easy-to-read book, which provides a good general background for using FEniCS, is Gockenbach
[2006]. The book Donea and Huerta [2003] has a similar style, but aims at readers with interest in
fluid flow problems. Hughes [1987] is also highly recommended, especially for those interested in
solid mechanics and heat transfer applications.

Readers with background in the engineering “structural analysis” version of the finite element
method may find Bickford [1994] as an attractive bridge over to the abstract mathematical formulation
that FEniCS builds upon. Those who have a weak background in differential equations in general
should consult a more fundamental book, and Eriksson et al. [1996] is a very good choice. On the
other hand, FEniCS users with a strong background in mathematics and interest in the mathematical
properties of the finite element method, will appreciate the texts Brenner and Scott [2008], Braess
[2007], Ern and Guermond [2004], Quarteroni and Valli [2008], or Ciarlet [2002].

1.7.7 Books on Python

Two very popular introductory books on Python are “Learning Python” [Lutz, 2007] and “Practical
Python” [Hetland, 2002]. More advanced and comprehensive books include “Programming Python”
[Lutz, 2006], and “Python Cookbook” [Martelli and Ascher, 2005] and “Python in a Nutshell” [Martelli,
2006]. The web page http://wiki.python.org/moin/PythonBooks lists numerous additional books.
Very few texts teach Python in a mathematical and numerical context, but the references Langtangen
[2008, 2011], Kiusalaas [2009] are exceptions.
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2 The finite element method
By Robert C. Kirby and Anders Logg

The finite element method has emerged as a universal method for the solution of differential
equations. Much of the success of the finite element method can be attributed to its generality and
elegance, allowing a wide range of differential equations from all areas of science to be analyzed and
solved within a common framework. Another contributing factor to the success of the finite element
method is the flexibility of formulation, allowing the properties of the discretization to be controlled
by the choice of approximating finite element spaces.

In this chapter, we review the finite element method and summarize some basic concepts and
notation used throughout this book. In the coming chapters, we discuss these concepts in more detail,
with a particular focus on the implementation and automation of the finite element method as part of
the FEniCS Project.

2.1 A simple model problem

In 1813, Siméon Denis Poisson published in Bulletin de la société philomatique his famous equation
as a correction of an equation published earlier by Pierre-Simon Laplace. Poisson’s equation is a
second-order partial differential equation stating that the negative Laplacian −∆u of some unknown
field u = u(x) is equal to a given function f = f (x) on a domain Ω ⊂ Rd, possibly amended by a set
of boundary conditions for the solution u on the boundary ∂Ω of Ω:

−∆u = f in Ω,

u = u0 on ΓD ⊂ ∂Ω,

−∂nu = g on ΓN ⊂ ∂Ω.

(2.1)

The Dirichlet boundary condition u = u0 signifies a prescribed value for the unknown u on a subset
ΓD of the boundary, and the Neumann boundary condition −∂nu = g signifies a prescribed value for
the (negative) normal derivative of u on the remaining boundary ΓN = ∂Ω \ ΓD. Poisson’s equation
is a simple model for gravity, electromagnetism, heat transfer, fluid flow, and many other physical
processes. It also appears as the basic building block in a large number of more complex physical
models, including the Navier–Stokes equations which we return to in Chapters 5, 5, 5, 5, 5, 5, 5 and 5.

To derive Poisson’s equation (2.1), we may consider a model for the temperature u in a body
occupying a domain Ω subject to a heat source f . Letting σ = σ(x) denote heat flux, it follows by
conservation of energy that the outflow of energy over the boundary ∂ω of any test volume ω ⊂ Ω
must be balanced by the energy emitted by the heat source f :∫

∂ω
σ · n ds =

∫
ω

f dx. (2.2)

71
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Ω

ω

σ = −κ∇u
n

Figure 2.1: Poisson’s equation is a
simple consequence of balance of en-
ergy in an arbitrary test volume ω ⊂
Ω.

Integrating by parts, we find that ∫
ω
∇ · σ dx =

∫
ω

f dx. (2.3)

Since (2.3) holds for all test volumes ω ⊂ Ω, it follows that ∇ · σ = f throughout Ω (with suitable
regularity assumptions on σ and f ). If we now make the assumption that the heat flux σ is proportional
to the negative gradient of the temperature u (Fourier’s law),

σ = −κ∇u, (2.4)

we arrive at the following system of equations:

∇ · σ = f in Ω,

σ +∇u = 0 in Ω,
(2.5)

where we have assumed that the heat conductivity is κ = 1. Replacing σ in the first of these equations
by −∇u, we arrive at Poisson’s equation (2.1). Note that one may as well arrive at the system of
first-order equations (2.5) by introducing σ = −∇u as an auxiliary variable in the second-order
equation (2.1). We also note that the Dirichlet and Neumann boundary conditions in (2.1) correspond
to prescribed values for the temperature and heat flux, respectively.

2.2 Finite element discretization

2.2.1 Discretizing Poisson’s equation

To discretize Poisson’s equation (2.1) by the finite element method, we first multiply by a test function
v and integrate by parts to obtain∫

Ω
∇u · ∇v dx−

∫
∂Ω

∂nu v ds =
∫

Ω
f v dx. (2.6)

Letting the test function v vanish on the Dirichlet boundary ΓD where the solution u is known, we
arrive at the following classical variational problem: find u ∈ V such that∫

Ω
∇u · ∇v dx =

∫
Ω

f v dx−
∫

ΓN

gv ds ∀ v ∈ V̂. (2.7)

The test space V̂ is defined by

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD}, (2.8)
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and the trial space V contains members of V̂ shifted by the Dirichlet condition:

V = {v ∈ H1(Ω) : v = u0 on ΓD}. (2.9)

We may now discretize Poisson’s equation by restricting the variational problem (2.7) to a pair of
discrete spaces: find uh ∈ Vh ⊂ V such that∫

Ω
∇uh · ∇v dx =

∫
Ω

f v dx−
∫

ΓN

gv ds ∀ v ∈ V̂h ⊂ V̂. (2.10)

We note here that the Dirichlet condition u = u0 on ΓD enters directly into the definition of the trial
space Vh (it is an essential boundary condition), whereas the Neumann condition −∂nu = g on ΓN
enters into the variational problem (it is a natural boundary condition).

To solve the discrete variational problem (2.10), we must construct a suitable pair of discrete trial
and test spaces Vh and V̂h. We return to this issue below, but assume for now that we have a basis
{φj}N

j=1 for Vh and a basis {φ̂i}N
i=1 for V̂h. Here, N denotes the dimension of the spaces Vh and V̂h. We

may then make an Ansatz for uh in terms of the basis functions of the trial space,

uh(x) =
N

∑
j=1

Ujφj(x), (2.11)

where U ∈ RN is the vector of degrees of freedom to be computed. Inserting this into (2.10) and
varying the test function v over the basis functions of the discrete test space V̂h, we obtain

N

∑
j=1

Uj

∫
Ω
∇φj · ∇φ̂i dx =

∫
Ω

f φ̂i dx−
∫

ΓN

gφ̂i ds, i = 1, 2, . . . , N. (2.12)

We may thus compute the finite element solution uh = ∑N
j=1 Ujφj by solving the linear system

AU = b, (2.13)

where

Aij =
∫

Ω
∇φj · ∇φ̂i dx,

bi =
∫

Ω
f φ̂i dx−

∫
ΓN

gφ̂i ds.
(2.14)

2.2.2 Discretizing the first-order system

We may similarly discretize the first-order system (2.5) by multiplying the first equation by a test
function v and the second equation by a test function τ. Summing up and integrating by parts, we
find that ∫

Ω
(∇ · σ) v + σ · τ − u∇ · τ dx +

∫
∂Ω

uτ · n ds =
∫

Ω
f v dx ∀ (v, τ) ∈ V̂. (2.15)

The normal flux σ · n = g is known on the Neumann boundary ΓN so we may take τ · n = 0 on ΓN.
Inserting the value for u on the Dirichlet boundary ΓD, we arrive at the following variational problem:
find (u, σ) ∈ V such that∫

Ω
(∇ · σ) v + σ · τ − u∇ · τ dx =

∫
Ω

f v dx−
∫

ΓD

u0τ · n ds ∀ (v, τ) ∈ V̂. (2.16)
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A suitable choice of trial and test spaces is

V = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div, Ω), τ · n = g on ΓN},
V̂ = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div, Ω), τ · n = 0 on ΓN}.

(2.17)

Note that the variational problem (2.16) differs from the variational problem (2.7) in that the Dirichlet
condition u = u0 on ΓD enters into the variational formulation (it is now a natural boundary condition),
whereas the Neumann condition σ · n = g on ΓN enters into the definition of the trial space V (it is
now an essential boundary condition).

As above, we restrict the variational problem to a pair of discrete trial and test spaces Vh ⊂ V and
V̂h ⊂ V̂ and make an Ansatz for the finite element solution of the form

(uh, σh) =
N

∑
j=1

Uj(φj, ψj), (2.18)

where {(φj, ψj)}N
j=1 is a basis for the trial space Vh. Typically, either φj or ψj will vanish, so that the

basis is really the tensor product of a basis for the L2 space with a basis for the H(div) space. We thus
obtain a linear system for the degrees of freedom U ∈ RN by solving a linear system AU = b, where
now

Aij =
∫

Ω
(∇ · ψj) φ̂i + ψj · ψ̂i − φj∇ · ψ̂i dx,

bi =
∫

Ω
f φ̂i dx−

∫
ΓD

u0 ψ̂i · n ds.
(2.19)

The finite element discretization (2.19) is an example of a mixed method. Such formulations require
some care in selecting spaces that discretize the different function spaces, here L2 and H(div), in a
compatible way. Stable discretizations must satisfy the so-called inf–sup or Ladyzhenskaya–Babuška–
Brezzi (LBB) condition(s). This theory explains why many of the finite element spaces for mixed
methods seem complicated compared to those for standard methods. In Chapter 5 below, we give
several examples of such finite element spaces.

2.3 Finite element abstract formalism

2.3.1 Linear problems

We saw above that the finite element solution of Poisson’s equation (2.1) or (2.5) can be obtained by
restricting an infinite-dimensional (continuous) variational problem to a finite-dimensional (discrete)
variational problem and solving a linear system.

To formalize this, we consider a general linear variational problem written in the following
canonical form: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂, (2.20)

where V is the trial space and V̂ is the test space. We thus express the variational problem in terms of
a bilinear form a and a linear form (functional) L:

a : V × V̂ → R,

L : V̂ → R.
(2.21)
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As above, we discretize the variational problem (2.20) by restricting to a pair of discrete trial and test
spaces: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) ∀ v ∈ V̂h ⊂ V̂. (2.22)

To solve the discrete variational problem (2.22), we make an Ansatz of the form

uh =
N

∑
j=1

Ujφj, (2.23)

and take v = φ̂i for i = 1, 2, . . . , N. As before, {φj}N
j=1 is a basis for the discrete trial space Vh and

{φ̂i}N
i=1 is a basis for the discrete test space V̂h. It follows that

N

∑
j=1

Uj a(φj, φ̂i) = L(φ̂i), i = 1, 2, . . . , N. (2.24)

The degrees of freedom U of the finite element solution uh may then be computed by solving a linear
system AU = b, where

Aij = a(φj, φ̂i), i, j = 1, 2, . . . , N,

bi = L(φ̂i).
(2.25)

2.3.2 Nonlinear problems

We also consider nonlinear variational problems written in the following canonical form: find u ∈ V
such that

F(u; v) = 0 ∀ v ∈ V̂, (2.26)

where now F : V × V̂ → R is a semilinear form, linear in the argument(s) subsequent to the semicolon.
As above, we discretize the variational problem (2.26) by restricting to a pair of discrete trial and test
spaces: find uh ∈ Vh ⊂ V such that

F(uh; v) = 0 ∀ v ∈ V̂h ⊂ V̂. (2.27)

The finite element solution uh = ∑N
j=1 Ujφj may then be computed by solving a nonlinear system of

equations,
b(U) = 0, (2.28)

where b : RN → RN and
bi(U) = F(uh; φ̂i), i = 1, 2, . . . , N. (2.29)

To solve the nonlinear system (2.28) by Newton’s method or some variant of Newton’s method,
we compute the Jacobian A = b′. We note that if the semilinear form F is differentiable in u, then the
entries of the Jacobian A are given by

Aij(uh) =
∂bi(U)

∂Uj
=

∂

∂Uj
F(uh; φ̂i) = F′(uh; φ̂i)

∂uh
∂Uj

= F′(uh; φ̂i) φj ≡ F′(uh; φj, φ̂i). (2.30)

In each Newton iteration, we must then evaluate (assemble) the matrix A and the vector b, and update
the solution vector U by

Uk+1 = Uk − δUk, k = 0, 1, . . . , (2.31)
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where δUk solves the linear system
A(uk

h) δUk = b(uk
h). (2.32)

We note that for each fixed uh, a = F′(uh; ·, ·) is a bilinear form and L = F(uh; ·) is a linear form.
In each Newton iteration, we thus solve a linear variational problem of the canonical form (2.20): find
δu ∈ Vh,0 such that

F′(uh; δu, v) = F(uh; v) ∀ v ∈ V̂h, (2.33)

where Vh,0 = {v − w : v, w ∈ Vh}. Discretizing (2.33) as in Section 2.3.1, we recover the linear
system (2.32).

Example 2.1 (Nonlinear Poisson equation) As an example, consider the following nonlinear Poisson equa-
tion:

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω.
(2.34)

Multiplying (2.34) with a test function v and integrating by parts, we obtain∫
Ω
((1 + u)∇u) · ∇v dx =

∫
Ω

f v dx, (2.35)

which is a nonlinear variational problem of the form (2.26), with

F(u; v) =
∫

Ω
((1 + u)∇u) · ∇v dx−

∫
Ω

f v dx. (2.36)

Linearizing the semilinear form F around u = uh, we obtain

F′(uh; δu, v) =
∫

Ω
(δu∇uh) · ∇v dx +

∫
Ω
((1 + uh)∇δu) · ∇v dx. (2.37)

We may thus compute the entries of the Jacobian matrix A(uh) by

Aij(uh) = F′(uh; φj, φ̂i) =
∫

Ω
(φj∇uh) · ∇φ̂i dx +

∫
Ω
((1 + uh)∇φj) · ∇φ̂i dx. (2.38)

2.4 Finite element function spaces

In the above discussion, we assumed that we could construct discrete subspaces Vh ⊂ V of infinite-
dimensional function spaces. A central aspect of the finite element method is the construction of such
subspaces by patching together local function spaces defined by a set of finite elements. We here give a
general overview of the construction of finite element function spaces and return in Chapters 5 and 5
to the construction of specific function spaces as subsets of H1, H(curl), H(div) and L2.

2.4.1 The mesh

To define Vh, we first partition the domain Ω into a finite set of cells Th = {T} with disjoint interiors
such that

∪T∈Th T = Ω. (2.39)

Together, these cells form a mesh of the domain Ω. The cells are typically simple polygonal shapes like
intervals, triangles, quadrilaterals, tetrahedra or hexahedra as shown in Figure 2.2. But other shapes



Chapter 2. The finite element method 77

Figure 2.2: Examples of finite element cells in one, two and three space dimensions.

are possible, in particular curved cells to capture the boundary of a non-polygonal domain correctly.

2.4.2 The finite element definition

Once a domain Ω has been partitioned into cells, one may define a local function space V on each
cell T and use these local function spaces to build the global function space Vh. A cell T together
with a local function space V and a set of rules for describing the functions in V is called a finite
element. This definition was first formalized by Ciarlet [1976] and it remains the standard formulation
today [Brenner and Scott, 2008]. The formal definition reads as follows: a finite element is a triple
(T,V ,L), where

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . . ) with nonempty interior and
piecewise smooth boundary;

• the space V = V(T) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is a basis for the dual space V ′; that is,
the space of bounded linear functionals on V .

As an example, consider the standard linear Lagrange finite element on the triangle in Figure 2.3.
The cell T is given by the triangle and the space V is given by the space of first degree polynomials on
T (a space of dimension three). As a basis for V ′, we may take point evaluation at the three vertices of
T; that is,

`i : V → R,

`i(v) = v(xi),
(2.40)

for i = 1, 2, 3 where xi is the coordinate of the ith vertex. To check that this is indeed a finite element,
we need to verify that L is a basis for V ′. This is equivalent to the unisolvence of L; that is, if v ∈ V
and `i(v) = 0 for all `i, then v = 0 [Brenner and Scott, 2008]. For the linear Lagrange triangle, we note
that if v is zero at each vertex, then v must be zero everywhere, since a plane is uniquely determined
by its values at three non-collinear points. It follows that the linear Lagrange triangle is indeed a finite
element. In general, determining the unisolvence of L may be non-trivial.

2.4.3 The nodal basis

Expressing finite element solutions in Vh in terms of basis functions for the local function spaces V
may be greatly simplified by introducing a nodal basis for V . A nodal basis {φi}n

i=1 for V is a basis for
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Figure 2.3: The degrees of freedom
of the linear Lagrange (Courant) tri-
angle are given by point evaluation
at the three vertices of the triangle.

V that satisfies
`i(φj) = δij, i, j = 1, 2, . . . , n. (2.41)

It follows that any v ∈ V may be expressed by

v =
n

∑
i=1

`i(v)φi. (2.42)

In particular, any function v in V for the linear Lagrange triangle is given by v = ∑3
i=1 v(xi)φi. In

other words, the expansion coefficients of any function v may be obtained by evaluating the linear
functionals in L at v. We shall therefore interchangeably refer to both the expansion coefficients U of
uh and the linear functionals of L as the degrees of freedom.

Example 2.2 (Nodal basis for the linear Lagrange simplices) The nodal basis for the linear Lagrange in-
terval with vertices at x1 = 0 and x2 = 1 is given by

φ1(x) = 1− x, φ2(x) = x. (2.43)

The nodal basis for the linear Lagrange triangle with vertices at x1 = (0, 0), x2 = (1, 0) and x3 = (0, 1) is
given by

φ1(x) = 1− x1 − x2, φ2(x) = x1, φ3(x) = x2. (2.44)

The nodal basis for the linear Lagrange tetrahedron with vertices at x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0)
and x4 = (0, 0, 1) is given by

φ1(x) = 1− x1 − x2 − x3,
φ3(x) = x2,

φ2(x) = x1,
φ4(x) = x3.

(2.45)

For any finite element (T,V ,L), the nodal basis may be computed by solving a linear system of
size n× n. To see this, let {ψi}n

i=1 be any basis (the prime basis) for V . Such a basis is easy to construct
if V is a full polynomial space or may otherwise be computed by a singular-value decomposition or
a Gram–Schmidt procedure; see Kirby [2004]. We may then make an Ansatz for the nodal basis in
terms of the prime basis:

φj =
n

∑
k=1

αjkψk, j = 1, 2, . . . , n. (2.46)
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Figure 2.4: Local-to-global mapping
for a simple mesh consisting of two
triangles. The six local degrees of
freedom of the left triangle (T) are
mapped to the global degrees of free-
dom ιT(i) = 1, 2, 4, 9, 8, 5 for i =
1, 2, . . . , 6, and the six local degrees
of freedom of the right triangle (T′)
are mapped to ιT′ (i) = 2, 3, 4, 7, 9, 6
for i = 1, 2, . . . , 6.
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Inserting this into (2.41), we find that

n

∑
k=1

αjk`i(ψk) = δij, i, j = 1, 2, . . . , n. (2.47)

In other words, the coefficients α expanding the nodal basis functions in the prime basis may be
computed by solving the linear system

Bα> = I, (2.48)

where Bij = `i(ψj).

2.4.4 The local-to-global mapping

Now, to define a global function space Vh = span{φi}N
i=1 on Ω from a given set {(T,VT ,LT)}T∈Th of

finite elements, we also need to specify how the local function spaces are patched together. We do this
by specifying for each cell T ∈ Th a local-to-global mapping:

ιT : [1, nT ]→ [1, N]. (2.49)

This mapping specifies how the local degrees of freedom LT = {`T
i }

nT
i=1 are mapped to global degrees

of freedom L = {`i}N
i=1. More precisely, the global degrees of freedom are defined by

`ιT(i)(v) = `T
i (v|T), i = 1, 2, . . . , nT , (2.50)

for any v ∈ Vh. Thus, each local degree of freedom `T
i ∈ LT corresponds to a global degree of

freedom `ιT(i) ∈ L determined by the local-to-global mapping ιT . As we shall see, the local-to-global
mapping together with the choice of degrees of freedom determine the continuity of the global
function space Vh.

For standard continuous piecewise linears, one may define the local-to-global mapping by simply
mapping each local vertex number i for i = 1, 2, 3 to the corresponding global vertex number ιT(i).
For continuous piecewise quadratics, one can base the local-to-global mapping on global vertex and
edge numbers as illustrated in Figure 2.4 for a simple mesh consisting of two triangles.

2.4.5 The global function space

One may now define the global function space Vh as the set of functions on Ω satisfying the following
pair of conditions. We first require that

v|T ∈ VT ∀ T ∈ Th; (2.51)
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Figure 2.5: Patching together a
pair of quadratic local function
spaces on a pair of cells (T, T′) to
form a global continuous piecewise
quadratic function space on Ω =
T ∪ T′.

that is, the restriction of v to each cell T lies in the local function space VT . Second, we require that for
any pair of cells (T, T′) ∈ Th × Th and any pair (i, i′) ∈ [1, nT ]× [1, nT′ ] satisfying

ιT(i) = ιT′(i
′), (2.52)

it holds that
`T

i (v|T) = `T′
i′ (v|T′). (2.53)

In other words, if two local degrees of freedom `T
i and `T′

i′ are mapped to the same global degree of
freedom, then they must agree for each function v ∈ Vh. Here, v|T denotes (the continuous extension
of the) restriction of v to the interior of T. This is illustrated in Figure 2.5 for the space of continuous
piecewise quadratics obtained by patching together two quadratic Lagrange triangles.

Note that by this construction, the functions in Vh are undefined on cell boundaries, unless the
constraints (2.53) force the functions in Vh to be continuous on cell boundaries. However, this is
usually not a problem, since we can perform all operations on the restrictions of functions to the local
cells.

The local-to-global mapping together with the choice of degrees of freedom determine the con-
tinuity of the global function space Vh. For the linear Lagrange triangle, choosing the degrees of
freedom as point evaluation at the vertices ensures that all functions in Vh must be continuous at
the two vertices of the common edge of any pair of adjacent triangles, and therefore along the entire
common edge. It follows that the functions in Vh are continuous throughout the domain Ω. As a
consequence, the space of piecewise linears generated by the Lagrange triangle is H1-conforming; that
is, Vh ⊂ H1(Ω).

One may also consider degrees of freedom defined by point evaluation at the midpoint of each
edge. This is the so-called Crouzeix–Raviart triangle. The corresponding global Crouzeix–Raviart
space Vh is consequently continuous only at edge midpoints. The Crouzeix–Raviart triangle is an
example of an H1-nonconforming element; that is, the function space Vh constructed from a set of
Crouzeix–Raviart elements is not a subspace of H1. Other choices of degrees of freedom may ensure
continuity of normal components, like for the H(div)-conforming Brezzi–Douglas–Marini elements, or
tangential components, as for the H(curl)-conforming Nédélec elements. In Chapter 5, other examples
of elements are given which ensure different kinds of continuity by the choice of degrees of freedom
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Figure 2.6: The (affine) map FT from
a reference cell T̂ to a cell T ∈ Th.

x̂

x̂1 = (0, 0) x̂2 = (1, 0)

x̂3 = (0, 1) x = FT(x̂)
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and local-to-global mapping.

2.4.6 The mapping from the reference element

As we have seen, the global function space Vh may be described by a mesh Th, a set of finite elements
{(T,VT ,LT)}T∈Th and a set of local-to-global mappings {ιT}T∈Th . We may simplify this description
further by introducing a reference finite element (T̂, V̂ , L̂), where L̂ = { ˆ̀1, ˆ̀2, . . . , ˆ̀ n̂}, and a set of
invertible mappings {FT}T∈Th that map the reference cell T̂ to the cells of the mesh:

T = FT(T̂) ∀ T ∈ Th. (2.54)

This is illustrated in Figure 2.6. Note that T̂ is generally not part of the mesh.

For function spaces discretizing H1 as in (2.7), the mapping FT is typically affine; that is, FT can be
written in the form FT(x̂) = AT x̂ + bT for some matrix AT ∈ Rd×d and some vector bT ∈ Rd, or else
isoparametric, in which case the components of FT are functions in V̂ . For function spaces discretizing
H(div) like in (2.16) or H(curl), the appropriate mappings are the contravariant and covariant Piola
mappings which preserve normal and tangential components, respectively; see Rognes et al. [2009].
For simplicity, we restrict the following discussion to the case when FT is affine or isoparametric.

For each cell T ∈ Th, the mapping FT generates a function space on T given by

VT = {v : v = v̂ ◦ F−1
T , v̂ ∈ V̂}; (2.55)
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that is, each function v = v(x) may be expressed as v(x) = v̂(F−1
T (x)) = v̂ ◦ F−1

T (x) for some v̂ ∈ V̂ .
The mapping FT also generates a set of degrees of freedom LT on VT given by

LT = {`i : `i(v) = ˆ̀ i(v ◦ FT), i = 1, 2, . . . , n̂}. (2.56)

The mappings {FT}T∈Th thus generate from the reference finite element (T̂, V̂ , L̂) a set of finite
elements {(T,VT ,LT)}T∈Th given by

T = FT(T̂),

VT = {v : v = v̂ ◦ F−1
T , v̂ ∈ V̂},

LT = {`i : `i(v) = ˆ̀ i(v ◦ FT), i = 1, 2, . . . , n̂ = nT}.

(2.57)

By this construction, we also obtain the nodal basis functions {φT
i }

nT
i=1 on T from a set of nodal basis

functions {φ̂i}n̂
i=1 on the reference element satisfying ˆ̀ i(φ̂j) = δij. To see this, we let φT

i = φ̂i ◦ F−1
T for

i = 1, 2, . . . , nT and find that

`T
i (φ

T
j ) =

ˆ̀ i(φ
T
j ◦ FT) = ˆ̀ i(φ̂j ◦ F−1

T ◦ FT) = ˆ̀ i(φ̂j) = δij, (2.58)

so {φT
i }

nT
i=1 is a nodal basis for VT .

We may therefore define the function space Vh by specifying a mesh Th, a reference finite element
(T̂, V̂ , L̂), a set of local-to-global mappings {ιT}T∈Th and a set of mappings {FT}T∈Th from the reference
cell T̂. Note that in general, the mappings need not be of the same type for all cells T and not all finite
elements need to be generated from the same reference finite element. In particular, one could employ
a different (higher-degree) isoparametric mapping for cells on a curved boundary.

The above construction is valid for so-called affine-equivalent elements [Brenner and Scott, 2008]
like the family of H1-conforming Lagrange finite elements. A similar construction is possible for
H(div)- and H(curl)-conforming elements, like the Brezzi–Douglas–Marini and Nédélec elements,
where an appropriate Piola mapping must be used to map the basis functions (while an affine map
may still be used to map the geometry). However, not all finite elements may be generated from a
reference finite element using this simple construction. For example, this construction fails for the
family of Hermite finite elements [Ciarlet, 2002, Brenner and Scott, 2008].

2.5 Finite element solvers

Finite elements provide a powerful methodology for discretizing differential equations, but solving
the resulting algebraic systems also presents a challenge, even for linear systems. Good solvers must
handle the sparsity and possible ill-conditioning of the algebraic system, and also scale well on parallel
computers. The linear solve is a fundamental operation not only in linear problems, but also within
each iteration of a nonlinear solve via Newton’s method, an eigenvalue solve, or time-stepping.

A classical approach that has been revived recently is direct solution, based on Gaussian elimination.
Thanks to techniques enabling parallel scalability and recognizing block structure, packages such as
UMFPACK [Davis, 2004] and SuperLU [Li, 2005] have made direct methods competitive for quite
large problems.

The 1970s and 1980s saw the advent of modern iterative methods. These grew out of classical
iterative methods such as relaxation methods and the conjugate gradient iteration of Hestenes and
Stiefel [1952]. These techniques can use much less memory than direct methods and are easier to
parallelize.
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Multigrid methods [Brandt, 1977, Wesseling, 1992] use relaxation techniques on a hierarchy of
meshes to solve elliptic equations, typically for symmetric problems, in nearly linear time. However,
they require a hierarchy of meshes that may not always be available. This motivated the introduction
of algebraic multigrid methods (AMG) that mimic mesh coarsening, working only on the matrix
entries. Successful AMG distributions include the Hypre package [Falgout and Yang, 2002] and the
ML package distributed as part of Trilinos [Heroux et al., 2005].

Krylov methods such as conjugate gradients and GMRES [Saad and Schultz, 1986] generate a
sequence of approximations converging to the solution of the linear system. These methods are based
only on the matrix–vector product. The performance of these methods is significantly improved by
use of preconditioners, which transform the linear system

AU = b (2.59)

into
P−1 AU = P−1b, (2.60)

which is known as left preconditioning. The preconditioner P−1 may also be applied from the right by
recognizing that AU = (AP−1)(PU) and solving the modified system for the matrix AP−1, followed by
an additional solve to obtain U from the solution PU. To ensure good convergence, the preconditioner
P−1 should be a good approximation of A−1. Some preconditioners are strictly algebraic, meaning
they only use information available from the entries of A. Classical relaxation methods such as
Gauss–Seidel may be used as preconditioners, as can so-called incomplete factorizations [Manteuffel,
1980, Axelsson, 1986, Saad, 1994]. Multigrid, whether geometric or algebraic, also can serve as
a powerful preconditioner. Other kinds of preconditioners require special knowledge about the
differential equation being solved and may require new matrices modeling related physical processes.
Such methods are sometimes called physics-based preconditioners. An automated system, such as
FEniCS, provides an interesting opportunity to assist with the development and implementation of
these powerful but less widely used methods.

Fortunately, many of the methods discussed here are included in modern libraries such as PETSc
[Balay et al., 2004] and Trilinos [Heroux et al., 2005]. FEniCS typically interacts with the solvers
discussed here through these packages and so mainly need to be aware of the various methods at a
high level, such as when the various methods are appropriate and how to access them.

2.6 Finite element error estimation and adaptivity

The error e = u− uh in a computed finite element solution uh approximating the exact solution u
of (2.20) may be estimated either a priori or a posteriori.

A priori error estimates express the error in terms of the regularity of the exact (unknown) solution
and may give useful information about the order of convergence of a finite element method. A posteriori
error estimates express the error in terms of computable quantities like the residual and (possibly) the
solution of an auxiliary dual problem, as described below.

2.6.1 A priori error analysis

We consider the linear variational problem (2.20). We first assume that the bilinear form a and the
linear form L are continuous (bounded); that is, there exists a constant C > 0 such that

a(v, w) 6 C‖v‖V‖w‖V ,

L(v) 6 C‖v‖V ,
(2.61)
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Vh

u

uh

u− uh

Figure 2.7: If the bilinear form a is
symmetric, then the finite element
solution uh ∈ Vh ⊂ V is the a-
projection of u ∈ V onto the sub-
space Vh and is consequently the
best possible approximation of u in
the subspace Vh (in the norm de-
fined by the bilinear form a). This
follows by the Galerkin orthogonal-
ity 〈u − uh, v〉a ≡ a(u − uh, v) = 0
for all v ∈ Vh.

for all v, w ∈ V. For simplicity, we assume in this section that V = V̂ is a Hilbert space. For (2.1), this
corresponds to the case of homogeneous Dirichlet boundary conditions and V = H1

0(Ω). Extensions
to the general case V 6= V̂ are possible; see for example Oden and Demkowicz [1996]. We further
assume that the bilinear form a is coercive (V-elliptic); that is, there exists a constant α > 0 such that

a(v, v) > α‖v‖2
V , (2.62)

for all v ∈ V. It then follows by the Lax–Milgram theorem [Lax and Milgram, 1954] that there exists a
unique solution u ∈ V to the variational problem (2.20).

To derive an a priori error estimate for the approximate solution uh defined by the discrete
variational problem (2.22), we first note that

a(u− uh, v) = a(u, v)− a(uh, v) = L(v)− L(v) = 0 (2.63)

for all v ∈ Vh ⊂ V (the Galerkin orthogonality). By the coercivity and continuity of the bilinear form a,
we find that

α‖u− uh‖2
V 6 a(u− uh, u− uh) = a(u− uh, u− v) + a(uh − u, v− uh)

= a(u− uh, u− v) 6 C‖u− uh‖V ‖u− v‖V .
(2.64)

for all v ∈ Vh. It follows that

‖u− uh‖V 6
C
α
‖u− v‖V ∀ v ∈ Vh. (2.65)

The estimate (2.65) is referred to as Cea’s lemma. We note that when the bilinear form a is symmetric,
it is also an inner product. We may then take ‖v‖V =

√
a(v, v) and C = α = 1. In this case, uh is the

a-projection onto Vh and Cea’s lemma states that

‖u− uh‖V 6 ‖u− v‖V ∀ v ∈ Vh; (2.66)

that is, uh is the best possible solution of the variational problem (2.20) in the subspace Vh. This is
illustrated in Figure 2.7.

Cea’s lemma together with a suitable interpolation estimate now yields an a priori error estimate
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for uh. By choosing v = πhu, where πh : V → Vh is an interpolation operator into Vh, we find that

‖u− uh‖V 6
C
α
‖u− πhu‖V 6

CCi
α
‖hpDq+1u‖L2 , (2.67)

where Ci is an interpolation constant and the values of p and q depend on the accuracy of interpolation
and the definition of ‖ · ‖V . For the solution of Poisson’s equation in V = H1

0 , we have C = α = 1 and
p = q = 1.

2.6.2 A posteriori error analysis

Energy norm error estimates. The continuity and coercivity of the bilinear form a also allow the
derivation of an a posteriori error estimate. This type of error estimate is obtained by relating the size
of the error to the size of the (weak) residual r : V̂ → R defined by

r(v) = L(v)− a(uh, v). (2.68)

Note that the weak residual is formally related to the strong residual R ∈ V̂′ by r(v) = 〈R, v〉 for all
v ∈ V̂.

We first note that the V-norm of the error e = u− uh is equivalent to the V′-norm of the residual r.
To see this, note that by the continuity of the bilinear form a, we have

r(v) = L(v)− a(uh, v) = a(u, v)− a(uh, v) = a(u− uh, v) 6 C‖u− uh‖V ‖v‖V . (2.69)

Furthermore, by coercivity, we find that

α‖u− uh‖2
V 6 a(u− uh, u− uh) = a(u, u− uh)− a(uh, u− uh) = L(u− uh)− a(uh, u− uh) = r(u− uh).

(2.70)
It follows that

α‖u− uh‖V 6 ‖r‖V′ 6 C‖u− uh‖V , (2.71)

where ‖r‖V′ = supv∈V,v 6=0 r(v)/‖v‖V .
The estimates (2.67) and (2.71) are sometimes referred to as energy norm error estimates. This is the

case when the bilinear form a is symmetric and thus defines an inner product. One may then take
‖v‖V =

√
a(v, v) and C = α = 1. In this case, it follows that

η ≡ ‖e‖V = ‖r‖V′ . (2.72)

The term energy norm refers to a(v, v) corresponding to physical energy in many applications.

Goal-oriented error estimates. The classical a priori and a posteriori error estimates (2.67) and (2.71)
relate the V-norm of the error e = u− uh to the regularity of the exact solution u and the residual
r = L(v)− a(uh, v) of the finite element solution uh, respectively. However, in applications it is often
necessary to control the error in a certain output functionalM : V → R of the computed solution to
within some given tolerance ε > 0. Typical functionals are average values of the computed solution,
such as the lift or drag of an object immersed in a flow field. In these situations, one would ideally
like to choose the finite element space Vh ⊂ V such that the finite element solution uh satisfies

η ≡ |M(u)−M(uh)| 6 ε (2.73)

with minimal computational work. We assume here that both the output functional and the variational
problem are linear, but the analysis may be easily extended to the full nonlinear case [Eriksson
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et al.1995, Becker and Rannacher 2001].
To estimate the error in the output functionalM, we introduce an auxiliary dual problem: find

z ∈ V∗ such that
a∗(z, v) =M(v) ∀ v ∈ V̂∗. (2.74)

We note here that the functionalM enters as data in the dual problem. The dual (adjoint) bilinear
form a∗ : V∗ × V̂∗ → R is defined by

a∗(v, w) = a(w, v) ∀ (v, w) ∈ V∗ × V̂∗. (2.75)

The dual trial and test spaces are given by

V∗ = V̂,

V̂∗ = V0 = {v− w : v, w ∈ V};
(2.76)

that is, the dual trial space is the primal test space and the dual test space is the primal trial space
modulo boundary conditions. In particular, if V = u0 + V̂ then V∗ = V̂∗ = V̂, and both the dual test
and trial functions vanish at Dirichlet boundaries. The definition of the dual problem leads us to the
following representation of the error:

M(u)−M(uh) =M(u− uh)

= a∗(z, u− uh)

= a(u− uh, z)

= L(z)− a(uh, z)

= r(z).

(2.77)

We find that the error is exactly represented by the residual of the dual solution:

M(u)−M(uh) = r(z). (2.78)

2.6.3 Adaptivity

As seen above, one may estimate the error in a computed finite element solution uh in the V-norm or
an output functional by estimating the size of the residual r. This may be done in several different ways.
The estimate typically involves integration by parts to recover the strong element-wise residual of the
original PDE, possibly in combination with the solution of local problems over cells or patches of cells.
In the case of the standard piecewise linear finite element approximation of Poisson’s equation (2.1),
one may obtain the following estimate:

‖u− uh‖V ≡ ‖∇e‖L2 6 C

(
∑

T∈Th

h2
T‖R‖2

T + hT‖[∂nuh]‖2
∂T

)1/2

, (2.79)

where R|T = f |T + ∆uh|T is the strong residual, hT denotes the mesh size (the diameter of the smallest
circumscribed sphere around each cell T) and [∂nuh] denotes the jump of the normal derivative
across mesh facets. For a derivation of this estimate, see for example Elman et al. [2005]. Letting
η2

T = h2
T‖R‖2

T + hT‖[∂nuh]‖2
∂T , we obtain the estimate

‖u− uh‖V 6 ηh ≡ C

(
∑
T

η2
T

)1/2

. (2.80)
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Figure 2.8: A sequence of adaptively
refined meshes obtained by succes-
sive refinement of an original coarse
mesh.

An adaptive algorithm seeks to determine a mesh size h = h(x) such that ηh 6 ε. Starting from an
initial coarse mesh, the mesh is successively refined in those cells where the error indicator ηT is large.
Several strategies are available, such as refining the top fraction of all cells where ηT is large, say the
first 20% of all cells ordered by the size of ηT . Other strategies include refining all cells where ηT is
above a certain fraction of maxT∈Th ηT , or refining a top fraction of all cells such that the sum of their
error indicators account for a significant fraction of ηh (so-called Dörfler marking [Dörfler, 1996]).

Once the mesh has been refined, a new solution and new error indicators can be computed. The
process is then repeated until either ηh 6 ε (the stopping criterion) or the available resources (CPU
time and memory) have been exhausted. The adaptive algorithm yields a sequence of successively
refined meshes as illustrated in Figure 2.8. For time-dependent problems, an adaptive algorithm needs
to decide both on the local mesh size and the size of the (local) time step as functions of space and
time. Ideally, the error estimate ηh is close to the actual error, as measured by the efficiency index ηh/η
which should be close to and bounded below by one.

2.7 Automating the finite element method

The FEniCS Project seeks to automate the solution of differential equations. This is a formidable
task, but it may be approached by an automation of the finite element method. In particular, this
automation relies on the following key steps:

(i) automation of discretization,

(ii) automation of discrete solution,

(iii) automation of error control.
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Since its inception in 2003, the FEniCS Project has been concerned mainly with the automation of
discretization, resulting in the development of the form compilers FFC and SyFi/SFC, the code
generation interface UFC, the form language UFL, and a generic assembler implemented as part of
DOLFIN. As a result, variational problems for a large class of partial differential equations may now
be automatically discretized by the finite element method using FEniCS. For the automation of discrete
solution; that is, the solution of linear and nonlinear systems arising from the automated discretization
of variational problems, interfaces to state-of-the-art libraries for linear algebra have been implemented
as part of DOLFIN. Ongoing work is now seeking to automate error control by automated error
estimation and adaptivity. In the following chapters, we return to specific aspects of the automation
of the finite element method developed as part of the FEniCS Project. The mathematical methodology
behind the FEniCS Project has also been described in a number of scientific works. For further reading,
we refer to Logg [2007], Logg and Wells [2010], Kirby [2004], Kirby and Logg [2006], Alnæs et al.
[2009], Alnæs and Mardal [2010], Kirby et al. [2005, 2006], Kirby and Logg [2007, 2008], Kirby and
Scott [2007], Kirby [2006], Ølgaard et al. [2008], Rognes et al. [2009], Ølgaard and Wells [2010], Logg
[2009].

2.8 Historical notes

In 1915, Boris Grigoryevich Galerkin formulated a general method for solving differential equa-
tions [Galerkin, 1915]. A similar approach was presented sometime earlier by Bubnov. Galerkin’s
method, or the Bubnov–Galerkin method, was originally formulated with global polynomials and
goes back to the variational principles of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano
[Castigliano, 1879], Rayleigh [Rayleigh, 1870] and Ritz [Ritz, 1908]. Galerkin’s method with piece-
wise polynomial spaces (Vh, V̂h) is known as the finite element method. The finite element method
was introduced by engineers for structural analysis in the 1950s and was independently proposed
by Courant [Courant, 1943]. The exploitation of the finite element method among engineers and
mathematicians exploded in the 1960s. Since then, the machinery of the finite element method has
been expanded and refined into a comprehensive framework for the design and analysis of numerical
methods for differential equations; see Zienkiewicz et al. [2005], Strang and Fix [1973], Ciarlet [1976],
Becker et al. [1981], Hughes [1987], Brenner and Scott [2008]. Recently, the quest for compatible (stable)
discretizations of mixed variational problems has led to the development of finite element exterior
calculus [Arnold et al., 2006].

Work on a posteriori error analysis of finite element methods dates back to the pioneering work
of Babuška and Rheinboldt [1978]. Important references include the works by Bank and Weiser [1985],
Zienkiewicz and Zhu [1987], Eriksson and Johnson [1991, 1995a], Eriksson and Johnson, 1995b,c],
Eriksson et al. [1998], Ainsworth and Oden [1993] and the reviews papers [Eriksson et al., 1995,
Verfürth, 1994, 1999, Ainsworth and Oden, 2000, Becker and Rannacher, 2001].



3 DOLFIN: a C++/Python finite element library
By Anders Logg, Garth N. Wells and Johan Hake

DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. In this
chapter, we review the functionality of DOLFIN. We also discuss the implementation of some key
features of DOLFIN in detail. For a general discussion on the design and implementation of DOLFIN,
we refer to Logg and Wells [2010].

3.1 Overview

A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem
solving environment for models based on partial differential equations and implements core parts
of the functionality of FEniCS, including data structures and algorithms for computational meshes
and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the
functionality of other FEniCS components and external software, and handles the communication
between these components.

Figure 3.1 presents an overview of the relationships between the components of FEniCS and
external software. The software map presented in the figure shows a user application implemented on
top of the DOLFIN user interface, either in C++ or in Python. User applications may also be developed
using FEniCS Apps, a collection of solvers implemented on top of FEniCS/DOLFIN. DOLFIN itself
functions as both a user interface and a core component of FEniCS. All communication between a
user program, other core components of FEniCS and external software is routed through wrapper
layers that are implemented as part of the DOLFIN user interface. In particular, variational forms
expressed in the UFL form language (Chapter 4) are passed to the form compiler FFC (Chapter 5) or
SFC (Chapter 5) to generate UFC code (Chapter 5), which can then be used by DOLFIN to assemble
linear systems. In the case of FFC, this code generation depends on the finite element backend
FIAT (Chapter 5), the just-in-time compilation utility Instant (Chapter 5) and the optional optimizing
backend FErari (Chapter 5). Finally, the plotting capabilities provided by DOLFIN are implemented
by Viper. Some of this communication is exposed to users of the DOLFIN C++ interface, which
requires a user to explicitly generate UFC code from a UFL form file by calling a form compiler on
the command-line.

DOLFIN also relies on external software for important functionality such as the linear algebra
libraries PETSc, Trilinos, uBLAS and MTL4, and the mesh partitioning libraries ParMETIS and
SCOTCH [Pellegrini].

3.2 User interfaces

DOLFIN provides two user interfaces. One interface is implemented as a traditional C++ library, and
another interface is implemented as a standard Python module. The two interfaces are near-identical,

89
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Figure 3.1: DOLFIN functions as the
main user interface of FEniCS and
handles the communication between
the various components of FEniCS
and external software. Solid lines
indicate dependencies and dashed
lines indicate data flow.

but in some cases particular language features of either C++ or Python require variations in the
interfaces. In particular, the Python interface adds an additional level of automation by employing
run-time (just-in-time) code generation. Below, we comment on the design and implementation of the
two user interfaces of DOLFIN.

3.2.1 C++ interface

The DOLFIN C++ interface is designed as a standard object-oriented C++ library. It provides classes
such as Matrix, Vector, Mesh, FiniteElement, FunctionSpace and Function, which model important
concepts for finite element computing (see Figure 3.2). It also provides a small number of free
functions (a function that is not a member function of a class), most notably assemble and solve,
which can be used in conjunction with DOLFIN class objects to implement finite element solvers. The
interface is designed to be as simple as possible, and without compromising on generality. When
external software is wrapped, a simple and consistent user interface is provided to allow the rapid
development of solvers without needing to deal with differences in the interfaces of external libraries.
However, DOLFIN has been designed to interact flexibly with external software. In particular, in cases
where DOLFIN provides wrappers for external libraries, such as the Matrix and Vector classes which
wrap data structures from linear algebra libraries like PETSc and Trilinos, advanced users may, if
necessary, access the underlying data structures in order to use native functionality from the wrapped
external libraries.

To solve partial differential equations using the DOLFIN C++ interface, users must express finite
element variational problems in the UFL form language. This is accomplished by entering the forms
into separate .ufl files and compiling those files using a form compiler to generate UFC-compliant
C++ code. The generated code may then be included in a DOLFIN C++ program. We return to this
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Figure 3.2: Schematic overview of
some of the most important compo-
nents and classes of DOLFIN. Ar-
rows indicate dependencies.

issue in Section 3.3.
To use DOLFIN from C++, users need to include one or more header files from the DOLFIN C++

library. In the simplest case, one includes the header file dolfin.h, which in turn includes all other
DOLFIN header files:

C++ code
#include <dolfin.h>

using namespace dolfin;

int main()

{

return 0;

}

3.2.2 Python interface

Over the last decade, Python has emerged as an attractive choice for the rapid development of
simulation codes for scientific computing. Python brings the benefits of a high-level scripting language,
the strength of an object-oriented language and a wealth of libraries for numerical computation.

The bulk of the DOLFIN Python interface is automatically generated from the C++ interface
using SWIG [Beazley, 1996, SWIG]. Since the functionality of both the C++ and Python interfaces are
implemented as part of the DOLFIN C++ library, DOLFIN is equally efficient via the C++ and Python
interfaces for most operations.

The DOLFIN Python interface offers some functionality that is not available from the C++ interface.
In particular, the UFL form language is seamlessly integrated into the Python interface and code
generation is automatically handled at run-time. To use DOLFIN from Python, users need to import
functionality from the DOLFIN Python module. In the simplest case, one includes all functionality
from the Python module named dolfin:
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Python code
from dolfin import *

3.3 Functionality

DOLFIN is organized as a collection of libraries (modules), with each covering a certain area of
functionality. We review here these areas and explain the purpose and usage of the most commonly
used classes and functions. The review is bottom-up; that is, we start by describing the core low-level
functionality of DOLFIN (linear algebra and meshes) and then move upwards to describe higher level
functionality. For further details, we refer to the DOLFIN Programmer’s Reference on the FEniCS
Project web page and to Logg and Wells [2010].

3.3.1 Linear algebra

DOLFIN provides a range of linear algebra objects and functionality, including vectors, dense and
sparse matrices, direct and iterative linear solvers and eigenvalues solvers, and does so via a simple and
consistent interface. For the bulk of underlying functionality, DOLFIN relies on third-party libraries
such as PETSc and Trilinos. DOLFIN defines the abstract base classes GenericTensor, GenericMatrix
and GenericVector, and these are used extensively throughout the library. Implementations of these
generic interfaces for a number of backends are provided in DOLFIN, thereby achieving a common
interface for different backends. Users can also wrap other linear algebra backends by implementing
the generic interfaces.

Matrices and vectors. The simplest way to create matrices and vectors is via the classes Matrix and
Vector. In general, Matrix and Vector represent distributed linear algebra objects that may be stored
across (MPI) processes when running in parallel. Consistent with the most common usage in a finite
element library, a Vector uses dense storage and a Matrix uses sparse storage. A Vector can be
created as follows:

C++ code
Vector x;

Python code
x = Vector()

and a matrix can be created by:

C++ code
Matrix A;

Python code
A = Matrix()

In most applications, a user may need to create a matrix or a vector, but most operations on the linear
algebra objects, including resizing, will take place inside the library and a user will not have to operate
on the objects directly.

The following code illustrates how to create a vector of size 100:
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C++ code
Vector x(100);

Python code
x = Vector(100)

A number of backends support distributed linear algebra for parallel computation, in which case the
vector x will have global size 100, and DOLFIN will partition the vector across processes in (near)
equal-sized portions.

Creating a Matrix of a given size is more involved as the matrix is sparse and in general needs
to be initialized (data structures allocated) based on the structure of the sparse matrix (its sparsity
pattern). Initialization of sparse matrices is handled by DOLFIN when required.

While DOLFIN supports distributed linear algebra objects for parallel computation, it is rare that
a user is exposed to details at the level of parallel data layouts. The distribution of objects across
processes is handled automatically by the library.

Solving linear systems. The simplest approach to solving the linear system Ax = b is to use

C++ code
solve(A, x, b);

Python code
solve(A, x, b)

DOLFIN will use a default method to solve the system of equations. Optional arguments may be
given to specify which algorithm to use when solving the linear system and, in the case of an iterative
method, which preconditioner to use:

C++ code
solve(A, x, b, "lu");

solve(A, x, b, "gmres", "ilu");

Python code
solve(A, x, b, "lu");

solve(A, x, b, "gmres", "ilu")

Which methods and preconditioners that are available depends on which linear algebra backend
DOLFIN has been configured with. To list the available solver methods and preconditioners, the
following commands may be used:

C++ code
list_lu_solver_methods();

list_krylov_solver_methods();

list_krylov_solver_preconditioners();

Python code
list_lu_solver_methods()

list_krylov_solver_methods()

list_krylov_solver_preconditioners()
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Using the function solve is straightforward, but it offers little control over details of the solution
process. For many applications, it is desirable to exercise a degree of control over the solution process
and reuse solver objects throughout a simulation.

The linear system Ax = b can be solved using LU decomposition (a direct method) as follows:

C++ code
LUSolver solver(A);

solver.solve(x, b);

Python code
solver = LUSolver(A)

solver.solve(x, b)

Alternatively, the operator A associated with the linear solver can be set post-construction:

C++ code
LUSolver solver;

solver.set_operator(A);

solver.solve(x, b);

Python code
solver = LUSolver()

solver.set_operator(A)

solver.solve(x, b)

This can be useful when passing a linear solver via a function interface and setting the operator inside
a function.

In some cases, the system Ax = b may be solved a number of times for a given matrix A and
different vectors b, or for different A but with the same nonzero structure. If the nonzero structure of
A does not change, then some efficiency gains for repeated solves can be achieved by informing the
LU solver of this fact:

C++ code
solver.parameters["same_nonzero_pattern"] = true;

Python code
solver.parameters["same_nonzero_pattern"] = True

In the case that A does not change, the solution time for subsequent solves can be reduced dramatically
by re-using the LU factorization of A. Re-use of the factorization is controlled by the parameter
"reuse_factorization".

It is possible for some backends to prescribe the specific LU solver to be used. This depends on
the backend, which solvers that have been configured by DOLFIN and how third-party linear algebra
backends have been configured.

The system of equations Ax = b can be solved using a preconditioned Krylov solver by:

C++ code
KrylovSolver solver(A);

solver.solve(x, b);
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Python code
solver = KrylovSolver(A)

solver.solve(x, b)

The above will use a default preconditioner and solver, and default parameters. If a KrylovSolver is
constructed without a matrix operator A, the operator can be set post-construction:

C++ code
KrylovSolver solver;

solver.set_operator(A);

solver.solve(x, b);

Python code
solver = KrylovSolver()

solver.set_operator(A)

solver.solve(x, b)

In some cases, it may be useful to use a preconditioner matrix P that differs from A:

C++ code
KrylovSolver solver;

solver.set_operators(A, P);

solver.solve(x, b);

Python code
solver = KrylovSolver()

solver.set_operators(A, P)

solver.solve(x, b)

Various parameters for Krylov solvers can be set. Some common parameters are:

Python code
solver = KrylovSolver()

solver.parameters["relative_tolerance"] = 1.0e-6

solver.parameters["absolute_tolerance"] = 1.0e-15

solver.parameters["divergence_limit"] = 1.0e4

solver.parameters["maximum_iterations"] = 10000

solver.parameters["error_on_nonconvergence"] = True

solver.parameters["nonzero_initial_guess"] = False

The parameters may be set similarly from C++. Printing a summary of the convergence of a
KrylovSolver and printing details of the convergence history can be controlled via parameters:

C++ code
KrylovSolver solver;

solver.parameters["report"] = true;

solver.parameters["monitor_convergence"] = true;

Python code
solver = KrylovSolver()

solver.parameters["report"] = True

solver.parameters["monitor_convergence"] = True

The specific Krylov solver and preconditioner to be used can be set at construction of a solver object.
The simplest approach is to set the Krylov method and the preconditioner via string descriptions. For
example:
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C++ code
KrylovSolver solver("gmres", "ilu");

Python code
solver = KrylovSolver("gmres", "ilu")

The above specifies the Generalized Minimum Residual (GMRES) method as a solver, and incomplete
LU (ILU) preconditioning.

When backends such as PETSc and Trilinos are configured, a wide range of Krylov methods and
preconditioners can be applied, and a large number of solver and preconditioner parameters can be
set. In addition to what is described here, DOLFIN provides more advanced interfaces which permit
finer control of the solution process. It is also possible for users to provide their own preconditioners.

Solving eigenvalue problems. DOLFIN uses the library SLEPc, which builds on PETSc, to solve eigen-
value problems. The SLEPc interface works only with PETSc-based linear algebra objects. Therefore,
it is necessary to use PETSc-based objects, or to set the default linear algebra backend to PETSc and
downcast objects (as explained in the next section). The following code illustrates the solution of the
eigenvalue problem Ax = λx:

C++ code
// Create matrix

PETScMatrix A;

// Code omitted for setting the entries of A

// Create eigensolver

SLEPcEigenSolver eigensolver(A);

// Compute all eigenvalues of A

eigensolver.solve();

// Get first eigenpair

double lambda_real, lambda_complex;

PETScVector x_real, x_complex;

eigensolver.get_eigenpair(lambda_real, lambda_complex, x_real, x_complex, 0);

Python code
# Create matrix

A = PETScMatrix()

# Code omitted for setting the entries of A

# Create eigensolver

eigensolver = SLEPcEigenSolver(A)

# Compute all eigenvalues of A

eigensolver.solve()

# Get first eigenpair

lambda_r, lambda_c, x_real, x_complex = eigensolver.get_eigenpair(0)

The real and complex components of the eigenvalue are returned in lambda_real and lambda_complex,
respectively, and the real and complex components of the eigenvector are returned in x_real and
x_complex, respectively.
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To create a solver for the generalized eigenvalue problem Ax = λMx, the eigensolver can be
constructed using A and M:

C++ code
PETScMatrix A;

PETScMatrix M;

// Code omitted for setting the entries of A and M

SLEPcEigenSolver eigensolver(A, M);

Python code
A = PETScMatrix()

M = PETScMatrix()

# Code omitted for setting the entries of A and M

eigensolver = SLEPcEigenSolver(A, M)

There are many options that a user can set via the parameter system to control the eigenvalue problem
solution process. To print a list of available parameters, call info(eigensolver.parameters, true)

and info(eigensolver.parameters, True) from C++ and Python, respectively.

Selecting a linear algebra backend. The Matrix, Vector, LUSolver and KrylovSolver objects are all
based on a specific linear algebra backend. The default backend depends on which backends are en-
abled when DOLFIN is configured. The backend can be set via the global parameter
"linear_algebra_backend". To use PETSc as the linear algebra backend:

C++ code
parameters["linear_algebra_backend"] = "PETSc";

Python code
parameters["linear_algebra_backend"] = "PETSc"

This parameter should be set before creating linear algebra objects. To use Epetra from the Trilinos
collection, the parameter "linear_algebra_backend" should be set to "Epetra". For uBLAS, the
parameter should be set to "uBLAS" and for MTL4, the parameter should be set to "MTL4".

Users can explicitly create linear algebra objects that use a particular backend. Generally, such
objects are prefixed with the name of the backend. For example, a PETSc-based vector and LU solver
are created by:

C++ code
PETScVector x;

PETScLUSolver solver;

Python code
x = PETScVector()

solver = PETScLUSolver()
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Solving nonlinear systems. DOLFIN provides a Newton solver in the form of the class NewtonSolver

for solving nonlinear systems of equations of the form

F(x) = 0, (3.1)

where x ∈ Rn and F : Rn → Rn. To solve such a problem using the DOLFIN Newton solver, a
user needs to provide a subclass of NonlinearProblem. The purpose of a NonlinearProblem object is
to evaluate F and the Jacobian of F, which will be denoted by J : Rn → Rn ×Rn. An outline of a
user-provided MyNonlinearProblem class for solving a nonlinear differential equation is shown below.

C++ code
class MyNonlinearProblem : public NonlinearProblem

{

public:

// Constructor

MyNonlinearProblem(const Form& L, const Form& a,

const BoundaryCondition& bc) : L(L), a(a), bc(bc) {}

// User-defined residual vector F

void F(GenericVector& b, const GenericVector& x)

{

assemble(b, L);

bc.apply(b, x);

}

// User-defined Jacobian matrix J

void J(GenericMatrix& A, const GenericVector& x)

{

assemble(A, a);

bc.apply(A);

}

private:

const Form& L;

const Form& a;

const BoundaryCondition& bc;

};

A MyNonlinearProblem object is constructed using a linear form L, that when assembled corre-
sponds to F, and a bilinear form a, that when assembled corresponds to J. The classes Form

and BoundaryCondition used in the example are discussed in more detail later. The same MyNon-

linearProblem class can be defined in Python:

Python code
class MyNonlinearProblem(NonlinearProblem):

def __init__(self, L, a, bc):

NonlinearProblem.__init__(self)

self.L = L

self.a = a

self.bc = bc

def F(self, b, x):

assemble(self.L, tensor=b)

self.bc.apply(b, x)

def J(self, A, x):

assemble(self.a, tensor=A)

self.bc.apply(A)
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Once a nonlinear problem class has been defined, a NewtonSolver object can be created and the
Newton solver can be used to compute the solution vector x to the nonlinear problem:

C++ code
MyNonlinearProblem problem(L, a, bc);

NewtonSolver newton_solver;

newton_solver.solve(problem, u.vector());

Python code
problem = MyNonlinearProblem(L, a, bc)

newton_solver = NewtonSolver()

newton_solver.solve(problem, u.vector())

A number of parameters can be set for a NewtonSolver. Some parameters that determine the behavior
of the Newton solver are:

Python code
newton_solver = NewtonSolver()

newton_solver.parameters["maximum_iterations"] = 20

newton_solver.parameters["relative_tolerance"] = 1.0e-6

newton_solver.parameters["absolute_tolerance"] = 1.0e-10

newton_solver.parameters["error_on_nonconvergence"] = False

The parameters may be set similarly from C++. When testing for convergence, usually a norm of the
residual F is checked. Sometimes it is useful instead to check a norm of the iterative correction dx.
This is controlled by the parameter "convergence_criterion", which can be set to "residual", for
checking the size of the residual F, or "incremental", for checking the size of the increment dx.

For more advanced usage, a NewtonSolver can be constructed with arguments that specify the
linear solver and preconditioner to be used in the solution process.

3.3.2 Meshes

A central part of DOLFIN is its mesh library and the Mesh class. The mesh library provides data
structures and algorithms for computational meshes, including the computation of mesh connectivity
(incidence relations), mesh refinement, mesh partitioning and mesh intersection.

The mesh library is implemented in C++ and has been optimized to minimize storage requirements
and to enable efficient access to mesh data. In particular, a DOLFIN mesh is stored in a small number
of contiguous arrays, on top of which a light-weight object-oriented layer provides a view to the
underlying data. For a detailed discussion on the design and implementation of the mesh library, we
refer to Logg [2009].

Creating a mesh. DOLFIN provides functionality for creating simple meshes, such as meshes of unit
squares and unit cubes, spheres, rectangles and boxes. The following code demonstrates how to
create a 16× 16 triangular mesh of the unit square (consisting of 2× 16× 16 = 512 triangles) and a
16× 16× 16 tetrahedral mesh of the unit cube (consisting of 6× 16× 16× 16 = 24, 576 tetrahedra).

C++ code
UnitSquare unit_square(16, 16);

UnitCube unit_cube(16, 16, 16);
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Python code
unit_square = UnitSquare(16, 16)

unit_cube = UnitCube(16, 16, 16)

Simplicial meshes (meshes consisting of intervals, triangles or tetrahedra) may be constructed
explicitly by specifying the cells and vertices of the mesh. An interface for creating simplicial meshes
is provided by the class MeshEditor. The following code demonstrates how to create a mesh consisting
of two triangles covering the unit square:

C++ code
Mesh mesh;

MeshEditor editor;

editor.open(mesh, 2, 2);

editor.init_vertices(4);

editor.init_cells(2);

editor.add_vertex(0, 0.0, 0.0);

editor.add_vertex(1, 1.0, 0.0);

editor.add_vertex(2, 1.0, 1.0);

editor.add_vertex(3, 0.0, 1.0);

editor.add_cell(0, 0, 1, 2);

editor.add_cell(1, 0, 2, 3);

editor.close();

Python code
mesh = Mesh();

editor = MeshEditor();

editor.open(mesh, 2, 2)

editor.init_vertices(4)

editor.init_cells(2)

editor.add_vertex(0, 0.0, 0.0)

editor.add_vertex(1, 1.0, 0.0)

editor.add_vertex(2, 1.0, 1.0)

editor.add_vertex(3, 0.0, 1.0)

editor.add_cell(0, 0, 1, 2)

editor.add_cell(1, 0, 2, 3)

editor.close()

Reading a mesh from file. Although the built-in classes UnitSquare and UnitCube are useful for testing,
a typical application will need to read from file a mesh that has been generated by an external mesh
generator. To read a mesh from file, simply supply the filename to the constructor of the Mesh class:

C++ code
Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")

Meshes must be stored in the DOLFIN XML format. The following example illustrates the XML
format for a 2× 2 mesh of the unit square:

XML code
<?xml version="1.0" encoding="UTF-8"?>

<dolfin xmlns:dolfin="http://fenicsproject.org">
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Figure 3.3: Each entity of a mesh is
identified by a pair (d, i) which spec-
ifies the topological dimension d and
a unique index i for the entity within
the set of entities of dimension d.

<mesh celltype="triangle" dim="2">

<vertices size="9">

<vertex index="0" x="0" y="0"/>

<vertex index="1" x="0.5" y="0"/>

<vertex index="2" x="1" y="0"/>

<vertex index="3" x="0" y="0.5"/>

<vertex index="4" x="0.5" y="0.5"/>

<vertex index="5" x="1" y="0.5"/>

<vertex index="6" x="0" y="1"/>

<vertex index="7" x="0.5" y="1"/>

<vertex index="8" x="1" y="1"/>

</vertices>

<cells size="8">

<triangle index="0" v0="0" v1="1" v2="4"/>

<triangle index="1" v0="0" v1="3" v2="4"/>

<triangle index="2" v0="1" v1="2" v2="5"/>

<triangle index="3" v0="1" v1="4" v2="5"/>

<triangle index="4" v0="3" v1="4" v2="7"/>

<triangle index="5" v0="3" v1="6" v2="7"/>

<triangle index="6" v0="4" v1="5" v2="8"/>

<triangle index="7" v0="4" v1="7" v2="8"/>

</cells>

</mesh>

</dolfin>

Meshes stored in other data formats may be converted to the DOLFIN XML format using the command
dolfin-convert, as explained in more detail below.

Mesh entities. Conceptually, a mesh (modeled by the class Mesh), consists of a collection of mesh entities.
A mesh entity is a pair (d, i), where d is the topological dimension of the mesh entity and i is a unique
index of the mesh entity. Mesh entities are numbered within each topological dimension from 0 to
nd − 1, where nd is the number of mesh entities of topological dimension d.

For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces. Entities of codimension 1 are referred to as facets
and entities of codimension 0 as cells. These concepts are summarized in Figure 3.3 and Table 3.1. We
note that a triangular mesh consists of vertices, edges and cells, and that the edges may alternatively be
referred to as facets and the cells as faces. We further note that a tetrahedral mesh consists of vertices,
edges, faces and cells, and that the faces may alternatively be referred to as facets. These concepts
are implemented by the classes MeshEntity, Vertex, Edge, Face, Facet and Cell. These classes do not
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Entity Dimension Codimension
Vertex 0 D
Edge 1 D− 1
Face 2 D− 2

Facet D− 1 1
Cell D 0

Table 3.1: Mesh entities and their dimensions/codimensions. The codimension of an entity is D− d where D is
the maximal dimension and d is the dimension.

store any data. Instead, they are light-weight objects that provide views of the underlying mesh data.
A MeshEntity may be created from a Mesh, a topological dimension and an index. The following code
demonstrates how to create various entities on a mesh:

C++ code
MeshEntity entity(mesh, 0, 33); // vertex number 33

Vertex vertex(mesh, 33); // vertex number 33

Cell cell(mesh, 25); // cell number 25

Python code
entity = MeshEntity(mesh, 0, 33) # vertex number 33

vertex = Vertex(mesh, 33) # vertex number 33

cell = Cell(mesh, 25) # cell number 25

Mesh topology and geometry. The topology of a mesh is stored separately from its geometry. The
topology of a mesh is a description of the relations between the various entities of the mesh, while the
geometry describes how those entities are embedded in Rd.

Users are rarely confronted with the MeshTopology and MeshGeometry classes directly since most
algorithms on meshes can be expressed in terms of mesh iterators. However, users may sometimes need
to access the dimension of a Mesh, which involves accessing either the MeshTopology or MeshGeometry,
which are stored as part of the Mesh, as illustrated in the following code examples:

C++ code
uint gdim = mesh.topology().dim();

uint tdim = mesh.geometry().dim();

Python code
gdim = mesh.topology().dim()

tdim = mesh.geometry().dim()

It should be noted that the topological and geometric dimensions may differ. This is the case in
particular for the boundary of a mesh, which is typically a mesh of topological dimension D embedded
in RD+1. That is, the geometry dimension is D + 1.

Mesh connectivity. The topology of a Mesh is represented by the connectivity (incidence relations) of
the mesh, which is a complete description of which entities of the mesh are connected to which entities.
Such connectivity is stored in DOLFIN by the MeshConnectivity class. One such data set is stored as
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0 1 2 3

0 – × – ×
1 × × – –
2 – – – –
3 × × – ×

Table 3.2: DOLFIN computes the connectivity d→ d′ of a mesh for any pair d, d′ = 0, 1, . . . , D. The table indicates
which connectivity pairs (indicated by ×) have been computed in order to compute the connectivity 1 → 1
(edge–edge connectivity) for a tetrahedral mesh.

part of the class MeshTopology for each pair of topological dimensions d → d′ for d, d′ = 0, 1, . . . , D,
where D is the topological dimension.

When a Mesh is created, a minimal MeshTopology is created. Only the connectivity from cells
(dimension D) to vertices (dimension 0) is stored (MeshConnectivity D → 0). When a certain
connectivity is requested, such as for example the connectivity 1 → 1 (connectivity from edges
to edges), DOLFIN automatically computes any other connectivities required for computing the
requested connectivity. This is illustrated in Table 3.2, where we indicate which connectivities are
required to compute the 1→ 1 connectivity. The following code demonstrates how to initialize various
kinds of mesh connectivity for a tetrahedral mesh (D = 3):

C++ code
mesh.init(2); // Compute faces

mesh.init(0, 0); // Compute vertex neighbors for each vertex

mesh.init(1, 1); // Compute edge neighbors for each edge

Python code
mesh.init(2) # Compute faces

mesh.init(0, 0) # Compute vertex neighbors for each vertex

mesh.init(1, 1) # Compute edge neighbors for each edge

Mesh iterators. Algorithms operating on a mesh can often be expressed in terms of iterators. The
mesh library provides the general iterator MeshEntityIterator for iteration over mesh entities, as
well as the specialized mesh iterators VertexIterator, EdgeIterator, FaceIterator, FacetIterator
and CellIterator.

The following code illustrates how to iterate over all incident (connected) vertices of all vertices of
all cells of a given mesh. Two vertices are considered as neighbors if they both belong to the same cell.
For simplex meshes, this is equivalent to an edge connecting the two vertices.

C++ code
for (CellIterator c(mesh); !c.end(); ++c)

for (VertexIterator v0(*c); !v0.end(); ++v0)

for (VertexIterator v1(*v0); !v1.end(); ++v1)

cout << *v1 << endl;

Python code
for c in cells(mesh):

for v0 in vertices(c):

for v1 in vertices(v0):

print v1
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This may alternatively be implemented using the general iterator MeshEntityIterator as follows:

C++ code
uint D = mesh.topology().dim();

for (MeshEntityIterator c(mesh, D); !c.end(); ++c)

for (MeshEntityIterator v0(*c, 0); !v0.end(); ++v0)

for (MeshEntityIterator v1(*v0, 0); !v1.end(); ++v1)

cout << *v1 << endl;

Python code
D = mesh.topology().dim()

for c in entities(mesh, D):

for v0 in entities(c, 0):

for v1 in entities(v0, 0):

print v1

Mesh functions. A useful class for storing data associated with a Mesh is the MeshFunction class.
This makes it simple to store, for example, material parameters, subdomain indicators, refinement
markers on the Cells of a Mesh or boundary markers on the Facets of a Mesh. A MeshFunction is
a discrete function that takes a value on each mesh entity of a given topological dimension d. The
number of values stored in a MeshFunction is equal to the number of entities nd of dimension d. A
MeshFunction is templated over the value type and may thus be used to store values of any type.
For convenience, named MeshFunctions are provided by the classes VertexFunction, EdgeFunction,
FaceFunction, FacetFunction and CellFunction. The following code illustrates how to create a pair
of MeshFunctions, one for storing subdomain indicators on Cells and one for storing boundary
markers on Facets:

C++ code
CellFunction<uint> sub_domains(mesh);

sub_domains.set_all(0);

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

Point p = cell.midpoint();

if (p.x() > 0.5)

sub_domains[cell] = 1;

}

FacetFunction<uint> boundary_markers(mesh);

boundary_markers.set_all(0);

for (FacetIterator facet(mesh); !facet.end(); ++facet)

{

Point p = facet.midpoint();

if (near(p.y(), 0.0) || near(p.y(), 1.0))

boundary_markers[facet] = 1;

}

Python code
sub_domains = CellFunction("uint", mesh)

sub_domains.set_all(0)

for cell in cells(mesh):

p = cell.midpoint()

if p.x() > 0.5:

sub_domains[cell] = 1
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boundary_markers = FacetFunction("uint", mesh)

boundary_markers.set_all(0)

for facet in facets(mesh):

p = facet.midpoint()

if near(p.y(), 0.0) or near(p.y(), 1.0):

boundary_markers[facet] = 1

Mesh data. The MeshData class provides a simple way to associate data with a Mesh. It allows arbitrary
MeshFunctions (and other quantities) to be associated with a Mesh. The following code illustrates how
to attach and retrieve a MeshFunction named "sub_domains" to/from a Mesh:

C++ code
MeshFunction<uint>* sub_domains = mesh.data().create_mesh_function("sub_domains");

sub_domains = mesh.data().mesh_function("sub_domains");

Python code
sub_domains = mesh.data().create_mesh_function("sub_domains")

sub_domains = mesh.data().mesh_function("sub_domains")

To list data associated with a given Mesh, issue the command info(mesh.data(), true) in C++ or
info(mesh.data(), True) in Python.

Mesh refinement. A Mesh may be refined, by either uniform or local refinement, by calling the refine

function, as illustrated in the code examples below.

C++ code
// Uniform refinement

mesh = refine(mesh);

// Local refinement

CellFunction<bool> cell_markers(mesh);

cell_markers.set_all(false);

Point origin(0.0, 0.0, 0.0);

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

Point p = cell.midpoint();

if (p.distance(origin) < 0.1)

cell_markers[cell] = true;

}

mesh = refine(mesh, cell_markers);

Python code
# Uniform refinement

mesh = refine(mesh)

# Local refinement

cell_markers = CellFunction("bool", mesh)

cell_markers.set_all(False)

origin = Point(0.0, 0.0, 0.0)

for cell in cells(mesh):

p = cell.midpoint()

if p.distance(origin) < 0.1:

cell_markers[cell] = True

mesh = refine(mesh, cell_markers)
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Figure 3.4: A locally refined mesh
obtained by repeated marking of the
cells close to one of the corners of
the unit cube.

Currently, local refinement defaults to recursive refinement by edge bisection [Rivara, 1984, 1992].
An example of a locally refined mesh obtained by a repeated marking of the cells close to one of the
corners of the unit cube is shown in Figure 3.4.

Parallel meshes. When running a program in parallel on a distributed memory architecture (using
MPI by invoking the program with the mpirun wrapper), DOLFIN automatically partitions and
distributes meshes. Each process then stores a portion of the global mesh as a standard Mesh object. In
addition, it stores auxiliary data needed for correctly computing local-to-global maps on each process
and for communicating data to neighboring regions. Parallel computing with DOLFIN is discussed in
Section 3.4.

3.3.3 Finite elements

The concept of a finite element as discussed in Chapters 2 and 5 (the Ciarlet definition) is implemented
by the DOLFIN FiniteElement class. This class is implemented differently in the C++ and Python
interfaces.

The C++ implementation of the FiniteElement class relies on code generated by a form compiler
such as FFC or SFC, which are discussed in Chapters 5 and 5, respectively. The class FiniteElement is
essentially a wrapper class for the UFC class ufc::finite_element. A C++ FiniteElement provides
all the functionality of a ufc::finite_element. Users of the DOLFIN C++ interface will typically not
use the FiniteElement class directly, but it is an important building block for the FunctionSpace class,
which is discussed below. However, users developing advanced algorithms that require run-time
evaluation of finite element basis function will need to familiarize themselves with the FiniteElement

interface. For details, we refer to the DOLFIN Programmer’s Reference.
The Python interface also provides a FiniteElement class. The Python FiniteElement class is

imported directly from the UFL Python module (see Chapter 4). As such, it is just a label for a
particular finite element that can be used to define variational problems. Variational problems are
more conveniently defined in terms of the DOLFIN FunctionSpace class, so users of the Python
interface are rarely confronted with the FiniteElement class. However, advanced users who wish
to develop algorithms in Python that require functionality defined in the UFC interface, such as
run-time evaluation of basis functions, can access such functionality by explicitly generating code
from within the Python interface. This can be accomplished by a call to the DOLFIN jit function
(just-in-time compilation), which takes as input a UFL FiniteElement and returns a pair containing
a ufc::finite_element and a ufc::dofmap. The returned objects are created by first generating the
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Name Symbol

Argyris ARG
Arnold–Winther AW
Brezzi–Douglas–Marini BDM
Crouzeix–Raviart CR
Discontinuous Lagrange DG
Hermite HER
Lagrange CG
Mardal–Tai–Winther MTW
Morley MOR
Nédélec 1st kind H(curl) N1curl
Nédélec 2nd kind H(curl) N2curl
Raviart–Thomas RT

Table 3.3: List of finite elements supported by DOLFIN 1.0. Elements in grey italics are partly supported in
FEniCS but not throughout the entire toolchain.

corresponding C++ code, then compiling and wrapping that C++ code into a Python module. The
returned objects are therefore directly usable from within Python.

The degrees of freedom of a FiniteElement can be plotted directly from the Python interface
by a call to plot(element). This will draw a picture of the shape of the finite element, along with
a graphical representation of its degrees of freedom in accordance with the notation described in
Chapter 5.

Table 3.3 lists the finite elements currently supported by DOLFIN (and the toolchain FIAT–UFL–
FFC/SFC–UFC). A FiniteElement may be specified (from Python) using either its full name or its
short symbol, as illustrated in the code example below:

UFL code
element = FiniteElement("Lagrange", tetrahedron, 5)

element = FiniteElement("CG", tetrahedron, 5)

element = FiniteElement("Brezzi-Douglas-Marini", triangle, 3)

element = FiniteElement("BDM", triangle, 3)

element = FiniteElement("Nedelec 1st kind H(curl)", tetrahedron, 2)

element = FiniteElement("N1curl", tetrahedron, 2)

3.3.4 Function spaces

The DOLFIN FunctionSpace class represents a finite element function space Vh, as defined in Chapter 2.
The data of a FunctionSpace is represented in terms of a triplet consisting of a Mesh, a DofMap and a
FiniteElement:

FunctionSpace = (Mesh, DofMap, FiniteElement).

The Mesh defines the computational domain and its discretization. The DofMap defines how the degrees
of freedom of the function space are distributed. In particular, the DofMap provides the function
tabulate_dofs which maps the local degrees of freedom on any given cell of the Mesh to global
degrees of freedom. The DofMap plays a role in defining the global regularity of the finite element
function space. The FiniteElement defines the local function space on any given cell of the Mesh.
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Note that if two or more FunctionSpaces are created on the same Mesh, that Mesh is shared between
the two FunctionSpaces.

Creating function spaces. As for the FiniteElement class, FunctionSpaces are handled differently in
the C++ and Python interfaces. In C++, the instantiation of a FunctionSpace relies on generated code.
As an example, we consider here the creation of a FunctionSpace representing continuous piecewise
linear Lagrange polynomials on triangles. First, the corresponding finite element must be defined in
the UFL form language. We do this by entering the following code into a file named Lagrange.ufl:

UFL code
element = FiniteElement("Lagrange", triangle, 1)

We may then generate C++ code using a form compiler such as FFC:

Bash code
ffc -l dolfin Lagrange.ufl

This generates a file named Lagrange.h that we may include in our C++ program to instantiate a
FunctionSpace on a given Mesh:

C++ code
#include <dolfin.h>

#include "Lagrange.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Lagrange::FunctionSpace V(mesh);

...

return 0;

}

In typical applications, a FunctionSpace is not generated through a separate .ufl file, but is instead
generated as part of the code generation for a variational problem.

From the Python interface, one may create a FunctionSpace directly, as illustrated by the follow-
ing code which creates the same function space as the above example (piecewise linear Lagrange
polynomials on triangles):

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

Mixed spaces. Mixed function spaces may be created from arbitrary combinations of function spaces.
As an example, we consider here the creation of the Taylor–Hood function space for the discretization
of the Stokes or incompressible Navier–Stokes equations. This mixed function space is the tensor
product of a vector-valued continuous piecewise quadratic function space for the velocity field and a
scalar continuous piecewise linear function space for the pressure field. This may be easily defined in
either a UFL form file (for code generation and subsequent inclusion in a C++ program) or directly in
a Python script as illustrated in the following code examples:
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UFL code
V = VectorElement("Lagrange", triangle, 2)

Q = FiniteElement("Lagrange", triangle, 1)

W = V*Q

Python code
V = VectorFunctionSpace(mesh, "Lagrange", 2)

Q = FunctionSpace(mesh, "Lagrange", 1)

W = V*Q

DOLFIN allows the generation of arbitrarily nested mixed function spaces. A mixed function space
can be used as a building block in the construction of a larger mixed space. When a mixed function
space is created from more than two function spaces (nested on the same level), then one must use the
MixedElement constructor (in UFL/C++) or the MixedFunctionSpace constructor (in Python). This is
because Python will interpret the expression V*Q*P as (V*Q)*P, which will create a mixed function
space consisting of two subspaces: the mixed space V*Q and the space P. If that is not the intention,
one must instead define the mixed function space using MixedElement([V, Q, P]) in UFL/C++ or
MixedFunctionSpace([V, Q, P]) in Python.

Subspaces. For a mixed function space, one may access its subspaces. These subspaces differ, in
general, from the function spaces that were used to create the mixed space in their degree of
freedom maps (DofMap objects). Subspaces are particularly useful for applying boundary conditions
to components of a mixed element. We return to this issue below.

3.3.5 Functions

The Function class represents a finite element function uh in a finite element space Vh as defined in
Chapter 2:

uh(x) =
N

∑
j=1

Ujφj(x), (3.2)

where U ∈ RN is the vector of degrees of freedom for the function uh and {φj}N
j=1 is a basis for Vh. A

Function is represented in terms of a FunctionSpace and a GenericVector:

Function = (FunctionSpace, GenericVector).

The FunctionSpace defines the function space Vh and the GenericVector holds the vector U of
degrees of freedom; see Figure 3.5. When running in parallel on a distributed memory architecture,
the FunctionSpace and the GenericVector are distributed across the processes.

Creating functions. function!creation

To create a Function on a FunctionSpace, one simply calls the constructor of the Function class
with the FunctionSpace as the argument, as illustrated in the following code examples:

C++ code
Function u(V);

Python code
u = Function(V)
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uh

Th

T

Figure 3.5: A piecewise linear finite
element function uh on a mesh con-
sisting of triangular elements. The
vector of degrees of freedom U is
given by the values of uh at the mesh
vertices.

If two or more Functions are created on the same FunctionSpace, the FunctionSpace is shared
between the Functions.

A Function is typically used to hold the computed solution to a partial differential equation. One
may then obtain the degrees of freedom U by solving a system of equations, as illustrated in the
following code examples:

C++ code
Function u(V);

solve(A, u.vector(), b);

Python code
u = Function(V)

solve(A, u.vector(), b)

The process of assembling and solving a linear system is handled automatically by the classes
Linear/NonlinearVariationalSolver, which will be discussed in more detail below.

Function evaluation. A Function may be evaluated at arbitrary points inside the computational
domain1. The value of a Function is computed by first locating the cell of the mesh containing the
given point, and then evaluating the linear combination of basis functions on that cell. Finding the
cell exploits an efficient search tree algorithm that is implemented as part of CGAL.

The following code examples illustrate function evaluation in the C++ and Python interfaces for
scalar- and vector-valued functions:

C++ code
# Evaluation of scalar function

double scalar = u(0.1, 0.2, 0.3);

# Evaluation of vector-valued function

Array<double> vector(3);

u(vector, 0.1, 0.2, 0.3);

1One may also evaluate a Function outside of the computational domain by setting the global parameter value
"allow_extrapolation" to true. This may sometimes be necessary when evaluating a Function on the boundary of a
domain since round-off errors may result in points slightly outside of the domain.
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Python code
# Evaluation of scalar function

scalar = u(0.1, 0.2, 0.3)

# Evaluation of vector-valued function

vector = u(0.1, 0.2, 0.3)

When running in parallel with a distributed mesh, functions can only be evaluated at points located
in the portion of the mesh that is stored by the local process.

Subfunctions. For Functions constructed on a mixed FunctionSpace, subfunctions (components)
of the Function can be accessed, for example to plot the solution components of a mixed system.
Subfunctions may be accessed as either shallow or deep copies. By default, subfunctions are accessed
as shallow copies, which means that the subfunctions share data with their parent functions. They
provide views to the data of the parent function. Sometimes, it may also be desirable to access
subfunctions as deep copies. A deep copied subfunction does not share its data (namely, the vector
holding the degrees of freedom) with the parent Function. Both shallow and deep copies of Function
objects are themselves Function objects and may (with some exceptions) be used as regular Function
objects.

Creating shallow and deep copies of subfunctions is done differently in C++ and Python, as
illustrated by the following code examples:

C++ code
Function w(W);

// Create shallow copies

Function& u = w[0];

Function& p = w[1];

// Create deep copies

Function uu = w[0];

Function pp = w[1];

Python code
w = Function(W)

# Create shallow copies

u, p = w.split()

# Create deep copies

uu, pp = w.split(deepcopy=True)

Note that component access, such as w[0], from the Python interface does not create a new Function

object as in the C++ interface. Instead, it creates a UFL expression that denotes a component of the
original Function.

3.3.6 Expressions

The Expression class is closely related to the Function class in that it represents a function that can be
evaluated on a finite element space. However, where a Function must be defined in terms of a vector
of degrees of freedom, an Expression may be freely defined in terms of, for example, coordinate
values, other geometric entities, or a table lookup.
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An Expression may be defined in both C++ and Python by subclassing the Expression class and
overloading the eval function, as illustrated in the following code examples which define the function
f (x, y) = sin x cos y as an Expression:

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0])*cos(x[1]);

}

};

MyExpression f;

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])*cos(x[1])

f = MyExpression()

For vector-valued (or tensor-valued) Expressions, one must also specify the value shape of the
Expression. The following code examples demonstrate how to implement the vector-valued function
g(x, y) = (sin x, cos y). The value shape is defined slightly differently in C++ and Python.

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0]);

values[1] = cos(x[1]);

}

uint value_rank() const

{

return 1;

}

uint value_dimension(uint i) const

{

return 2;

}

};

MyExpression g;

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

values[1] = cos(x[1])

def value_shape(self):

return (2,)
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g = MyExpression()

The above functor construct for the definition of expressions is powerful and allows a user to define
complex expressions, the evaluation of which may involve arbitrary operations as part of the eval

function. For simple expressions like f (x, y) = sin x cos y and g(x, y) = (sin x, cos y), users of the
Python interface may, alternatively, use a simpler syntax:

Python code
f = Expression("sin(x[0])*cos(x[1])")

g = Expression(("sin(x[0])", "cos(x[1])"))

The above code will automatically generate subclasses of the DOLFIN C++ Expression class that
overload the eval function. This has the advantage of being more efficient, since the callback to the
eval function takes place in C++ rather than in Python.

A feature that can be used to implement a time-dependent Expression in the Python interface is to
use a variable name in an Expression string. For example, one may use the variable t to denote time:

Python code
h = Expression("t*sin(x[0])*cos(x[1])", t=0.0)

while t < T:

h.t = t

...

t += dt

The t variable has here been used to create a time-dependent Expression. Arbitrary variable names
may be used as long as they do not conflict with the names of built-in functions, such as sin or exp.

In addition to the above examples, the Python interface allows the direct definition of (more
complex) subclasses of the C++ Expression class by supplying C++ code for their definition. For
more information, we refer to the DOLFIN Programmer’s Reference.

3.3.7 Variational forms

DOLFIN relies on the FEniCS toolchain FIAT–UFL–FFC/SFC–UFC for the evaluation of finite element
variational forms. Variational forms expressed in the UFL form language (Chapter 4) are compiled
using one of the form compilers FFC or SFC (Chapters 5 and 5), and the generated UFC code
(Chapter 5) is used by DOLFIN to evaluate (assemble) variational forms.

The UFL form language allows a wide range of variational forms to be expressed in a language
close to the mathematical notation, as exemplified by the following expressions defining (in part) the
bilinear and linear forms for the discretization of a linear elastic problem:

UFL code
a = inner(sigma(u), epsilon(v))*dx

L = dot(f, v)*dx

This should be compared to the corresponding mathematical notation:

a(u, v) =
∫

Ω
σ(u) : ε(v)dx, (3.3)

L(v) =
∫

Ω
f · v dx. (3.4)

Here, ε(v) = (grad v + (grad v)T)/2 denotes the symmetric gradient and σ(v) = 2µ ε(v) + λtr ε(v)I
is the stress tensor. For a detailed presentation of the UFL form language, we refer to Chapter 4.
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The code generation process must be handled explicitly by users of the C++ interface by calling a
form compiler on the command-line. To solve the linear elastic problem above for a specific choice of
parameter values (the Lamé constants µ and λ), a user may enter the following code in a file named
Elasticity.ufl2:

UFL code
V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Coefficient(V)

E = 10.0

nu = 0.3

mu = E / (2.0*(1.0 + nu))

lmbda = E*nu / ((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This code may be compiled using a UFL/UFC compliant form compiler to generate UFC C++ code.
For example, using FFC:

Bash code
ffc -l dolfin Elasticity.ufl

This generates a C++ header file (including implementation) named Elasticity.h which may be
included in a C++ program and used to instantiate the two forms a and L:

C++ code
#include <dolfin.h>

#include "Elasticity.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Elasticity::FunctionSpace V(mesh);

Elasticity::BilinearForm a(V, V);

Elasticity::LinearForm L(V);

MyExpression f; // code for the definition of MyExpression omitted

L.f = f;

return 0;

}

The instantiation of the forms involves the instantiation of the FunctionSpace on which the forms are
defined. Any coefficients appearing in the definition of the forms (here the right-hand side f) must be
attached after the creation of the forms.

Python users may rely on automated code generation, and define variational forms directly as part
of a Python script:

2Note that ‘lambda’ has been deliberately misspelled since it is a reserved keyword in Python.
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Python code
from dolfin import *

mesh = UnitSquare(8, 8)

V = VectorElement(mesh, "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

f = MyExpression() # code emitted for the definition of f

E = 10.0

nu = 0.3

mu = E / (2.0*(1.0 + nu))

lmbda = E*nu / ((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This script will trigger automatic code generation for the definition of the FunctionSpace V. Code
generation of the two forms a and L is postponed until the point when the corresponding discrete
operators (the matrix and vector) are assembled.

3.3.8 Finite element assembly

A core functionality of DOLFIN is the assembly of finite element variational forms. Given a variational
form (a), DOLFIN assembles the corresponding discrete operator (A). The assembly of the discrete
operator follows the general algorithm described in Chapter 5. The following code illustrates how
to assemble a scalar (m), a vector (b) and a matrix (A) from a functional (M), a linear form (L) and a
bilinear form (a), respectively:

C++ code
Vector b;

Matrix A;

double m = assemble(M);

assemble(b, L);

assemble(A, a);

Python code
m = assemble(M)

b = assemble(L)

A = assemble(a)

The assembly of variational forms from the Python interface automatically triggers code generation,
compilation and linking at run-time. The generated code is automatically instantiated and sent to
the DOLFIN C++ compiler. As a result, finite element assembly from the Python interface is equally
efficient as assembly from the C++ interface, with only a small overhead for handling the automatic
code generation. The generated code is cached for later reuse, hence repeated assembly of the same
form or running the same program twice does not re-trigger code generation. Instead, the previously
generated code is automatically loaded from cache.
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DOLFIN provides a common assembly algorithm for the assembly of tensors of any rank (scalars,
vectors, matrices, . . . ) for any form. This is possible since the assembly algorithm relies on the
GenericTensor interface, portions of the assembly algorithm that depend on the variational form and
its particular discretization are generated prior to assembly, and the mesh interface is dimension-
independent. The assembly algorithm accepts a number of optional arguments that control whether
the sparsity of the assembled tensor should be reset before assembly and whether the tensor should
be zeroed before assembly. Arguments may also be supplied to specify subdomains of the Mesh if the
form is defined over particular subdomains (using dx(0), dx(1) etc.).

In addition to the assemble function, DOLFIN provides the assemble_system function which
assembles a pair of forms consisting of a bilinear and a linear form and applies essential boundary
conditions during the assembly process. The application of boundary conditions as part of the call to
assemble_system preserves symmetry of the matrix being assembled (see Chapter 5).

The assembly algorithms have been parallelized for both distributed memory architectures (clusters)
using MPI and shared memory architectures (multi-core) using OpenMP. This is discussed in more
detail in Section 3.4.

3.3.9 Boundary conditions

DOLFIN handles the application of both Neumann (natural) and Dirichlet (essential) boundary
conditions.3 Natural boundary conditions are usually applied via the variational statement of
a problem, whereas essential boundary conditions are usually applied to the discrete system of
equations.

Natural boundary conditions. Natural boundary conditions typically appear as boundary terms as
the result of integrating by parts a partial differential equation multiplied by a test function. As a
simple example, we consider the linear elastic variational problem. The partial differential equation
governing the displacement of an elastic body may be expressed as

−div σ(u) = f in Ω,
σ · n = g on ΓN ⊂ ∂Ω,

u = u0 on ΓD ⊂ ∂Ω,
(3.5)

where u is the unknown displacement field to be computed, σ(u) is the stress tensor, f is a given
body force, g is a given traction on a portion ΓN of the boundary, and u0 is a given displacement on a
portion ΓD of the boundary. Multiplying by a test function v and integrating by parts, we obtain∫

Ω
σ(u) : ε(v)dx−

∫
∂Ω

(σ · n) · v ds =
∫

Ω
f · v dx, (3.6)

where we have used the symmetry of σ(u) to replace grad v by the symmetric gradient ε(v). Since the
displacement u is known on the Dirichlet boundary ΓD, we let v = 0 on ΓD. Furthermore, we replace
σ · n by the given traction g on the remaining (Neumann) portion of the boundary ΓN to obtain∫

Ω
σ(u) : ε(v)dx =

∫
Ω

f · v dx +
∫

ΓN

g · v ds. (3.7)

The following code demonstrates how to implement this variational problem in the UFL form language,
either as part of a .ufl file or as part of a Python script:

3As noted in Chapter 2, Dirichlet boundary conditions may sometimes be natural and Neumann boundary conditions may
sometimes be essential.
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UFL code
a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx + dot(g, v)*ds

To specify that the boundary integral dot(g, v)*ds should only be evaluated along the Neumann
boundary ΓN, one must specify which part of the boundary is included in the ds integral. If there
is only one Neumann boundary, then one may simply write the ds integral as an integral over the
entire boundary, including the Dirichlet boundary as the test function v will be set to zero along the
Dirichlet boundary.

In cases where there is more than one Neumann boundary condition, one must instead specify the
Neumann boundary in terms of a FacetFunction. This FacetFunction must specify for each facet of
the Mesh to which part of the boundary it belongs. For the current example, an appropriate strategy is
to mark each facet on the Neumann boundary by 0 and all other facets (including facets internal to
the domain) by 1. This can be accomplished in a number of different ways. One simple way to do
this is to use the program MeshBuilder and graphically mark the facets of the Mesh. Another option
is through the DOLFIN class SubDomain. The following code illustrates how to mark all boundary
facets to the left of x = 0.5 as the first Neumann boundary and all other boundary facets as the second
Neumann boundary. Note the use of the on_boundary argument supplied by DOLFIN to the inside

function. This argument informs whether a point is located on the boundary ∂Ω of Ω, and this allows
us to mark only facets that are on the boundary and to the left of x = 0.5. Also note the use of
DOLFIN_EPS which makes sure that we include points that, as a result of finite precision arithmetic,
may be located just to the right of x = 0.5.

C++ code
class NeumannBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] < 0.5 + DOLFIN_EPS && on_boundary;

}

};

NeumannBoundary neumann_boundary;

FacetFunction<uint> exterior_facet_domains(mesh);

exterior_facet_domains.set_all(1);

neumann_boundary.mark(exterior_facet_domains, 0);

Python code
class NeumannBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] < 0.5 + DOLFIN_EPS and on_boundary

neumann_boundary = NeumannBoundary()

exterior_facet_domains = FacetFunction("uint", mesh)

exterior_facet_domains.set_all(1)

neumann_boundary.mark(exterior_facet_domains, 0)

When combined with integrals defined using ds(0) and ds(1), those integrals will correspond to
integration over the domain boundary to the left of x = 0.5 and all facets to the right of x = 0.5,
respectively.

Once the boundaries have been specified as a FacetFunction, that object can be used to define the
corresponding domains of integration. This is done differently in C++ and Python. From C++, one
must assign to the ds member variable of the corresponding forms:
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C++ code
a.ds = exterior_facet_domains;

L.ds = exterior_facet_domains;

In addition to exterior_facet_domains specified in terms of the ds member variable, one may
similarly specify cell_domains using the dx member variable and interior_facet_domains using the
dS variable. Note that different forms may potentially use different definitions of their boundaries.
From Python, one may simply connect the boundary definition to the corresponding measure by
subscripting:

Python code
dss = ds[neumann_boundary]

a = ... + g*v*dss(0) + h*v*dss(1) + ...

The correct specification of boundaries is a common error source. For debugging the specification
of boundary conditions, it can be helpful to plot the FacetFunction that specifies the boundary
markers by writing the FacetFunction to a VTK file (see the file I/O section) or using the plot

command. When using the plot command, the plot shows the facet values interpolated to the vertices
of the Mesh. As a result, care must be taken to interpret the plot close to domain boundaries (corners)
in this case. The issue is not present in the VTK output.

Essential boundary conditions. The application of essential boundary conditions is handled by the
class DirichletBC. Using this class, one may specify a Dirichlet boundary condition in terms of a
FunctionSpace, a Function or an Expression, and a subdomain. The subdomain may be specified
either in terms of a SubDomain object or in terms of a FacetFunction. A DirichletBC specifies that
the solution should be equal to the given value on the given subdomain.

The following code examples illustrate how to define the Dirichlet condition u(x) = u0(x) = sin x
on the Dirichlet boundary ΓD (assumed here to be the part of the boundary to the right of x = 0.5) for
the elasticity problem (3.5) using the SubDomain class. Alternatively, the subdomain may be specified
using a FacetFunction.

C++ code
class DirichletValue : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0]);

}

};

class DirichletBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] > 0.5 - DOLFIN_EPS && on_boundary;

}

};

DirichletValue u_0;

DirichletBoundary Gamma_D;

DirichletBC bc(V, u_0, Gamma_D);

Python code
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class DirichletValue(Expression):

def eval(self, value, x):

values[0] = sin(x[0])

class DirichletBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] > 0.5 - DOLFIN_EPS and on_boundary

u_0 = DirichletValue()

Gamma_D = DirichletBoundary()

bc = DirichletBC(V, u_0, Gamma_D)

Python users may also use the following compact syntax:

Python code
u_0 = Expression("sin(x[0])")

bc = DirichletBC(V, u_0, "x[0] > 0.5 && on_boundary")

To speed up the application of Dirichlet boundary conditions, users of the Python interface may also
use the function compile_subdomains. For details of this, we refer to the DOLFIN Programmer’s
Reference.

A Dirichlet boundary condition can be applied to a linear system or to a vector of degrees of
freedom associated with a Function, as illustrated by the following code examples:

C++ code
bc.apply(A, b);

bc.apply(u.vector());

Python code
bc.apply(A, b)

bc.apply(u.vector())

The application of a Dirichlet boundary condition to a linear system will identify all degrees of
freedom that should be set to the given value and modify the linear system such that its solution
respects the boundary condition. This is accomplished by zeroing and inserting 1 on the diagonal
of the rows of the matrix corresponding to Dirichlet values, and inserting the Dirichlet value in
the corresponding entry of the right-hand side vector. This application of boundary conditions
does not preserve symmetry. If symmetry is required, one may alternatively consider using the
assemble_system function which applies Dirichlet boundary conditions symmetrically as part of the
assembly process.

Multiple boundary conditions may be applied to a single system or vector. If two different
boundary conditions are applied to the same degree of freedom, the last applied value will overwrite
any previously set values.

3.3.10 Variational problems

Variational problems (finite element discretizations of partial differential equations) can be easily
solved in DOLFIN using the solve function. Both linear and nonlinear problems can be solved. A
linear problem must be expressed in the following canonical form: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂. (3.8)
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A nonlinear problem must be expressed in the following canonical form: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂. (3.9)

In the case of a linear variational problem specified in terms of a bilinear form a and a linear form L,
the solution is computed by assembling the matrix A and vector b of the corresponding linear system,
then applying boundary conditions to the system, and finally solving the linear system. In the case
of a nonlinear variational problem specified in terms of a linear form F and a bilinear form J (the
derivative or Jacobian of F), the solution is computed by Newton’s method.

The code examples below demonstrate how to solve a linear variational problem specified in terms
of a bilinear form a, a linear form L and a list of Dirichlet boundary conditions given as DirichletBC

objects:

C++ code
std::vector<const BoundaryCondition*> bcs;

bcs.push_back(&bc0);

bcs.push_back(&bc1);

bcs.push_back(&bc2);

Function u(V);

solve(a == L, u, bcs);

Python code
bcs = [bc0, bc1, bc2]

u = Function(V)

solve(a == L, u, bcs=bcs)

To solve a nonlinear variational problem, one must supply a linear form F and, in the case of
C++, its derivative J, which is a bilinear form. In Python, the derivative is computed automatically
but may also be specified manually. In many cases, the derivative can be easily computed using the
function derivative, either in a .ufl form file or as part of a Python script. We here demonstrate
how a nonlinear problem may be solved using the Python interface. Nonlinear variational problems
may be solved similarly in C++.

Python code
u = Function(V)

v = TestFunction(V)

F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

# Let DOLFIN compute Jacobian

solve(F == 0, u, bcs=bcs)

# Differentiate to get Jacobian

J = derivative(F, u)

# Supply Jacobian manually

solve(F == 0, u, bcs=bcs, J=J)

More advanced control over the solution process may be gained by using the classes Linear-

Variational{Problem,Solver} and NonlinearVariational{Problem,Solver}. Use of these classes is
illustrated by the following code examples:
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Python code
u = Function(V)

problem = LinearVariationalProblem(a, L, u, bcs=bcs)

solver = LinearVariationalSolver(problem)

solver.parameters["linear_solver"] = "gmres"

solver.parameters["preconditioner"] = "ilu"

solver.solve()

Python code
u = Function(V)

problem = NonlinearVariationalProblem(F, u, bcs=bcs, J=J)

solver = NonlinearVariationalSolver(problem)

solver.parameters["linear_solver"] = "gmres"

solver.parameters["preconditioner"] = "ilu"

solver.solve()

These classes may be used similarly from C++.
The solver classes provide a range of parameters that can be adjusted to control the solution

process. For example, to view the list of available parameters for a LinearVariationalSolver or
NonlinearVariationalSolver, issue the following commands:

C++ code
info(solver.parameters, true)

Python code
info(solver.parameters, True)

3.3.11 File I/O and visualization

Preprocessing. DOLFIN has capabilities for mesh generation only in the form of the built-in meshes
UnitSquare, UnitCube, etc. External software must be used to generate more complicated meshes. To
simplify this process, DOLFIN provides a simple script dolfin-convert to convert meshes from other
formats to the DOLFIN XML format. Currently supported file formats are listed in Table 3.4. The
following code illustrates how to convert a mesh from the Gmsh format (suffix .msh or .gmsh) to the
DOLFIN XML format:

Bash code
dolfin-convert mesh.msh mesh.xml

Once a mesh has been converted to the DOLFIN XML file format, it can be read into a program, as
illustrated by the following code examples:

C++ code
Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")
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Suffix File format

.xml DOLFIN XML format

.ele / .node Triangle file format

.mesh Medit format, generated by TetGen with option -g

.msh / .gmsh Gmsh version 2.0 format

.grid Diffpack tetrahedral grid format

.inp Abaqus tetrahedral grid format

.e / .exo Sandia Exodus II file format

.ncdf ncdump’ed Exodus II file format

.vrt/.cell Star-CD tetrahedral grid format

Table 3.4: List of file formats supported by the dolfin-convert script.

Postprocessing. To visualize a solution (Function), a Mesh or a MeshFunction, the plot command4

can be issued, from either C++ or Python:

C++ code
plot(u);

plot(mesh);

plot(mesh_function);

Python code
plot(u)

plot(mesh)

plot(mesh_function)

Example plots generated using the plot command are presented in Figures 3.6 and 3.7. From Python,
one can also plot expressions and finite elements:

Python code
plot(grad(u))

plot(u*u)

element = FiniteElement("BDM", tetrahedron, 3)

plot(element)

To enable interaction with a plot window (rotate, zoom) from Python, call the function interactive,
or add an optional argument interactive=True to the plot command.

The plot command provides rudimentary plotting, and advanced postprocessing is better handled
by external software such as ParaView and MayaVi2. This is easily accomplished by storing the
solution (a Function object) to file in PVD format (ParaView Data, an XML-based format). This can
be done in both C++ and Python by writing to a file with the .pvd extension, as illustrated in the
following code examples:

C++ code
File file("solution.pvd");

file << u;

4The plot command requires a working installation of the viper Python module. Plotting finite elements requires access to
FFC and the soya Python plotting module.
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Figure 3.6: Plotting a mesh using the
DOLFIN plot command, here the
mesh dolfin-1.xml.gz distributed
with DOLFIN.

Figure 3.7: Plotting a scalar and
a vector-valued function using the
DOLFIN plot command, here the
pressure (left) and velocity (right)
from a solution of the Stokes equa-
tions on the mesh from Figure 3.6.
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Python code
file = File("solution.pvd")

file << u

The standard PVD format is ASCII based, hence the file size can become very large for large data sets.
To use a compressed binary format, a string "compressed" can be used when creating a PVD-based
File object:

C++ code
File file("solution.pvd", "compressed");

If multiple Functions are written to the same file (by repeated use of <<), then the data is interpreted
as a time series, which may then be animated in ParaView or MayaVi2. Each frame of the time series
is stored as a .vtu (VTK unstructured data) file, with references to these files stored in the .pvd file.
When writing time-dependent data, it can be useful to store the time t of each snapshot. This is done
as illustrated below:

C++ code
File file("solution.pvd", "compressed");

file << std::make_pair<const Function*, double>(&u, t);

Python code
file = File("solution.pvd", "compressed");

file << (u, t)

Storing the time is particularly useful when animating simulations that use a varying time step.
The PVD format supports parallel post-processing. When running in parallel, a single .pvd file is

created and a .vtu file is created for the data on each partition. Results computed in parallel can be
viewed seamlessly using ParaView.

DOLFIN XML format. DOLFIN XML is the native format of DOLFIN. An advantage of XML is that
it is a robust and human-readable format. If the files are compressed, there is also little overhead in
terms of file size compared to a binary format.

Many of the classes in DOLFIN can be written to and from DOLFIN XML files using the standard
stream operators << and >>, as illustrated in the following code examples:

C++ code
File vector_file("vector.xml");

vector_file << vector;

vector_file >> vector;

File mesh_file("mesh.xml");

mesh_file << mesh;

mesh_file >> mesh;

File parameters_file("parameters.xml");

parameters_file << parameters;

parameters_file >> parameters;

Python code
vector_file = File("vector.xml")

vector_file << vector

vector_file >> vector
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mesh_file = File("mesh.xml")

mesh_file << mesh

mesh_file >> mesh

parameters_file = File("parameters.xml")

parameters_file << parameters

parameters_file >> parameters

One cannot read/write Function and FunctionSpace objects since the representation of a
FunctionSpace (and thereby the representation of a Function) relies on generated code.

DOLFIN automatically handles reading and writing of gzipped XML files. Thus, one may save
space by storing meshes and other data in gzipped XML files (with suffix .xml.gz).

Time series. For time-dependent problems, it may be useful to store a sequence of solutions or
meshes in a format that enables fast reading/writing of data. For this purpose, DOLFIN provides
the TimeSeries class. This enables the storage of a series of Vectors (of degrees of freedom) and/or
Meshes. The following code illustrates how to store a series of Vectors and Meshes to a TimeSeries:

C++ code
TimeSeries time_series("simulation_data");

while (t < T)

{

...

time_series.store(u.vector(), t);

time_series.store(mesh, t);

t += dt;

}

Python code
time_series = TimeSeries("simulation_data")

while t < T:

...

time_series.store(u.vector(), t)

time_series.store(mesh, t)

t += dt

Data in a TimeSeries are stored in a binary format with one file for each stored dataset (Vector or
Mesh) and a common index. Data may be retrieved from a TimeSeries by calling the retrieve member
function as illustrated in the code examples below. If a dataset is not stored at the requested time,
then the values are interpolated linearly for Vectors. For Meshes, the closest data point will be used.

C++ code
time_series.retrieve(u.vector(), t);

time_series.retrieve(mesh, t);

Python code
time_series.retrieve(u.vector(), t)

time_series.retrieve(mesh, t)



126 Chapter 3. DOLFIN: a C++/Python finite element library

Log level value

ERROR 40
WARNING 30
INFO 20

PROGRESS 16
DBG / DEBUG 10

Table 3.5: Log levels in DOLFIN.

3.3.12 Logging / diagnostics

DOLFIN provides a simple interface for the uniform handling of log messages, including warnings
and errors. All messages are collected to a single stream, which allows the destination and formatting
of the output from an entire program, including the DOLFIN library, to be controlled by the user.

Printing messages. Informational messages from DOLFIN are normally printed using the info com-
mand. This command takes a string argument and an optional list of variables to be formatted, much
like the standard C printf command. Note that the info command automatically appends a newline
to the given string. Alternatively, C++ users may use the dolfin::cout and dolfin::endl objects for
C++ style formatting of messages as illustrated below.

C++ code
info("Assembling system of size %d x %d.", M, N);

cout << "Assembling system of size " << M << " x " << N << "." << endl;

Python code
info("Assembling system of size %d x %d." % (M, N))

The info command and the dolfin::cout/endl objects differ from the standard C printf command
and the C++ std::cout/endl objects in that the output is directed into a special stream, the output of
which may be redirected to destinations other than standard output. In particular, one may completely
disable output from DOLFIN, or select the verbosity of printed messages, as explained below.

Warnings and errors. In addition to the info command, DOLFIN provides the commands warning

and error that can be used to issue warnings and errors, respectively. These two commands work in
much the same way as the info command. However, the warning command will prepend the given
message with "*** Warning: " and the error command will raise an exception that can be caught,
from both C++ and Python. Both commands will also print the message at a log level higher than
messages printed using info.

Setting the log level. The DOLFIN log level determines which messages routed through the logging
system will be printed. Only messages on a level higher than or equal to the current log level are
printed. The log level of DOLFIN may be set using the function set_log_level. This function expects
an integer value that specifies the log level. To simplify the specification of the log level, one may
use one of a number of predefined log levels as listed in Table 3.5. The default log level is INFO.
Log messages may be switched off entirely by calling the command set_log_active(false) from
C++ and set_log_active(False) from Python. For technical reasons, the log level for debugging
messages is named DBG in C++ and DEBUG in Python. This is summarized in Table 3.5.
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To print messages at an arbitrary log level, one may specify the log level to the log command, as
illustrated in the code examples below.

C++ code
info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

log(DBG, "Test message"); // will not be printed

log(15, "Test message"); // will not be printed

set_log_level(DBG);

info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

log(DBG, "Test message"); // will be printed

log(15, "Test message"); // will be printed

set_log_level(WARNING);

info("Test message"); // will not be printed

cout << "Test message" << endl; // will not be printed

warning("Test message"); // will be printed

std::cout << "Test message" << std::endl; // will be printed!

Python code
info("Test message") # will be printed

log(DEBUG, "Test message") # will not be printed

log(15, "Test message") # will not be printed

set_log_level(DEBUG)

info("Test message") # will be printed

log(DEBUG, "Test message") # will be printed

log(15, "Test message") # will be printed

set_log_level(WARNING)

info("Test message") # will not be printed

warning("Test message") # will be printed

print "Test message" # will be printed!

Printing objects. Many of the standard DOLFIN objects can be printed using the info command, as
illustrated in the code examples below.

C++ code
info(vector);

info(matrix);

info(solver);

info(mesh);

info(mesh_function);

info(function);

info(function_space);

info(parameters);

Python code
info(vector)

info(matrix)

info(solver)

info(mesh)

info(mesh_function)

info(function)
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info(function_space)

info(parameters)

The above commands will print short informal messages. For example, the command info(mesh)

may result in the following output:

Generated code
<Mesh of topological dimension 2 (triangles) with 25 vertices and 32 cells, ordered>

In the Python interface, the same short informal message can be printed by calling print mesh. To
print more detailed data, one may set the verbosity argument of the info function to true (defaults to
false), which will print a detailed summary of the object.

C++ code
info(mesh, true);

Python code
info(mesh, True)

The detailed output for some objects may be very lengthy.

Tasks and progress bars. In addition to basic commands for printing messages, DOLFIN provides a
number of commands for organizing the diagnostic output from a simulation program. Two such
commands are begin and end. These commands can be used to nest the output from a program; each
call to begin increases the indentation level by one unit (two spaces), while each call to end decreases
the indentation level by one unit.

Another way to provide feedback is via progress bars. DOLFIN provides the Progress class for
this purpose. Although an effort has been made to minimize the overhead of updating the progress
bar, it should be used with care. If only a small amount of work is performed in each iteration of
a loop, the relative overhead of using a progress bar may be substantial. The code examples below
illustrate the use of the begin/end commands and the progress bar.

C++ code
begin("Starting nonlinear iteration.");

info("Updating velocity.");

info("Updating pressure.");

info("Computing residual.");

end();

Progress p("Iterating over all cells.", mesh.num_cells());

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

...

p++;

}

Progress q("Time-stepping");

while (t < T)

{

...

t += dt;

q = t / T;

}
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Python code
begin("Starting nonlinear iteration.")

info("Updating velocity.")

info("Updating pressure.")

info("Computing residual.")

end()

p = Progress("Iterating over all cells.", mesh.num_cells())

for cell in cells(mesh):

...

p += 1

q = Progress("Time-stepping")

while t < T:

...

t += dt

q.update(t / T)

Setting timers. Timing can be accomplished using the Timer class. A Timer is automatically started
when it is created, and automatically stopped when it goes out of scope. Creating a Timer at the start
of a function is therefore a convenient way to time that function, as illustrated in the code examples
below.

C++ code
void solve(const Matrix& A, Vector& x, const Vector& b)

{

Timer timer("Linear solve");

...

}

Python code
def solve(A, b):

timer = Timer("Linear solve")

...

return x

One may explicitly call the start and stop member functions of a Timer. To directly access the value
of a timer, the value member function can be called. A summary of the values of all timers created
during the execution of a program can be printed by calling the list_timings function.

3.3.13 Parameters

DOLFIN keeps a global database of parameters that control the behavior of its various components.
Parameters are controlled via a uniform type-independent interface that allows the retrieval of
parameter values, modification of parameter values, and the addition of new parameters to the
database. Different components (classes) of DOLFIN also rely on parameters that are local to each
instance of the class. This permits different parameter values to be set for different objects of a class.

Parameter values can be either integer-valued, real-valued (standard double), string-valued or
boolean-valued. Parameter names must not contain spaces.

Accessing parameters. Global parameters can be accessed through the global variable parameters.
The below code illustrates how to print the values of all parameters in the global parameter database,
and how to access and change parameter values.
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C++ code
info(parameters, True);

uint num_threads = parameters["num_threads"];

bool allow_extrapolation = parameters["allow_extrapolation"];

parameters["num_threads"] = 8;

parameters["allow_extrapolation"] = true;

Python code
info(parameters, True)

num_threads = parameters["num_threads"]

allow_extrapolation = parameters["allow_extrapolation"]

parameters["num_threads"] = 8

parameters["allow_extrapolation"] = True

Parameters that are local to specific components of DOLFIN can be controlled by accessing the member
variable named parameters. The following code illustrates how to set some parameters for a Krylov
solver:

C++ code
KrylovSolver solver;

solver.parameters["absolute_tolerance"] = 1e-6;

solver.parameters["report"] = true;

solver.parameters("gmres")["restart"] = 50;

solver.parameters("preconditioner")["reuse"] = true;

Python code
solver = KrylovSolver()

solver.parameters["absolute_tolerance"] = 1e-6

solver.parameters["report"] = True

solver.parameters["gmres"]["restart"] = 50

solver.parameters["preconditioner"]["reuse"] = True

The above example accesses the nested parameter databases "gmres" and "preconditioner". DOLFIN
parameters may be nested to arbitrary depths, which helps with organizing parameters into different
categories. Note the subtle difference in accessing nested parameters in the two interfaces. In the C++
interface, nested parameters are accessed by brackets ("..."), and in the Python interface are they
accessed by square brackets ["..."]. The parameters that are available for a certain component can
be viewed by using the info function.

Adding parameters. Parameters can be added to an existing parameter database using the add member
function which takes the name of the new parameter and its default value. It is also simple to create
new parameter databases by creating a new instance of the Parameters class. The following code
demonstrates how to create a new parameter database and adding to it a pair of integer-valued and
floating-point valued parameters:

C++ code
Parameters parameters("my_parameters");

my_parameters.add("foo", 3);

my_parameters.add("bar", 0.1);

Python code
my_parameters = Parameters("my_parameters")

my_parameters.add("foo", 3)

my_parameters.add("bar", 0.1)
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A parameter database resembles the dict class in the Python interface. A user can iterate over the
keys, values and items:

Python code
for key, value in parameters.items():

print key, value

A Python dict can also be used to update a Parameter database:

Python code
d = dict(num_threads=4, krylov_solver=dict(absolute_tolerance=1e-6))

parameters.update(d)

A parameter database can also be created in more compact way in the Python interface:

Python code
my_parameters = Parameters("my_parameters", foo=3, bar=0.1,

nested=Parameters("nested", baz=True))

Parsing command-line parameters. Command-line parameters may be parsed into the global parameter
database or into any other parameter database. The following code illustrates how to parse command-
line parameters in C++ and Python, and how to pass command-line parameters to the program:

C++ code
int main(int argc, char* argv[])

{

...

parameters.parse(argc, argv);

...

}

Python code
parameters.parse()

Bash code
python myprogram.py --num_threads 8 --allow_extrapolation true

Storing parameters to file. It can be useful to store parameter values to file, for example to document
which parameter values were used to run a simulation or to reuse a set of parameter values from
a previous run. The following code illustrates how to write and then read back parameter values
to/from a DOLFIN XML file:

C++ code
File file("parameters.xml");

file << parameters;

file >> parameters;

Python code
file = File("parameters.xml")

file << parameters

file >> parameters
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(a) (b)

Figure 3.8: A mesh that is (a) colored
based on facet connectivity such that
cells that share a common facet have
different colors and (b) partitioned
into 12 parts, with each partition in-
dicated by a color.

At startup, DOLFIN automatically scans the current directory and the directory .config/fenics in
the user’s home directory (in that order) for a file named dolfin_parameters.xml. If found, these
parameters are read into DOLFIN’s global parameter database.

3.4 Implementation notes

In this section, we comment on specific aspects of the implementation of DOLFIN, including parallel
computing, the generation of the Python interface, and just-in-time compilation.

3.4.1 Parallel computing

DOLFIN supports parallel computing on multi-core workstations through to massively parallel
supercomputers. It is designed such that users can perform parallel simulations using the same code
that is used for serial computations.

Two paradigms for parallel simulation are supported. The first paradigm is multithreading for
shared memory machines. The second paradigm is fully distributed parallelization for distributed
memory machines. For both paradigms, special preprocessing of a mesh is required. For multi-
threaded parallelization, a so-called coloring approach is used (see Figure 3.8a), and for distributed
parallelization a mesh partitioning approach is used (see Figure 3.8b). Aspects of these two approaches
are discussed below. It is also possible to combine the approaches, thereby yielding hybrid approaches
to leverage the power of modern clusters of multi-core processors.

Shared memory parallel computing. Multithreaded assembly for finite element matrices and vectors on
shared memory machines is supported using OpenMP. It is activated by setting the number of threads
to use via the parameter system. For example, the code

C++ code
parameters["num_threads"] = 6;

instructs DOLFIN to use six threads in the assembly process. During assembly, DOLFIN loops over
the cells or cell facets in a mesh, and computes local contributions to the global matrix or vector,
which are then added to the global matrix or vector. When using multithreaded assembly, each thread
is assigned a collection of cells or facets for which it is responsible. This is transparent to the user.

The use of multithreading requires design care to avoid race conditions, which occur if multiple
threads attempt to write to the same memory location at the same time. Race conditions will typically
result in unpredictable behavior of a program. To avoid race conditions during assembly, which would
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occur if two threads were to add values to a global matrix or vector at almost the same time, DOLFIN
uses a graph coloring approach. Before assembly, the mesh on a given process is ‘colored’ such that
each cell is assigned a color (which in practice is an integer) and such that no two neighboring cells
have the same color. The sense in which cells are neighbors for a given problem depends on the type
of finite element being used. In most cases, cells that share a vertex are considered neighbors, but
in other cases cells that share edges or facets may be considered neighbors. During assembly, cells
are assembled by color. All cells of the first color are shared among the threads and assembled, and
this is followed by the next color. Since cells of the same color are not neighbors, and therefore do
not share entries in the global matrix or vector, race conditions will not occur during assembly. The
coloring of a mesh is performed in DOLFIN using either the interface to the Boost Graph Library or
the interface to Zoltan (which is part of the Trilinos project). Figure 3.8a shows a mesh that has been
colored such that no two neighboring cells (in the sense of a shared facet) are of the same color.

Multithreaded support in third-party linear algebra libraries is limited at the present time, but
is an area of active development. The LU solver PaStiX, which can be accessed via the PETSc linear
algebra backend, supports multithreaded parallelism.

Distributed memory parallel computing. Fully distributed parallel computing is supported using the
Message Passing Interface (MPI). To perform parallel simulations, DOLFIN should be compiled with
MPI and a parallel linear algebra backend (such as PETSc or Trilinos) enabled. To execute a parallel
simulation, a DOLFIN program should be launched using mpirun (the name of the program to launch
MPI programs may differ on some computers). A C++ program using 16 processes can be executed
using:

Bash code
mpirun -n 16 ./myprogram

and for Python:

Bash code
mpirun -n 16 python myprogram.py

DOLFIN supports fully distributed parallel meshes, which means that each processor has a copy of
only the portion of the mesh for which it is responsible. This approach is scalable since no processor is
required to hold a copy of the full mesh. An important step in a parallel simulation is the partitioning
of the mesh. DOLFIN can perform mesh partitioning in parallel using the libraries ParMETIS and
SCOTCH [Pellegrini]. The library to be used for mesh partitioning can be specified via the parameter
system, e.g., to use SCOTCH:

C++ code
parameters["mesh_partitioner"] = "SCOTCH";

or to use ParMETIS:

Python code
parameters["mesh_partitioner"] = "ParMETIS"

Figure 3.8b shows a mesh that has been partitioned in parallel into 12 domains. One process would
take responsibility for each domain.

If a parallel program is launched using MPI and a parallel linear algebra backend is enabled, then
linear algebra operations will be performed in parallel. In most applications, this will be transparent
to the user. Parallel output for postprocessing is supported through the PVD output format, and is
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used in the same way as for serial output. Each process writes an output file, and the single main
output file points to the files produced by the different processes.

3.4.2 Implementation and generation of the Python interface

The DOLFIN C++ library is wrapped to Python using the Simplified Wrapper and Interface Generator
SWIG [Beazley, 1996, SWIG]; see Chapter 5 for more details. The wrapped C++ library is accessible in
a Python module named cpp residing inside the main dolfin module of DOLFIN. This means that
the compiled module, with all its functions and classes, can be accessed directly by:

Python code
from dolfin import cpp

Function = cpp.Function

assemble = cpp.assemble

The classes and functions in the cpp module have the same functionality as the corresponding classes
and functions in the C++ interface. In addition to the wrapper layer automatically generated by
SWIG, the DOLFIN Python interface relies on a number of components implemented directly in
Python. Both are imported into the Python module named dolfin. In the following sections, the
key customizations to the DOLFIN interface that facilitate this integration are presented. The Python
interface also integrates well with the NumPy and SciPy toolkits, which is also discussed below.

3.4.3 UFL integration and just-in-time compilation

In the Python interface, the UFL form language has been integrated with the Python wrapped DOLFIN
C++ module. When explaining the integration, we use in this section the notation dolfin::Foo or
dolfin::bar to denote a C++ class or function in DOLFIN. The corresponding SWIG-wrapped classes
or functions will be referred to as cpp.Foo and cpp.bar. A class in UFL will be referred to as ufl.Foo

and a class in UFC as ufc::foo (note lower case). The Python classes and functions in the added
Python layer on top of the wrapped C++ library, will be referred to as dolfin.Foo or dolfin.bar. The
prefixes of the classes and functions are sometimes skipped for convenience. Most of the code snippets
presented in this section are pseudo code. Their purpose is to illustrate the logic of a particular
method or function. Parts of the actual code may be intentionally excluded. An interested reader can
examine particular classes or functions in the code for a full understanding of the implementation.

Construction of function spaces. In the Python interface, ufl.FiniteElement and dolfin::Function-

Space are integrated. The declaration of a FunctionSpace is similar to that of a ufl.FiniteElement,
but instead of a cell type (for example, triangle) the FunctionSpace constructor takes a cpp.Mesh

(dolfin.Mesh):

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

In the Python constructor of FunctionSpace, a ufl.FiniteElement is instantiated. The FiniteElement

is passed to a just-in-time (JIT) compiler, which returns compiled and Python-wrapped ufc objects:
a ufc::finite_element and a ufc::dofmap. These two objects, together with the mesh, are used
to instantiate a cpp.FunctionSpace. The following pseudo code illustrates the instantiation of a
FunctionSpace from the Python interface:
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Python code
class FunctionSpace(cpp.FunctionSpace):

def __init__(self, mesh, family, degree):

# Figure out the domain from the mesh topology

if mesh.topology().dim() == 2:

domain = ufl.triangle

else:

domain = ufl.tetrahedron

# Create the UFL FiniteElement

self.ufl_element = ufl.FiniteElement(family, domain, degree)

# JIT compile and instantiate the UFC classes

ufc_element, ufc_dofmap = jit(self.ufl_element)

# Instantiate DOLFIN classes and finally the FunctionSpace

dolfin_element = cpp.FiniteElement(ufc_element)

dolfin_dofmap = cpp.DofMap(ufc_dofmap, mesh)

cpp.FunctionSpace.__init__(self, mesh, dolfin_element, dolfin_dofmap)

Constructing arguments (trial and test functions). The ufl.Argument class (the base class of
ufl.TrialFunction and ufl.TestFunction) is subclassed in the Python interface. Instead of using a
ufl.FiniteElement to instantiate the classes, a DOLFIN FunctionSpace is used:

Python code
u = TrialFunction(V)

v = TestFunction(V)

The ufl.Argument base class is instantiated in the subclassed constructor by extracting the
ufl.FiniteElement from the passed FunctionSpace, which is illustrated by the following pseudo
code:

Python code
class Argument(ufl.Argument):

def __init__(self, V, index=None):

ufl.Argument.__init__(self, V.ufl_element, index)

self.V = V

The TrialFunction and TestFunction are then defined using the subclassed Argument class:

Python code
def TrialFunction(V):

return Argument(V, -1)

def TestFunction(V):

return Argument(V, -2)

Coefficients, functions and expressions. When a UFL form is defined using a Coefficient, a user must
associate with the form either a discrete finite element Function or a user-defined Expression before
the form is assembled. In the C++ interface of DOLFIN, a user needs to explicitly carry out this
association (L.f = f). In the Python interface of DOLFIN, the ufl.Coefficient class is combined
with the DOLFIN Function and Expression classes, and the association between the coefficient as a
symbol in the form expression (Coefficient) and its value (Function or Expression) is automatic. A
user can therefore assemble a form defined using instances of these combined classes directly:
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Python code
class Source(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

v = TestFunction(V)

f = Source()

L = f*v*dx

b = assemble(L)

The Function class in the Python interface inherits from both ufl.Coefficient and cpp.Function, as
illustrated by the following pseudo code:

Python code
class Function(ufl.Coefficient, cpp.Function):

def __init__(self, V):

ufl.Coefficient.__init__(self, V.ufl_element)

cpp.Function().__init__(self, V)

The actual constructor also includes logic to instantiate a Function from other objects. A more
elaborate logic is also included to handle access to subfunctions.

A user-defined Expression can be created in two different ways: (i) as a pure Python Expression;
or (ii) as a JIT compiled Expression. A pure Python Expression is an object instantiated from a
subclass of Expression in Python. The Source class above is an example of this. Pseudo code for the
constructor of the Expression class is similar to that for the Function class:

Python code
class Expression(ufl.Coefficient, cpp.Expression):

def __init__(self, element=None):

if element is None:

element = auto_select_element(self.value_shape())

ufl.Coefficient.__init__(self, element)

cpp.Expression(element.value_shape())

If the ufl.FiniteElement is not defined by the user, DOLFIN will automatically choose an element
using the auto_select_element function. This function takes the value shape of the Expression as
argument. This has to be supplied by the user for vector- or tensor-valued Expressions, by overloading
the value_shape method. The base class cpp.Expression is initialized using the value shape of the
ufl.FiniteElement.

The actual code is considerably more complex than indicated above, as the same class, Expression,
is used to handle both JIT compiled and pure Python Expressions. Also note that the actual subclass
is eventually generated by a metaclass in Python, which makes it possible to include sanity checks for
the declared subclass.

The cpp.Expression class is wrapped by a so-called director class in the SWIG-generated C++ layer.
This means that the whole Python class is wrapped by a C++ subclass of dolfin::Expression. Each
virtual method of the C++ base class is implemented by the SWIG-generated subclass in C++. These
methods call the Python version of the method, which the user eventually implements by subclassing
cpp.Expression in Python.

Just-in-time compilation of expressions. The performance of a pure Python Expression may be sub-
optimal because of the callback from C++ to Python each time the Expression is evaluated. To
circumvent this, a user can instead subclass the C++ version of Expression using a JIT compiled
Expression. Because the subclass is implemented in C++, it will not involve any callbacks to Python,
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and can therefore be significantly faster than a pure Python Expression. A JIT compiled Expression

is generated by passing a string of C++ code to the Expression constructor:

Python code
e = Expression("sin(x[0])")

The passed string is used to generate a subclass of dolfin::Expression in C++, where it is inlined into
an overloaded eval method. The final code is JIT compiled and wrapped to Python using Instant (see
Chapter 5). The generated Python class is then imported into Python. The class is not yet instantiated,
as the final JIT compiled Expression also needs to inherit from ufl.Coefficient. To accomplish this,
we dynamically create a class which inherits from both the generated class and ufl.Coefficient.

Classes in Python can be created during run-time by using the type function. The logic of creating
a class and returning an instance of that class is handled in the __new__ method of dolfin.Expression,
as illustrated by the following pseudo code:

Python code
class Expression(object):

def __new__(cls, cppcode=None):

if cls.__name__ != "Expression":

return object.__new__(cls)

cpp_base = compile_expressions(cppcode)

def __init__(self, cppcode):

...

generated_class = type("CompiledExpression",

(Expression, ufl.Coefficient, cpp_base),

{"__init__": __init__})

return generated_class()

The __new__ method is called when a JIT compiled Expression is instantiated. However, it will also be
called when a pure Python subclass of Expression is instantiated during initialization of the base-class.
We handle the two different cases by checking the name of the instantiated class. If the name of the
class is not "Expression", then the call originates from the instantiation of a subclass of Expression.
When a pure Python Expression is instantiated, like the Source instance in the code example above,
the __new__ method of object is called and the instantiated object is returned. In the other case, when
a JIT compiled Expression is instantiated, we need to generate the JIT compiled base class from the
passed Python string, as explained above. This is done by calling the function compile_expressions.
Before type is called to generate the final class, an __init__ method for the class is defined. This
method initiates the new object by automatically selecting the element type and setting dimensions for
the created Expression. This procedure is similar to what is done for the Python derived Expression

class. Finally, we construct the new class which inherits the JIT compiled class and ufl.Coefficient

by calling type.
The type function takes three arguments: the name of the class ("CompiledExpression"), the bases

of the class (Expression, ufl.Coefficient, cpp_base), and a dict defining the interface (methods
and attributes) of the class. The only new method or attribute we provide to the generated class is the
__init__ method. After the class is generated, we instantiate it and the object is returned to the user.

Assembly of UFL forms. The assemble function in the Python interface of DOLFIN enables a user to
directly assemble a declared UFL form:
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Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

c = Expression("sin(x[0])")

a = c*dot(grad(u), grad(v))*dx

A = assemble(a)

The assemble function is a thin wrapper layer around the wrapped cpp.assemble function. The
following pseudo code illustrates what happens in this layer:

Python code
def assemble(form, tensor=None, mesh=None):

dolfin_form = Form(form)

if tensor is None:

tensor = create_tensor(dolfin_form.rank())

if mesh is not None:

dolfin_form.set_mesh(mesh)

cpp.assemble(dolfin_form, tensor)

return tensor

Here, form is a ufl.Form, which is used to generate a dolfin.Form, as explained below. In addition to
the form argument, a user can choose to provide a tensor and/or a mesh. If a tensor is not provided,
one will automatically be generated by the create_tensor function. The optional mesh is needed if
the form does not contain any Arguments, or Functions; for example when a functional containing
only Expressions is assembled. Note that the length of the above signature has been shortened. Other
arguments to the assemble function exist but are skipped here for clarity.

The following pseudo code demonstrates what happens in the constructor of dolfin.Form, where
the base class cpp.Form is initialized from a ufl.Form:

Python code
class Form(cpp.Form):

def __init__(self, form):

compiled_form, form_data = jit(form)

function_spaces = extract_function_spaces(form_data)

coefficients = extract_coefficients(form_data)

cpp.Form.__init__(self, compiled_form, function_spaces, coefficients)

The form is first passed to the dolfin.jit function, which calls the registered form compiler to
generate code and JIT compile it. There are presently two form compilers that can be chosen: "ffc"
and "sfc" (see Chapters 5 and 5). Each one of these form compilers defines its own jit function,
which eventually will receive the call. The form compiler can be chosen by setting:

Python code
parameters["form_compiler"]["name"] = "sfc"

The default form compiler is "ffc". The jit function of the form compiler returns the JIT compiled
ufc::form together with a ufl.FormData object. The latter is a data structure containing metadata
for the ufl.form, which is used to extract the function spaces and coefficients that are needed to
instantiate a cpp.Form. The extraction of these data is handled by the extract_function_spaces and
the extract_coefficients functions.
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3.4.4 NumPy and SciPy integration

The values of the Matrix and Vector classes in the Python interface of DOLFIN can be viewed as
NumPy arrays. This is done by calling the array method of the vector or matrix:

Python code
A = assemble(a)

AA = A.array()

Here, A is a matrix assembled from the form a. The NumPy array AA is a dense structure and all
values are copied from the original data. The array function can be called on a distributed matrix or
vector, in which case it will return the locally stored values.

Direct access to linear algebra data. Direct access to the underlying data is possible for the uBLAS and
MTL4 linear algebra backends. A NumPy array view into the data will be returned by the method
data:

Python code
parameters["linear_algebra_backend"] = "uBLAS"

b = assemble(L)

bb = b.data()

Here, b is a uBLAS vector and bb is a NumPy view into the data of b. Any changes to bb will directly
affect b. A similar method exists for matrices:

Python code
parameters["linear_algebra_backend"] = "MTL4"

A = assemble(a)

rows, columns, values = A.data()

The data is returned in a compressed row storage format as the three NumPy arrays rows, columns
and values. These are also views of the data that represent A. Any changes in values will directly
result in a corresponding change in A.

Sparse matrix and SciPy integration. The rows, columns and values data structures can be used to
instantiate a csr_matrix from the scipy.sparse module [Jones et al., 2009]:

Python code
from scipy.sparse import csr_matrix

rows, columns, values = A.data()

csr = csr_matrix((values, columns, rows))

The csr_matrix can then be used with other Python modules that support sparse matrices, such as
the scipy.sparse module and pyamg, which is an algebraic multigrid solver [Bell et al., 2011].

Slicing vectors. NumPy provides a convenient slicing interface for NumPy arrays. The Python
interface of DOLFIN also provides such an interface for vectors (see Chapter 5 for details of the
implementation). A slice can be used to access and set data in a vector:

Python code
# Create copy of vector

b_copy = b[:]

# Slice assignment (c can be a scalar, a DOLFIN vector or a NumPy array)
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b[:] = c

# Set negative values to zero

b[b < 0] = 0

# Extract every second value

b2 = b[::2]

A difference between a NumPy slice and a slice of a DOLFIN vector is that a slice of a NumPy array
provides a view into the original array, whereas in DOLFIN we provide a copy. A list/tuple of integers
or a NumPy array can also be used to both access and set data in a vector:

Python code
b1 = b[[0, 4, 7, 10]]

b2 = b[array((0, 4, 7, 10))]

3.5 Historical notes

The first public version of DOLFIN, version 0.2.0, was released in 2002. At that time, DOLFIN
was a self-contained C++ library with minimal external dependencies. All functionality was then
implemented as part of DOLFIN itself, including linear algebra and finite element form evaluation.
Although only piecewise linear elements were supported, DOLFIN provided rudimentary automated
finite element assembly of variational forms. The form language was implemented by C++ operator
overloading. For an overview of the development of the FEniCS form language and an example of the
early form language implemented in DOLFIN, see Chapter 5.

Later, parts of the functionality of DOLFIN have been moved to either external libraries or other
FEniCS components. In 2003, the FEniCS project was born and shortly after, with the release of
version 0.5.0 in 2004, the form evaluation system in DOLFIN was replaced by an automated code
generation system based on FFC and FIAT. In the following year, the linear algebra was replaced
by wrappers for PETSc data structures and solvers. At this time, the DOLFIN Python interface
(PyDOLFIN) was introduced. Since then, the Python interface has developed from a simple auto-
generated wrapper layer for the DOLFIN C++ functionality to a mature problem-solving environment
with support for just-in-time compilation of variational forms and integration with external Python
modules like NumPy.

In 2006, the DOLFIN mesh data structures were simplified and reimplemented to improve efficiency
and expand functionality. The new data structures were based on a light-weight object-oriented layer
on top of an underlying data storage by plain contiguous C/C++ arrays and improved the efficiency
by orders of magnitude over the old implementation, which was based on a fully object-oriented
implementation with local storage of all mesh entities like cells and vertices. The first release of
DOLFIN with the new mesh library was version 0.6.2.

In 2007, the UFC interface was introduced and the FFC form language was integrated with the
DOLFIN Python interface. Just-in-time compilation was also introduced. The following year, the
linear algebra interfaces of DOLFIN were redesigned to allow flexible handling of multiple linear
algebra backends. In 2009, a major milestone was reached when parallel computing was introduced
in DOLFIN.

Over the years, DOLFIN has undergone a large number of changes to its design, interface and
implementation. However, since the release of DOLFIN 0.9.0, which introduced a redesign of the
DOLFIN function classes based on the new function space abstraction, only minor changes have been
made to the interface. Since the release of version 0.9.0, most work has gone into refining the interface,
implementing missing functionality, fixing bugs and improving documentation, in anticipation of the
first stable release of DOLFIN, version 1.0.



4 UFL: a finite element form language
By Martin Sandve Alnæs

The Unified Form Language – UFL [Alnæs and Logg, 2009] – is a domain specific language for the
declaration of finite element discretizations of variational forms and functionals. More precisely, the
language defines a flexible user interface for defining finite element spaces and expressions for weak
forms in a notation close to mathematical notation.

The FEniCS project provides a framework for building applications for solving partial differential
equations (PDEs). UFL is one of the core components of this framework. It defines the language you
express your PDEs in. It is the input language and front-end of the form compilers FFC and SFC,
which are covered in Chapter 5 and Chapter 5. The UFL implementation also provides algorithms that
the form compilers can use to simplify the compilation process. The output from these form compilers
is C++ [Stroustrup, 1997] code that conforms to the UFC specification, which is explained in Chapter 5.
This code can be used with the C++/Python library DOLFIN, which is covered in Chapter 3, to
efficiently assemble linear systems and compute solutions to PDEs. Note that this chapter does not
cover how to actually solve equations defined in UFL. See Chapter 1 for a tutorial on how to use the
complete FEniCS framework to solve equations.

This chapter is intended both for the FEniCS user who wants to learn how to express her equations,
and for other FEniCS developers and technical users who want to know how UFL works on the
inside. Therefore, the sections of this chapter are organized with an increasing amount of technical
details. Sections 4.1–4.5 give an overview of the language as seen by the end-user and is intended
for all audiences. Sections 4.6–4.9 explain the design of the implementation and dive into some
implementation details. Many details of the language have to be omitted in a text such as this, and
we refer to the UFL manual [Alnæs and Logg, 2009] for a more thorough description. Note that this
chapter refers to UFL version 1.0.0, and both the user interface and the implementation may change in
future versions.

Starting with a brief overview, we mention the main design goals for UFL and show an example
implementation of a non-trivial PDE in Section 4.1. Next, we look at how to define finite element
spaces in Section 4.2, followed by the overall structure of forms and their declaration in Section 4.3.
The main part of the language is concerned with defining expressions from a set of data types and
operators, which are discussed in Section 4.4. Operators applying to entire forms are the topic of
Section 4.5.

The technical part of the chapter begins with Section 4.6 which discusses the representation of
expressions. Building on the notation and data structures defined there, how to compute derivatives
is discussed in Section 4.7. Some central internal algorithms and key issues in their implementation
are discussed in Section 4.8. Implementation details, some of which are specific to the programming
language Python [van Rossum et al.], are the topic of Section 4.9. Finally, Section 4.10 discusses future
prospects of the UFL project.
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4.0.1 Related work

The combination of domain specific languages and symbolic computing with finite element methods
has been pursued from other angles in several other projects. Sundance [Long, 2003, 2004b,a]
implements a symbolic engine directly in C++ to define variational forms, and has support for
automatic differentiation. The Life [Prud’homme, 2006b,a] project uses a domain specific language
embedded in C++, based on expression template techniques to specify variational forms. SfePy
[Cimrman et al., 2008] uses SymPy as a symbolic engine, extending it with finite element methods.
GetDP [Dular and Geuzaine, 2005] is another project using a domain specific language for variational
forms. The Mathematica package AceGen [Korelc, 1997, 2002] uses the symbolic capabilities of
Mathematica to generate efficient code for finite element methods. All these packages have in common
a focus on high level descriptions of partial differential equations to achieve higher human efficiency
in the development of simulation software.

UFL almost resembles a library for symbolic computing, but its scope, goals and priorities are
different from generic symbolic computing projects such as GiNaC [Bauer et al., 2002], Swiginac
[Skavhaug and Čertík, 2009] and SymPy [Čertík et al., 2009]. Intended as a domain specific language
and form compiler frontend, UFL is not suitable for large scale symbolic computing.

4.1 Overview

4.1.1 Design goals

UFL is a unification, refinement and reimplementation of the form languages used in previous versions
of FFC and SFC. The development of this language has been motivated by several factors, the most
important being:

• A richer form language, especially for expressing nonlinear PDEs.

• Automatic differentiation of expressions and forms.

• Improving the performance of the form compiler technology to handle more complicated
equations efficiently.

UFL fulfills all these requirements, and by this it represents a major step forward in the capabilities of
the FEniCS project.

Tensor algebra and index notation support is modeled after the FFC form language and generalized
further. Several nonlinear operators and functions which only SFC supported before have been
included in the language. Differentiation of expressions and forms has become an integrated part
of the language, and is much easier to use than the way these features were implemented in SFC
before. In summary, UFL combines the best of FFC and SFC in one unified form language and adds
additional capabilities.

The efficiency of code generated by the new generation of form compilers based on UFL has been
verified to match previous form compiler benchmarks [Alnæs and Mardal, 2010, Ølgaard and Wells,
2010]. The form compilation process is now fast enough to blend into the regular application build
process. Complicated forms that previously required too much memory to compile, or took tens of
minutes or even hours to compile, now compiles in seconds with both SFC and FFC.

4.1.2 Motivational example

One major motivating example during the initial development of UFL has been the equations
for elasticity with large deformations. In particular, models of biological tissue use complicated
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hyperelastic constitutive laws with anisotropies and strong nonlinearities. To implement these
equations with FEniCS, all three design goals listed above had to be addressed. Below, one version of
the hyperelasticity equations and their corresponding UFL implementation is shown. Keep in mind
that this is only intended as an illustration of the close correspondence between the form language
and the natural formulation of the equations. The meaning of these equations is not necessary for
the reader to understand. Chapter 5 covers nonlinear elasticity in more detail. Note that many other
examples are distributed together with UFL.

In the formulation of the hyperelasticity equations presented here, the unknown function is the
displacement vector field u. The material coefficients c1 and c2 are scalar constants. The second
Piola-Kirchoff stress tensor S is computed from the strain energy function W(C). W defines the
constitutive law, here a simple Mooney-Rivlin law. The equations relating the displacement and
stresses read:

F = I + grad u,

C = F>F,

IC = tr(C),

I IC =
1
2
(tr(C)2 − tr(CC)),

W = c1(IC − 3) + c2(I IC − 3),

S = 2
∂W
∂C

.

(4.1)

For simplicity in this example, we ignore external body and boundary forces and assume a quasi-
stationary situation, leading to the following mechanics problem. Find u such that

div(FS) = 0, in dx, (4.2)

u = u0, on ds. (4.3)

The finite element method is presented in Chapter 2, so we will only very briefly cover the steps we
take here. First we multiply Equation (4.2) with a test function φ ∈ V, then integrate over the domain
Ω, and integrate by parts. The nonlinear variational problem then reads: find u ∈ V such that

L(u; φ) =
∫

Ω
FS : grad φ dx = 0 ∀ φ ∈ V. (4.4)

Here we have omitted the coefficients c1 and c2 for brevity. Approximating the displacement field as
u ≈ uh = ∑k ukψk, where ψk ∈ Vh ≈ V are trial functions, and using Newtons’s method to solve the
nonlinear equations, we end up with a system of equations to solve

|Vh |
∑
k=1

∂L(uh; φ)

∂uk
∆uk = −L(uh; φ) ∀ φ ∈ Vh. (4.5)

A bilinear form a(u; ψ, φ) corresponding to the left-hand side of Equation (4.5) can be computed
automatically by UFL, such that

a(uh; ψk, φ) =
∂L(uh; φ)

∂uk
k = 1, . . . , |Vh|. (4.6)

Figure 4.1 shows an implementation of equations (4.1), (4.4) and (4.6) in UFL. Notice the close
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UFL code
# Finite element spaces
cell = tetrahedron
element = VectorElement("Lagrange", cell, 1)

# Form arguments
phi0 = TestFunction(element)
phi1 = TrialFunction(element)
u = Coefficient(element)
c1 = Constant(cell)
c2 = Constant(cell)

# Deformation gradient Fij = dXi/dxj
I = Identity(cell.d)
F = I + grad(u)

# Right Cauchy-Green strain tensor C with invariants
C = variable(F.T*F)
I_C = tr(C)
II_C = (I_C**2 - tr(C*C))/2

# Mooney-Rivlin constitutive law
W = c1*(I_C-3) + c2*(II_C-3)

# Second Piola-Kirchoff stress tensor
S = 2*diff(W, C)

# Weak forms
L = inner(F*S, grad(phi0))*dx
a = derivative(L, u, phi1)

Figure 4.1: UFL implementation
of hyperelasticity equations with a
Mooney-Rivlin material law.

relation between the mathematical notation and the UFL source code. In particular, note the automated
differentiation of both the constitutive law and the residual equation. The operator diff can be applied
to expressions to differentiate w.r.t designated variables such as C here, while the operator derivative
can be applied to entire forms to differentiate w.r.t. each coefficient of a discrete function such as u.
The combination of these features allows a new material law to be implemented by simply changing
W, the rest is automatic. In the following sections, the notation, definitions and operators used in this
implementation will be explained.

4.2 Defining finite element spaces

A polygonal cell is defined in UFL by a basic shape, and is declared by

UFL code
cell = Cell(shapestring)

UFL defines a set of valid polygonal cell shapes: “interval”, “triangle”, “tetrahedron”, “quadrilateral”,
and “hexahedron”. Cell objects of all shapes are predefined and can be used instead by writing

UFL code
cell = tetrahedron

In the rest of this chapter, a variable name cell will be used where any cell is a valid argument, to
make the examples dimension independent wherever possible.
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UFL defines syntax for declaring finite element spaces, but does not know anything about the
actual polynomial basis or degrees of freedom. The polynomial basis is selected implicitly by choosing
among predefined basic element families and providing a polynomial degree, but UFL only assumes
that there exists a basis with a fixed ordering for each finite element space Vh; that is,

Vh = span
{

φj
}n

j=1 . (4.7)

Basic scalar elements can be combined to form vector elements or tensor elements, and elements can
easily be combined in arbitrary mixed element hierarchies.

The set of predefined1 element family names in UFL includes “Lagrange” (short name “CG”),
representing scalar Lagrange finite elements (continuous piecewise polynomial functions), “Discon-
tinuous Lagrange” (short name “DG”), representing scalar discontinuous Lagrange finite elements
(discontinuous piecewise polynomial functions), and a range of other families that can be found in the
manual. Each family name has an associated short name for convenience. To print all valid families to
screen from Python, call show_elements().

The syntax for declaring elements is best explained with some examples.

UFL code
cell = tetrahedron

P = FiniteElement("Lagrange", cell, 1)

V = VectorElement("Lagrange", cell, 2)

T = TensorElement("DG", cell, 0, symmetry=True)

TH = V*P

ME = MixedElement(T, V, P)

In the first line a polygonal cell is selected from the set of predefined cells. Then a scalar linear
Lagrange element P is declared, as well as a quadratic vector Lagrange element V. Next a symmetric
rank 2 tensor element T is defined, which is also piecewise constant on each cell. The code proceeds
to declare a mixed element TH, which combines the quadratic vector element V and the linear scalar
element P. This element is known as the Taylor-Hood element. Finally another mixed element with
three subelements is declared. Note that writing T*V*P would not result in a mixed element with
three direct subelements, but rather MixedElement(MixedElement(T, V), P).

4.3 Defining forms

Consider Poisson’s equation with two different boundary conditions on ∂Ω0 and ∂Ω1,

a(w; u, v) =
∫

Ω
w grad u · grad v dx, (4.8)

L( f , g, h; v) =
∫

Ω
f v dx +

∫
∂Ω0

g2v ds +
∫

∂Ω1

hv ds. (4.9)

These forms can be expressed in UFL as

UFL code
a = w*dot(grad(u), grad(v))*dx

L = f*v*dx + g**2*v*ds(0) + h*v*ds(1)

1Form compilers can register additional element families.
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where multiplication by the measures dx, ds(0) and ds(1) represent the integrals
∫

Ω0
(·)dx,

∫
∂Ω0

(·)ds,
and

∫
∂Ω1

(·)ds respectively.
Forms expressed in UFL are intended for finite element discretization followed by compilation to

efficient code for computing the element tensor. Considering the above example, the bilinear form
a with one coefficient function w is assumed to be evaluated at a later point with a range of basis
functions and the coefficient function fixed, that is

V1
h = span

{
φ1

k

}
, V2

h = span
{

φ2
k

}
, V3

h = span
{

φ3
k

}
, (4.10)

w =
|V3

h |
∑
k=1

wkφ3
k , {wk} given, (4.11)

Aij = a(w; φ1
i , φ2

j ), i = 1, . . . , |V1
h |, j = 1, . . . , |V2

h |. (4.12)

In general, UFL is designed to express forms of the following generalized form:

a(w1, . . . , wn; φ1, . . . , φr) =
nc

∑
k=1

∫
Ωk

Ic
k dx +

ne

∑
k=1

∫
∂Ωk

Ie
k ds +

ni

∑
k=1

∫
Γk

Ii
k dS. (4.13)

Most of this chapter deals with ways to define the integrand expressions Ic
k , Ie

k and Ii
k. The rest of the

notation will be explained below.
The form arguments are divided in two groups, the basis functions φ1, . . . , φr and the coefficient

functions w1, . . . , wn. All {φk} and {wk} are functions in some discrete function space with a basis.
Note that the actual basis functions {φk

j } and the coefficients {wk} are never known to UFL, but we
assume that the ordering of the basis for each finite element space is fixed. A fixed ordering only
matters when differentiating forms, explained in Section 4.7.

Each term of a valid form expression must be a scalar-valued expression integrated exactly once,
and they must be linear in {φk}. Any term may have nonlinear dependencies on coefficient functions.
A form with one or two basis function arguments (r = 1, 2) is called a linear or bilinear form
respectively, ignoring its dependency on coefficient functions. These will be assembled to vectors and
matrices when used in an application. A form depending only on coefficient functions (r = 0) is called
a functional, since it will be assembled to a real number. Multilinear forms where r > 2 are supported
but not as commonly used.

The entire domain is denoted Ω, the external boundary is denoted ∂Ω, while the set of interior
facets of the triangulation is denoted Γ. Subdomains are marked with a suffix, e.g., Ωk ⊂ Ω. As
mentioned above, integration is expressed by multiplication with a measure, and UFL defines the
measures dx, ds and dS. In summary, there are three kinds of integrals with corresponding UFL
representations

•
∫

Ωk
(·)dx ↔ (·)*dx(k), called a cell integral,

•
∫

∂Ωk
(·)ds ↔ (·)*ds(k), called an exterior facet integral,

•
∫

Γk
(·)dS ↔ (·)*dS(k), called an interior facet integral,

Defining a different quadrature order for each term in a form can be achieved by attaching metadata
to measure objects, e.g.,

UFL code
dx02 = dx(0, { "integration_order": 2 })

dx14 = dx(1, { "integration_order": 4 })
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dx12 = dx(1, { "integration_order": 2 })

L = f*v*dx02 + g*v*dx14 + h*v*dx12

Metadata can also be used to override other form compiler specific options separately for each term.
For more details on this feature see the manuals of UFL and the form compilers.

4.4 Defining expressions

Most of UFL deals with how to declare expressions such as the integrand expressions in Equation 4.13.
The most basic expressions are terminal values, which do not depend on other expressions. Other
expressions are called operators, which are discussed in sections 4.4.2–4.4.5.

Terminal value types in UFL include form arguments (which is the topic of Section 4.4.1), geometric
quantities, and literal constants. Among the literal constants are scalar integer and floating point
values, as well as the d by d identity matrix I = Identity(d). To get unit vectors, simply use rows or
columns of the identity matrix, e.g., e0 = I[0,:]. Similarly, I[i,j] represents the Kronecker delta
function δij (see Section 4.4.2 for details on index notation). Available geometric values are the spatial
coordinates x ↔ cell.x and the facet normal n ↔ cell.n. The geometric dimension is available as
cell.d.

4.4.1 Form arguments

Basis functions and coefficient functions are represented by Argument and Coefficient respectively.
The ordering of the arguments to a form is decided by the order in which the form arguments were
declared in the UFL code. Each basis function argument represents any function in the basis of its
finite element space

φj ∈ {φj
k}, V j

h = span
{

φ
j
k

}
. (4.14)

with the intention that the form is later evaluated for all φk such as in Equation (4.12). Each coefficient
function w represents a discrete function in some finite element space Vh; it is usually a sum of basis
functions φk ∈ Vh with coefficients wk

w =
|Vh |
∑
k=1

wkφk. (4.15)

The exception is coefficient functions that can only be evaluated point-wise, which are declared with a
finite element with family “Quadrature”. Basis functions are declared for an arbitrary element as in
the following manner:

UFL code
phi = Argument(element)

v = TestFunction(element)

u = TrialFunction(element)

By using TestFunction and TrialFunction in declarations instead of Argument you can ignore their
relative ordering. The only time Argument is needed is for forms of arity r > 2.

Coefficient functions are declared similarly for an arbitrary element, and shorthand notation exists
for declaring constant coefficients:

UFL code
w = Coefficient(element)
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c = Constant(cell)

v = VectorConstant(cell)

M = TensorConstant(cell)

If a form argument u in a mixed finite element space Vh = V0
h ×V1

h is desired, but the form is more
easily expressed using subfunctions u0 ∈ V0

h and u1 ∈ V1
h , you can split the mixed function or basis

function into its subfunctions in a generic way using split:

UFL code
V = V0*V1

u = Coefficient(V)

u0, u1 = split(u)

The split function can handle arbitrary mixed elements. Alternatively, a handy shorthand notation
for argument declaration followed by split is

UFL code
v0, v1 = TestFunctions(V)

u0, u1 = TrialFunctions(V)

f0, f1 = Coefficients(V)

4.4.2 Index notation

UFL allows working with tensor expressions of arbitrary rank, using both tensor algebra and index
notation. A basic familiarity with tensor algebra and index notation is assumed. The focus here is on
how index notation is expressed in UFL.

Assuming a standard orthonormal Euclidean basis 〈ek〉dk=1 for Rd, a vector can be expressed with
its scalar components in this basis. Tensors of rank two can be expressed using their scalar components
in a dyadic basis {ei ⊗ ej}d

i, j=1. Arbitrary rank tensors can be expressed the same way, as illustrated
here.

v =
d

∑
k=1

vkek, (4.16)

A =
d

∑
i=1

d

∑
j=1

Aijei ⊗ ej, (4.17)

C =
d

∑
i=1

d

∑
j=1

∑
k

Cijkei ⊗ ej ⊗ ek. (4.18)

Here, v, A and C are rank 1, 2 and 3 tensors respectively. Indices are called free if they have no
assigned value, such as i in vi, and fixed if they have a fixed value such as 1 in v1. An expression
with free indices represents any expression you can get by assigning fixed values to the indices. The
expression Aij is scalar valued, and represents any component (i, j) of the tensor A in the Euclidean
basis. When working on paper, it is easy to switch between tensor notation (A) and index notation
(Aij) with the knowledge that the tensor and its components are different representations of the same
physical quantity. In a programming language, we must express the operations mapping from tensor
to scalar components and back explicitly. Mapping from a tensor to its components, for a rank 2
tensor defined as

Aij = A : (ei ⊗ ej) (4.19)
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is accomplished using indexing with the notation A[i,j]. Defining a tensor A from component values
Aij is defined as

A = Aijei ⊗ ej, (4.20)

and is accomplished using the function as_tensor(Aij, (i,j)). To illustrate, consider the outer
product of two vectors A = u⊗ v = uivjei ⊗ ej, and the corresponding scalar components Aij. One
way to implement this is

UFL code
A = outer(u, v)

Aij = A[i, j]

Alternatively, the components of A can be expressed directly using index notation, such as Aij = uivj.
Aij can then be mapped to A in the following manner:

UFL code
Aij = v[j]*u[i]

A = as_tensor(Aij, (i, j))

These two pairs of lines are mathematically equivalent, and the result of either pair is that the variable
A represents the tensor A and the variable Aij represents the tensor Aij. Note that free indices have
no ordering, so their order of appearance in the expression v[j]*u[i] is insignificant. Instead of
as_tensor, the specialized functions as_vector and as_matrix can be used. Although a rank two
tensor was used for the examples above, the mappings generalize to arbitrary rank tensors.

When indexing expressions, fixed indices can also be used such as in A[0,1] which represents
a single scalar component. Fixed indices can also be mixed with free indices such as in A[0,i]. In
addition, slices can be used in place of an index. An example of using slices is A[0,:] which is a
vector expression that represents row 0 of A. To create new indices, you can either make a single one
or make several at once:

UFL code
i = Index()

j, k, l = indices(3)

A set of indices i, j, k, l and p, q, r, s are predefined, and these should suffice for most applications.
If your components are not represented as an expression with free indices, but as separate unrelated

scalar expressions, you can build a tensor from them using as_tensor and its peers. As an example,
lets define a 2D rotation matrix and rotate a vector expression by π

2 :

UFL code
th = pi/2

A = as_matrix([[ cos(th), -sin(th)],

[ sin(th), cos(th)]])

u = A*v

When indices are repeated in a term, summation over those indices is implied in accordance
with the Einstein convention. In particular, indices can be repeated when indexing a tensor of rank
two or higher (A[i,i]), when differentiating an expression with a free index (v[i].dx(i)), or when
multiplying two expressions with shared free indices (u[i]*v[i]).

Aii ≡∑
i

Aii, viui ≡∑
i

viui, vi, i ≡∑
i

vi, i. (4.21)
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An expression Aij = A[i,j] is represented internally using the Indexed class. Aij will reference
A, keeping the representation of the original tensor expression A unchanged. Implicit summation
is represented explicitly in the expression tree using the class IndexSum. Many algorithms become
easier to implement with this explicit representation, since e.g. a Product instance can never implicitly
represent a sum. More details on representation classes are found in Section 4.6.

4.4.3 Algebraic operators and functions

UFL defines a comprehensive set of operators that can be used for composing expressions. The
elementary algebraic operators +, -, *, / can be used between most UFL expressions with a few
limitations. Division requires a scalar expression with no free indices in the denominator. The
operands to a sum must have the same shape and set of free indices.

The multiplication operator * is valid between two scalars, a scalar and any tensor, a matrix and
a vector, and two matrices. Other products could have been defined, but for clarity we use tensor
algebra operators and index notation for those rare cases. A product of two expressions with shared
free indices implies summation over those indices, see Section 4.4.2 for more about index notation.

Three often used operators are dot(a, b), inner(a, b), and outer(a, b). The dot product of two
tensors of arbitrary rank is the sum over the last index of the first tensor and the first index of the
second tensor. Some examples are

v · u = viui, (4.22)

A · u = Aijujei, (4.23)

A · B = AikBkjeiej, (4.24)

C · A = Cijk Akleiejel . (4.25)

The inner product is the sum over all indices, for example

v : u = viui, (4.26)

A : B = AijBij, (4.27)

C : D = Cijkl Dijkl . (4.28)

Some examples of the outer product are

v⊗ u = viujeiej, (4.29)

A⊗ u = Aijukeiejek, (4.30)

A⊗ B = AijBkleiejekel (4.31)

Other common tensor algebra operators are cross(u,v), transpose(A) (or A.T), tr(A), det(A), inv(A),
cofac(A), dev(A), skew(A), and sym(A). Most of these tensor algebra operators expect tensors without
free indices. The detailed definitions of these operators are found in the manual.

A set of common elementary functions operating on scalar expressions without free indices are
included, in particular abs(f), pow(f, g), sqrt(f), exp(f), ln(f), cos(f), sin(f), tan(f), acos(f),
asin(f), atan(f), and sign(f). Any operator taking scalar arguments can be applied element-wise
to tensors using e.g. elem_op(sin, A).

4.4.4 Differential operators

UFL implements derivatives w.r.t. three different kinds of variables. The most used kind is spatial
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derivatives. Expressions can also be differentiated w.r.t. arbitrary user defined variables. And the final
kind of derivatives are derivatives of a form or functional w.r.t. the coefficients of a discrete function;
that is, a Coefficient or Constant. Form derivatives are explained in Section 4.5.1.

Note that derivatives are not computed immediately when declared. A discussion of how deriva-
tives are computed is found in Section 4.7.

Spatial derivatives Basic spatial derivatives ∂ f
∂xi

can be expressed in two equivalent ways:

UFL code
df = Dx(f, i)

df = f.dx(i)

Here, df represents the derivative of f in the spatial direction xi. The index i can either be an integer,
representing differentiation in one fixed spatial direction xi, or an Index, representing differentiation
in the direction of a free index. The notation f.dx(i) is intended to mirror the index notation f,i,
which is shorthand for ∂ f

∂xi
. Repeated indices imply summation, such that the divergence of a vector

valued expression v can be written vi, i, or v[i].dx(i).
Several common compound spatial derivative operators are defined, namely the gradient, diver-

gence, and curl (rot) operators. These operators are named grad, div, nabla_grad, nabla_div, curl
and rot (rot is a synonym for curl). Be aware that there are two common ways to define the gradient
and divergence, and UFL supports both.

Let s be a scalar expression, v be a vector expression, and M be a tensor expression of rank r. In
UFL, the operator grad is then defined explicitly as

(grad(s))i = s,i, (4.32)

(grad(v))ij = vi,j, (4.33)

(grad(M))i1 ... ir k = Mi1 ... ir , k, (4.34)

and the operator div is correspondingly defined as

div(v) = vi, i, (4.35)

(div(M))i1 ... ir−1
= Mi1 ... ir , ir . (4.36)

In contrast, the nabla_* operators are defined in terms of the ∇ operator

∇ ≡ ek
∂

∂xk
. (4.37)

The operator nabla_grad is the outer product of ∇ with its operand:

(∇s)i = s,i, (4.38)

(∇v)ij = vj,i, (4.39)

(∇M)k,i1 ... ir = Mi1 ... ir , k. (4.40)

Similarly, the operator nabla_div is the dot product of ∇ with its operand:

∇ · v = vi, i, (4.41)

(∇ ·M)i2 ... ir = Mi1 ... ir , i1 . (4.42)
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Thinking in terms of value shape, the grad operator appends an axis to the end of the shape of its
operand, while the nabla_grad operator prepends an axis. For gradients of scalars, the result is the
same. Correspondingly, the div operator sums over the last index of its operand, while the nabla_div

operator sums over the first index of its operand. For the divergence of vectors, the result is the same.
For the operators curl and rot there is no difference between the two traditions. For 3D vector

expressions, the curl can be defined in terms of the nabla operator and the cross product:

curl(v) ≡ ∇× v = e0(v2,1 − v1,2)− e1(v2,0 − v0,2) + e2(v1,0 − v0,1) (4.43)

For 2D vector and scalar expressions the definitions are:

curl(v) ≡ v1,0 − v0,1, (4.44)

curl( f ) ≡ f,1e0 − f,0e1. (4.45)

User defined variables The second kind of differentiation variables are user-defined variables, which
can represent arbitrary expressions. Automating derivatives w.r.t. arbitrary quantities is useful for
several tasks, from differentiation of material laws to computing sensitivities. An arbitrary expression
g can be assigned to a variable v. An expression f defined as a function of v can be differentiated f
w.r.t. v:

v = g, (4.46)

f = f (v), (4.47)

h(v) =
∂ f (v)

∂v
. (4.48)

Setting g = sin(x0) and f = ev2
, gives h = 2vev2

= 2 sin(x0)esin2(x0), which can be implemented as
follows:

UFL code
g = sin(cell.x[0])

v = variable(g)

f = exp(v**2)

h = diff(f, v)

Try running this code in a Python session and print the expressions. The result is

Python code
»> print v

var0(sin((x)[0]))

»> print h

d/d[var0(sin((x)[0]))] (exp((var0(sin((x)[0]))) ** 2))

Note that the variable has a label “var0”, and that h still represents the abstract derivative. Section 4.7
explains how derivatives are computed.

4.4.5 Other operators

A few operators are provided for the implementation of discontinuous Galerkin methods. The basic
concept is restricting an expression to the positive or negative side of an interior facet, which is
expressed simply as v("+") or v("-") respectively. On top of this, the operators avg and jump are
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implemented, defined as

avg(v) =
1
2
(v+ + v−), (4.49)

jump(v) = v+ − v−. (4.50)

These operators can only be used when integrating over the interior facets (*dS).
The only control flow construct included in UFL is conditional expressions. A conditional

expression takes on one of two values depending on the result of a boolean logic expression. The
syntax for this is

UFL code
f = conditional(condition, true_value, false_value)

which is interpreted as

f =

{
t, if condition is true,
f , otherwise.

(4.51)

The condition can be one of

• lt(a, b)↔ (a < b)

• le(a, b)↔ (a ≤ b)

• eq(a, b)↔ (a = b)

• And(P, Q)↔ (P ∧Q)

• Not(P)↔ (¬P)

• gt(a, b)↔ (a > b)

• ge(a, b)↔ (a ≥ b)

• ne(a, b)↔ (a 6= b)

• Or(P, Q)↔ (P ∨Q)

4.5 Form operators

Once you have defined some forms, there are several ways to compute related forms from them.
While operators in the previous section are used to define expressions, the operators discussed in this
section are applied to forms, producing new forms. Form operators can both make form definitions
more compact and reduce the chances of bugs since changes in the original form will propagate
to forms computed from it automatically. These form operators can be combined arbitrarily; given
a semi-linear form only a few lines are needed to compute the action of the adjoint of the Jacobi.
Since these computations are done prior to processing by the form compilers, there is no overhead at
run-time.

4.5.1 Differentiating forms

The form operator derivative declares the derivative of a form w.r.t. coefficients of a discrete function
(Coefficient). This functionality can be used for example to linearize your nonlinear residual equation
(linear form) automatically for use with the Newton-Raphson method. It can also be applied multiple
times, which is useful to derive a linear system from a convex functional, in order to find the function
that minimizes the functional. For non-trivial equations such expressions can be tedious to calculate
by hand. Other areas in which this feature can be useful include optimal control and inverse methods,
as well as sensitivity analysis.
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In its simplest form, the declaration of the derivative of a form L w.r.t. the coefficients of a function
w reads

UFL code
a = derivative(L, w, u)

The form a depends on an additional basis function argument u, which must be in the same finite
element space as the function w. If the last argument is omitted, a new basis function argument is
created.

Let us step through an example of how to apply derivative twice to a functional to derive a linear
system. In the following, Vh is a finite element space with some basis , w is a function in Vh, and
f = f (w) is a functional we want to minimize. Derived from f (w) is a linear form F(w; v), and a
bilinear form J(w; u, v).

Vh = span {φk} , (4.52)

w(x) =
|Vh |
∑
k=1

wkφk(x), (4.53)

f : Vh → R, (4.54)

F(w; φi) =
∂ f (w)

∂wi
, i = 1, . . . , |Vh|, (4.55)

J(w; φj, φ) =
∂F(w; φ)

∂wj
, j = 1, . . . , |Vh|, φ ∈ Vh. (4.56)

For a concrete functional f (w) =
∫

Ω
1
2 w2 dx, we can implement this as

UFL code
v = TestFunction(element)

u = TrialFunction(element)

w = Coefficient(element)

f = 0.5*w**2*dx

F = derivative(f, w, v)

J = derivative(F, w, u)

This code declares two forms F and J. The linear form F represents the standard load vector w*v*dx
and the bilinear form J represents the mass matrix u*v*dx.

Derivatives can also be defined w.r.t. coefficients of a function in a mixed finite element space.
Consider the Harmonic map equations derived from the functional

f (x, λ) =
∫

Ω
grad x : grad x + λx · x dx, (4.57)

where x is a function in a vector finite element space Vd
h and λ is a function in a scalar finite element

space Vh. The linear and bilinear forms derived from the functional in Equation 4.57 have basis
function arguments in the mixed space Vd

h ×Vh. The implementation of these forms with automatic
linearization reads

UFL code
Vx = VectorElement("Lagrange", triangle, 1)

Vy = FiniteElement("Lagrange", triangle, 1)

u = Coefficient(Vx*Vy)

x, y = split(u)
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f = inner(grad(x), grad(x))*dx + y*dot(x,x)*dx

F = derivative(f, u)

J = derivative(F, u)

Note that the functional is expressed in terms of the subfunctions x and y, while the argument to
derivative must be the single mixed function u. In this example the basis function arguments to
derivative are omitted and thus provided automatically in the right function spaces.

Note that in computing derivatives of forms, we have assumed that

∂

∂wk

∫
Ω

I dx =
∫

Ω

∂

∂wk
I dx, (4.58)

or in particular that the domain Ω is independent of w. Also, any coefficients other than w are
assumed independent of w. Furthermore, note that there is no restriction on the choice of element in
this framework, in particular arbitrary mixed elements are supported.

4.5.2 Adjoint

Another form operator is the adjoint a∗ of a bilinear form a, defined as a∗(v, u) = a(u, v), which is
equivalent to taking the transpose of the assembled sparse matrix. In UFL this is implemented simply
by swapping the order of the test and trial functions, and can be written using the adjoint form
operator. (Note that this is not the most generic definition of the adjoint of an operator). An example
of its use on an anisotropic diffusion term looks like

UFL code
V = VectorElement("Lagrange", cell, 1)

T = TensorElement("Lagrange", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

M = Coefficient(T)

a = M[i,j]*u[k].dx(j)*v[k].dx(i)*dx

astar = adjoint(a)

which corresponds to (with u ∈ U and v ∈ V)

a(M; u, v) =
∫

Ω
Mijuk,jvk,i dx, (4.59)

a∗(M; v, u) =
∫

Ω
Mijuk,jvk,i dx = a(M; u, v). (4.60)

This automatic transformation is particularly useful if we need the adjoint of nonsymmetric bilinear
forms computed using derivative, since the explicit expressions for a are not at hand. Several of the
form operators below are most useful when used in conjunction with derivative.

4.5.3 Replacing functions

Evaluating a form with new definitions of form arguments can be done by replacing terminal objects
with other values. Lets say you have defined a form L that depends on some functions f and g. You
can then specialize the form by replacing these functions with other functions or fixed values, such as

L( f , g; v) =
∫

Ω
( f 2/(2g))v dx, (4.61)

L2( f , g; v) = L(g, 3; v) =
∫

Ω
(g2/6)v dx. (4.62)
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This feature is implemented with replace, as illustrated in this case:

UFL code
V = FiniteElement("Lagrange", cell, 1)

v = TestFunction(V)

f = Coefficient(V)

g = Coefficient(V)

L = f**2 / (2*g)*v*dx

L2 = replace(L, { f: g, g: 3})

L3 = g**2 / 6*v*dx

Here L2 and L3 represent exactly the same form. Since they depend only on g, the code generated for
these forms can be more efficient.

4.5.4 Action

In some applications the matrix is not needed explicitly, only the action of the matrix on a vector.
Assembling the resulting vector directly can be much more efficient than assembling the sparse
matrix and then performing the matrix-vector multiplication. Assume a is a bilinear form and w is a
Coefficient defined on the same finite element as the trial function in a. Let A denote the sparse
matrix that can be assembled from a. Then you can assemble the action of A on a vector directly by
defining a linear form L representing the action of a bilinear form a on a function w. The notation for
this is simply L = action(a, w), or even shorter L = a*w.

4.5.5 Splitting a system

If you prefer to write your PDEs with all terms on one side such as

a(u, v)− L(v) = 0, (4.63)

you can declare forms with both linear and bilinear terms and split the equations into a and L
afterwards. A simple example is

UFL code
V = FiniteElement("Lagrange", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Coefficient(V)

pde = u*v*dx - f*v*dx

a, L = system(pde)

Here system is used to split the PDE into its bilinear and linear parts. Alternatively, lhs and rhs can
be used to obtain the two parts separately. Make note of the resulting sign of the linear part, which
corresponds to moving L to the right-hand side in Equation (4.63).

4.5.6 Computing the sensitivity of a function

If you have found the solution u to Equation (4.63), and u depends on some constant scalar value c,
you can compute the sensitivity of u w.r.t. changes in c. If u is represented by a coefficient vector x
that is the solution to the algebraic linear system Ax = b, the coefficients of ∂u

∂c are ∂x
∂c . Applying ∂

∂c to
Ax = b and using the chain rule, we can write

A
∂x
∂c

=
∂b
∂c
− ∂A

∂c
x, (4.64)
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and thus ∂x
∂c can be found by solving the same algebraic linear system used to compute x, only with a

different right-hand side. The linear form corresponding to the right-hand side of Equation (4.64) can
be written

UFL code
u = Coefficient(element)

sL = diff(L, c) - action(diff(a, c), u)

or you can use the equivalent form transformation

UFL code
sL = sensitivity_rhs(a, u, L, c)

Note that the solution u must be represented by a Coefficient, while u in a(u, v) is represented by a
Argument.

4.6 Expression representation

From a high level view, UFL is all about defining forms. Each form contains one or more scalar
integrand expressions, but the form representation is largely disconnected from the representation
of the integrand expressions. Indeed, most of the complexity of the UFL implementation is related
to expressing, representing, and manipulating expressions. The rest of this chapter will focus on
expression representations and algorithms operating on them. These topics will be of little interest
to the average user of UFL, and more directed towards developers and curious technically oriented
users.

To reason about expression algorithms without the burden of implementation details, we need an
abstract notation for the structure of an expression. UFL expressions are representations of programs,
and the notation should allow us to see this connection. Below we will discuss the properties of
expressions both in terms of this abstract notation, and related to specific implementation details.

4.6.1 The structure of an expression

The most basic expressions, which have no dependencies on other expressions, are called terminal
expressions. Other expressions result from applying some operator to one or more existing expressions.
Consider an arbitrary (non-terminal) expression z. This expression depends on a set of terminal
expressions {ti}, and is computed using a set of operators { fi}. If each subexpression of z is labeled
with an integer, an abstract program can be written to compute z by computing a sequence of
subexpressions 〈yi〉ni=1 and setting z = yn. Algorithm 1 shows such a program.

Algorithm 1 Program to compute an expression z.
1: for i← 1, . . . , m do
2: yi := ti = terminal expression
3: end for
4: for i← m + 1, . . . , n do
5: yi := fi(

〈
yj
〉

j∈Ii
)

6: end for
7: z := yn

Each terminal expression ti is a literal constant or input argument to the program. This includes
coefficients, basis functions, and geometric quantities. A non-terminal subexpression yi is the result of
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Expr

Terminal Operator

InnerArgument ... ...

Figure 4.2: Expression class hierar-
chy.

applying an operator fi to a sequence of previously computed expressions
〈
yj
〉

j∈Ii
, where Ii is an

ordered sequence of expression labels. Note that the order in which subexpressions must be computed
to produce the same value of z is not unique. For correctness we only require j < i ∀ j ∈ Ii, such that
all dependencies of a subexpression yi has been computed before yi. In particular, all terminals are
numbered first in this abstract algorithm for notational convenience only.

The program to compute z can be represented as a graph, where each expression yi corresponds
to a graph vertex. There is a directed graph edge e = (i, j) from yi to yj if j ∈ Ii, that is if yi depends
on the value of yj. More formally, the graph G representing the computation of z consists of a set of
vertices V and a set of edges E defined by:

G = (V, E), (4.65)

V = 〈vi〉ni=1 = 〈yi〉ni=1 , (4.66)

E = {ek} =
n⋃

i=1
{(i, j) ∀ j ∈ Ii} . (4.67)

This graph is clearly directed, since dependencies have a direction. It is acyclic, since an expression
can only be constructed from existing expressions. Thus a UFL expression can be represented by
a directed acyclic graph (DAG). There are two ways this DAG can be represented in UFL. While
defining expressions, a linked representation called the expression tree is built. Technically this is still
a DAG since vertices can be reused in multiple subexpressions, but the representation emphasizes
the tree like structure of the DAG. The other representation is called the computational graph, which
closely mirrors the definition of G above. This representation is mostly useful for form compilers. The
details of these two DAG representations will be explained below. They both share the representation
of a vertex in the graph as an expression object, which will be explained next.

4.6.2 Expression objects

Recall from Algorithm 1 that non-terminals are expressions yi = fi(
〈
yj
〉

j∈Ii
). The operator fi is

represented by the class of the expression object, while the expression yi is represented by the instance
of this class. In the UFL implementation, each expression object is an instance of some subclass of
Expr. The class Expr is the superclass of a hierarchy containing all terminal expression types and
operator types supported by UFL. Expr has two direct subclasses, Terminal and Operator, which
divides the expression type hierarchy in two, as illustrated in Figure 4.2.

All expression objects are considered immutable; once constructed an expression object will never
be modified. Manipulating an expression should always result in a new object being created. The
immutable property ensures that expression objects can be reused and shared between expressions
without side effects in other parts of a program. This both reduces memory usage, avoids needless
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copying of objects, and simplifies recognition of common subexpressions.
Calling e.operands() on an Expr object e representing yi returns a tuple with expression objects

representing
〈
yj
〉

j∈Ii
. Note that this also applies to terminals where there are no outgoing edges

and t.operands() returns an empty tuple. Instead of modifying the operands of an expression
object, a new expression object of the same type can be constructed with modified operands using
e.reconstruct(operands), where operands is a tuple of expression objects. If the operands are the
same this function returns the original object, allowing many algorithms to save memory without
additional complications. The invariant e.reconstruct(e.operands()) == e should always hold.

4.6.3 Expression properties

In Section 4.4.2 the tensor algebra and index notation capabilities of UFL was discussed. Expressions
can be scalar or tensor-valued, with arbitrary rank and shape. Therefore, each expression object e has
a value shape e.shape(), which is a tuple of integers with the dimensions in each tensor axis. Scalar
expressions have shape (). Another important property is the set of free indices in an expression,
obtained as a tuple using e.free_indices(). Although the free indices have no ordering, they are
represented with a tuple of Index instances for simplicity. Thus the ordering within the tuple carries
no meaning.

UFL expressions are referentially transparent with some exceptions. Referential transparency
means that a subexpression can be replaced by another representation of its value without changing
the meaning of the expression. A key point here is that the value of an expression in this context
includes the tensor shape and set of free indices. Another important point is that the derivative of a
function f (v) in a point, f ′(v)|v=g, depends on function values in the vicinity of v = g. The effect of
this dependency is that operator types matter when differentiating, not only the current value of the
differentiation variable. In particular, a Variable cannot be replaced by the expression it represents,
because diff depends on the Variable instance and not the expression it has the value of. Similarly,
replacing a Coefficient with some value will change the meaning of an expression that contains
derivatives w.r.t. function coefficients.

The following example illustrate the issue with Variable and diff.

UFL code
e = 0

v = variable(e)

f = sin(v)

g = diff(f, v)

Here v is a variable that takes on the value 0, but sin(v) cannot be simplified to 0 since the
derivative of f then would be 0. The correct result here is g = cos(v). Printing f and g gives the
strings sin(var1(0)) and d/d[var1(0)] (sin(var1(0))). Try just setting v = e and see how f and g

becomes zero.

4.6.4 Tree representation

The expression tree does not have a separate data structure. It is merely a way of viewing the structure
of an expression. Any expression object e can be seen as the root of a tree, where e.operands()

returns its children. If some of the children are equal, they will appear as many times as they appear
in the expression. Thus it is easy to traverse the tree nodes; that is, vi in the DAG, but eventual reuse
of subexpressions is not directly visible. Edges in the DAG does not appear explicitly, and the list of
vertices can only be obtained by traversing the tree recursively and selecting unique objects.

An expression tree for the stiffness term grad u : grad v is illustrated in Figure 4.3. The terminals u
and v have no children, and the term grad u is itself represented by a tree with two nodes. Each time
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Inner

Grad Grad

Argument(V, 1)Argument(V, 0)

Figure 4.3: Expression tree for
grad u : grad v.

an operator is applied to some expressions, it will return a new tree root that references its operands.
Note that the user will apply the functions grad and inner in her use of the language, while the names
Grad, Inner and Argument in this figure are the names of the Expr subclasses used in UFL to represent
the expression objects. In other words, taking the gradient of an expression with grad(u) gives an
expression representation Grad(u), and inner(a, b) gives an expression representation Inner(a, b).
This separation of language and representation is merely a design choice in the implementation of
UFL.

4.6.5 Graph representation

When viewing an expression as a tree, the lists of all unique vertices and edges are not directly
available. Representing the DAG more directly allows many algorithms to be simplified or optimized.
UFL includes tools to build an array based representation of the DAG, the computational graph, from
any expression. The computational graph G = V, E is a data structure based on flat arrays, directly
mirroring the definition of the graph in equations (4.65)–(4.67). This representation gives direct access
to dependencies between subexpressions, and allows easy iteration over unique vertices. The graph is
constructed easily with the lines:

Python code
from ufl.algorithms import Graph

G = Graph(expression)

V, E = G

One array (Python list) V is used to store the unique vertices 〈vi〉ni=1 of the DAG. For each vertex vi an
expression node yi is stored to represent it. Thus the expression tree for each vertex is also directly
available, since each expression node is the root of its own expression tree. The edges are stored in an
array E with integer tuples (i,j) representing an edge from vi to vj; that is, vj is an operand of vi.
The vertex list in the graph is built using a postordering from a depth first traversal, which guarantees
that the vertices are topologically sorted such that j < i ∀ j ∈ Ii.

Let us look at an example of a computational graph. The following code defines a simple expression
and then prints the vertices and edges of its graph.

Python code
from ufl import *
cell = triangle

V = FiniteElement("Lagrange", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

c = Constant(cell)

f = Coefficient(V)
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e = c*f**2*u*v

from ufl.algorithms import Graph, partition

G = Graph(e)

V, E, = G

print "str(e) = %s\n" % str(e)

print "\n".join("V[%d] = %s" % (i, v) for (i, v) in enumerate(V)), "\n"

print "\n".join("E[%d] = %s" % (i, e) for (i, e) in enumerate(E)), "\n"

An excerpt of the program output is shown here:

Generated code
V[0] = v_{-2}

...

V[7] = v_{-1} * c_0 * w_1 ** 2

V[8] = v_{-2} * v_{-1} * c_0 * w_1 ** 2

...

E[6] = (8, 0)

E[7] = (8, 7)

The two last edges shown here represent the dependencies of vertex 8 on vertex 7 and 0, since
v8 = v0v7. Run the code to see the full output of this code. Try changing the expression and see what
the graph looks like.

From the edges E, related arrays can be computed efficiently; in particular the vertex indices of
dependencies of a vertex vi in both directions are useful:

Vout = 〈Ii〉ni=1 ,

Vin =
〈
{j|i ∈ Ij}

〉n
i=1

(4.68)

These arrays can be easily constructed for any expression:

Python code
Vin = G.Vin()

Vout = G.Vout()

Similar functions exist for obtaining indices into E for all incoming and outgoing edges. A nice
property of the computational graph built by UFL is that no two vertices will represent the same
identical expression. During graph building, subexpressions are inserted in a hash map (Python
dictionary) to achieve this. Some expression classes sort their arguments uniquely such that e.g. a*b
and b*a will become the same vertex in the graph.

Free indices in expression nodes can complicate the interpretation of the linearized graph when
implementing some algorithms, because an expression object with free indices represents not one value
but a set of values, one for each permutation of the values its free indices can have. One solution to
this can be to apply expand_indices before constructing the graph, which will replace all expressions
with free indices with equivalent expressions with explicit fixed indices. Note however that free
indices cannot be regained after expansion. See Section 4.8.3 for more about this transformation.

4.6.6 Partitioning

UFL is intended as a front-end for form compilers. Since the end goal is generation of code from
expressions, some utilities are provided for the code generation process. In principle, correct code
can be generated for an expression from its computational graph simply by iterating over the vertices
and generating code for each operation separately, basically mirroring Algorithm 1. However, a good
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form compiler should be able to produce better code. UFL provides utilities for partitioning the
computational graph into subgraphs (partitions) based on dependencies of subexpressions, which
enables quadrature based form compilers to easily place subexpressions inside the right sets of loops.
The function partition implements this feature. Each partition is represented by a simple array
of vertex indices, and each partition is labeled with a set of dependencies. By default, this set of
dependencies use the strings x, c, and v%d to denote dependencies on spatial coordinates, cell specific
quantities, and form arguments (not coefficients) respectively.

The following example code partitions the graph built above, and prints vertices in groups based
on their dependencies.

Python code
partitions, keys = partition(G)

for deps in sorted(partitions.keys()):

P = partitions[deps]

print "The following depends on", tuple(deps)

for i in sorted(P):

print "V[%d] = %s" % (i, V[i])

The output text from the program is included below. Notice that the literal constant 2 has no
dependencies. Expressions in this partition can always be precomputed at compile-time. The
Constant c_0 depends on data which varies for each cell, represented by c in the dependency set,
but not on spatial coordinates, so it can be placed outside the quadrature loop. The Function w_1

and expressions depending on it depends in addition on the spatial coordinates, represented by x,
and therefore needs to be computed for each quadrature point. Expressions depending on only the
test or trial function are marked with v%d where the number is the internal counter used by UFL to
distinguish between arguments. Note that test and trial functions are here marked as depending on the
spatial coordinates, but not on cell dependent quantities. This is only true for finite elements defined
on a local reference element, in which case the basis functions can be precomputed in each quadrature
point. The actual run-time dependencies of a basis function in a finite element space is unknown to
UFL, which is why the partition function takes an optional multifunction argument such that the
form compiler writer can provide more accurate dependencies. We refer to the implementation of
partition for such implementation details.

Generated code
The following depends on ()

V[4] = 2

The following depends on ("c",)

V[2] = c_0

The following depends on ("x", "c")

V[3] = w_1

V[5] = w_1 ** 2

V[6] = c_0 * w_1 ** 2

The following depends on ("x", "v-1")

V[1] = v_{-1}

The following depends on ("x", "c", "v-1")

V[7] = v_{-1} * c_0 * w_1 ** 2

The following depends on ("x", "v-2")

V[0] = v_{-2}

The following depends on ("x", "c", "v-2", "v-1")

V[8] = v_{-2} * v_{-1} * c_0 * w_1 ** 2
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4.7 Computing derivatives

When any kind of derivative expression is declared by the end-user of the form language, an expression
object is constructed to represent it, but nothing is computed. The type of this expression object is a
subclass of Derivative. Before low level code can be generated from the derivative expression, some
kind of algorithm to evaluate derivatives must be applied, since differential operators are not available
natively in low level languages such as C++. Computing exact derivatives is important, which rules
out approximations by divided differences. Several alternative algorithms exist for computing exact
derivatives. All relevant algorithms are based on the chain rule combined with differentiation rules
for each expression object type. The main differences between the algorithms are in the extent of
which subexpressions are reused, and in the way subexpressions are accumulated.

Mixing derivative computation into the code generation strategy of each form compiler would
lead to a significant duplication of implementation effort. To separate concerns and keep the code
manageable, differentiation is implemented as part of UFL in such a way that the form compilers
are independent of the differentiation strategy chosen in UFL. Therefore, it is advantageous to use
the same representation for the evaluated derivative expressions as for any other expression. Before
expressions are interpreted by a form compiler, differential operators should be evaluated such that
the only operators left are non-differential operators. An exception is made for spatial derivatives of
terminals which are unknown to UFL because they are provided by the form compilers.

Below, the differences and similarities between some of the simplest algorithms are discussed.
After the algorithm currently implemented in UFL has been explained, extensions to tensor and index
notation and higher order derivatives are discussed. Finally, the section is closed with some remarks
about the differentiation rules for terminal expressions.

4.7.1 Approaches to computing derivatives

Algorithms for computing derivatives are designed with different end goals in mind. Symbolic
Differentiation (SD) takes as input a single symbolic expression and produces a new symbolic
expression for its derivative. Automatic Differentiation (AD) takes as input a program to compute a
function and produces a new program to compute the derivative of the function. Several variants
of AD algorithms exist, the two most common being Forward Mode AD and Reverse Mode AD
[Griewank, 1989]. More advanced algorithms exist, and is an active research topic. A UFL expression
is a symbolic expression, represented by an expression tree. But the expression tree is a directed
acyclic graph that represents a program to evaluate said expression. Thus it seems the line between
SD and AD becomes less distinct in this context.

Naively applied, SD can result in huge expressions, which can both require a lot of memory during
the computation and be highly inefficient if written to code directly. However, some illustrations of
the inefficiency of symbolic differentiation, such as in Griewank [1989], are based on computing closed
form expressions of derivatives in some stand-alone computer algebra system (CAS). Copying the
resulting large expressions directly into a computer code can lead to very inefficient code. The compiler
may not be able to detect common subexpressions, in particular if simplification and rewriting rules
in the CAS has changed the structure of subexpressions with a potential for reuse.

In general, AD is capable of handling algorithms that SD can not. A tool for applying AD to a
generic source code must handle many complications such as subroutines, global variables, arbitrary
loops and branches [Bischof et al., 1992, 2002, Giering and Kaminski, 1998]. Since the support for
program flow constructs in UFL is very limited, the AD implementation in UFL will not run into such
complications. In Section 4.7.2 the similarity between SD and forward mode AD in the context of UFL
is explained in more detail.
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4.7.2 Forward mode automatic differentiation

Recall Algorithm 1, which represents a program for computing an expression z from a set of terminal
values {ti} and a set of elementary operations { fi}. Assume for a moment that there are no differential
operators among { fi}. The algorithm can then be extended to compute the derivative dz

dv , where v
represents a differentiation variable of any kind. This extension gives Algorithm 2.

Algorithm 2 Forward mode AD on Algorithm 1.
1: for i← 1, . . . , m do
2: yi := ti

3:
dyi
dv := dti

dv
4: end for
5: for i← m + 1, . . . , n do
6: yi := fi(

〈
yj
〉

j∈Ii
)

7:
dyi
dv := ∑k∈Ii

∂ fi
∂yk

dyk
dv

8: end for
9: z := yn

10: dz
dv := dyn

dv

This way of extending a program to simultaneously compute the expression z and its derivative dz
dv

is called forward mode automatic differentiation (AD). By renaming yi and dyi
dv to a new sequence

of values
〈
ŷj
〉n̂

j=1, Algorithm 2 can be rewritten as shown in Algorithm 3, which is isomorphic to
Algorithm 1 (they have exactly the same structure).

Algorithm 3 Program to compute dz
dv produced by forward mode AD

1: for i← 1, . . . , m̂ do
2: ŷi := t̂i
3: end for
4: for i← m̂ + 1, . . . , n̂ do
5: ŷi := f̂i(

〈
ŷj
〉

j∈Îi
)

6: end for
7: dz

dv := ŷn̂

Since the program in Algorithm 1 can be represented as a DAG, and Algorithm 3 is isomorphic
to Algorithm 1, the program in Algorithm 3 can also be represented as a DAG. Thus a program to
compute dz

dv can be represented by an expression tree built from terminal values and non-differential
operators.

The currently implemented algorithm for computing derivatives in UFL follows forward mode
AD closely. Since the result is a new expression tree, the algorithm can also be called symbolic
differentiation. In this context, the differences between the two are implementation details. To ensure
that we can reuse expressions properly, simplification rules in UFL avoids modifying the operands
of an operator. Naturally repeated patterns in the expression can therefore be detected easily by the
form compilers. Efficient common subexpression elimination can then be implemented by placing
subexpressions in a hash map. However, there are simplifications such as 0 ∗ f → 0 and 1 ∗ f → f ,
called constant folding, which simplify the result of the differentiation algorithm automatically as
it is being constructed. These simplifications are crucial for the memory use during derivative
computations, and the performance of the resulting program.
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4.7.3 Extensions to tensors and indexed expressions

So far we have not considered derivatives of non-scalar expression and expressions with free indices.
This issue does not affect the overall algorithms, but it does affect the local derivative rules for each
expression type.

Consider the expression diff(A, B) with A and B matrix expressions. The meaning of derivatives
of tensors w.r.t. to tensors is easily defined via index notation, which is heavily used within the
differentiation rules:

dA
dB

=
dAij

dBkl
ei ⊗ ej ⊗ ek ⊗ el (4.69)

Derivatives of subexpressions are frequently evaluated to literal constants. For indexed expressions,
it is important that free indices are propagated correctly with the derivatives. Therefore, differentiated
expressions will some times include literal constants annotated with free indices.

There is one rare and tricky corner case when an index sum binds an index i such as in (vivi) and
the derivative w.r.t. xi is attempted. The simplest example of this is the expression (vivi),j, which has
one free index j. If j is replaced by i, the expression can still be well defined, but you would never
write (vivi),i manually. If the expression in the parenthesis is defined in a variable e = v[i]*v[i], the
expression e.dx(i) looks innocent. However, this will cause problems as derivatives (including the
index i) are propagated up to terminals. If this case is encountered in the current implementation of
UFL, it will be detected and an error message will be triggered. To work around the problem, simply
use different index instances. In a future version of UFL, this case may be handled by relabeling
indices to change any expression (∑i ei),i into (∑j ej),i.

4.7.4 Higher order derivatives

A simple forward mode AD implementation such as Algorithm 2 only considers one differentiation
variable. Higher order or nested differential operators must also be supported, with any combination
of differentiation variables. A simple example illustrating such an expression can be

a =
d

dx

(
d

dx
f (x) + 2

d
dy

g(x, y)
)

. (4.70)

Considerations for implementations of nested derivatives in a functional2 framework have been ex-

plored in several papers [Karczmarczuk, 2001, Pearlmutter and Siskind, 2007, Siskind and Pearlmutter,
2008].

In the current UFL implementation this is solved in a different fashion. Considering Equation (4.70),
the approach is simply to compute the innermost derivatives d

dx f (x) and d
dy g(x, y) first, and then com-

puting the outer derivatives. This approach is possible because the result of a derivative computation
is represented as an expression tree just as any other expression. Mainly this approach was chosen
because it is simple to implement and easy to verify. Whether other approaches are faster has not
been investigated. Furthermore, alternative AD algorithms such as reverse mode can be experimented
with in the future without concern for nested derivatives in the first implementations.

An outer controller function apply_ad handles the application of a single variable AD routine to
an expression with possibly nested derivatives. The AD routine is a function accepting a derivative
expression node and returning an expression where the single variable derivative has been computed.

2Functional as in functional languages.



166 Chapter 4. UFL: a finite element form language

Python code
def apply_ad(e, ad_routine):

if isinstance(e, Terminal):
return e

ops = [apply_ad(o, ad_routine) for o in e.operands()]
e = e.reconstruct(*ops)
if isinstance(e, Derivative):

e = ad_routine(e)
return e

Figure 4.4: Simple implementation
of recursive apply_ad procedure.

This routine can be an implementation of Algorithm 3. The result of apply_ad is mathematically
equivalent to the input, but with no derivative expression nodes left3.

The function apply_ad works by traversing the tree recursively in post-order, discovering subtrees
where the root represents a derivative, and applying the provided AD routine to the derivative subtree.
Since the children of the derivative node has already been visited by apply_ad, they are guaranteed to
be free of derivative expression nodes and the AD routine only needs to handle the case discussed
above with algorithms 2 and 3.

The complexity of the ad_routine should be O(n), with n being the size of the expression tree.
The size of the derivative expression is proportional to the original expression. If there are d derivative
expression nodes in the expression tree, the complexity of this algorithm is O(dn), since ad_routine

is applied to subexpressions d times. As a result the worst case complexity of apply_ad is O(n2), but
in practice d� n. A recursive implementation of this algorithm is shown in Figure 4.4.

4.7.5 Basic differentiation rules

To implement the algorithm descriptions above, we must implement differentiation rules for all
expression node types. Derivatives of operators can be implemented as generic rules independent
of the differentiation variable, and these are well known and not mentioned here. Derivatives of
terminals depend on the differentiation variable type. Derivatives of literal constants are of course
always zero, and only spatial derivatives of geometric quantities are nonzero. Since form arguments
are unknown to UFL (they are provided externally by the form compilers), their spatial derivatives

( ∂φk

∂xi
and ∂wk

∂xi
) are considered input arguments as well. In all derivative computations, the assumption

is made that form coefficients have no dependencies on the differentiation variable. Two more cases
needs explaining, the user defined variables and derivatives w.r.t. the coefficients of a Coefficient.

If v is a Variable, then we define dt
dv ≡ 0 for any terminal t. If v is scalar valued then dv

dv ≡ 1.
Furthermore, if V is a tensor valued Variable, its derivative w.r.t. itself is

dV
dV

=
dVij

dVkl
ei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el . (4.71)

In addition, the derivative of a variable w.r.t. something else than itself equals the derivative of the
expression it represents:

v = g, (4.72)
dv
dz

=
dg
dz

. (4.73)

Finally, we consider the operator derivative, which represents differentiation w.r.t. all coefficients

3Except direct spatial derivatives of form arguments, but that is an implementation detail.



Chapter 4. UFL: a finite element form language 167

{wk} of a function w. Consider an object element which represents a finite element space Vh with a
basis {φk}. Next consider form arguments defined in this space:

UFL code
v = Argument(element)

w = Coefficient(element)

The Argument instance v represents any v ∈ {φk}, while the Coefficient instance w represents the
sum

w = ∑
k

wkφk(x). (4.74)

The derivative of w w.r.t. any wk is the corresponding basis function in Vh,

∂w
∂wk

= φk, k = 1, . . . , |Vh|, (4.75)

(4.76)

which can be represented by v, since

v ∈ 〈φk〉|Vh |
k=1 =

〈
∂w
∂wk

〉|Vh |

k=1
. (4.77)

Note that v should be a basis function instance that has not already been used in the form.

4.8 Algorithms

In this section, some central algorithms and key implementation issues are discussed, much of which
relates to the Python programming language. Thus, this section is mainly intended for developers
and others who need to relate to UFL on a technical level. Python users may also find some of the
techniques here interesting.

4.8.1 Effective tree traversal in Python

Applying some action to all nodes in a tree is naturally expressed using recursion:

Python code
def walk(expression, pre_action, post_action):

pre_action(expression)

for o in expression.operands():

walk(o)

post_action(expression)

This implementation simultaneously covers pre-order traversal, where each node is visited before its
children, and post-order traversal, where each node is visited after its children.

A more “pythonic” way to implement iteration over a collection of nodes is using generators. A
minimal implementation of this could be

Python code
def post_traversal(root):

for o in root.operands():

yield post_traversal(o)

yield root
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which then enables the natural Python syntax for iteration over expression nodes:

Python code
for e in post_traversal(expression):

post_action(e)

For efficiency, the actual implementation of post_traversal in UFL is not using recursion. Function
calls are very expensive in Python, which makes the non-recursive implementation an order of
magnitude faster than the above.

4.8.2 Type based function dispatch in Python

A common task in both symbolic computing and compiler implementation is the selection of some
operation based on the type of an expression node. For a selected few operations, this is done using
overloading of functions in the subclasses of Expr, but this is not suitable for all operations. In many
cases type-specific operations are better implemented together in the algorithm instead of distributed
across class definitions. This implementation pattern is called the Visitor pattern [Gamma et al.,
1995]. The implementation in UFL is somewhat different from the patterns used in a statically typed
language such as C++.

One way to implement type based operation selection is to use a type switch, which is a sequence
of if-tests as shown here:

Python code
def operation(expression):

if isinstance(expression, IntValue):

return int_operation(expression)

elif isinstance(expression, Sum):

return sum_operation(expression)

# etc.

There are several problems with this approach, one of which is efficiency when there are many types
to check. A type based function dispatch mechanism with efficiency independent of the number of
types is implemented as an alternative through the class MultiFunction. The underlying mechanism
is a dictionary lookup (which is O(1)) based on the type of the input argument, followed by a call to
the function found in the dictionary. The lookup table is built in the MultiFunction constructor only
once. Functions to insert in the table are discovered automatically using the introspection capabilities
of Python.

A multifunction is declared as a subclass of MultiFunction. For each type that should be handled
particularly, a member function is declared in the subclass. The Expr classes use the CamelCaps

naming convention, which is automatically converted to underscore_notation for corresponding
function names, such as IndexSum and index_sum. If a handler function is not declared for a type,
the closest superclass handler function is used instead. Note that the MultiFunction implementation
is specialized to types in the Expr class hierarchy. The declaration and use of a multifunction is
illustrated in this example code:

Python code
class ExampleFunction(MultiFunction):

def __init__(self):

MultiFunction.__init__(self)

def terminal(self, expression):

return "Got a Terminal subtype %s." % type(expression)
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def operator(self, expression):

return "Got an Operator subtype %s." % type(expression)

def argument(self, expression):

return "Got an Argument."

def sum(self, expression):

return "Got a Sum."

m = ExampleFunction()

cell = triangle

element = FiniteElement("Lagrange", cell, 1)

x = cell.x

print m(Argument(element))

print m(x)

print m(x[0] + x[1])

print m(x[0] * x[1])

Note that argument and sum will handle instances of the exact types Argument and Sum, while terminal

and operator will handle the types SpatialCoordinate and Product since they have no specific
handlers.

4.8.3 Implementing expression transformations

Many transformations of expressions can be implemented recursively with some type-specific opera-
tion applied to each expression node. Examples of operations are converting an expression node to a
string representation, to an expression representation using an symbolic external library, or to a UFL
representation with some different properties. A simple variant of this pattern can be implemented
using a multifunction to represent the type-specific operation:

Python code
def apply(e, multifunction):

ops = [apply(o, multifunction) for o in e.operands()]

return multifunction(e, *ops)

The basic idea is as follows. Given an expression node e, begin with applying the transformation to
each child node. Then return the result of some operation specialized according to the type of e, using
the already transformed children as input.

The Transformer class implements this pattern. Defining a new algorithm using this pattern
involves declaring a Transformer subclass, and implementing the type specific operations as member
functions of this class just as with MultiFunction. The difference is that member functions take one
additional argument for each operand of the expression node. The transformed child nodes are
supplied as these additional arguments. The following code replaces terminal objects with objects
found in a dictionary mapping, and reconstructs operators with the transformed expression trees. The
algorithm is applied to an expression by calling the function visit, named after the similar Visitor
pattern.

Python code
class Replacer(Transformer):

def __init__(self, mapping):

Transformer.__init__(self)

self.mapping = mapping

def operator(self, e, *ops):

return e.reconstruct(*ops)
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def terminal(self, e):

return self.mapping.get(e, e)

f = Constant(triangle)

r = Replacer({f: f**2})

g = r.visit(2*f)

After running this code the result is g = 2 f 2. The actual implementation of the replace function is
similar to this code.

In some cases, child nodes should not be visited before their parent node. This distinction is easily
expressed using Transformer, simply by omitting the member function arguments for the transformed
operands. See the source code for many examples of algorithms using this pattern.

4.8.4 Important transformations

There are many ways in which expression representations can be manipulated. Here, we describe three
particularly important transformations. Note that each of these algorithms removes some abstractions,
and hence may remove some opportunities for analysis or optimization. To demonstrate their effect,
each transformation will be applied below to the expression

a = grad( f u) · grad v. (4.78)

At the end of the section, some example code is given to demonstrate more representation details.
Some operators in UFL are termed “compound” operators, meaning they can be represented by

other more elementary operators. Try defining an expression a = dot(grad(f*u), grad(v)), and
print repr(a). As you will see, the representation of a is Dot(Grad(Product(f, u)), Grad(v)), with
some more details in place of f, u and v. By representing the gradient directly with a high level type
Grad instead of more low level types, the input expressions are easier to recognize in the representation,
and rendering of expressions to for example LATEX format can show the original compound operators
as written by the end-user. However, since many algorithms must implement actions for each operator
type, the function expand_compounds is used to replace all expression nodes of “compound” types
with equivalent expressions using basic types. When this operation is applied to the input forms from
the user, algorithms in both UFL and the form compilers can still be written purely in terms of more
basic operators. Expanding the compound expressions from Equation (4.78) results in the expression

ac = ∑
i

∂v
∂xi

∂(u f )
∂xi

. (4.79)

Another important transformation is expand_derivatives, which applies automatic differentiation
to expressions, recursively and for all kinds of derivatives. The end result is that most derivatives are
evaluated, and the only derivative operator types left in the expression tree applies to terminals. The
precondition for this algorithm is that expand_compounds has been applied. Expanding the derivatives
in ac from Equation (4.79) gives us

ad = ∑
i

∂v
∂xi

(u
∂ f
∂xi

+ f
∂u
∂xi

). (4.80)

Index notation and the IndexSum expression node type complicate interpretation of an expression
tree somewhat, in particular in expressions with nested index sums. Since expressions with free
indices will take on multiple values, each expression object represents not only one value but a
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set of values. The transformation expand_indices then comes in handy. The precondition for this
algorithm is that expand_compounds and expand_derivatives have been applied. The postcondition
of this algorithm is that there are no free indices left in the expression. Expanding the indices in
Equation (4.80) finally gives

ai =
∂v
∂x0

(u
∂ f
∂x0

+ f
∂u
∂x0

) +
∂v
∂x1

(u
∂ f
∂x1

+ f
∂u
∂x1

). (4.81)

We started with the higher level concepts gradient and dot product in Equation (4.78), and ended
with only scalar addition, multiplication, and partial derivatives of the form arguments. A form
compiler will typically start with ad or ai, insert values for the argument derivatives, apply some other
transformations, before finally generating code.

Some example code to play around with should help in understanding what these algorithms do
at the expression representation level. Since the printed output from this code is a bit lengthy, only
key aspects of the output is repeated below. Copy this code to a python file or run it in a python
interpreter to see the full output.

Python code
from ufl import *
V = FiniteElement("Lagrange", triangle, 1)

u = TestFunction(V)

v = TrialFunction(V)

f = Coefficient(V)

# Note no *dx! This is an expression, not a form.

a = dot(grad(f*u), grad(v))

from ufl.algorithms import *
ac = expand_compounds(a)

ad = expand_derivatives(ac)

ai = expand_indices(ad)

print "\na: ", str(a), "\n", tree_format(a)

print "\nac:", str(ac), "\n", tree_format(ac)

print "\nad:", str(ad), "\n", tree_format(ad)

print "\nai:", str(ai), "\n", tree_format(ai)

The print output showing a is (with the details of the finite element object cut away for shorter
lines):

Output
a: (grad(v_{-2} * w_0)) . (grad(v_{-1}))

Dot

(

Grad

Product

(

Argument(FiniteElement(...), -2)

Coefficient(FiniteElement(...), 0)

)

Grad

Argument(FiniteElement(...), -1)

)

The arguments labeled -1 and -2 refer to v and u respectively.
In ac, the Dot product has been expanded to an IndexSum of a Product with two Indexed operands:

Output
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IndexSum

(

Product

(

Indexed

(

...

MultiIndex((Index(10),), {Index(10): 2})

)

Indexed

(

...

MultiIndex((Index(10),), {Index(10): 2})

)

)

MultiIndex((Index(10),), {Index(10): 2})

)

The somewhat complex looking expression MultiIndex((Index(10),), {Index(10): 2}) can be
read simply as “index named i10, bound to an axis with dimension 2”.

Zooming in to one of the ... lines above, the representation of grad( f u) must still keep the vector
shape after being transformed to more basic expressions, which is why the SpatialDerivative object
is wrapped in a ComponentTensor object:

Output
ComponentTensor

(

SpatialDerivative

(

Product

(

u

f

)

MultiIndex((Index(8),), {Index(8): 2})

)

MultiIndex((Index(8),), {Index(8): 2})

)

A common pattern occurs in the algorithmically expanded expressions:

Output
Indexed

(

ComponentTensor

(

...

MultiIndex((Index(8),), {Index(8): 2})

)

MultiIndex((Index(10),), {Index(10): 2})

)

This pattern acts as a relabeling of the index objects, renaming i8 from inside . . . to i10 on the outside.
When looking at the print of ad, the result of the chain rule (( f u)′ = u f ′ + f u′) can be seen as the Sum

of two Product objects.
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Output
Sum

(

Product

(

u

SpatialDerivative

(

f

MultiIndex((Index(8),), {Index(8): 2})

)

)

Product

(

f

SpatialDerivative

(

u

MultiIndex((Index(8),), {Index(8): 2})

)

)

)

Finally after index expansion in ai (not shown here), no free Index objects are left, but instead a lot of
FixedIndex objects can be seen in the print of ai. Looking through the full output from the example
code above is strongly encouraged if you want a good understanding of the three transformations
shown here.

4.8.5 Evaluating expressions

Even though UFL expressions are intended to be compiled by form compilers, it can be useful to
evaluate them to floating point values directly. In particular, this makes testing and debugging of
UFL much easier, and is used extensively in the unit tests. To evaluate an UFL expression, values
of form arguments and geometric quantities must be specified. Expressions depending only on
spatial coordinates can be evaluated by passing a tuple with the coordinates to the call operator. The
following code which can be copied directly into an interactive Python session shows the syntax:

Python code
from ufl import *
cell = triangle

x = cell.x

e = x[0] + x[1]

print e((0.5, 0.7)) # prints 1.2

Other terminals can be specified using a dictionary that maps from terminal instances to values. This
code extends the above code with a mapping:

Python code
c = Constant(cell)

e = c*(x[0] + x[1])

print e((0.5, 0.7), { c: 10 }) # prints 12.0

If functions and basis functions depend on the spatial coordinates, the mapping can specify a Python
callable instead of a literal constant. The callable must take the spatial coordinates as input and return
a floating point value. If the function being mapped is a vector function, the callable must return a
tuple of values instead. These extensions can be seen in the following code:
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Python code
element = VectorElement("Lagrange", triangle, 1)

c = Constant(triangle)

f = Coefficient(element)

e = c*(f[0] + f[1])

def fh(x):

return (x[0], x[1])

print e((0.5, 0.7), { c: 10, f: fh }) # prints 12.0

To use expression evaluation for validating that the derivative computations are correct, spatial
derivatives of form arguments can also be specified. The callable must then take a second argument
which is called with a tuple of integers specifying the spatial directions in which to differentiate. A
final example code computing g2 + g2

,0 + g2
,1 for g = x0x1 is shown below.

Python code
element = FiniteElement("Lagrange", triangle, 1)

g = Coefficient(element)

e = g**2 + g.dx(0)**2 + g.dx(1)**2

def gh(x, der=()):

if der == (): return x[0]*x[1]

if der == (0,): return x[1]

if der == (1,): return x[0]

print e((2, 3), { g: gh }) # prints 49

4.8.6 Viewing expressions

Expressions can be formatted in various ways for inspection, which is particularly useful while
debugging. The Python built in string conversion operator str(e) provides a compact human readable
string. If you type print e in an interactive Python session, str(e) is shown. Another Python built
in string operator is repr(e). UFL implements repr correctly such that e == eval(repr(e)) for any
expression e. The string repr(e) reflects all the exact representation types used in an expression,
and can therefore be useful for debugging. Another formatting function is tree_format(e), which
produces an indented multi-line string that shows the tree structure of an expression clearly, as
opposed to repr which can return quite long and hard to read strings. Information about formatting
of expressions as LATEX and the dot graph visualization format can be found in the manual.

4.9 Implementation issues

4.9.1 Python as a basis for a domain specific language

Many of the implementation details detailed in this section are influenced by the initial choice of
implementing UFL as an embedded language in Python. Therefore some words about why Python is
suitable for this, and why not, are appropriate here.

Python provides a simple syntax that is often said to be close to pseudo-code. This is a good
starting point for a domain specific language. Object orientation and operator overloading is well
supported, and this is fundamental to the design of UFL. The functional programming features of
Python (such as generator expressions) are useful in the implementation of algorithms and form
compilers. The built-in data structures list, dict and set play a central role in fast implementations
of scalable algorithms.

There is one problem with operator overloading in Python, and that is the comparison operators.
The problem stems from the fact that __eq__ or __cmp__ are used by the built-in data structures
dictionary and set to compare keys, meaning that a == b must return a boolean value for Expr to be
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used as keys. The result is that __eq__ can not be overloaded to return some Expr type representation
such as Equals(a, b) for later processing by form compilers. The other problem is that and and or

cannot be overloaded, and therefore cannot be used in conditional expressions. There are good
reasons for these design choices in Python. This conflict is the reason for the somewhat non-intuitive
design of the comparison operators in UFL.

4.9.2 Ensuring unique form signatures

The form compilers need to compute a unique signature of each form for use in a cache system to
avoid recompilations. A convenient way to define a signature is using repr(form), since the definition
of this in Python is eval(repr(form)) == form. Therefore __repr__ is implemented for all Expr
subclasses.

Some forms are mathematically equivalent even though their representation is not exactly the
same. UFL does not use a truly canonical form for its expressions, but takes some measures to ensure
that trivially equivalent forms are recognized as such.

Some of the types in the Expr class hierarchy (subclasses of Counted), has a global counter to
identify the order in which they were created. This counter is used by form arguments (both Argument

and Coefficient) to identify their relative ordering in the argument list of the form. Other counted
types are Index and Label, which only use the counter as a unique identifier. Algorithms are
implemented for renumbering of all Counted types such that all counts start from 0.

In addition, some operator types such as Sum and Product maintains a sorted list of operands such
that a+b and b+a are both represented as Sum(a, b). This operand sorting is intentionally independent
of the numbering of indices because that would not be stable. The reason for this instability is that the
result of algorithms for renumbering indices depends on the order of operands. The operand sorting
and renumberings combined ensure that the signature of equal forms will stay the same. Note that
the representation, and thus the signature, of a form may change with versions of UFL. The following
line prints the signature of a form with expand_derivatives and renumbering applied.

Python code
print repr(preprocess(myform).preprocessed_form)

4.9.3 Efficiency considerations

By writing UFL in Python, we clearly do not put peak performance as a first priority. If the form
compilation process can blend into the application build process, the performance is sufficient. We do,
however, care about scaling performance to handle complicated equations efficiently, and therefore
about the asymptotic complexity of the algorithms we use.

To write clear and efficient algorithms in Python, it is important to use the built in data structures
correctly. These data structures include in particular list, dict and set. CPython [van Rossum
et al.], the reference implementation of Python, implements the data structure list as an array, which
means append, and pop, and random read or write access are all O(1) operations. Random insertion,
however, is O(n). Both dict and set are implemented as hash maps, the latter simply with no value
associated with the keys. In a hash map, random read, write, insertion and deletion of items are all
O(1) operations, as long as the key types implement __hash__ and __eq__ efficiently. The dictionary
data structure is used extensively by the Python language, and therefore particular attention has been
given to make it efficient [Kuchling, 2007]. Thus to enjoy efficient use of these containers, all Expr
subclasses must implement these two special functions efficiently. Such considerations have been
important for making the UFL implementation perform efficiently.
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4.10 Conclusions and future directions

Many additional features can be introduced to UFL. Which features are added will depend on the
needs of FEniCS users and developers. Some features can be implemented in UFL alone, but most
features will require updates to other parts of the FEniCS project. Thus the future directions for UFL
is closely linked to the development of the FEniCS project as a whole.

Improvements to finite element declarations is likely easy to do in UFL. The added complexity will
mostly be in the form compilers. Among the current suggestions are space-time elements and time
derivatives. Additional geometry mappings and finite element spaces with non-uniform cell types are
also possible extensions.

Additional operators can be added to make the language more expressive. Some operators are easy
to add because their implementation only affects a small part of the code. More compound operators
that can be expressed using elementary operations is easy to add. Additional special functions are
easy to add as well, as long as their derivatives are known. Other features may require more thorough
design considerations, such as support for complex numbers which will affect large parts of the code.

User friendly notation and support for rapid development are core values in the design of UFL.
Having a notation close to the mathematical abstractions allows expression of particular ideas more
easily, which can reduce the probability of bugs in user code. However, the notion of metaprogramming
and code generation adds another layer of abstraction which can make understanding the framework
more difficult for end-users. Good error checking everywhere is therefore very important, to detect
user errors as close as possible to the user input. Improvements to the error messages, documentation,
and unit test suite will always be helpful, to avoid frequently repeated errors and misunderstandings
among new users.

To support the form compiler projects, algorithms and utilities for generating better code more
efficiently could be included in UFL. Such algorithms should probably be limited to algorithms such
as general transformations of expression graphs which can be useful independently of form compiler
specific approaches. In this area, more work on alternative automatic differentiation algorithms [Forth
et al., 2004, Tadjouddine, 2008] can be useful.

To summarize, UFL is a central component in the FEniCS framework, where it provides a rich
form language, automatic differentiation, and a building block for efficient form compilers. These
are useful features in rapid development of applications for efficiently solving partial differential
equations. UFL provides the user interface to Automation of Discretization that is the core feature
of FEniCS, and adds Automation of Linearization to the framework. With these features, UFL has
brought FEniCS one step closer to its overall goal Automation of Mathematical Modeling.
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5 The FEniCS book

For further details, the reader is referred to the FEniCS book: Automated solution of differential equations
by the finite element method.
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DofMap, 107
Dx, 150
EdgeFunction, 104
EdgeIterator, 103
Edge, 101
Expression, 7, 111
Expr, 157
FaceFunction, 104
FaceIterator, 103
FacetFunction, 104
FacetIterator, 103
Facet, 101
Face, 101
FiniteElement, 106, 144
Form, 145
FunctionSpace, 6, 107
Function, 109
Identity, 147
IndexSum, 148
Indexed, 148
Index, 148
Integral, 145
Interval, 57
KrylovSolver, 35, 94
LUSolver, 94
LinearVariationalProblem, 11, 120
LinearVariationalSolver, 11, 120
ListTensor, 148

Matrix, 92
Measure, 145
MeshConnectivity, 102
MeshData, 105
MeshEditor, 100
MeshEntityIterator, 103
MeshEntity, 101
MeshFunction, 104
MeshGeometry, 102
MeshTopology, 102
Mesh, 6, 99
MixedElement, 144
NewtonSolver, 98
NonlinearVariationalProblem, 46, 120
NonlinearVariationalSolver, 46, 120
Operator, 157
Parameters, 129
Point, 104
Progress, 128
Rectangle, 57
TensorConstant, 147
TensorElement, 144
Terminal, 147, 157
TestFunctions, 147
TestFunction, 6, 147
TimeSeries, 125
Timer, 129
TrialFunctions, 147
TrialFunction, 6, 147
UnitCircle, 57
UnitCube, 57, 99
UnitInterval, 57
UnitSphere, 57
UnitSquare, 57, 99
VectorConstant, 147
VectorElement, 144
Vector, 92
VertexFunction, 104
VertexIterator, 103
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Vertex, 101
acos, 150
action, 153
adjoint, 153
as_matrix, 148
as_tensor, 148
as_vector, 148
asin, 150
assemble_system, 34
assemble, 34, 50, 115
atan, 150
avg, 152
begin, 128
cos, 150
cout, 126
cross, 150
curl, 150
derivative, 153
det, 150
diff, 150
div, 150
dolfin-convert, 121
dot, 150
dx, 150
elem_op, 150
endl, 126
end, 128
energy_norm, 153
error, 126
exp, 150
grad, 150
info, 11, 126
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inv, 150
jump, 152
lhs, 153
list_krylov_solver_methods, 94
list_krylov_solver_preconditioners, 94
list_lu_solver_methods, 94
ln, 150
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plot, 18, 122
pow, 150
pydoc, 13, 67
replace, 153
rhs, 153
rot, 150
self, 67

sensitivity_rhs, 153
set_log_active, 126
set_log_level, 126
sin, 150
solve, 93, 120
split, 147
sqrt, 150
system, 153
tan, 150
transpose, 150
tr, 150
warning, 126

a posteriori error estimate, see error estimate
a priori error estimate, see error estimate
AD, see automatic differentiation
adaptive refinement, 105
adaptivity, 86
affine equivalence, 82
affine mapping, 81
algebraic operator, 150
Argyris element, see finite element
Arnold–Winther element, see finite element
assembly

implementation, 115
increasing efficiency, 50

atomic value, 147
automatic differentiation, 45, 163

forward mode, 163
reverse mode, 163

automation, 87

basis function, 147
bilinear form, 74
boundary condition, 62, 71, 116

Dirichlet, 7, 62, 71, 73, 118
essential, 73, 118
natural, 73, 116
Neumann, 30, 62, 71, 73, 116
Robin, 62

boundary integral, 116
boundary markers, 104
boundary measure, 145
Brezzi–Douglas–Marini element, see finite element,

80
Bubble element, see finite element

Cea’s lemma, 84
cell, 101
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cell integral, 145
CG element, see finite element
Ciarlet finite element definition, see finite element
coefficient, 147
computational graph, 160
contour plot, 28
contravariant Piola mapping, 81
coordinate stretching, 58
coordinate transformation, 58
covariant Piola mapping, 81
cross product, 150
Crouzeix–Raviart element, see finite element, 80
CSS, see consistent splitting scheme

Dörfler marking, 87
degrees of freedom, 12
derivative, 45
determinant, 150
DG element, see finite element
DG operator, 152
differential operator, 150
differentiation, 163
dimension-independent code, 36
Dirichlet boundary condition, see boundary con-

dition
discontinuous Galerkin, 152
discontinuous Lagrange element, see finite ele-

ment
discretization, 72
DOLFIN, 89
domain specific language, 141
dot product, 150
dual problem, 85

edge, 101
efficiency index, 87
eigenvalue problem, 96
energy functional, 24
Epetra, 97
error estimate

a posteriori, 85
a priori, 83
goal oriented, 85

error estimation, 83
error functional, 24
expression, 111, 157

with parameters, 16
expression representation, 170
expression transformation, 169, 170

expression tree, 157, 167
exterior facet integral, 145

face, 101
facet, 101
facet normal, 147
file formats, 121

DOLFIN XML, 100, 124
PVD, 122
VTU, 122

finite difference time discretization, 47
finite element

definition, 77
Discontinuous Lagrange, 144
implementation, 106
Lagrange, 6
list of supported, 107

finite element assembly, see assembly
flux functional, 27
form, 145

algorithms, 167
argument of, 147
language, 141
operator, 153

forward mode AD, see automatic differentiation
Fourier’s law, 72
function, 109, 147

evaluation, 110
subfunction, 111

function space, 76, 79, 107
mixed, 108
subspace, 109

functional, 23, 141

Gateaux derivative, 44
GMRES, 96
goal oriented error estimate, see error estimate

Hermite element, see finite element, 82
heterogeneous medium, 54, 59

identity matrix, 147
ILU, 96
implicit summation, 148
index notation, 148
inner product, 150
input/output, 121
integral, 145
interior facet integral, 145
interior measure, 145
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interpolation, 14, 16
inverse, 150
IPCS, see incremental pressure correction

Jacobian, 45
JIT, see just-in-time compilation
jump, 152
just-in-time compilation, 136

Ladyzhenskaya–Babuška–Brezzi conditions, 74
Lagrange finite element, see finite element
language operator, 150
LBB conditions, see Ladyzhenskaya–Babuška–Brezzi

conditions
license, ii
linear algebra, 92
linear algebra backend, 10, 97
linear form, 74
linear solver, 82
linear system, 34, 93
linearization, 75
local-to-global mapping, 79
log level, 126
logging, 126

mapping from reference element, 81
Mardal–Tai–Winther element, see finite element
matrix, 92
MayaVi, 122
mesh, 6, 76, 99

coloring, 132
connectivity, 102
creating, 100
data, 105
distributed, 106
geometry, 102
iterators, 103
partitioning, 133
reading, 100
refinement, 105
topology, 102
transformation, 58
XML format, 100

mesh entity, 101
metaclass, 136
mixed function space, 108
mixed problem, 73
Morley element, see finite element
MPI, 133

MTL4, 10, 97
multi-material domain, 54, 59
multicore, 132
multifunction, 168
multilinear form, see form
multithreading, 132

Nédélec element, see finite element, 80
Navier–Stokes, see incompressible Navier–Stokes

equations
Neumann boundary condition, see boundary con-

dition
Newton’s method, 75, 98
nodal basis, 77
nonlinear PDE, see partial differential equation
nonlinear problem, 46, 75
nonlinear system, 98
NumPy, 139

operator, 157
outer product, 150

parallel computing, 132
distributed memory, 133
shared memory, 132

parameters, 10, 129
ParaView, 122
ParMETIS, 133
partial differential equation

nonlinear, 38
time-dependent, 47

PDE, see partial differential equation
PETSc, 10, 97
Picard iteration, 38
Piola mapping, 81
Poisson’s equation, 2, 71

nonlinear, 76
variable coefficient, 21

postprocessing, 122
preconditioner, 83
preprocessing, 121
progress bar, 128
project, 21
projection, 19, 21

random start vector (linear systems), 35
Raviart–Thomas element, see finite element
referential transparency, 157
residual, 83
restriction, 152
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reverse mode AD, see automatic differentiation
Robin boundary condition, see boundary condi-

tion

SciPy, 139
SCOTCH, 133
signature, 175
SLEPc, 35, 96
spatial coordinates, 147
structured mesh, 27
SUPG, see stabilization
symbolic differentiation, 163

tensor algebra operator, 150
terminal value, 147, 157
test function, 3
time series, 125
time-dependent PDE, see partial differential equa-

tion
timing, 129
trace, 150
transpose, 150
tree traversal, 167
trial function, 3
Trilinos, 10, 97

uBLAS, 10, 97
UFL, 141, 176
UMFPACK, 10
under-relaxation, 40
user interfaces, 89

C++, 90
Python, 91

variational form, 113, 141
variational problem, 2, 119
vector, 92
vertex, 101
Viper, 18
visualization, 18

of structured mesh, 27
VTK, 18

weak form, 141

XFEM, see extended finite element method
XML format, see file formats
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