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Chapter 1

PDE’s and FEniCS

Models are used to explain and predict phenomena of interest. These can be as simple as
the exponential function to explain the rate of growth of bacteria [179]. The mathematical
complexity of every model should be chosen conservatively to reflect the level of detail desired
[23, 97, 181]. But in cases where detailed information is required, and spatial relationships
are important, models using partial differential equations (PDEs) are preferred. These are
some of the most complicated models from a mathematical point of view, but they are also
the most accurate and predictive.

PDEs are used pervasively in science, engineering, and technology to model phenomena
of interest [55, 99, 118, 145, 157]. Analytical techniques for solving PDEs remain useful, but
they are severely limited in scope, being able to solve only the simplest model problems.
Modern computers and the development of reliable numerical methods made it possible
to solve PDEs quite generally. The most widely used technique to convert a PDE into a
computable form is the finite element method.

This book is primarily about PDEs as they are used in models. Our emphasis is on
the diversity of PDEs that occur in practice, their features and their foibles. Our intent is
to enable exploration of new models and to show how easily this can be done. However,
this approach is not without caveats. We describe pitfalls in various aspects of the use of
PDE models. We show how to be sure that a PDE model is well posed in many cases. In
particular, we use this theory to understand appropriate boundary conditions.

Secondarily, the book introduces basic concepts of numerical methods for approximating
the solutions of PDEs. This is done so that the language used by software from the FEniCS
Project can be properly understood. We limit the discussion of numerical methods as much
as possible, except when it is essential to avoid catastrophes.

A tertiary objective is to present some examples of the modeling process. One important
type of model is derived by specializing a more general model. An important example of
this is the plate model in structural mechanics. We show how the plate model is derived
from the general elasticity model and indicate some issues that arise related to it. When
relevant, we explain other modeling approaches as well. Ultimately, FEniCS can support an
automated approach to modeling [124, 160, 79, 140, 141, 158].
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2 CHAPTER 1. PDE’S AND FENICS

1.1 The finite element method

The finite element method grew out of what were called matrix methods of structural me-
chanics [83, 122]. It was ultimately realized that finite element methods could be viewed
as variational methods for solving PDEs. Although the use of variational methods to solve
PDEs can be traced earlier [84, 61], the development of the finite element method started
in earnest in the 1950’s [56]. In the late 1960’s, the term ‘finite element method’ became
well established. The first edition of Zienkiewicz’s book [191] was published in 1967 entitled
“The finite element method in structural and continuum mechanics” and the second edition
appeared in 1971 under the title “The finite element method in engineering science.”

Finite element analysis is used in essentially all industrial design. The gold standard
software for five decades has been NASTRAN, a code developed in Fortran using software
development techniques of the 1960’s era. Based largely on this type of software alone, the
industry has grown to produce multi-billion-dollars of revenue each year. However, the sim-
ulation challenges of today and tomorrow, involving new materials with poorly understood
fundamental properties, are stressing NASTRAN and its descendants to a breaking point.
Moreover, as advanced technology becomes more highly refined and optimized, the need for
more complex simulations will continue to grow. We predict that

soon the simulation software itself will become the majority of the value
in product design. Thus the time is right to rethink technical simulation.

In 2002, the FEniCS Project started at the University of Chicago, devoted to automating
the modeling process. This has profoundly changed the state of the art in simulation tech-
nology. The FEniCS Project has many strengths that allow it to address a rapidly changing
field of simulation challenges. FEniCS could become the basis for the next generation of
simulation technology. The FEniCS Project originated in academic research, but now com-
mercial support for FEniCS tools is available, and for the development of customer-driven
applications based on the FEniCS structure.

We next review the history of NASTRAN and FEniCS in some detail.

1.2 NASTRAN

NASTRAN (NASA STRucture ANalysis) is a finite element analysis program that was orig-
inally developed (with NASA funding) in the late 1960s to support the aerospace industry.
NASTRAN was released to the public in 1971 by NASA’s Office of Technology Utilization.

1.2.1 Software architecture

NASTRAN is written primarily in FORTRAN and contains over one million lines of code.
NASTRAN was designed using software techniques of the 1960’s to consist of several mod-
ules. A module is a collection of FORTRAN subroutines designed to perform a specific
task, such as processing model geometry, assembling matrices, applying constraints, solving
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1.3. FENICS 3

matrix problems, calculating output quantities, conversing with the database, printing the
solution, and so on.

1.2.2 Scope

NASTRAN is primarily a solver for finite element analysis. It does not have functionality
that provides mesh generation or any type of model building. All input to and output from
the program is in the form of text files.

1.3 FEniCS

The FEniCS Project started in an informal gathering in Hyde Park in 2002. It was loosely
based on experiences gained in developing an earlier software system called Analysa, a com-
mercial project funded largely by Ridgway Scott and Babak Bagheri [14], together with the
experiences derived by a group based in Sweden led by Claes Johnson.

The FEniCS Project was publicly launched at the University of Chicago in 2003, and it
has grown to an international collaboration involving primary developers at sites in England,
Holland, Norway, and Sweden, as well as three sites in the US. It has many users world-wide.

It was estimated by openhub.net in 2015 that the FEniCS Project represented 34 person-
years of effort, with 25,547 software commits to a public repository, made by 87 contributors,
and representing 134,932 lines of code. At that time, it was estimated that there were about
50,000 downloads per year through a variety of sites, and Google Analytics estimated that
the FEniCS Project web page had about 10,000 monthly visitors.

The FEniCS Project also recieves significant numbers of citations in the technical litera-
ture. This connotes more than just academic praise. It shows that the technical community
feels that FEniCS tools are of significant value. For example, in September 2017 the FEniCS
book [123] had accumulated almost 1,000 citations, and the DOLFIN paper [124] had over
360 citations.

FEniCS is a polymorphic acronym (e.g., Finite Elements nurtured in Computer Science,
or For Everything new in Computational Science).

1.3.1 Leverage

The FEniCS Project leverages mathematical structure inherent in scientific models to au-
tomate the generation of simulation software. What makes FEniCS different from previous
generations of software is that it uses compiler technology to generate software where pos-
sible, instead of just accumulating and integrating hand-coded software libraries. A major
discovery was an optimized way to compute finite element matrices that makes finite element
computation essentially as efficient as finite difference computation, while still retaining the
geometric generality that is unique to finite element methods [105, 106, 107]. In 2012, a
book was released [123] explaining both how FEniCS tools were developed as well as how
they are used in a broad range of applications.
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4 CHAPTER 1. PDE’S AND FENICS

1.3.2 FEniCS advantages

FEniCS utilizes many modern software techniques. One of these is Just-in-Time (JIT)
compilations, as did Analysa [14]. This allows a user to modify the physical models being
used and quickly re-simulate. Similar tools allow for the order or type of finite element to
be changed at will. FEniCS thus can go far beyond the standard concept of multi-physics.
Instead of just mixing a few different physics models, FEniCS allows a continuum of models
to be explored. This is one reason why such a diversity of phyiscal applications are presented
in the book [123].

But there are many more examples of advantages. FEniCS is the first system to imple-
ment the full Periodic Table of Finite Elements [8]. This means that FEniCS users can utilize
elements never before available for a variety of complicated models in finite element analysis.
FEniCS also uses tensor representations [105, 106, 107, 108, 159] to make matrix generation
more efficient. In addition, FEniCS interfaces to components that are state-of-the-art in
different domains such as system solution and mesh generation. For example, FEniCS pro-
grams easily take advantage of PETSc (developed at Argonne National Laboratory), Trilinos
(developed at Sandia National Laboratory), and other linear and nonlinear system solvers.
FEniCS also interfaces with CGAL, one of the leading mesh generation systems.

1.4 Format of a PDE

There are various ways to describe partial differential equations, and we have chosen the one
that occurs most frequently in mathematics. In other disciplines, the underlying equations
may be expressed in a different way that relates to a phenomenological emphasis. Thus a
translation table may be necessary to facilitate conversion to different domains of application.
We have chosen the mathematical notation for two reasons. First of all, we need something
that is universal for all applications, and a domain specific notation would be natural for
only one domain and confusing in another domain. More importantly, we want to expose the
underlying mathematical structure behind simulation software. We realize that this forces
the reader to use a language that may seem foreign, but the benefit is that it strips away
non-essential trappings that can often mask fundamental behavior.

The general form of a PDE involves a function, which we often call u since it is unknown
at the beginning, defined on a domain Ω ⊂ Rn. For an explanation of our set notation, see
Section 19.1. The function u represents some quantity defined at all points of Ω, and this
quantity can be a vector, in which case we might write it in bold face, viz. u. The function u
depends on some data for the problem, and this data is often called f since it forces u to take
a particular form. In fact, f is sometimes called a forcing function, and it often represents
forces applied to the material whose density is described by u.

Finally, the E in PDE refers to an equation that relates derivatives of u to the data f .
In the one-dimensional case, this may be familiar. The ordinary differential equation (ODE)
u′ = f is something considered in calculus, and we know from the Fundamental Theorem
of Calculus that the ODE means that u is related to the integral of f . But when partial
derivatives are involved in an equation, it is not at all clear why it should be possible to find
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1.4. FORMAT OF A PDE 5

a function u that satisfies such a relationship, even for particular data f . We consider this
question in detail in Section 18.4. But it turns out that a simple theory developed here is
sufficient to guarantee that the combinations of partial derivatives arising in most problems
of interest are admissible.

What is missing from the terminology used so far is that there are often boundary con-
ditions for PDEs that are the most critical factor. The term boundary-value problem is
often used to describe a PDE, and this has the right emphasis. Although there is a general
theory to assess whether a PDE makes sense locally (Section 18.4), the theoretical foun-
dations related to finding the right boundary conditions are more diffuse. We attempt to
develop intuition regarding boundary conditions by a combination of theoretical results and
computational experiments.
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Chapter 2

Variational formulations

The finite element method is based on the variational formulation of partial differential
equations (PDEs). The variational formulation has two advantages:

• it provides a language to define PDEs suitable for compilation into executable code,
and

• it provides a basis for a theory of PDEs that allows one to know whether or not a given
model is well posed.

We explain both these points via a simple example, Laplace’s equation. Subsequently, a
large variety of problems will be shown to fit into this framework.

2.1 Laplace-Poisson equation

It is possible to define an unknown function u in a domain Ω ⊂ Rd, in part, by specifying
its Laplacian (in terms of data f) in the interior of the domain:

−∆u = f in Ω, (2.1)

where the Laplace operator ∆ is defined by (compare Section 19.5.3)

∆u =
d∑
i=1

∂2u

∂x2
i

.

There is a fundamental question as to why we are allowed to combine partial derivatives in
this way, and this will be explored in detail in Section 18.4. But for now, we presume that
this is feasible. Indeed, we will see that the variational formulation allows us to prove this.

The equation (2.1) is insufficient to specify u, since we can add a harmonic function v to
any solution and still have a solution of (2.1). A harmonic function v is any function such
that ∆v ≡ 0, and there are very many of them [10]. Here we are utilizing the fact that (2.1)
represents a linear equation, so that

−∆(u+ v) = (−∆u)− (∆v) = f − 0 = f.
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8 CHAPTER 2. VARIATIONAL FORMULATIONS

Thus we must impose boundary conditions on u to make sense of the problem.
To contrast different possibilities, we consider two types of boundary conditions

u = 0 on Γ ⊂ ∂Ω (Dirichlet), and

∂u

∂n
= 0 on ∂Ω\Γ (Neumann),

(2.2)

where ∂u
∂n

denotes the derivative of u in the direction normal to the boundary, ∂Ω. Here, ∂Ω
denotes the boundary of the domain Ω, and ∂Ω\Γ means the set of point in ∂Ω that are not
in Γ. For more details on notation, see Chapter 19.

To be precise, we assume that ∂Ω is Lipschitz continuous, meaning that it does not have
any cusps, just well-defined angles at boundary points where it is not smooth. We let n
denote the outward unit normal vector to ∂Ω, and we set ∂u

∂n
= n · ∇u. We will also use the

notation

ui =
∂u

∂xi
, uii =

∂2u

∂x2
i

, i = 1, . . . , d.

Thus ∆u = u11 + · · · + udd and ∇u = (u1, . . . , ud). To avoid confusion, we will sometimes
use the notation u,i = ∂u

∂xi
to distinguish differentiation (the comma denotes this) from a

standard vector subscript.
The equation (2.1) is known variously as Poisson’s equation or Laplace’s equation (es-

pecially when f ≡ 0). This equation forms the basis of a remarkable number of physical
models. It serves as a basic equation for diffusion, elasticity, electrostatics, gravitation, and
many more domains. In potential flow [136], the gradient of u is the velocity of incompress-
ible, inviscid, irrotational fluid flow. The boundary ∂Ω is the surface of an obstacle moving
in the flow, and one solves the equation on the exterior of Ω.

We will see (Section 18.1) that the right place to look for such the solution of such an
equation is a Sobolev space denoted H1(Ω) defined by

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d

}
, (2.3)

where by L2(Ω) we mean functions which are square integrable on Ω, and L2(Ω)d means d
copies of L2(Ω) (Cartesian product). There is a natural inner-product, and associated norm,
on L2(Ω) defined by

(v, w)L2(Ω) =

∫
Ω

v(x)w(x) dx, ‖v‖L2(Ω) =
√

(v, v)L2(Ω) =
(∫

Ω

v(x)2 dx
)1/2

. (2.4)

Thus we can say that v ∈ L2(Ω) if and only if ‖v‖L2(Ω) <∞. Similarly, we define

(v, w)H1(Ω) =

∫
Ω

v(x)w(x) dx +

∫
Ω

∇v · ∇w dx, ‖v‖H1(Ω) =
√

(v, v)H1(Ω) . (2.5)

For a vector-valued function w, e.g., w = ∇v, we define

‖w‖L2(Ω) = ‖|w|‖L2(Ω) =
(∫

Ω

|w(x)|2 dx
)1/2

,

where |ξ| denotes the Euclidean norm of the vector ξ ∈ Rd.
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2.2. VARIATIONAL FORMULATION OF POISSON’S EQUATION 9

Ω

Figure 2.1: Domain Ω with Γ indicated in red.

2.2 Variational Formulation of Poisson’s Equation

We now consider the equation (2.1) augmented with boundary conditions (2.2). To begin
with, we assume that Γ has nonzero measure (that is, length or area, or even volume,
depending on dimension). Later, we will return to the case when Γ is empty, the pure
Neumann1 case. A typical domain Ω is shown in Figure 2.1, with Γ shown in red.

To formulate the variational equivalent of (2.1) with boundary conditions (2.2), we de-
fine a variational space that incorporates the essential, i.e., Dirichlet, part of the boundary
conditions in (2.2):

V :=
{
v ∈ H1(Ω) : v|Γ = 0

}
. (2.6)

See Table 2.1 for an explanation of the various names used to describe different boundary
conditions.

The appropriate bilinear form for the variational problem is determined by multiplying
Poisson’s equation by a suitably smooth function, integrating over Ω and then integrating
by parts:

(f, v)L2(Ω) =

∫
Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx−
∮
∂Ω

v
∂u

∂n
ds

=

∫
Ω

∇u · ∇v dx := a(u, v).

(2.7)

The integration-by-parts formula derives from the divergence theorem∫
Ω

∇·w(x) dx =

∮
∂Ω

w(s) · n(s) ds (2.8)

which holds for any sufficiently smooth vector function w = (w1, . . . , wd). Recall that the
divergence operator is defined by

∇·w =
d∑
i=1

∂wi
∂xi

=
d∑
i=1

wi,i,

1Carl Gottfried Neumann (1832—1925) was the son of Franz Ernst Neumann (1798–1895) who was a
teacher of Kirchhoff. Carl (a.k.a. Karl) is also known for the Neumann series for matrices, and he was the
thesis advisor of William Edward Story who at Clark University was the thesis advisor of Solomon Lefschetz.
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10 CHAPTER 2. VARIATIONAL FORMULATIONS

generic name example honorific name
essential u = 0 Dirichlet
natural ∂u

∂n
= 0 Neumann

Table 2.1: Nomenclature for different types of boundary conditions.

where we use the notation wi,j to denote ∂wi
∂xj

.

We apply the divergence theorem (2.8) to w = v∇u, together with the observations that
∂u
∂n

= (∇u) · n and ∆u = ∇· (∇u) (Exercise 2.2). Here, n is the outward-directed normal to
∂Ω. More precisely, we observe that

∇· (v∇u) =
d∑
i=1

(
(v∇u)i

)
,i

=
d∑
i=1

(v u,i),i =
d∑
i=1

(
v,iu,i + v u,ii

)
= ∇v · ∇u+ v∆u.

Thus the divergence theorem applied to w = v∇u gives∮
∂Ω

v∇u(s) · n(s) ds =

∫
Ω

(
∇· (v∇u)

)
(x) dx =

∫
Ω

(∇v · ∇u+ v∆u)(x) dx,

which means that∫
Ω

−v(x)∆u(x) dx =

∫
Ω

∇v(x) · ∇u(x) dx−
∮
∂Ω

v
∂u

∂n
ds. (2.9)

The boundary term in (2.7) vanishes for v ∈ V because either v or ∂u
∂n

is zero on any part
of the boundary. Thus, u can be characterized via

u ∈ V satisfying a(u, v) = (f, v)L2(Ω) ∀v ∈ V. (2.10)

The companion result that a solution to the variational problem in (2.10) solves Poisson’s
equation can also be proved [37], under suitable regularity conditions on u so that the relevant
expressions in (2.1) and (2.2) are well defined. We will show how this is done in detail in the
one-dimensional case in Section 6.2.3.

2.3 Method of manufactured solutions

We now demostrate the power of the variational formulation as a language for PDEs. In
Program 2.1, we present a complete code that solves Laplace’s equation and maps in a clear
way to the ingredients of the variational formulation. But first we need a way to tell that
the code is really working correctly.

We can test our technology by considering a problem with a known solution. One way
to do this is to use the method of manufactured solutions [127]. Consider

−∆u = 2π2 sin(πx) sin(πy) in Ω = [0, 1]× [0, 1]

u = 0 on ∂Ω,
(2.11)
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2.3. METHOD OF MANUFACTURED SOLUTIONS 11

whose solution is u(x, y) = sin(πx) sin(πy). Of course, we started with the solution u(x, y) =
sin(πx) sin(πy) and then computed its Laplacian to get f = 2π2 sin(πx) sin(πy). The imple-
mentation of this problem is given in Program 2.1.

1 from dolfin import *

2

3 # Create mesh and define function space

4 mesh = UnitSquareMesh(32, 32)

5 V = FunctionSpace(mesh, "Lagrange", 1)

6

7 # Define boundary condition

8 u0 = Constant(0.0)

9 bc = DirichletBC(V, u0, "on_boundary")

10

11 # Define variational problem

12 u = TrialFunction(V)

13 v = TestFunction(V)

14 you = Expression("(sin(3.141592*x[0]))*(sin(3.141592*x[1]))")

15 a = inner(grad(u), grad(v))*dx

16 L = (2*3.141592*3.141592)*you*v*dx

17

18 # Compute solution

19 u = Function(V)

20 solve(a == L, u, bc)

21 plot(u, interactive=True)

Program 2.1: Code to implement the problem (2.11). The code in line 4 defines the domain
(a square) and the boundary conditions are specified in lines 8 and 9. The code in lines 12
to 16 defines the ingredients of the variational formulation.

The code is a faithful representation of the variational formulation. The domain is rep-
resented by mesh which incapsulates both the definition of the domain and a subdivision of
it. The form a in line 15 is just missing an integral sign and the domain of integration. The
latter is implicit due to the link with the variational space V which encodes this information.
The symbol dx stands for Lebesgue measure over the domain represented by mesh. It is
necessary to specify this as other integrals will appear shortly.

In line 9 in Program 2.1, the third variable in DirichletBC specifies where Dirichlet
boundary conditions are to be specified. Table 2.2 specifies two other ways of achieving
the same thing. In Program 2.2, a logical function boundary is defined that is True if a
point is outside the domain, and False otherwise. A small parameter DOLFIN EPS (machine
precision) is used to avoid floating point numbers being very close to zero. Thus for any
points very close to the boundary of the square, the function boundary will evaluate to
True. We leave as Exercise 2.1 to implement Program 2.1 and check to see if it gets the
right answer.
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12 CHAPTER 2. VARIATIONAL FORMULATIONS

1 def boundary(x):

2 return x[0] < DOLFIN_EPS or \

3 x[0] > 1.0 - DOLFIN_EPS or \

4 x[1] < DOLFIN_EPS or \

5 x[1] > 1.0 - DOLFIN_EPS

Program 2.2: Code to define the boundary of a square explicitly.

technique specification example where used
keyword "on boundary" Program 2.1

reserved function DomainBoundary() Program 3.1
defined function boundary Program 2.2, Program 4.1

Table 2.2: Different ways to specify the boundary of a domain.

2.4 Formulation of the Pure Neumann Problem

In the previous section, we introduced the variational formulation for Poisson’s equation with
a combination of boundary conditions, and they all contained some essential (i.e., Dirichlet)
component. The situation for the case of pure Neumann (or natural) boundary conditions

∂u

∂n
= 0 on ∂Ω (2.12)

(i.e., when Γ = Ø) is a bit different, just as in the one-dimensional case (cf. Exercise 6.1).
In particular, solutions are unique only up to an additive constant, and they can exist only
if the right-hand side f in (2.1) satisfies∫

Ω

f(x) dx =

∫
Ω

−∆u(x) dx =

∫
Ω

∇u(x) · ∇1 dx−
∮
∂Ω

∂u

∂n
ds = 0. (2.13)

A variational space appropriate for the present case is

V =
{
v ∈ H1(Ω) :

∫
Ω

v(x) dx = 0
}
. (2.14)

For any integrable function g, we define its mean, ḡ, as follows:

ḡ :=
1

meas(Ω)

∫
Ω

g(x) dx. (2.15)

For any v ∈ H1(Ω), note that v − v̄ ∈ V . Then u − ū satisfies the variational formulation
(2.10) with V defined as in (2.14). Conversely, if u ∈ H2(Ω) solves the variational equation
(2.10) with V defined as in (2.14), then u solves Poisson’s equation (2.1) with a right-hand-
side given by

f̃(x) := f(x)− f̄ ∀x ∈ Ω (2.16)

with boundary conditions (2.12).

October 2, 2017, do not distribute 12



2.5. LINEAR FUNCTIONALS AS DATA 13

2.5 Linear functionals as data

The expression (f, v)L2(Ω) on the right-hand side of (2.10) is an example of a linear func-
tional. The right-hand side of (2.10) can be written succintly as

F (v) = (f, v)L2(Ω) ∀v ∈ V. (2.17)

The expression F is called a linear functional because (a) it is linear and (b) it has scalar
values. By linear, we mean that F (u+av) = F (u)+aF (v) for any scalar a and any u, v ∈ V .

The critical condition on a linear functional (a.k.a., linear form) for success in a vari-
ational formulation is that it be bounded or continuous. A bounded linear functional
(equivalently a continuous linear functional) F on a normed space V must satisfy

|F (v)| ≤ CF‖v‖V ∀v ∈ V. (2.18)

A natural norm ‖·‖V for the space V defined in (6.6) is

‖v‖a =
√
a(v, v).

The smallest possible constant CF for which this holds is called the dual norm of F and is
defined by

‖F‖V ′ := sup
06=v∈V

|F (v)|
‖v‖V

. (2.19)

We will see many bounded linear forms as right-hand sides in variational formulations. But
there are many which are not bounded, such as

F (v) := v′(x0) (2.20)

for some x0 ∈ [0, 1]. This form is linear, but consider what it should do for the function
v ∈ H1([0, 1]) given by

v(x) := |x− x0|2/3 (2.21)

(see Exercise 6.2).

2.6 Coercivity of the Variational Problem

The variational form a(·, ·) introduced in the previous two sections is coercive on the cor-
responding spaces V (see [37]): there is a constant c0 depending only on Ω and Γ such
that

‖v‖2
H1(Ω) ≤ c0a(v, v) ∀v ∈ V. (2.22)

We show in Section 6.4 how one can prove such a result in the one-dimensional case. Note
that

(u, v)H1(Ω) = a(u, v) + (u, v)L2(Ω)
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14 CHAPTER 2. VARIATIONAL FORMULATIONS

so that (2.22) follows if we can show that

‖v‖2
L2(Ω) ≤ (c0 − 1)a(v, v) ∀v ∈ V.

From (2.22), it follows that the problem (2.10) is well-posed. In particular, we easily see
that the solution to the problem must be unique, for if f is identically zero then so is the
solution. In the finite-dimensional case, this uniqueness also implies existence, and a similar
result holds in the setting of infinite dimensional Hilbert spaces such as V . Moreover, the
coercivity condition immediately implies a stability result, namely

‖u‖H1(Ω) ≤
c0a(u, u)

‖u‖H1(Ω)

= c0

(f, u)L2(Ω)

‖u‖H1(Ω)

≤ c0‖f‖V ′ , (2.23)

where ‖f‖V ′ is defined in (2.19).
When coercivity holds, the Lax-Milgram Theorem 2.1 guarantees that the variational

problem (2.10) has a unique solution. There is an additional continuity condition that
usually is straight-forward, namely that the form a(·, ·) is bounded on V , that is,

|a(u, v)| ≤ c1‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ V. (2.24)

In most cases, this condition is evident, but not in all as we describe in Section 5.2.1. What
is often easy to see is that a(v, v) ≤ C‖v‖2

H1(Ω) for all v ∈ V . The connection between this

condition and (2.24) is given by the Cauchy-Schwarz inequality (2.32). Thus we can consider
the general variational formulation to find

u ∈ V satisfying a(u, v) = F (v) ∀v ∈ V. (2.25)

Theorem 2.1 (Lax-Milgram) Suppose that the variational form a(·, ·) is coercive (2.22)
and continuous (2.24) (bounded) on H1(Ω). Then the variational problem (2.25) has a unique
solution u for every continuous (bounded) linear functional F defined on H1(Ω). Moreover,

‖u‖H1(Ω) ≤ c1c0 sup
v∈H1(Ω)

|F (v)|
‖v‖H1(Ω)

= c1c0‖F‖H1(Ω)′ , (2.26)

where c0 is the constant in (2.22) and c1 is the constant in (2.24).

The Lax-Milgram theorem implies the well-posedness of the partial differential equations
related to the variational formulation. The same type of bound as in (2.23) holds for discrete
approximations as well under a very simple condition, indicated in (3.5). In this case, the
bound corresponds to the stability of the numerical scheme.

2.7 Cauchy-Schwarz inequality

There is one small detail that we have let slip pass. The space V is defined using the
requirement that a(v, v) < ∞, but what we need to know is that a(u, v) is well defined for
all u, v ∈ V . The latter is a consequence of the former, as follows.
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2.8. EXERCISES 15

Let t ∈ R be arbitrary, and expand a(u− tv, u− tv) to get

a(u− tv, u− tv) = a(u− tv, u)− ta(u− tv, v) = a(u, u)− ta(v, u)− ta(u, v)+ t2a(v, v). (2.27)

The bilinear form a(·, ·) is symmetric: a(v, w) = a(w, v), so (2.27) implies

a(u− tv, u− tv) = a(u, u)− 2ta(v, u) + t2a(v, v) = a(u, u)− 2ta(u, v) + t2a(v, v). (2.28)

In particular, since a(u− tv, u− tv) ≥ 0,

2ta(u, v) ≤ a(u, u) + t2a(v, v). (2.29)

For example, suppose that a(v, v) = 0. Choose the sign of t to be the sign of a(u, v) and we
conclude that

2|t| |a(u, v)| ≤ a(u, u). (2.30)

Since this holds for all t ∈ R, we can let |t| → ∞ to conclude that a(u, v) = 0. If a(v, v) 6= 0,
define t = sign(a(u, v))‖u‖a/‖v‖a. If by chance a(u, u) = 0, then we reverse the previous
argument to conclude that again a(u, v) = 0. If it is not zero, and thus t 6= 0, we can divide
by |t| in (2.29) to get

2|a(u, v)| ≤ 1

|t|
a(u, u) + |t| a(v, v) = 2‖u‖a‖v‖a. (2.31)

Thus we have proved the Cauchy-Schwarz inequality

|a(u, v)| ≤ ‖u‖a‖v‖a. (2.32)

The Cauchy-Schwarz inequality is generally true for any non-negative, symmetric bilinear
form. It is often stated as a property of an inner-product. Our bilinear form a(·, ·) is
almost an inner-product except that it lacks one condition, non-degeneracy. In our case
a(v, v) = 0 if v is constant, and for an inner-product, this is not allowed. One example of an
inner-product is the bilinear form

(u, v)L2(Ω) =

∫
Ω

u(x) v(x) dx. (2.33)

Here we see that (v, v)L2(Ω) = 0 implies that v ≡ 0. But the Cauchy-Schwarz inequality does
not require this additional property to be valid.

2.8 Exercises

Exercise 2.1 Run Program 2.1 and check visually that it is getting the expected answer.

Exercise 2.2 Verify the vector identity ∆u = ∇· (∇u).
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16 CHAPTER 2. VARIATIONAL FORMULATIONS

Exercise 2.3 Modify Program 2.1 by using a different way to specify the boundary as de-
scribed in Table 2.2. Make sure it gives a reasonable answer.

Exercise 2.4 Use the method of manufactured solutions to generate a polynomial solution
on the square. Define q(t) = t(1−t) and let u(x, y) = q(x)q(y). Note that u satisfies Dirichlet
boundary condtions on ∂Ω. Find f such that −∆u = f . Modify Program 2.1 using this f
and u.

Exercise 2.5 Use the method of manufactured solutions to generate a solution to the pure
Neumann problem with boundary conditions (2.12) on the square. Start with u(x, y) =
(cos πx)(cosπy) and compute the corresponding f such that −∆u = f . Modify Program 2.1
using this f and u. (Hint: dolfin does not allow the definition of the space (2.14), so
proceed näıvely and use the full space. See Section 16.1.2 for more details.)

Exercise 2.6 Inhomogeneous Dirichlet boundary conditions u = g on ∂Ω can be posed in
two equivalent ways. Let us assume that g ∈ H1(Ω) for simplicity. We can think of finding
u ∈ V + g such that

a(u, v) = (f, v)L2 ∀v ∈ V.
Here V = H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}, and V + g = {v ∈ H1(Ω) : v − g ∈ V }.
The other way that we can define u is by writing u = u0 + g with u0 ∈ V determined by

a(u0, v) = (f, v)L2 − a(g, v) ∀v ∈ V.

Note that the linear functional F (v) = (f, v)L2 − a(g, v) is well defined and bounded for
v ∈ H1(Ω). But in either case, we need to justify the variational formulation. In the latter
approach, u0 is well defined since this is a standard variational formulation, but what we
need to see is that it gives an unambiguous answer. For suppose that ui = ui0 + gi for g1 and
g2 that are the same on the boundary, that is, g1 − g2 ∈ V . Define

a(ui0, v) = (f, v)L2 − a(gi, v) ∀v ∈ V.

Show that u1 = u2, that is, the solution depends only on the values of g on the boundary.
(Hint: show that u1 − u2 ∈ V and derive a variational expression for u1 − u2.)

Exercise 2.7 Prove that norms can often be evaluated by duality, motivating the definition
(2.19). For example, consider the Euclidean norm |x| =

√
xtx for x ∈ Rd. Prove that

|x| = sup
06=y∈Rd

ytx

|y|
.

(Hint: use the Cauchy-Scwartz inequality in Section 2.7 to prove that

|x| ≥ ytx

|y|
∀ 0 6= y ∈ Rd,

and then pick y = x to show that equality must hold.)
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Chapter 3

Variational approximation

3.1 Variational Approximation of Poisson’s Equation

Let Th denote a subdivision of Ω; typically this will be what is called a triangulation, made of
triangles in two dimensions or tetrahedra in three dimensions. A triangulation of the domain
in Figure 2.1 is shown in Figure 3.1(a). The main requirement for a triangulation is that no
vertex of a triangle can be in the middle of an edge. However, more general subdivisions can
be used that violate this property [17, 164, 173].

The main concept of the finite element method was to use each element of the subdivision
as a separate domain in which to reason about the balance of forces or other concepts in
the model. Mathematically, this corresponds to choosing a set of functions on each element
to represent the variables used in the model. Often, the same set of functions is used on
each element, although this is not necessary [164, 173, 60]. In this way, one constructs a
finite dimensional space Vh which can be used in what is known as the Galerkin method
to approximate the variational formulation (2.25), as follows:

find uh ∈ Vh satisfying a(uh, v) = (f, v) ∀v ∈ Vh. (3.1)

Here we can think of h as designating the subdivision, or perhaps as a parameter that denotes
the size of the elements of the subdivision.

(a) (b)

Figure 3.1: (a) Triangulation of the domain Ω. (b) Nodal positions for Vh are indicated by
the black dots; note that vertices in Γ are not included, to respect the essential (Dirichlet)
boundary condition.
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18 CHAPTER 3. VARIATIONAL APPROXIMATION

Figure 3.2: Typical basis function for continuous piecewise linear functions.

The coercivity condition implies stability for the discrete approximation, namely

‖uh‖H1(Ω) ≤
Ca(uh, uh)

‖uh‖H1(Ω)

= C
(f, uh)

‖uh‖H1(Ω)

≤ C‖f‖V ′ , (3.2)

where we will explain the meaning of ‖f‖V ′ in Section 6.2.1. In particular, if f ≡ 0, then
uh ≡ 0. Provided Vh is finite dimensional, this implies that (3.1) always has a unique
solution. We can see this more clearly by choosing a basis {φi ∈ Vh : i = 1, . . . , Nh}. Write
uh =

∑
i Uiφi. Using the linearity of the form a(·, ·) in each of its variables, we obtain the

linear system AU = F where

Aij = a(φi, φj) ∀i, j = 1, . . . , Nh, Fi =

∫
Ω

f(x)φi(x) dx ∀i = 1, . . . , Nh. (3.3)

That is, since A is symmetric (Aji = a(φj, φi) = a(φi, φj) = Aij), we have

Fj =

∫
Ω

f(x)φj(x) dx = a(uh, φj) = a
(∑

i

Uiφi, φj
)

=
∑
i

Uia(φi, φj) =
∑
i

UiAij =
∑
i

AjiUi =
(
AU)j

(3.4)

for all j = 1, . . . , Nh. We know from linear algebra that the solution to a linear system
AU = F exists uniquely if and only if the only solution for F = 0 is U = 0. The latter is
guaranteed by the coercivity condition (2.23).

3.1.1 Piecewise linears

Given a triangulation, the simplest space Vh that we can construct is the set of continuous
piecewise linear functions. This means that on each triangle (or tetrahedron), such functions
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3.1. VARIATIONAL APPROXIMATION OF POISSON’S EQUATION 19

Figure 3.3: Nodes for quadratics: vertices and edge midpoints.

are linear, and moreover we contrive to make them continuous. A linear function is deter-
mined by its values at the vertices of a simplex. This is easy to see in one or two dimensions;
the graph of the function is a line or plane going through the specified values at the vertices.
If we demand that the values of v ∈ Vh at vertices agree in all of the triangles meeting there,
then it is not hard to see that the resulting function is continuous. In two dimensions, the
values along edges are specified completely by the values at the vertices. Furthermore, we
can define a basis for Vh in terms of functions that satisfy φi(xj) = δij (Kronecker δ). Such
a function is depicted in Figure 3.2.

The vertices of a triangulation provide the nodes of the space Vh; these are shown as
black dots in Figure 3.1. Note that we have indicated only the vertices where the nodal
values are non-zero, respecting the boundary condition that v = 0 on Γ for v ∈ Vh ⊂ V .

In order to approximate the variational problem (2.25) with variational space (2.6), we
need to insure that

Vh ⊂ V, (3.5)

in order to apply Céa’s Theorem [37, 2.8.1], which says the following.

Theorem 3.1 (Céa) Suppose that Vh ⊂ V , that the variational form a(·, ·) is coercive
(2.22) and continuous (2.24) (bounded) on H1(Ω), and that F is well defined and bounded
on H1(Ω). Then

‖u− uh‖H1(Ω) ≤ c1c0 inf
v∈Vh
‖u− v‖H1(Ω), (3.6)

where c0 is the constant in (2.22) and c1 is the constant in (2.24).

3.1.2 Piecewise quadratic approximation

To obtain a more accurate solution in a cost effective way, it is often useful to use higher-order
polynomials in each element in a subdivision. In Figure 3.3 we see the nodes for piecewise
quadratic functions for the triangulation in Figure 3.1(a), respecting the essential boundary
condition posed on Γ shown in red in Figure 2.1.

Again, we can define a basis for the space Vh of continuous piecewise quadratics in terms
of functions that satisfy φi(xj) = δij (Kronecker δ), where the xj’s are the nodes in Figure 3.3.
But now it is not so clear how we can be sure that this is a valid representation. What we
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20 CHAPTER 3. VARIATIONAL APPROXIMATION

(a) (b) (c)

Figure 3.4: Varying mesh number M and polynomial degree k with the same number of
nodes: (a) M = 4, k = 1 (linears), (b) M = 2, k = 2 (quadratics), (c) M = 1, k = 4
(quartics).

need to know is that this nodal representation is unisolvent on each triangle, meaning that
on each triangle you can solve uniquely for a quadratic given the values at the specified
nodes, the vertices and edge midpoints.

The way this is done is by degree reduction. On each edge, we have three distinct
points that determine uniquely a quadratic, simply by invoking the fundamental theorem of
algebra. In particular, we thus know that if all of the nodal values on one edge vanish, then
the corresponding quadratic q(x, y) must vanish on that edge. For simplicity, and without
loss of generality, let us suppose that edge lies on the x-axis. Then q(x, y) = y`(x, y) where
` is a linear polynomial in x and y. This can be verified by expanding q in powers of x
and y (there are 6 terms) and invoking the fact that q(x, y) vanishes on the edge lying on
the x-axis. Now we use the fact that q also vanishes on the other two edges of the triangle,
neither of which can lie on the x-axis, so that means that ` must also vanish on these edges.
But this clearly implies that ` ≡ 0, and thus q ≡ 0. By a simple result in linear algebra, we
know that uniqueness of the representation implies existence of a representation, because we
have made sure that we have exactly 6 nodal variables matching exactly the dimension (6)
of the space of quadratic polynomials in two dimensions. Complete details are found in [37,
Chapter 3].

3.1.3 Arbitrary degree polynomials

There is no limit on the degree of polynomials that can be used. The general family of
elements is called the Lagrange elements. There is even some regularity to the pattern of
nodes, as shown in Figure 3.4.

We can see the effect of varying the polynomial degree with a simple problem, using
the method of manufactured solutions [127] (Section 2.3) using the problem (2.11), whose
solution is u(x, y) = sin(πx) sin(πy), which was first implemented in Program 2.1. A more
sophisticated version is presented in Program 3.1. The main differences between Program 2.1
and Program 3.1 are found on lines 3–7 in Program 3.1. Line 3 imports the library sys to
define the variables sys.argv and also imports an appropriate timer from the indicated
library. Line 4 also imports an appropriate timer from the indicated library. The code in
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3.1. VARIATIONAL APPROXIMATION OF POISSON’S EQUATION 21

lines 6 and 7 are used to input data about the mesh size and polynomial degree from the
command line. The importation of the library math in line 3 allows us to use π = math.pi

(lines 25 and 27) with full accuracy. In line 19, a construct is used to pass a parameter into
the expression f. It is not allowed to include a variable, even a constant, inside the quotation
marks in an Expression unless its value is defined in the Expression statement itself. The
print command is standard Python, but it includes a dolfin command errornorm that we
explain now.

One way to quantify the quality of a numerical solution is to compute the errors

‖uh − u‖L2(Ω) = ‖uh − (2π2)−1f‖L2(Ω) (3.7)

for different meshes (of the type shown in Figure 3.4) and polynomial degrees. Such errors,
together with execution times for computing the numerical soltuion, are given in Table 3.1.
The implementation of the error norm is given via the function errornorm in line 35 in
Program 3.1. Recall that f is the exact solution and u is the finite element approximation.
But f is an abstract expression, whereas u is in the finite element variational space (line 30).
The function errornorm expects inputs of exactly this type as the first two entries. The
third entry specifies which norm to compute. The final, optional entry deals with the issue
of accuracy. Since the first entry is an exact expression, it can be evaluated to arbitrary
accuracy, and the final entry specifies using a quadrature rule with accuracy three higher
than would naturally be required just for computing the finite element (polynomial) degree
accurately.

What we see in Table 3.1 is that the error can be reduced substantially by using higher-
order polynomials. Increasing the mesh number for linear Lagrange elements does reduce
the error, but the execution time grows commensurately with the error reduction. Using
linears on a mesh of size 256 gives half the error of quadratics on a mesh of size 16, but
the latter computation requires one-tenth of the time. For the same amount of time as this
computation with quadratics, using quartics on a mesh of size 8 gives an error almost two
orders of magnitude smaller.

Each mesh with double the number of mesh points was derived from the one with the
smaller number of points by subdiving each triangle into four similar triangles. The cases
with mesh number equal to 1, 2, and 4 are shown in Figure 3.5 in the case that crossed
meshes are used.

To get the highest accuracy, the best strategy is to use higher polynomial order, up to a
point. The most accurate computation occurs with polynomial degree 8 with a mesh number
of 8. But the error quits decreasing at a certain point due to the amplification of round-off
error due to increasing condition number of the numerical system. We will discuss the effects
of finite precision arithmetic is more detail in Section 7.4.

The times presented here should be viewed as approximate. There is significant variation
due to system load from run to run. These computations were done on a MacBook Pro with
2.3 GHz Intel Core i7 and 16 GB 1600 MHz DDR3 memory. However, we do see order of
magnitude variation depending on the mesh size and polynomial degree.
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22 CHAPTER 3. VARIATIONAL APPROXIMATION

(a) (b) (c)

Figure 3.5: Crossed meshes with (a) mesh number 1, (b) mesh number 2, (c) mesh number
4.

3.1.4 Initial error estimates

It is easy to understand the basic error behavior for the finite element method. In the case
of both piecewise linear and piecewise quadratics, we described the nodal basis functions φi
which satisfy φi(xj) = δij (Kronecker δ), where xj denotes a typical node. For linears, the
nodes are the vertices, and for quadratics the edge midpoints are added. For higher degree
Lagrange elements, more edge nodes are involved, as well as interior nodes. For example,
with cubics, the centroid of each triangle is a node.

Using such a nodal representation, we can define what is known as a global interpolant
Ih defined on continuous functions, by

Ihu =
∑
i

u(xi)φi. (3.8)

Thus Ih maps continuous functions into the space Vh used in finite element computations.
Let Ih denote a global interpolant for a family of finite elements based on the components

of T h. Let us suppose that Ihu is continuous, i.e., that the family of elements involved are
C0, as is true for the Lagrange family of elements. Further, suppose that the corresponding
shape functions have an approximation order, m, that is

‖u− Ihu‖H1(Ω) ≤ Chm−1|u|Hm(Ω). (3.9)

In order to have good approximation, we need to have

Ih
(
V ∩ Ck(Ω)

)
⊂ Vh, (3.10)

where k is the highest order of differentiation in the definition of Ih, that is, k = 0 for
Lagrange elements. However, we allow for the possibility that k > 0 since this holds for
other element families.

If conditions (3.5) and (3.6) hold, then the unique solution, uh ∈ Vh, to the variational
problem

a(uh, v) = (f, v) ∀v ∈ Vh
satisfies

‖u− uh‖H1(Ω) ≤ C inf
v∈Vh
‖u− v‖H1(Ω). (3.11)
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degree mesh number L2 error time (s)
1 32 2.11e-03 0.09
2 8 5.65e-04 0.08
1 64 5.29e-04 0.13
1 128 1.32e-04 0.31
2 16 6.93e-05 0.08
1 256 3.31e-05 1.07
2 32 8.62e-06 0.11
2 64 1.08e-06 0.23
4 8 7.78e-07 0.08
8 2 7.29e-08 0.08
4 16 2.44e-08 0.11
16 1 1.61e-09 0.09
16 2 1.42e-09 0.12
4 32 7.64e-10 0.23
8 4 1.42e-10 0.09
4 64 2.39e-11 0.74
4 128 4.95e-12 3.0
8 8 3.98e-12 0.13
8 16 1.67e-11 0.33
8 32 6.78e-11 1.11
16 4 5.13e-09 0.25
16 8 2.14e-08 0.80

Table 3.1: Computational experiments with solving the problem (2.11). Degree refers to the
polynomial degree, mesh number indicates the number of edges along each boundary side
as indicated in Figure 3.5, L2 error is the error measured in the L2([0, 1]2) norm, cf. (3.7),
and time is in seconds. Meshes used are of the type shown in Figure 3.4. Results generated
using Program 3.1.
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1 from dolfin import *

2 import sys,math

3 from timeit import default_timer as timer

4 startime=timer()

5 meshsize=int(sys.argv[1])

6 pdeg=int(sys.argv[2])

7 # Create mesh and define function space

8 mesh = UnitSquareMesh(meshsize, meshsize)

9 V = FunctionSpace(mesh, "Lagrange", pdeg)

10 # Define boundary condition

11 u0 = Constant(0.0)

12 bc = DirichletBC(V, u0, DomainBoundary())

13 # Define variational problem

14 u = TrialFunction(V)

15 v = TestFunction(V)

16 f = Expression("(sin(mypi*x[0]))*(sin(mypi*x[1]))",mypi=math.pi)

17 a = inner(grad(u), grad(v))*dx

18 L = (2*math.pi*math.pi)*f*v*dx

19 # Compute solution

20 u = Function(V)

21 solve(a == L, u, bc)

22 aftersolveT=timer()

23 totime=aftersolveT-startime

24 print " ",pdeg," ",meshsize, \

25 " %.2e"%errornorm(f,u,norm_type=’l2’, degree_rise=3)," %.3f"%totime

Program 3.1: Code to implement the problem (2.11) allowing variable mesh size and
polynomial degree input from the command line.

If conditions (3.9) and (3.10) hold, then

‖u− uh‖H1(Ω) ≤ Chm−1|u|Hm(Ω).

The requirements (3.5) and (3.10) place a constraint on the subdivision in the case that Γ
is neither empty nor all of the boundary. These requirements provide the consistency of the
numerical approximation. In such a case, it is necessary to choose the mesh so that it aligns
properly with the points where the boundary conditions change from Dirichlet to Neumann.
For example, in two dimensions, if one uses Lagrange elements and insures that the points
where the boundary conditions change are vertices in the triangulation, then defining

Vh := Ih
(
V ∩ C0(Ω)

)
is equivalent to defining Vh to be the space of piecewise polynomials that vanish on edges
contained in Γ.
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(a) (b)

Figure 3.6: Two different meshes that lead to incompatibility. (a) Functions in Vh do not
vanish on the edge on the top left of the domain and thus Vh 6⊂ V . (b) Functions in Vh
vanish on two edges on the top left of the domain and thus Ihv 6∈ V h.

Since we have chosen the mesh so that the edges contained in Γ form a subdivision of
the latter, it follows that (3.5) holds. On the other hand, if the set of edges where functions
in Vh vanish is too big, as indicated in Figure 3.6(a), (3.10) fails to hold. If the set of edges
where functions in Vh vanish is too small, as indicated in Figure 3.6(b), we fail to obtain
(3.5).

In the case of pure Dirichlet data, i.e., Γ = ∂Ω, then Vh is just the set of piecewise
polynomials that vanish on the entire boundary. In the case of pure Neumann data, i.e.,
Γ = Ø, Vh is the entire set of piecewise polynomials with no constraints at the boundary.

Even if we match the finite element space correctly with the set Γ where Dirichlet bound-
ary conditions are imposed, there is an intrinsic singularity associated with changing bound-
ary condition type along a straight boundary. This effect is explored in detail in Section 4.1.3.

3.1.5 Inhomogeneous Boundary Conditions

When boundary conditions are equal to zero, we often call them homogeneous, whereas we
refer to nonzero boundary conditions as inhomogeneous. Inhomogeneous boundary condi-
tions are easily treated. For example, suppose that we wish to solve (2.1) with boundary
conditions

u = gD on Γ ⊂ ∂Ω and
∂u

∂n
= gN on ∂Ω\Γ, (3.12)

where gD and gN are given. For simplicity, let us assume that gD is defined on all of Ω, with
gD ∈ H1(Ω) and that gN ∈ L2(∂Ω\Γ). Define V to be the space (2.6). Then the variational
formulation of (2.1) , (3.12) is as follows: find u such that u− gD ∈ V and such that

a(u, v) = (f, v)L2(Ω) +

∮
∂Ω\Γ

gNv ds ∀v ∈ V. (3.13)

This is well-posed since the linear form

F (v) := (f, v)L2(Ω) +

∮
∂Ω\Γ

gNv ds
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26 CHAPTER 3. VARIATIONAL APPROXIMATION

is well defined (and continuous) for all v ∈ V . The equivalence of these formulations follows
from (2.9): for any v ∈ V ,∫

Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx−
∮
∂Ω

v
∂u

∂n
ds = a(u, v)−

∮
∂Ω\Γ

v
∂u

∂n
ds. (3.14)

Thus, if u solves (2.1) with boundary conditions (3.12), then (3.13) follows as a consequence.
Conversely, if u solves (3.13) then choosing v to vanish near ∂Ω shows that (2.1) holds, and
thus ∮

∂Ω\Γ
gNv ds−

∮
∂Ω\Γ

v
∂u

∂n
ds = 0 ∀v ∈ V.

Choosing v to be arbitrary proves (3.12) follows. Such arguments require some sophisticated
tools in real analysis that are explained more fully in [37], and in the one-dimensional case,
they are given in detail in Section 6.2.3.

The finite element approximation of (3.13) involves, typically, the use of an interpolant,
IhgD, of the Dirichlet data. We pick a subspace Vh of V just as before, and we seek uh such
that uh − IhgD ∈ Vh and such that

a(uh, v) = (f, v)L2(Ω) +

∮
∂Ω\Γ

gNv ds ∀v ∈ Vh. (3.15)

We can cast this in a more standard form as: find ûh = uh − IhgD ∈ Vh such that

a(ûh, v) = (f, v)L2(Ω) +

∮
∂Ω\Γ

gNv ds+ a(IhgD, v) ∀v ∈ Vh. (3.16)

Then we can set uh = ûh+IhgD. Fortunately, the dolfin built-in function solve automates
all of this, so that the data gD just needs to be specified.

3.2 Robin boundary conditions

It is frequently the case that more complex boundary conditions arise in physical models.
The so-called Robin boundary conditions take the form

αu+
∂u

∂n
= 0 on ∂Ω\Γ, (3.17)

where α is a positive measurable function. (If α vanishes on some part of the boundary,
then the boundary condition reduces to the standard Neumann condition there.) This will
be coupled as before with a Dirichlet condition on Γ.

A variational formulation for this problem can be derived as follows. Let V be the space
defined in (2.6) with the added proviso that V = H1(Ω) in the case that Γ = Ø. From (2.9),
we get

(f, v)L2(Ω) =

∫
Ω

(−∆u(x))v(x) dx =

∫
Ω

∇u(x) · ∇v(x) dx−
∮
∂Ω

v(s)
∂u

∂n
(s) ds

=

∫
Ω

∇u(x) · ∇v(x) dx +

∮
∂Ω

α(s) v(s)u(s) ds,

(3.18)
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after substituting the boundary condition ∂u
∂n

= −αu on ∂Ω\Γ and using the condition (2.6)
that v = 0 on Γ. Thus we define a new variational form

aRobin(u, v) :=

∫
Ω

∇u(x) · ∇v(x) dx +

∮
∂Ω

α(s) v(s)u(s) ds. (3.19)

The variational formulation for the equation (2.1) together with the Robin boundary condi-
tion (3.17) takes the usual form

u ∈ V satisfies aRobin(u, v) = (f, v)L2(Ω) ∀v ∈ V. (3.20)

The companion result that a solution to the variational problem in (3.20) solves both (2.1)
and (3.17) can also be proved under suitable smoothness conditions.

Note that aRobin(·, ·) is coercive on H1(Ω), that is there is a constant C <∞ such that

‖v‖2
H1(Ω) ≤ CaRobin(v, v) ∀v ∈ H1(Ω), (3.21)

provided that α > 0. Thus the stability estimate (2.23) holds as well in this case.
A code implementing Robin boundary conditions (3.17) for the problem

−∆u = sin(πx) sin(πy) in Ω

is given in Program 3.2.

3.3 Exercises

Exercise 3.1 Repeat the experiments recorded in Table 3.1 but with the manufactured solu-
tion in Exercise 2.4. Explain why the error is so small for high-degree polynomial approxi-
mation even for a coarse mesh.

Exercise 3.2 Use Program 3.2 to explore the effect of the parameter α in Robin boundary
conditions. Show that as α → ∞ that the solution tends to the solution of the Dirichlet
problem. More precisely, compute the norm of the difference of the Robin solution from the
known exact solution for the Dirichlet problem for large values of α. What happens when
α→ 0? Explain.

Exercise 3.3 Consider a regular mesh on Ω = [0, 1]× [0, 1] which consists of 45◦ right tri-
angles. Compute the “difference stencil” at the boundary points corresponding to using piece-
wise linear functions on this mesh in the variational approximation for the Robin boundary
condition.

Exercise 3.4 Using an existing dolfin code for the standard boundary-value problem for
Laplace’s equation, derive a code for Robin boundary conditions by implementing the form
aRobin(·, ·) using the standard form a(·, ·).
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28 CHAPTER 3. VARIATIONAL APPROXIMATION

1 from dolfin import *

2

3 # Create mesh and define function space

4 mesh = UnitSquareMesh(32, 32)

5 V = FunctionSpace(mesh, "Lagrange", 1)

6

7 # Define variational problem

8 u = TrialFunction(V)

9 v = TestFunction(V)

10 f = Expression("(sin(3.141592*x[0]))*(sin(3.141592*x[1]))")

11 alfa = 1.0

12 a = inner(grad(u), grad(v))*dx + alfa*u*v*ds

13 L = (2*3.141592*3.141592)*f*v*dx

14

15 # Compute solution

16 u = Function(V)

17 solve(a == L, u)

18

19 # Plot solution

20 plot(u, interactive=True)

Program 3.2: Code to implement Robin boundary conditions. Note that the solve func-
tion in line 17 does not have a boundary condition function included in it.
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Chapter 4

Singularities and the Laplace
Equation

Singularities can arise in solutions for a variety of reasons. Here we consider two. The first
is based on an intrinsic singularity associated with certain types of boundary conditions,
especially at points where the boundary is not smooth or the type of the boundary condition
changes abruptly. The second arises from singularities in the data of the problem.

4.1 Geometry matters

The geometry of the domain boundary has a significant impact on the regularity of the
solution. We begin by considering the problem

−∆u = 0 in Ω

u = g on ∂Ω,
(4.1)

where Ω is a polygonal domain in R2. We will see that the principal singularity of the
solution can be identified, associated with what are often called re-entrant vertices.

4.1.1 L-shaped domain

The L-shaped domain Ω is depicted in Figure 4.1(a):

Ω =
{

(x, y) ∈ [−1, 1]2 : (x, y) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 < θ < 3
2
π
}
, (4.2)

defined using polar coordinates (x, y) = r(cos θ, sin θ). Again using polar coordinates, define

g(r(cos θ, sin θ)) = r2/3 sin(2
3
θ). (4.3)

We can think of ∂Ω consisting of two parts: the convex part Γc = A ∪B ∪ C ∪D where

A = {(1, y) : 0 ≤ y ≤ 1} , B = {(x, 1) : −1 ≤ x ≤ 1} ,
C = {(−1, y) : −1 ≤ y ≤ 1} , D = {(x,−1) : 0 ≤ x ≤ 1} ,

(4.4)
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(a)

A

B

C

D (b)

B

A

C

D

κ

Figure 4.1: (a) L-shaped domain, (b) re-entrant corner of angle κ.

(see Figure 4.1) and the re-entrant part

Γr = {(0, y) : −1 ≤ y ≤ 0} ∪ {(x, 0) : 0 ≤ x ≤ 1} . (4.5)

Then our data g = 0 on Γr. Moreover, it is not hard to see that g is harmonic, meaning
∆g = 0, at least inside the open set Ω. This follows immediately from complex analysis,
since g is the imaginary part of the complex analytic function e(2/3)z. Deriving such a
result is not easy using calculus, as we can indicate. First of all, using polar coordinates
(x, y) = r(cos θ, sin θ), we find the identities

∇r =
(x, y)

r
and ∇θ =

(−y, x)

r2
.

This means that

∇g(x, y) = 2
3

(
(∇r)r−1/3 sin(2

3
θ) + (∇θ)r2/3 cos(2

3
θ)
)

= 2
3
r−4/3

(
(x, y) sin(2

3
θ) + (−y, x) cos(2

3
θ)
)

= 2
3
r−4/3

(
x sin(2

3
θ)− y cos(2

3
θ), y sin(2

3
θ) + x cos(2

3
θ)
)

= 2
3
r−1/3

(
(cos θ) sin(2

3
θ)− (sin θ) cos(2

3
θ), (sin θ) sin(2

3
θ) + (cos θ) cos(2

3
θ)
)

= 2
3
r−1/3

(
− sin(1

3
θ), cos(1

3
θ)
)
,

(4.6)

where we used the trigonometric identities that flow from the expressions (ι =
√
−1)

cos(1
3
θ)− ι sin(1

3
θ) = cos(−1

3
θ) + ι sin(−1

3
θ) = e−ι(1/3)θ = e−ιθeι(2/3)θ

=
(

cos(−θ) + ι sin(−θ)
)(

cos(2
3
θ) + ι sin(2

3
θ)
)

=
(

cos θ − ι sin θ
)(

cos(2
3
θ) + ι sin(2

3
θ)
)

=
(

cos θ cos(2
3
θ) + sin θ sin(2

3
θ)
)

+ ι
(
− sin θ cos(2

3
θ) + cos θ sin(2

3
θ)
)
.

(4.7)

The immediate result of the calculation (4.6) is that, for 0 < θ < 3
2
π, |∇g(x, y)| blows up

like |(x, y)|−1/3, since

|∇g(x, y)| = |∇g(r cos θ, r sin θ)| = 2
3
r−1/3 = 2

3
|(x, y)|−1/3.
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4.1. GEOMETRY MATTERS 31

Figure 4.2: Illustration of the singularity that can occur when boundary condition types are
changed, cf. (4.10), as well as a cut-away of the solution to the slit problem (4.9). Computed
with piecewise linears on the indicated mesh.

Therefore |∇g(x, y)| is square integrable, but it is obviously not bounded. Thus we see the
benefit of working with Sobolev spaces, since this allows g to be considered a reasonable
function even though it has an infinite gradient.

We can in principle use the vector calculus identity ∇· (φψ) = ∇φ ·ψ+φ∇·ψ to compute
∆g = ∇· (∇g) to verify that ∆g = 0, but the algebra is daunting. Instead, we can simply
compute the solution via the standard variational problem (3.15) and see if we find u = g
throughout Ω. We leave this as Exercise 4.1. We also leave as Exercise 4.4 to verify that
∆g = 0 by more classical analytical techniques.

4.1.2 General non-convex domains

The singularity for the L-shaped domain occurs for any domain with non-convex vertex
as depicted in Figure 4.1(b), where the angle of the re-entrant vertex is κ. The L-shaped
domain corresponds to κ = 3

2
π. The principle singularity for such a domain is of the form

gκ(r(cos θ, sin θ)) = rπ/κ sin((π/κ)θ). (4.8)

Note that when κ < π (a convex vertex), the gradient of gκ is bounded. We leave as
Exercise 4.2 to explore this general case for various values of κ.

The largest that κ can be is 2π which corresponds to a slit domain. In this case, we
have g2π =

√
r sin(1

2
θ), which is still in H1(Ω). The slit domain is often a model for crack
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32 CHAPTER 4. SINGULARITIES AND THE LAPLACE EQUATION

propagation. An illustration of a problem on a slit domain is given by

−∆u = 1 in [0, 1]× [−1, 1]

u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω\Γ,

(4.9)

where Γ =
{

(x, 0) : x ∈ [1
2
, 1]
}

. The solution of (4.9) is depicted in Figure 4.2, where only
the top half of the domain (that is, [0, 1]× [0, 1]) is shown. The solution in the bottom half
of the domain can be obtained by symmetric reflection across the x-axis.

The range of κ values for a realistic polygonal domain excludes a region around κ = 0
and κ = π. In particular, we see that κ = π does not yield a singularity; the boundary is a
straight line in this case, and gπ(x, y) = r sin θ = y, which is not singular. When κ = 0, there
is no interior in the domain near this point. Thus for any polygonal domain with a finite
number of vertices with angles κj, there is some ε > 0 such that κj ∈ [ε, π − ε] ∪ [π + ε, 2π]
for all j.

In three dimensions, the set of possible singularities is much greater [59]. Edge singu-
larities correspond to the vertex singularities in two dimensions, but in addition, vertex
singularities appear [185]. The effect of smoothing singular boundaries is considered in [72].

4.1.3 Changing boundary condition type

The slit domain problem also allows us to assess the singularity that potentially occurs when
boundary conditions change type along a straight line. Suppose that we have a domain
Ω = {(x, y) ∈ R2 : x ∈ [−1, 1], y ∈ [0, 1]} and we impose homogeneous Dirichlet conditions
on Γ = {(x, 0) ∈ R2 : x ∈ [0, 1]} and Neumann conditions on Γ∗ = ∂Ω\Γ. We can reflect
the domain Ω around the line y = 0, and we get the domain [−1, 1]2 with a slit given by Γ.
Therefore we see that g2π =

√
r sin(1

2
θ) is harmonic in Ω, satisfies Dirichlet conditions on Γ

and Neumann conditions on Γ∗.
We can expect such a singularity any time we switch from Dirichlet to Neumann boundary

conditions along a straight boundary segment, even with homogeneous boundary condtions.
We illustrate this with the following problem:

−∆u = 0 in [0, 1]2

u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω\Γ,

(4.10)

where Γ =
{

(x, 0) : x ∈ [1
2
, 1]
}

, whose solution is depicted in Figure 4.2. The code for
solving this problem is given in Program 4.1 We leave as Exercise 4.3 to explore this problem
in more detail. In Section 11.4.2 we consider adaptive meshes for solving this problem, as
depicted in Figure 11.1.

4.2 An ill-posed problem?

It is tempting to idealize localized behavior in a physical system as occuring at a single point.
For example, one might wonder what the shape of a drum head would be if one pushes down
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4.2. AN ILL-POSED PROBLEM? 33

on it with a sharp pin. The Laplace equation models to a reasonable extent the deformation
of the drum head (for small deformations), so one might consider

−∆u =0 in Ω

u(x0) =u0

(4.11)

where u0 denotes the prescribed position of a knife edge. However, this problem is not well-
posed. The difficulty is that one cannot constrain a function in H1(Ω) at a single point.
This is illustrated by the function

v(x) = log | log |x| | (4.12)

which satsifies v ∈ H1(B) where B =
{
x ∈ R2 : |x| < 1

2

}
[37, Example 1.4.3]. This function

does not have a well-defined point value at the origin. By shifting this function around, we
realize that functions in H1 may not have point values on a dense set of points. Thus setting
a point value for a function in H1 does not make sense.

It is possible to change to a Dirichlet problem

−∆u =0 in Ω

u =u0 on Γ
(4.13)

where Γ is a small curve representing the point of contact of the pencil with the drum head,
and u0 is some function defined on Γ. As long as Γ has positive length, this problem is
well-posed. However, its behavior will degenerate as the length of Γ is decreased.

Another approach to modeling such phenomena is using the Dirac δ-function [37]:

−∆u =δx0 in Ω

u =0 on ∂Ω,
(4.14)

where δx0 is the linear functional δx0(v) = v(x0). Again, there is an issue since this linear
functional is not bounded on V , as the function v defined in (4.12) illustrates. On the other
hand, the solution to (4.14) is known as the Green’s function for the Laplacian on Ω (with
Dirichlet conditions). It is possible to make sense of (4.14) using more sophisticated Sobolev
spaces [37]. However, rather than taking that approach, we take one that effectively resolves
the issue in conventional spaces. What we do is replace δx0 by a smooth function δAx0

with
the property that ∫

Ω

δAx0
(x) v(x) dx→ v(x0) as A→∞ (4.15)

for sufficiently smooth v. We then consider the problem

∆uA =δAx0
in Ω

uA =g on ∂Ω.
(4.16)

Note that we can pick g to be the fundamental solution, and thus we have uA → g as A→∞.
For example, we can choose δAx0

to be Gaussian function of amplitude A and integral 1. In
particular, in two dimensions,

δAx0
= Ae−πA|x−x0|2 . (4.17)
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degree mesh number amplitude error check-sum
1 128 10,000 5.27e-03 -2.34e-02
1 256 10,000 2.50e-03 -4.57e-09
1 512 10,000 1.47e-03 -2.22e-16
1 1024 10,000 1.08e-03 5.11e-15
4 256 10,000 9.73e-04 -1.02e-10
1 512 100,000 9.67e-04 -1.06e-03
1 1024 100,000 5.24e-04 -1.98e-14

Table 4.1: Data for the solution of (4.16). The amplitude is A, error is ‖uAh − g‖L2(Ω),
check-sum is the value 1−

∫
Ω

(
δAx0

)
h
dx where

(
δAx0

)
h

denotes the interpolant of δAx0
in Vh.

We check our requirement that the integral is 1 via the change of variables y =
√
πAx:∫

R2

πA e−πA|x−x0|2 dx =

∫
R2

e−|y−y0|2 dy = 2π

∫ ∞
0

e−r
2

r dr = π

∫ ∞
0

es ds = π.

In our experiments, x0 was chosen to be near the middle of the square Ω = [0, 1]2, that is,
x0 = (0.50001, 0.50002) to avoid having the singularity at a grid point. The fundamental
solution for the Laplace equation in two dimensions is

g(x) = − 1

2π
log |x− x0|,

and so we took as boundary conditions g(x) = − 1
2π

log |x− x0| for x ∈ ∂Ω. Computational
data for such computations with various meshes, polynomial degrees, and amplitudes A are
shown in Table 4.1. We see that the approximation of the Green’s function is only first order
accurate, reflecting its limited regularity. Increasing the order of polynomials used is only
of modest benefit. Increasing the amplitude of the approximate δ-function is useful up to a
point, but making it larger is only of value if the mesh can be suitably refined.

Code to generate the data in Table 4.1 is given in Program 4.2.

4.3 Exercises

Exercise 4.1 Compute the solution to the problem (4.1) with data g specified by (4.3).
As solution metric, compute the norm of u − g. How does this depend on mesh size and
polynomial order?

Exercise 4.2 Compute the solution to the problem (4.1) with data gκ specified by (4.8). As
solution metric, compute the norm of uκ − gκ. How does this depend on κ, mesh size and
polynomial order?

Exercise 4.3 Let Ω = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0, 1]}, Γ =
{

(x, 0) ∈ R2 : x ∈ [1
2
, 1]
}

.
Solve −∆u = 1 in Ω with Dirichlet conditions on Γ and Neumann conditions on ∂Ω\Γ. See
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Figure 4.2 See if you can identify a constant c such that u = cg2π + v where v is smoother
than u.

Exercise 4.4 The method of manufactured solutions can benefit from many techniques of
classical (analytical) applied mathematics. For example, the Laplace operator in polar coor-
dinates is well known:

∆f = f,rr + r−1f,r + f,θθ.

Use this formula to verify that ∆g = 0 for g specified by (4.3).
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1 from dolfin import *

2 import sys,math

3

4 parameters["form_compiler"]["quadrature_degree"] = 12

5

6 meshsize=int(sys.argv[1])

7 pdeg=int(sys.argv[2])

8

9 # Create mesh and define function space

10 mesh = UnitSquareMesh(meshsize, meshsize)

11 V = FunctionSpace(mesh, "Lagrange", pdeg)

12

13 # Define Dirichlet boundary ( 0.5 < x < 1 and y = 0 )

14 def gamma(x):

15 return x[0] > 0.5 and x[1] < DOLFIN_EPS

16

17 # Define boundary condition

18 u0 = Constant(0.0)

19 bc = DirichletBC(V, u0, gamma)

20

21 # Define variational problem

22 u = TrialFunction(V)

23 v = TestFunction(V)

24 f = Expression("1.0")

25 a = (inner(grad(u), grad(v)))*dx

26 L = f*v*dx

27

28 # Compute solution

29 u = Function(V)

30 solve(a == L, u, bc)

31

32 # Plot solution

33 plot(u, interactive=True)

Program 4.1: Code to implement the problem (4.10). In lines 14 and 15, we see code that
defines the subset Γ of ∂Ω on which Dirichlet conditions are set.

October 2, 2017, do not distribute 36



4.3. EXERCISES 37

1 from dolfin import *

2 import sys,math

3

4 meshsize=int(sys.argv[1])

5 pdeg=int(sys.argv[2])

6 amps=float(sys.argv[3])

7 ba=amps*math.pi

8 dfac=1/(4*math.pi)

9

10 # Create mesh and define function space

11 mesh = UnitSquareMesh(meshsize, meshsize)

12 V = FunctionSpace(mesh, "Lagrange", pdeg)

13

14 # Define boundary condition

15 u0 = Expression("-d*log(pow(x[0]-0.50001,2)+pow(x[1]-0.50002,2))",d=dfac)

16 onec = Expression("1.0")

17 bc = DirichletBC(V, u0, DomainBoundary())

18

19 # Compute solution

20 u = Function(V)

21 solve(a == L, u, bc)

22 uone=project(onec,V)

23 fo=interpolate(f,V)

24 efo= 1-assemble(onec*fo*dx)

25 print " ",pdeg," ",meshsize," %.2e"%amps, \

26 " %.2e"%errornorm(u0,u,norm_type=’l2’, degree_rise=0)," %.2e"%efo

Program 4.2: Code to implement the singularity problem (4.16).
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Chapter 5

Laplace Plus Potential

We now augment the equation (2.1) with a potential Z, which is simply a function defined
on Ω with real values. The PDE takes the form

−∆u+ Zu = f in Ω (5.1)

together with the boundary conditions (2.2). To formulate the variational equivalent of (2.1)
with boundary conditions (2.2), we again use the variational space

V :=
{
v ∈ H1(Ω) : v|Γ = 0

}
. (5.2)

Let Z denote a real valued function on Ω. The appropriate bilinear form for the variational
problem is then

aZ(u, v) =

∫
Ω

∇u(x) · ∇v(x) + Z(x)u(x)v(x) dx. (5.3)

In the case of homogeneous boundary conditions, we seek a solution u ∈ V to

aZ(u, v) =

∫
Ω

f(x)v(x) dx ∀ v ∈ V. (5.4)

5.1 Bounded V

The simplest case is when Z is a constant, in which case (5.1) is often called the Helmholtz
equation. This problem becomes interesting if Z is large, or equivalently, there is a small
coefficient in front of ∆ in (5.1). We propose Exercise 5.1 to explore this problem.

To understand coercivity in such problems, we first consider the eigenvalue problem

−∆u = λu in Ω (5.5)

together with the boundary conditions (2.2). Let us denote the solution of (5.5) by uλ.
Let λ0 be the lowest eigenvalue, and uλ0 ∈ V the corresponding eigenvector, for the

eigenproblem problem (5.5), which we can write in variational form as

a0(uλ, v) = λ

∫
Ω

uλ(x)v(x) dx ∀ v ∈ V, (5.6)
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40 CHAPTER 5. LAPLACE PLUS POTENTIAL

Figure 5.1: Asymptotic wavefunction perturbation computed with quartics on a mesh of size
100, with L = 7.

where a0(·, ·) denotes the case Z ≡ 0, which is thus the same as the bilinear form a(·, ·)
in (2.7). Coercivity (2.22) of the bilinear form a0(·, ·) shows that λ0 > 0. Moreover, if
Z(x) > −λ0 for all x ∈ Ω, then the problem (5.4) is well-posed since it is still coercive.

5.2 Unbounded V

For certain unbounded potentials, it is still possible to show that (5.4) is well-posed. For
example, if Z is either the Coulombic or graviational potential Z(x) = −|x|−1, then the
eigenvalue problem

aZ(uλ, v) = λ

∫
Ω

uλ(x)v(x) dx ∀ v ∈ V, (5.7)

is well-posed, even in the case Ω = R3. In this case, eigensolutions correspond to the wave
functions of the hydrogen atom [144]. We propose Exercise 5.2 to explore this problem.

5.2.1 van der Waals interaction

The van der Waals interaction energy between two hydrogen atoms, separated by a distance
R, is asymptotically of the form −C6R

−6 where the constant C6 can be computed [45] by
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solving a two-dimensional PDE, as follows. Let Ω = [0,∞]× [0,∞] and consider the PDE

−1

2
∆u(r1, r2) + (κ(r1) + κ(r2))u(r1, r2) = − 1

π
(r1r2)2e−r1−r2 in Ω, (5.8)

where the function κ is defined by κ(r) = r−2 − r−1 + 1
2
. The minimum of κ occurs at

r = 2, and we have κ(r) ≥ 1
4
. The problem (5.8) is well-posed in H1

0 (Ω), i.e., given Dirichlet
conditions on the boundary of the quarter-plane Ω. The variational form for (5.8) is

aκ(u, v) =

∫
Ω

1
2
∇u(r1, r2) · ∇v(r1, r2) +

(
κ(r1) + κ(r2)

)
u(r1, r2) v(r1, r2) dr1dr2, (5.9)

defined for all u, v ∈ H1
0 (Ω), and it is coercive on H1

0 (Ω), since κ(r1) + κ(r2) ≥ 1
2
. In

particular,

a(v, v) ≥ 1

2

∫
Ω

|∇v(r1, r2)|2 + v(r1, r2)2 dr1dr2, (5.10)

for all v ∈ H1
0 (Ω). The form a(·, ·) is continuous on H1

0 (Ω) because of the Hardy inequality∫ ∞
0

(
u(r)/r

)2
dr ≤ 4

∫ ∞
0

(
u′(r)

)2
dr (5.11)

for u ∈ H1
0 (0,∞). Note that it would not be continuous on all of H1(0,∞); without the

Dirichlet boundary condition, the form would be infinite for some functions in H1(0,∞).
To be able to render this problem computationally feasible, we replace Ω by a square ΩL

of side L in length; ΩL = [0, L] × [0, L]. Define U(r1, r2) = u(Lr1, Lr2). Then ∆U(r1, r2) =
L2∆u(Lr1, Lr2). Thus

−1

2
L−2∆U(r1, r2) = −1

2
∆u(Lr1, Lr2) = − (κ(Lr1) + κ(Lr2))u(Lr1, Lr2)

− L4

π
(r1r2)2e−Lr1−Lr2

= − (κ̂L(r1) + κ̂L(r2))U(r1, r2)− L4

π
(r1r2)2e−Lr1−Lr2 ,

(5.12)

where κ̂L(r) = L−2r−2 − L−1r−1 + 1
2
. Therefore U satisfies

−1
2
L−2∆U(r1, r2) + (κ̂L(r1) + κ̂L(r2))U(r1, r2) = −L

4

π
(r1r2)2e−Lr1−Lr2 , (5.13)

which we can pose with homogeneous Dirichlet boundary conditions (u = 0) on Ω1 =
[0, 1]× [0, 1]. Multiplying by 2L2, we obtain the equation

−∆U(r1, r2) + (κL(r1) + κL(r2))U(r1, r2) = −2L6

π
(r1r2)2e−Lr1−Lr2 = f(r1, r2), (5.14)

where κL(r) = 2r−2 − 2Lr−1 + L2 and

f(r1, r2) = −2L6

π
(r1r2)2e−Lr1−Lr2 . (5.15)
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Thus we introduce the variational form

aL(u, v) =

∫
[0,1]2
∇u(r1, r2) · ∇v(r1, r2) +

(
κL(r1) + κL(r2)

)
u(r1, r2) v(r1, r2) dr1dr2 (5.16)

Again, we have a variational problem in standard form: find uL ∈ V = H1
0 ([0, 1]2) such that

aL(uL, v) =

∫
[0,1]2

f(r1, r2) v(r1, r2) dr1dr2 (5.17)

for all v ∈ V . The solution is shown in Figure 5.1 with L = 7 computed on a mesh of size
100 with quartic Lagrange piecewise polynomials.

The code for solving this problem is given in Program 5.1.
The main quantity of interest [45, equation (3.25)] is

C6 = −32π

3

∫ ∞
0

∫ ∞
0

r2
1r

2
2e
−(r1+r2)u(r1, r2) dr1dr2

≈ −32π

3

∫ L

0

∫ L

0

r2
1r

2
2e
−(r1+r2)u(r1, r2) dr1dr2

≈ −32π

3

∫ L

0

∫ L

0

r2
1r

2
2e
−(r1+r2)U(r1/L, r2/L) dr1dr2

= −32π

3

∫ 1

0

∫ 1

0

L4R2
1R

2
2e
−(LR1+LR2)U(R1, R2)L2 dR1dR2

= −16π2

3

2L6

π

∫ 1

0

∫ 1

0

R2
1R

2
2e
−(LR1+LR2)U(R1, R2) dR1dR2

=
16π2

3

∫ 1

0

∫ 1

0

f(R1, R2)U(R1, R2) dR1dR2,

(5.18)

where we made the substitution ri = LRi, i = 1, 2, and f is defined in (5.15).
To avoid singularities in the coefficients, we modified the potential to be

κεL(r) = 2(ε+ r)−2 − 2L(ε+ r)−1 + L2. (5.19)

Computational results are shown in Table 5.1. The results were insensitive to ε for ε ≤ 10−9.

5.2.2 Another formulation

The singularity (ri)
−2 is difficult to deal with. But we can integrate by parts to soften its

effect, as follows:∫
Ω

(ri)
−2u(r1, r2) v(r1, r2) dr1dr2 = −

∫
Ω

(∂
∂ri

(ri)
−1
)
u(r1, r2) v(r1, r2) dr1dr2

=

∫
Ω

(ri)
−1∂

∂ri

(
u(r1, r2) v(r1, r2)

)
dr1dr2,

(5.20)
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degree quadrature mesh number C6 error ε L time
4 6 100 4.57e-07 1.00e-09 15.0 1.47
4 8 80 4.57e-07 1.00e-09 15.0 0.917
4 10 100 4.57e-07 1.00e-09 15.0 1.595
4 10 200 4.56e-07 1.00e-09 15.0 7.469
4 8 250 4.56e-07 1.00e-09 15.0 12.5
2 4 400 3.97e-07 1.00e-09 15.0 1.912
2 4 600 4.45e-07 1.00e-09 15.0 4.738
2 3 600 4.41e-07 1.00e-09 15.0 4.747
2 2 250 -1.22e-07 1.00e-09 15.0 0.786
2 3 250 -6.78e-08 1.00e-09 15.0 0.789
2 3 255 -2.74e-08 1.00e-09 15.0 0.786
2 3 260 9.14e-09 1.00e-09 15.0 0.792
2 3 265 4.23e-08 1.00e-09 15.0 0.837
2 4 250 5.41e-08 1.00e-09 15.0 0.788
2 4 240 -1.87e-08 1.00e-09 15.0 0.739

Table 5.1: Using finite element computation of C6 = 6.4990267054 [45]. The potential was
modified as in (5.19). Computations were done with 4 cores via MPI and a PETSc Krylov
solver. Error values were the same for ε = 10−9 and ε = 10−12.

where for simplicity we define Ω = [0, 1]2 here and for the remainder of this subsection. We
have assumed that u, v ∈ V = H1

0 (Ω) in (5.20). Thus∫
Ω

(
(r1)−2 + (r2)−2

)
u(r1, r2) v(r1, r2) dr1dr2

=

∫
Ω

(
(r1)−1, (r2)−1

)
· ∇
(
u(r1, r2) v(r1, r2)

)
dr1dr2

=

∫
Ω

(
(r1)−1, (r2)−1

)
·
((
∇u(r1, r2)

)
v(r1, r2) +

(
∇v(r1, r2)

)
u(r1, r2)

)
dr1dr2

(5.21)

Thus we introduce a new variational form (cf. (5.16))

âεL(u, v) =

∫
Ω

∇u(r1, r2) · ∇v(r1, r2) +
(
κ̂εL(r1) + κ̂εL(r2)

)
u(r1, r2) v(r1, r2) dr1dr2

+ 2

∫
Ω

β̂(r1, r2) ·
(
(∇u(r1, r2)) v(r1, r2) + u(r1, r2)(∇v(r1, r2))

)
dr1dr2

(5.22)

where

β̂(r1, r2) =
(
(r1 + ε)−1, (r2 + ε)−1

)
, κ̂εL(r) = −2L(r + ε)−1 + 2L2. (5.23)

October 2, 2017, do not distribute 43



44 CHAPTER 5. LAPLACE PLUS POTENTIAL

degree mesh number L2 difference time
1 256 6.86e-02 1.11
1 512 5.34e-02 5.1
1 1024 4.72e-02 29
2 512 4.54e-02 23
4 256 4.48e-02 18
8 128 4.47e-02 25
8 8 7.74e-02 23

Table 5.2: Boundary layer problem with ε = 10−6. Degree refers to the polynomial de-
gree, mesh number indicates the number of edges along each boundary side as indicated in
Figure 3.5, L2 difference is ‖u− f‖L2([0,1]2), and time is in seconds.

5.3 Exercises

Exercise 5.1 Let ε > 0. Consider the problem

−ε∆uε + uε = f in Ω = [0, 1]2,

together with boundary conditions (2.2), where f is held fixed independent of ε. This is known
as a singular perturbation problem. Give conditions for which you would expect uε → f
as ε → 0. Do a simple example in which f does not satisfy the boundary conditions (2.2),
for example, take f ≡ 1 and homogenous Dirichlet conditions on all of ∂Ω, and see what
happens for small ε. Does uε → f except in a small boundary layer? In what norm(s)? If the
homogeneous boundary conditions hold on only a part Γ of the boundary, is there a boundary
layer away from Γ? Compare your results with those in Table 5.2 which corresponds to the
choices f ≡ 1 and ε = 10−6. Note that the best results require a large number of nodes to
resolve the boundary layer, but among the different choices (linear, quadratics, and so forth),
the results are about the same and take about the same time to compute. In particular, using
a high-order polynomial does not provide particular benefit in this case.

Exercise 5.2 Consider the problem

−1
2
∆u(x)− 1

|x|
u(x) = −1

2
e−|x| for x ∈ R3

and the condition at infinity that u(x) → 0 as x → ∞. First truncate the infinite domain
to a box [−L,L]3, and impose homogeneous Dirichlet conditions on the boundary of the box.
Make a variational formulation for this problem and solve for u = uL for various values of
L. Compare with the exact solution u(x) = ce−|x|. Evaluate c by plotting uL(x)e+|x|.
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1 from dolfin import *

2 import sys,math

3 from timeit import default_timer as timer

4 parameters["form_compiler"]["quadrature_degree"] = 12

5 startime=timer()

6 meshsize=int(sys.argv[1])

7 pdeg=int(sys.argv[2])

8 ell=float(sys.argv[3])

9 myeps=float(sys.argv[4])

10 # Create mesh and define function space

11 mesh = UnitSquareMesh(meshsize, meshsize)

12 V = FunctionSpace(mesh, "Lagrange", pdeg)

13 # Define boundary condition

14 u0 = Constant(0.0)

15 bc = DirichletBC(V, u0, DomainBoundary())

16 # Define variational problem

17 u = TrialFunction(V)

18 v = TestFunction(V)

19 f = Expression("-(2.0*pow(el,6)/mypi)*pow(x[0]*x[1],2)* \

20 exp(-el*x[0]-el*x[1])",el=ell,mypi=math.pi)

21 kay = Expression("(2.0/(me+pow(x[0],2)))-2.0*(el/(me+x[0])) \

22 +(2.0/(me+pow(x[1],2)))-2.0*(el/(me+x[1])) \

23 +2.0*el*el",me=myeps,el=ell)

24 a = (inner(grad(u), grad(v))+kay*u*v)*dx

25 m = u*v*dx

26 L = f*v*dx

27 # Compute solution

28 u = Function(V)

29 solve(a == L, u, bc)

30 aftersolveT=timer()

31 mfu= (16.0*pow(math.pi,2)/3.0)*assemble(u*f*dx)

32 mer=mfu-6.49902670540

33 totime=aftersolveT-startime

34 print " ",pdeg," ",meshsize," %.2e"%mer," %.2e"%myeps, \

35 " %.1f"%ell," %.3f"%totime

Program 5.1: Code to implement the problem (5.17).
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Chapter 6

Variational Formulations in One
Dimension

Here we develop all of the concepts of the variational formulation for differential equations.
By considering the one-dimensional case, we are able to explain in detail many of the con-
cepts.

6.1 Exact solution

Consider the two-point boundary-value problem

−d
2u

dx2
= f in (0, 1)

u(0) = g0, u′(1) = g1.
(6.1)

The solution can be determined from f via two integrations. First of all, we can write

du

dx
(t) =

∫ 1

t

f(s) ds+ g1 (6.2)

using the boundary condition at x = 1. Integrating again shows that

u(x) =

∫ x

0

∫ 1

t

f(s) ds dt+ g1x+ g0 (6.3)

using the boundary condition at x = 0. This shows that (6.1) is well-posed.
It will not be this easy to demonstrate the well-posedness of all the differential equations

studied here. However, every investigation should (in principle) begin with this step.
The variational approach to differential equations is a powerful technique for studying

their well-posedness and behavior as well as a critical step in generating a broad class of
discretization schemes. It is often called the “weak” formulation as it allows the differential
equation to be posed in a set of functions that allows a broader range of solutions. This
generalization is not just a mathematical curiosity; rather it often allows the problems of
most physical relevance to be addressed.
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6.2 Weak Formulation of Boundary Value Problems

Suppose that u is the solution of (6.1) with g0 = 0. Let v be any (sufficiently regular)
function such that v(0) = 0. Then integration by parts yields

(f, v)L2([0,1]) =

∫ 1

0

f(x)v(x)dx =

∫ 1

0

−u′′(x)v(x)dx =

∫ 1

0

u′(x)v′(x)dx− g1v(1). (6.4)

Define

a(u, v) :=

∫ 1

0

u′(x)v′(x)dx (6.5)

and
V =

{
v ∈ L2([0, 1]) : a(v, v) <∞ and v(0) = 0

}
. (6.6)

Then we can say that the solution u to (6.1) is characterized by

u ∈ V such that a(u, v) = (f, v)L2([0,1]) + g1v(1) ∀v ∈ V, (6.7)

which is called the variational formulation or weak formulation of (6.1).
The relationship (6.7) is called “variational” because the function v is allowed to vary

arbitrarily. It has a natural interpretation in the setting of Hilbert spaces [37]. The Dirichlet
boundary condition u(0) = 0 is called an essential boundary condition because it appears
in the variational space. The Neumann boundary condition u′(1) = 0 is called an natural
boundary condition because it does not appear in the variational space but rather is
implied in the formulation.

Inhomogeneous Dirichlet boundary conditions are handled as follows in the variational
formulation. Let u0 be some function satisfying the inhomogeneous Dirichlet boundary
conditions (but not necessarily the Neumann boundary conditions). Then

u− u0 ∈ V such that a(u, v) = (f, v)L2([0,1]) + g1v(1) ∀v ∈ V. (6.8)

Equivalently, this can be written as u = w + u0 where

w ∈ V such that a(w, v) = (f, v)L2([0,1]) + g1v(1)− a(u0, v) ∀v ∈ V. (6.9)

Note that the general problem (6.8) can be written

w ∈ V such that a(w, v) = F (v) ∀v ∈ V (6.10)

where F denotes a linear functional on the space V , i.e., a linear function defined for any
v ∈ V having a single real number as its value.

6.2.1 Linear functionals

The right-hand side of (6.9) can be written succintly as

F (v) = (f, v)L2([0,1]) + g1v(1)− a(u0, v) ∀v ∈ V. (6.11)
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The expression F is called a linear functional because (a) it is linear and (b) it has scalar
values. By linear, we mean that F (u+av) = F (u)+aF (v) for any scalar a and any u, v ∈ V .

The critical condition on a linear functional for success in a variational formulation is that
it be bounded or continuous. A bounded linear functional (equivalently a continuous
linear functional) F on a normed space V must satisfy

|F (v)| ≤ CF‖v‖V ∀v ∈ V. (6.12)

A natural norm ‖·‖V for the space V defined in (6.6) is

‖v‖a =
√
a(v, v).

The smallest possible constant CF for which this holds is called the dual norm of F and is
defined by

‖F‖V ′ := sup
06=v∈V

|F (v)|
‖v‖V

. (6.13)

The main point is that all the linear forms considered so far are bounded (see Exercise 6.3),
in particular the Dirac δ-function, defined by δ(v) = v(1), as we show in Section 6.2.2. But
it is also easy to think of others which are not, such as

F (v) := v′(x0) (6.14)

for some x0 ∈ [0, 1]. This form is linear, but consider what it should do for the function
v ∈ V given by

v(x) := |x− x0|2/3 (6.15)

(see Exercise 6.2).
The general variational formulation (6.10) can be shown to be completely equivalent to

the orignal differential equation (see [37, Theorem 0.1.4]). Moreover, it actually provides
a framework that allows less regular data (arbitrary continuous linear functionals for F )
as required by important physical applications. The expression a(·, ·) is called a bilinear
functional on the space V , since it is a bilinear function defined on the Cartesian product
V × V having a single real number as its value. If we fix one of the variables of a bilinear
form, it yields a linear form in the remaining variable.

6.2.2 Sobolev’s inequality

Consider the linear form F (v) = v(x0) for some x0 ∈ [0, 1]. We want to prove that this is
bounded on V . We write a function as the integral of its derivative and begin to estimate:

v(t) =

∫ t

0

v′(x) dx =

∫ 1

0

v′(x)w′(x) dx = a(v, w), (6.16)

where the function w ∈ V is defined by

w(x) =

{
x 0 ≤ x ≤ t

t x ≥ t
(6.17)
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One benefit of our loosened notion of derivative is that such functions are indeed in V , even
though the derivative of w is discontinuous. By the Cauchy-Schwarz inequality (2.32)

|v(t)| = |a(v, w)| ≤ ‖v‖a‖w‖a =
√
t‖v‖a ≤ ‖v‖a (6.18)

for all t ∈ [0, 1]. Inequality (6.18) is called Sobolev’s inequality, and V is an example of
a Sobolev space. What Sobolev’s inequality inequality tells us is that, even though the
functions in V are not smooth in the classical sense (derivatives can even be infinite at
isolated points), they nevertheless have some type of classical regularity, namely continuity
in this case.

Note that the first step in (6.16) uses the fact that for v ∈ V , v(0) = 0. This subtle
point is nevertheless essential, since (6.18) is clearly false if this boundary condition is not
available. In particular, if v is a constant function, then the right-hand-side of (6.18) is zero
for this v whereas the left-hand-side is not (unless v ≡ 0). Sobolev’s inequality holds in a
more general setting, not requiring boundary conditions, but only when the bilinear form is
augmented in some way that renders an inner-product.

6.2.3 Natural boundary conditions

We saw that the ‘natural’ boundary condition, e.g., u′(1) = 0 in (6.1) when g1 = 0, disappears
in the variational formulation (6.7). But if these are in some sense equivalent formulations
(they are), then the natural boundary condition must be encoded in the variational formula-
tion is some way. We can see this by reversing the process used to go from (6.1) to (6.7). So
suppose that u satisfies (6.7), and also assume that it is smooth enough for us to integrate
by parts:

(f, v)L2([0,1]) =

∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

−u′′(x)v(x) dx+
(
u′v
)∣∣1

0

=

∫ 1

0

−u′′(x)v(x) dx+ u′(1)v(1).

(6.19)

Choosing first v ∈ V that vanishes at x = 1, we conclude that∫ 1

0

(
f + u′′(x)

)
v(x) dx = 0

for all such v. From this, one can show that we necessarily have −u′′ = f . Inserting this fact
in (6.19), we conclude that u′(1) = 0 simply by taking a single v such that v(1) 6= 0, e.g.,
v(x) = x. Thus the natural boundary condition emerges from the variational formulation
“naturally.” And as an intermediate step, we see that u satisfies the first equation in (6.1),
proving the equivalence of (6.1) and (6.7).

6.3 Galerkin Approximation

Let Vh ⊂ V be any (finite dimensional) subspace. Let us consider (6.7) with V replaced by
Vh, namely

uh ∈ Vh such that a(uh, v) = (f, v)L2([0,1]) ∀v ∈ Vh. (6.20)
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Then (6.20) represents a square, finite system of equations for uh which can easily be seen to
be invertible [37]. Note how easily a discrete scheme for approximating (6.1) can be defined.

A matrix equation is derived by writing (6.20) in terms of a basis {φi : 1 ≤ i ≤ n} of
Vh. Write uh in terms of this basis, i.e.,

uh =
n∑
j=1

Ujφj

where the coefficients Uj are to be determined. Define

Aij = a(φj, φi), Fi = (f, φi) for i, j = 1, ..., n. (6.21)

Set U = (Uj),A = (Aij) and F = (Fi). Then (6.20) is equivalent to solving the (square)
matrix equation

AU = F. (6.22)

If we write v =
∑
Vjφj then

a(uh, v) = VtAU (6.23)

Therfore the symmetry and positivity of the form a(·, ·) is equivalent to the symmetry and
positive-definiteness of A. The invertibility of the system can be proved simply by checking
that there are no nonzero v ∈ Vh such that 0 = a(v, v). In the current case, this would imply
that v is constant. Since v ∈ Vh ⊂ V implies v(0) = 0, we must have v ≡ 0. Therefore, the
solution uh to (6.20) exists and is unique.

The matrix A is often referred to as the stiffness matrix, a name coming from corre-
sponding matrices in the context of structural problems. Another important matrix is the
mass matrix, namely

Mij = (φj, φi)L2([0,1]) for i, j = 1, ..., n. (6.24)

If f ∈ V with f =
∑
F̃jφj then (6.20) is equivalent to solving the matrix equation

AU = MF̃. (6.25)

6.3.1 Piecewise Polynomials – Finite Elements

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1], and let Vh be the linear space of
functions v such that

• v is continuous everywhere

• v|[xi−1,xi] is a linear polynomial, i = 1, ..., n, and

• v(0) = 0.
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The function space just defined can be described as the set of continuous piecewise linear
functions with respect to the mesh (xi).

For each i = 1, .., n define φi by the requirement that φi(xj) = δij the Kronecker delta.
Then {φi : 1 ≤ i ≤ n} is called a nodal basis for Vh, and {v(xi)} are the nodal values
of a function v. (The points {xi} are called the nodes.)

A function space consisting of continuous piecewise quadratic functions, with respect
to the mesh (xi), can be defined similarly. Let Vh be the linear space of functions v such
that

• v is continuous everywhere

• v|[xi−1,xi] is a quadratic polynomial, i = 1, ..., n, and

• v(0) = 0.

However, now there are additional nodes in the middle of each element [xi−1, xi], i.e., at
(xi + xi−1)/2. Now the nodal numbering gets a bit complicated. Let y2i = xi and let
y2i−1 = (xi − xi−1)/2 for i = 1, . . . , n. Then the nodal basis is defined by φi(yj) = δij for
i, j = 1, . . . , 2n

The Galerkin method using piecewise polynomials spaces described in terms of nodal
values is called the finite-element method.

6.3.2 Relationship to Difference Methods

The stiffness matrix A as defined in (6.22), using the basis {φi} described in Section 6.3.1,
can be interpreted as a difference operator. Let hi = xi − xi−1. Then the matrix entries
Aij = a(φi, φj) can be easily calculated to be

Aii = h−1
i + h−1

i+1, Ai,i+1 = Ai+1,i = −h−1
i+1 (i = 1, ..., n− 1) (6.26)

and Ann = h−1
n with the rest of the entries of A being zero. Similarly, the entries of F can

be approximated if f is sufficiently smooth:

(f, φi) =
1

2
(hi + hi+1)(f(xi) +O(h)) (6.27)

where h = max hi. Thus, the i− th equation of AU = F (for 1 ≤ i ≤ n− 1) can be written
as

−2

hi + hi+1

[
Ui+1 − Ui
hi+1

− Ui − Ui−1

hi

]
=

2(f, φi)

hi + hi+1

= f(xi) +O(h). (6.28)

The difference operator on the left side of this equation can also be seen to be an O(h) accu-
rate approximation to the differential operator −d2/dx2. For a uniform mesh, the equations
reduce to the familiar difference equations

−Ui+1 − 2Ui + Ui−1

h2
= f(xi) +O(h2) (6.29)
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as we will see later in (7.2). Thus the finite difference and finite element discretization
techniques can be seen to produce the same set of equations in many cases.

Even thought the difference method (6.28) is formally only first order accurate, one can
show using the variational framework [37] that the resulting error is second order accurate:

eh := max
1≤i≤2n

|u(yn)− un| ≤ Cfh
2 (6.30)

This shows that it may be useful to view a difference method as a variational method (if
possible) for the purposes of analysis.

Note the slight difference between (7.5) and the last equation in (6.26). Because the
variational form a(·, ·) is symmetric, the Galerkin method will always yield a symmetric
matrix as is the case in (6.26). The last equation in (6.26) and (7.5) differ only by a simple
factor of two, but this leads to a non-symmetric matrix. In applying boundary conditions
with finite difference methods, care must be exercised to retain the symmetry of the original
differential equation.

The system of equations obtained for the nodal variables (un) in the case of the Galerkin
method using continuous piecewise quadratics does not look like a conventional finite dif-
ference method. The equations associated with the internal nodes are different from the
ones associated with the subdivision points. On the other hand, they yield a more accurate
method, satisfying

eh := max
1≤i≤2n

|u(yn)− un| ≤ Cfh
3. (6.31)

6.4 Coercivity of the Variational Problem

The variational form a(·, ·) introduced in (6.5) is coercive on the corresponding spaces V (see
[37]): there is a constant γ depending only on Ω and Γ such that

‖v‖2
H1(Ω) ≤ γa(v, v) ∀v ∈ V. (6.32)

The proof of this is elementary. All we need to show is that

‖v‖2
L2(Ω) ≤ Ca(v, v) ∀v ∈ V, (6.33)

from which (6.32) follows with constant γ = C + 1. To prove (6.33), we apply Sobolev’s
inequality (6.18). Thus ∫ 1

0

v(t)2 dt ≤ a(v, v)

∫ 1

0

t dt ≤ 1
2
a(v, v) (6.34)

which completes the proof of (6.33), with C = 1/2.
As noted previously, our proof of Sobolev’s inequality (6.18) uses the fact that for v ∈ V ,

v(0) = 0, and (6.32) is false if this boundary condition is not satisfied. (Choose v to be a
nonzero constant function and the right-hand-side of (6.32) is zero but the left-hand-side is
not.)
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From (6.32), it follows that the problem (6.10) is well-posed. In particular, we easily see
that the solution to the problem must be unique, for if F is identically zero then so is the
solution. In the finite-dimensional case, this uniqueness also implies existence, and a similar
result holds in the setting of infinite dimensional Hilbert spaces such as V . Moreover, the
coercivity condition immediately implies a stability result, namely

‖u‖H1(Ω) ≤
γa(u, u)

‖u‖H1(Ω)

= γ
F (u)

‖u‖H1(Ω)

≤ γ‖F‖H−1(Ω). (6.35)

Here we are using the notation ‖F‖H−1(Ω) for the dual norm of F in the dual space of H1(Ω),

i.e., H−1(Ω) := (H1
0 (Ω))

′
[37]. The same result holds for a discrete approximation as well.

As a byproduct, (2.23) proves continuity of the solution as a function of the data since
the problem is linear. In particular, if Fi, i = 1, 2, are two bounded linear forms, and ui
denotes the corresponding solutions to (6.10), then

‖u1 − u2‖H1(Ω) ≤ γ‖F1 − F2‖H−1(Ω). (6.36)

6.5 More Variational Formulations

Consider the two-point boundary-value problem

−d
2u

dx2
+ α(x)

du

dx
+ β(x)u = f in (0, 1)

u(0) = g0, u′(1) = g1.
(6.37)

Then integration by parts can again be used to derive the variational formulation

a(u, v) = (f, v)L2([0,1]) ∀v ∈ V (6.38)

where

a(u, v) :=

∫ 1

0

u′(x)v′(x) + α(x)u′(x)v(x) + β(x)u(x)v(x) dx. (6.39)

This variational problem introduces a number of difficulties which will be addressed
subsequently, such as how to integrate the expressions involving α and β. Typically this is
done by numerical quadrature.

The question of coercivity of the form (6.39) can be addressed in at least simple cases.
If β ≡ 0 and α is constant, then

a(v, v) =

∫ 1

0

v′(x)2 + 1
2
α(v2)′(x) dx =

∫ 1

0

v′(x)2 dx+ 1
2
αv(1)2 ∀v ∈ V. (6.40)

If α > 0, then this is coercive. Regarding conditions needed on β to retain coercivity, see
Exercise 6.5.

Nonlinear problems such as (7.9) can also be formulated variationally, as

a(u, v) + n(u, v) = (f, v)L2([0,1]) ∀v ∈ V (6.41)
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where a(·, ·) is as in (6.39) with α ≡ 0 and β(x) ≡ 4. The nonlinearity has been separated
for convenience in the form

n(u, v) = 6

∫ 1

0

u(x)2v(x) dx = 6 (u2, v)L2([0,1]). (6.42)

A Galerkin method for a space with a basis {φi : i = 1, . . . , n} can be written as a system
of nonlinear equations

Fi(u) := a(u, φi) + n(u, φi)− (f, φi)L2([0,1]) = 0 (6.43)

Writing u =
∑

j Ujφj, Newton’s method for this system of equations for (Uj) can be derived.
However, it can also be cast in variational form as follows.

Instead of using a basis function, let us define a function F with coordinates parametrized
by an arbitrary v ∈ V :

Fv(u) := a(u, v) + n(u, v)− (f, v)L2([0,1]) (6.44)

If v = φi then of course we have the previous function. Newton’s method requires us to
compute the derivative of F with respect to its “coordinates” which in this case correspond
to elements of V . The derivative of Fv at u in the direction of w ∈ V is, as always, a limit
of a difference quotient,

Fv(u+ εw)− Fv(u)

ε
, (6.45)

as ε→ 0. Expanding, we find that

Fv(u+ εw)− Fv(u) = εa(w, v) + 6
(
(u+ εw)2 − u2, v

)
L2([0,1])

= εa(w, v) + 6
(
2εuw + ε2w2, v

)
L2([0,1])

.
(6.46)

Therefore

lim
ε→0

Fv(u+ εw)− Fv(u)

ε
= a(w, v) + 12 (uw, v)L2([0,1]) (6.47)

for any w ∈ V . It is then easy to see (see Exercise 6.7) that Newton’s method can be
characterized by

u← u− w where w solves

a(w, v) + 12 (uw, v)L2([0,1]) = a(u, v) + n(u, v)− (f, v)L2([0,1]) (= Fv(u)) ∀v ∈ V (6.48)

6.6 Other Galerkin Methods

6.6.1 Spectral Elements – P Method

The definition of continuous piecewise polynomials of arbitrary degree P can be accomplished
by continuing the pattern set by the linear and quadratic cases. There are P−1 nodal points
in the interior of each interval in the subdivision, but otherwise the definition is the same. The
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use of high-order piecewise polynomials in Galerkin approximations goes by various names.
Since the degree P can be used as the approximation parameter (that is, convergence is
achieved by letting P increase), it is often called the ‘P’ method. It also goes by the name
“spectral element” method because there are close similarities with the so-called spectral
methods, yet there is the possibility of subdividing the domain using “elements.”

6.6.2 Trigonometric Polynomials – Spectral Methods

Choosing spaces of trigonometric polynomials in the Galerkin approximation method leads
to the class of discretizations which are popularly known as Spectral Methods.

6.7 Exercises

Exercise 6.1 Consider the differential equation

−d
2u

dx2
= f in (0, 1) (6.49)

with Neumann boundary conditions at both boundary points, that is, u′(0) = 0 and u′(1) =
0. What function satisfies the differential equation with zero Neumann data? Show that
solutions are unique only up to an additive constant, and they can exist only if the right-
hand side f satisfies ∫ 1

0

f(x) dx = 0. (6.50)

Exercise 6.2 Consider the function v defined in (6.15). Show that it is in V (see Defini-
tion 6.6). Can one make sense of the linear form defined in (6.14) for this function?

Exercise 6.3 Give a separate, formal definition of each of the three different types of linear
functionals given in the right-hand-side of (6.9). Can you say why the first and the last are
bounded? For the middle one, consult (6.18).

Exercise 6.4 Derive the variational formulation for the boundary value problem for the
differential equation

−u′′ − u = f

with boundary conditions u(0) = g0 and u′(1) = g1.

Exercise 6.5 Consider the variational formulation in Exercise 6.4 for the boundary value
problem for the differential equation

−u′′ − u = f

with boundary conditions u(0) = 0 and u′(1) = 0. Prove that this is coercive (hint: use
(6.33)).
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Exercise 6.6 Consider the differential equation

−u′′ = f in (0, 1) (6.51)

with Neumann boundary conditions at both boundary points, that is, u′(0) = 0 and u′(1) = 0
(see Exercise 6.1). Using the concept of coercivity, explain why this is not well-posed without
some constraints on f and u.

Exercise 6.7 Show that Newton’s method for the system (6.43) (or equivalently (6.44)) can
be characterized by the variational formulation (6.48).

Exercise 6.8 Show that the inhomogeneous Dirichlet boundary-value problem (6.9), with V
as in (6.6) and with f ≡ 0 and g1 = 0 can be written in the form (6.10) with u0 := g0(1−x)
and

F (v) = −g0a(1− x, v) = g0

∫ 1

0

v′ dx = g0v(1) ∀v ∈ V. (6.52)

Investigate the choice u0 ≡ b0 (a constant function) and show that this leads to F ≡ 0. Why
do these different variational formulations give equivalent results?

Exercise 6.9 Consider the variational form a(·, ·) in (6.5) and define

ã(u, v) := a(u, v) + γu(1)v(1). (6.53)

Consider the variational problem (6.7) with g1 = 0 and V as defined in (6.6). Show that this
corresponds to having a boundary condition at 1 of Robin/Cauchy type: u′(1) + γu(1) = 0.

Exercise 6.10 Suppose α and β are smooth functions. Consider the variational form

a(u, v) :=

∫ 1

0

u′v′ + αuv′ + (β − α′)uv dx (6.54)

and the variational problem (6.7) with g1 = 0 and V as defined in (6.6). Determine the
corresponding differential equation and boundary conditions that the solution u must satisfy
if it is known to be smooth.

Exercise 6.11 Suppose α and β are smooth functions. Consider the variational form

a(u, v) :=

∫ 1

0

u′v′ + αu′v + βuv dx (6.55)

and the variational problem (6.7) with g1 = 0 and V as defined in (6.6). Determine the
corresponding differential equation and boundary conditions that the solution u must satisfy
if it is known to be smooth.

Exercise 6.12 Examine the equations generated by the finite element method using piecewise
linear functions for the problem discussed in Section 6.3.2. What are the equations that arise
due to the boundary conditions? How does this compare with the finite difference approach?
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Chapter 7

Finite difference methods

In Section 6.3.2, we saw that finite element methods are closely related to finite difference
methods. Here we study the latter in more detail.

7.1 Finite Difference Methods

The simplest way to approximate a differential equation often is to replace a differential
operator with a difference operator. In this way we get the approximation for (6.1)

−u(x− h) + 2u(x)− u(x+ h) ≈ h2f(x) (7.1)

where h > 0 is the mesh size to be used. Choosing x = xn := nh for n = 0, 1, . . . , N where
N = 1/h, we get a system of linear equations

−un−1 + 2un − un+1 = h2f(xn) (7.2)

where un ≈ u(xn), which is the same as the finite element discretization which leads to
(6.29).

One of the shortcomings of the finite-difference approach is that the boundary conditions
have to be handled in an ad hoc way. The boundary condition at x = 0 translates naturally
into u0 = g0. Thus, (7.2) for n = 1 becomes

2u1 − u2 = h2f(x1) + g0. (7.3)

However, the derivative boundary condition at x = 1 must be approximated by a difference
equation. A natural one to use is

uN+1 − uN−1 = 2hg1 (7.4)

using a difference over an interval of length 2h centered at xN . The second-difference (7.2) is
itself a difference of first-differences over intervals of length h so there is some inconsistency,
however both are centered differences (and therefore second-order accurate). See Exercise 6.2

October 2, 2017, do not distribute 59



60 CHAPTER 7. FINITE DIFFERENCE METHODS

for an example based on a non-centered difference approximation to the derivative boundary
condition. Using (7.4), (7.2) for n = N becomes

−2uN−1 + 2uN = h2f(xN) + 2hg1. (7.5)

Algebraically, we can express the finite difference method as

AU = F (7.6)

where U is the vector with entries un and F is the vector with entries h2f(xn) appropriately
modified at n = 1 and n = N using the boundary data. The matrix A has all diagonal
entries equal to 2. The first sub- and super-diagonal entries are all equal to −1, except the
last sub-diagonal entry, which is −2.

7.2 octave Implementation

The creation of the matrix A in octave can be achieved by various techniques. However, to
get reasonable performance for large N , you must restrict to sparse operations, as follows.
For simplicity, we us consider the case where the differential equation to be solved is

−u′′(x) = sin(x) for x ∈ [0, π]

u(0) = u(π) = 0.
(7.7)

Then u(x) = sin(x) for x ∈ [0, π]. To create the difference operator A for this problem in
a sparse format, you must specify only the non-zero entries of the matrix, that is, you give
a list of triples: (i, j, Aij). This is followed by an operation that amalgamates these triples
into a sparse matrix structure; in octave, this operation is called sparse. The octave code
for this is shown in Program 7.1.

In octave, the solution to (7.6) can be achieved simply by writing

U=A\F ;

It is critical that one use vector constructs in octave to insure optimal performance. It
executes much more rapidly, but the code is not shorter, more readible or less prone to error.
See Exercise 7.5 for an example.

7.3 Reality Checks

The simplest way to determine whether an approximation to a differential equation is working
or not is to attempt to solve a problem with a known solution. For example, we can use the
method of manufactured solutions Section 2.3 to help with this. This is only one indication
that all is working in one special set of conditions, not a proof of correctness. However, it is
a very useful technique.
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dx=pi/(N+1); % mesh size with N points

% define the diagonal matrix entries

i(1:N)=1:N;

j(1:N)=1:N;

v(1:N)= 2/(dx*dx);

% define the above-diagonal matrix entries

i(N+(1:(N-1)))=(1:(N-1));

j(N+(1:(N-1)))=1+(1:(N-1));

v(N+(1:(N-1)))= -1/(dx*dx);

% define the below-diagonal matrix entries

i((2*N-1)+(1:(N-1)))=1+(1:(N-1));

j((2*N-1)+(1:(N-1)))=(1:(N-1));

v((2*N-1)+(1:(N-1)))= -/(dx*dx);

% convert the entries into a sparse matrix format

A=sparse(i,j,v);

% define the right-hand side

F(1:N)=sin(dx*(1:N));

Program 7.1: octave code for solving (7.7): −u′′(x) = sin(x) on [0, π] with Dirichlet
boundary conditions u(0) = u(π) = 0.

Using a graphical comparison of the approximation with the expected solution is the
simplest way to find bugs, but a more demanding approach is often warranted. Using
a norm to measure the difference between the approximation and the expected solution.
This reduces a complex comparison to a single number. Moreover, there are extensive error
estimates available which describe how various norms of the error should behave as a function
of the maximum mesh size h.

For the approximation (un) (7.1) of the solution u of equation (7.1) (and ones similar to
it) it can be shown [37] that

eh := max
1≤n≤N

|u(xn)− un| ≤ Cfh
2 (7.8)

where Cf is a constant depending only on f . Thus one can do an experiment with a known
u to see if the relationship (7.8) appears to hold as h is decreased. In particular, if the
logarithm of eh is plotted as a function of log h, then the resulting plot should be linear, with
a slope of two.

Consider the boundary-value problem (7.7), that is, −u′′ = f on [0, π] with f(x) = sinx
and u(0) = u(π) = 0. Then the solution is u(x) = sinx. The resulting error is depicted
in Figure 7.1, where instead of the maximum error (7.8), the mean-squared (i.e., L2([0, π]))
error √

h
∑
n

(u(xn)− un)2

has been plotted. The line eh = 0.1h2 has been added for clarity. Thus we see for h ≥ 10−4,
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Figure 7.1: Error in L2([0, π]) for the finite difference approximation of the boundary value
problem for the differential equation −u′′ = sin(x) on the interval [0, π], with boundary
conditions u(0) = u(π) = 0, as a function of the mesh size h. The solid line has a slope of 2
as a reference.

the error diminishes quadratically. However, when the mesh size is much less than 10−4,
the amplification of round-off error due to increasing condition number of the linear system
causes the accuracy to diminish, and the error even increases as the mesh size is further
decreased.

7.4 Pitfall: Low Accuracy

All discretization methods can suffer from the effects of finite precision arithmetic. The
easiest way to see this is that if h2 is smaller than the smallest “machine ε” (defined to be
the largest positive number whose addition to 1 in floating point returns 1) relative to the
size of f and u, then (7.1) will effectively not distinguish between the real f and f ≡ 0.

More subtle effects can also occur due to the increasing condition number of the linear
system A as h tends to zero. We display the condition number for various mesh sizes in
Table 7.1, and it appears that the condition number grows proportional to N2 ≈ h−2. This
effect can be amplified based on the method used to solve the linear system. We see in
Figure 7.1 that the error decreases quadratically in the mesh size h up to a certain limit,
and then it hits a wall. Accuracy behaves randomly and even decreases as the mesh size
is further descreased. We see that the most accuracy we can achieve is closely related to
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number of grid points 10 100 1000 10000
mesh size 2.86e-01 3.11e-02 3.14e-03 3.14e-04

condition number 4.84e+01 4.13e+03 4.06e+05 4.05e+07

Table 7.1: Condition number of Program 7.1 as a function of N . Recall that the mesh size
h = π/(N + 1).

the condition number multiplied by machine ε = 2.22 × 10−16 in these compuations. Thus
with N = 10, 000, we cannot expect accuracy better than about 10−9. Another way that
finite-precision arithmetic can affect the accuracy of calculation is in the construction of the
matrix A in more complex applications.

The simple way to avoid this difficulty is to avoid very small h values. The equivalent
accuracy can be achieved by using a larger h and a more accurate discretization method.
We postpone discussion of higher-order methods to later sections where Galerkin methods
are discussed. These methods have the feature that it is often possible to define a family
of methods of increasing degree of approximation. Indeed, the “spectral” family of methods
relies entirely on increasing the degree of approximation on a fixed mesh.

7.5 Nonlinear Problems

Nonlinear differential equations can also be solved with often little more difficulty than linear
ones. Consider the following problem:

−d
2u

dx2
+ 4u+ 6u2 = f in (0, α)

u(0) = 0, u′(α) = 0.
(7.9)

With f = C (C = constant), this describes the profile of the radial component of fluid flow
in a converging channel (a.k.a. Jeffrey-Hamel flow). In (7.9), differentiation is with respect
to the polar angle φ and α is half of the angle (in radians) of convergence of the channel.

Given a solution u of (7.9), one can show that

u(x, y) := ν
u(atan(y/x))

x2 + y2
x , x = (x, y) ∈ Ω (7.10)

solves the steady Navier-Stokes equations (14.1) with kinematic viscosity ν over a wedge
domain Ω (cf. [116]). This is indicated schematically in Figure 7.2.

The solution of (7.9) can be effected using a difference method for the differential operator
as in Section 7.1.

−un−1 + 2un − un+1 + 4h2un + 6h2u2
n = h2C (7.11)

where un ≈ u(xn). Since this system of equations is nonlinear, we cannot solve it directly.
A standard algorithm to use is Newton’s method, which can be written as follows. First, we
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Figure 7.2: Interpretation of solutions of Jeffrey-Hamel equation.
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Figure 7.3: Solutions of the Jeffrey-Hamel equation with C = 10k for k = 1, 2, 3, 4.
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write the system of equations as f(un) = 0 where

fn := −un−1 + 2un − un+1 + 4h2un + 6h2u2
n − h2C (7.12)

Newton’s iteration takes the form

u← u− J−1
f f(u) (7.13)

where Jf denotes the Jacobian of the mapping f . This can be written in octave as follows.
Suppose that A is defined as in Section 7.2. Then f can be written

delta=((n+1)/alf)^2;

f = delta*A*uhf - 4*uhf - 6*ujh.*ujh + cvec;

where

cvec=C*ones(n,1);

The Jacobian J of f is

J = delta*A - 4*eye(n) - 12*diag(ujh,0);

Newton’s method takes the following form in octave.

JA = delta*A - 4*eye(n);

ujh =- JA\cvec;

enorm = 1;

while (enorm >> .0000000000001)

f = JA*ujh - 6*ujh.*ujh + cvec;

J = JA - 12*diag(ujh,0);

x = ujh - J\f;

enorm = norm(ujh-x)/(norm(ujh)+norm(x));

ujh=x;

end

7.6 Exercises

Exercise 7.1 Use Taylor’s theorem to derive (7.1).

Exercise 7.2 The solution to (6.1) with f ≡ 1 is u(x) = x − x2

2
. Use the method in

Section 7.1 to approximate this problem. Implement these equations in octave on this test
problem and determine the convergence rate. Where in the interval is the error largest?

Exercise 7.3 Replace (7.4) by
uN+1 − uN = 0 (7.14)

Give the equation corresponding to (7.5) that results. How is it different? Implement these
equations in octave on the test problem in Section 7.3 and determine the convergence rate.
Where in the interval is the error largest?
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Exercise 7.4 Derive the finite difference approximation for the boundary value problem for
the differential equation

−u′′ − u = f

with boundary conditions u(0) = a and u′(1) = b. Write a octave code for this and test it
as in Section 7.3 for the exact solution u(x) = sinx with f ≡ 0, g0 = 0 and g1 = cos 1.

Exercise 7.5 The matrix for the difference method in Section 7.2 can be implemented in
octave as follows.

A=zeros(n);

for i=1:n

if i>1,A((i-1),i)=-1; end

if i<n, A((i+1),i)=-1; end

A(i,i) = 2;

end

Compare this with the “vectorized” definition in Section 7.2 and determine the ratio of ex-
ecution speed for the two methods of computing A for n=100, 1000 and 10000. Can you
identify any trends?

Exercise 7.6 Derive the matrix for the difference method Section 7.2 in the case of Dirichlet
boundary conditions at both boundary points, that is, u(0) = 0 and u(1) = 0. Implement the
matrix in octave with a “vectorized” definition.

Exercise 7.7 Implement the difference equations (6.28) in octave for a general mesh 0 =
x0 < x1 < x2 < · · · < xN = 1. Use this method to approximate the problem in (6.1), with
f ≡ 1 is u(x) = x − x2

2
. Implement these equations in octave on this test problem and

determine the convergence rate as a function of h := maxi xi − xi−1. Try different methods
to generate random meshes. Where in the interval is the error largest?

Exercise 7.8 Derive the finite difference approximation corresponding to (6.28) for the
boundary value problem for the differential equation

−u′′ − u = f

with boundary conditions u(0) = g0 and u′(1) = g1. Write a octave code for this and test it
as in Section 7.3 for the exact solution u(x) = sinx with f ≡ 0, a = 0 and b = cos 1.

Exercise 7.9 Derive the matrix for the difference method (6.28) in the case of Dirichlet
boundary conditions at both boundary points, that is, u(0) = 0 and u(1) = 0. Implement the
matrix in octave with a “vectorized” definition.

Exercise 7.10 Derive the matrix A for the difference method (6.28) in the case of Neumann
boundary conditions at both boundary points, that is, u′(0) = 0 and u′(1) = 0. Implement
the matrix in octave with a “vectorized” definition. Check to see if the matrix A is singular.
What function satisfies the differential equation (see Exercise 6.1) with zero Neumann data?
What is the associated null vector for the matrix A? Under what conditions does the equation
AX = F have a solution?
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Exercise 7.11 Derive the matrix A for the difference method Section 7.2 in the case of
Neumann boundary conditions at both boundary points, that is, u′(0) = 0 and u′(1) = 0.
Implement the matrix in octave with a “vectorized” definition. Check to see if the matrix
A is singular. What function satisfies the differential equation (see Exercise 6.1) with zero
Neumann data? What is the associated null vector for the matrix A? Under what conditions
does the equation AX = F have a solution?

Exercise 7.12 Another method for solving nonlinear equations f(u) = 0 is the fixed-point
iteration

u← u± εf(u) (7.15)

for some parameter ε. Give an implementation of the Jeffrey-Hamel problem and compare
it with Newton’s method.
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Chapter 8

Heat Equation

Heat can be exchanged between two different bodies by diffusion, convection or radiation.
The heat equation describes the diffusion of thermal energy in a medium [82]. In its
simplest, one-dimensional form, it may be written

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x, t) ∀x ∈ [0, 1], t > 0

u(x, 0) = u0(x) ∀x ∈ [0, 1]
(8.1)

where u(x, t) denotes the temperature of the medium at any given point x and time t. This
equation is also known as the diffusion equation.

A simple example of heat diffusion in one spatial dimension is the transfer of heat across a
window. The variable x denotes the distance from one face of the window pane to the other, in
the direction perpendicular to the plane of the window. Near the outer edges of the window,
three dimensional effects would be evident, but in the middle of the window, equation (8.1)
would accurately describe the evolution of the temperature u inside the window.

The function f is included for completeness, but in many cases such a body source of
heat would be zero. These equations must be supplemented by boundary contitions similar
to the ones considered in Chapter 6. They could be of purely Dirichlet (or essential) type,
viz.

u(0, t) = g0(t), u(1, t) = g1(t) ∀t > 0, (8.2)

or of purely Neumann (or natural) type, viz.

∂u

∂x
(0, t) = g0(t),

∂u

∂x
(1, t) = g1(t) ∀t > 0, (8.3)

or a combination of the two:

u(0, t) = g0(t),
∂u

∂x
(1, t) = g1(t) ∀t > 0. (8.4)

Here gi, i = 0, 1, are given functions of t. It is interesting to note that the pure Neumann
condition (8.3) for the heat equation (8.1) does not suffer the same limitations on the data,
or nonuniqueness of solutions, that the steady state counterpart does. However, there are
compatibility conditions required to obtain smooth solutions.
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Figure 8.1: Solution of (8.1) with initial data (8.5) at time t = 0.001. Computed with
piecewise linears with 50 mesh points (uniform mesh).

8.1 Basic behavior: smoothing

The main characteristic of the heat equation is that it smooths any roughness in the initial
data. For example, in Figure 8.1 we show the solution at time t = 0.001 for the case

u0(x) = 1
2
− |x− 1

2
|. (8.5)

We see that the discontinuity of the derivative of u0 at x = 1
2

is instantly smoothed. This has
a corollary for the backwards heat equation (Section 8.6) that we will explore subsequently.
One type of nonsmooth behavior stems from a mismatch between boundary data and initial
data. This is governed by compatibility conditions.

The code to generate Figure 8.1 is given in Program 8.1.

8.2 Compatibility Conditions

There is a compatibility condition for the boundary and initial data for the heat equation
in order to have a smooth solution. This can be derived easily from the observation that the
values of u on the spatial boundary have been specified twice at t = 0. Consider the case
(8.4) of combined Dirichlet and Neumann boundary conditions. The first set of compatibility
conditions is

u0(0) = u(0, 0) = g0(0) and u′0(1) = ux(1, 0) = g1(0). (8.6)

These are obtained by matching the two ways of specifying the solution at the boundary
points (x, t) = (0, 0) and (x, t) = (1, 0). In the case of pure Dirichlet conditions (8.2) the
compatibility conditions become

u0(0) = u(0, 0) = g0(0) and u0(1) = u(1, 0) = g1(0). (8.7)
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Figure 8.2: Heat equation with incompatible data after one time step with ∆t = 10−5; degree
= 1, 20 mesh intervals. Initial values u0 = 0.5.

In the case of pure Neumann conditions (8.3) the compatibility conditions become

u′0(0) = ux(0, 0) = g0(0) and u′0(1) = ux(1, 0) = g1(0). (8.8)

The conditions involving derivatives (coming from the Neumann boundary conditions) are
higher-order compatibility conditions than those for the function values (coming from the
Dirichlet boundary conditions). They affect the boundedness of higher-order derivatives.

There are more conditions than this for real smoothness, since u satisfies a differential
equation. In fact, for an abritrary order of smoothness, there are infinitely many such
compatibility conditions, the first of these being one of the above, (8.6), (8.7) or (8.8), as
appropriate depending on the boundary conditions in force. Again, consider the case (8.4)
of combined Dirichlet and Neumann boundary conditions to start with. The second set of
conditions arrises by using the differential equation uxx = ut to trade spatial derivatives for
temporal ones, then applying this at t = 0 and x = 0:

u′′0(0) = uxx(0, 0) = ut(0, 0) = g′0(0) and u′′′0 (1) = uxxx(1, 0) = uxt(1, 0) = g′1(0). (8.9)

We leave as exercises (Exercise 8.4 and Exercise 8.5) to give the corresponding second set of
compatibility conditions for the pure Dirichlet and Neumann boundary conditions.

If these compatibilities are not satisfied by the data (or by the approximation scheme),
wild oscillations (at least in some derivative, if not the solution itself) will result near t = 0
and x = 0, 1, as shown in Figure 8.2. Using higher resolution can eliminate the oscillations in
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Figure 8.3: Heat equation with incompatible data after one time step with ∆t = 10−5; degree
= 2, 10 mesh intervals. Initial values u0 = 0.5.

some cases, as shown in Figure 8.3. In nonlinear problems, this can cause completely wrong
results to occur.

The compatibility conditions, e.g. (8.6) and (8.9), do not have to be satisfied for the heat
equation (8.1) for it to be well-posed in the usual sense. There is a unique solution in any
case, but the physical model may be incorrect as a result if it is supposed to have a smooth
solution. Compatibility conditions are a subtle form of constraint on model quality. In many
problems they can be described in terms of local differential-algebraic constraints as in (8.6)
and (8.9). However, in Section 14.4.2 we will see that such compatibility conditions can lead
to global constraints that may be hard to verify or satisfy in practice.

8.3 Variational form of the heat equation

It is possible to derive a vatiational formulation involving integration over both x and t, but
it is more common to use a variational formulation based on x alone. Recalling the notation
of Chapter 6, we seek a function ũ(t) of time with values in V such that ũ(0) = u0

(ũ′(t), v)L2(Ω) + a(ũ(t), v) = F (v) ∀v ∈ V, t ≥ 0, (8.10)

where Ω = [0, 1] and a(w, v) =
∫ 1

0
w′(x)v′(x) dx. Since it is a bit awkward to work with a

function of one variable (t) which is a function of another (x), we often write (8.10) in terms
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of u(x, t) = ũ(t)(x). Using subscript notation for partial derivatives, it becomes

(ut(·, t), v)L2(Ω) + a(u(·, t), v) = F (v) ∀v ∈ V. (8.11)

for all t. If we remember the dependence on t, we can write this as

(ut, v)L2(Ω) + a(u, v) = F (v) ∀v ∈ V. (8.12)

A stability estimate follows immediately from the variational formulation. For simplicity,
suppose that the right-hand-side form F ≡ 0 and that the boundary data vanishes as well
(i.e., only the initial data is non-zero). Using v = u (at any fixed t, i.e., v = u(·, t)) in (8.12),
we find

1

2

∂

∂t
‖u‖2

L2(Ω) = (ut, u)L2(Ω) = −a(u, u) ≤ 0 ∀t ≥ 0, (8.13)

where Ω denotes the spatial interval [0, 1]. From this, it follows by integrating in time that

‖u(·, t)‖L2(Ω) ≤ ‖u(·, 0)‖L2(Ω) = ‖u0‖L2(Ω) ∀t ≥ 0. (8.14)

This result is independent of any compatibility conditions. However, all it says is that the
mean-square of the temperature u remains bounded by its initial value. If F is nonzero but
bounded on V , i.e.,

|F (v)| ≤ ‖F‖H−1(Ω)‖v‖H1(Ω) ∀v ∈ V, (8.15)

then we retain a bound on ‖u(·, t)‖L2(Ω):

1

2

∂

∂t
‖u‖2

L2(Ω) = (ut, u)L2(Ω) = F (u)− a(u, u) ≤ ‖F‖H−1(Ω)‖v‖H1(Ω) − a(u, u). (8.16)

The form a(·, ·) always satisfies at least a weak type of coercivity of the form

‖v‖2
H1(Ω) ≤ γ1a(v, v) + γ2‖v‖2

L2(Ω) ∀v ∈ V, (8.17)

known as G̊arding’s inequality. For example, this holds for the pure Neumann problem
(8.3) with V = H1(Ω) whereas the stronger form of coercivity (6.32) does not in this case.
Applying (8.17) in (8.16) gives

∂

∂t
‖u‖2

L2(Ω) ≤ 2‖F‖H−1(Ω)‖u‖H1(Ω) −
2

γ1

‖u‖2
H1(Ω) +

2γ2

γ1

‖u‖2
L2(Ω). (8.18)

Using the arithmetic-geometric mean inequality in the form

2rs ≤ δr2 +
1

δ
s2 (8.19)

which holds for any δ > 0 and any real numbers r and s, we find

∂

∂t
‖u‖2

L2(Ω) ≤
γ1

2
‖F‖2

H−1(Ω) +
2γ2

γ1

‖u‖2
L2(Ω) (8.20)
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Gronwall’s Lemma [180] implies

‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω) + et(γ2/γ1)‖F‖H−1(Ω) ∀t ≥ 0. (8.21)

Another stability result can be derived by using v = ut (assuming F ≡ 0 and the
boundary data are zero) in (8.12), to find

‖ut‖2
L2(Ω) = −a(u, ut) = −1

2

∂

∂t
a(u, u). (8.22)

From this, it follows that

∂

∂t
a(u, u) = −2‖ut‖2

L2(Ω) ≤ 0 ∀t ≥ 0. (8.23)

Again integrating in time and using (8.14), we see that

‖u(·, t)‖H1(Ω) ≤ ‖u(·, 0)‖H1(Ω) = ‖u0‖H1(Ω) ∀t ≥ 0. (8.24)

This result is again independent of any compatibility conditions, and it says is that the
mean-square of the gradient of the temperature u also remains bounded by its initial value.
Of course, this presupposes that u0 ∈ V , and this may not hold. Moreover, if the data F
is not zero, this result will not hold. In particular, if the compatibility condition (8.6) does
not hold, then u0 6∈ V and ‖u(·, t)‖H1(Ω) will not remain bounded as t→ 0.

8.4 Discretiztion

The simplest discretization for the heat equation uses a spatial discretization method for or-
dinary differential equation in Section 7.1, for that part of the problem and a finite difference
method for the temporal part. This technique of decomposing the problem into two parts is
an effective technique to generate a numerical scheme, and it allows us to reuse existing
software already developed for the o.d.e. problem. Many time dependent problems can be
treated in the same manner. This technique goes by many names:

• (time) splitting since the time and space parts are separated and treated by indepen-
dent methods

• the method of lines since the problem is solved on a sequence of lines (copies of the
spatial domain), one for each time step.

8.4.1 Explicit Euler Time Discretization

The simplest time discretization method for the heat equation uses the forward (or explicit)
Euler difference method. It takes the form

un+1(x) = un(x) + ∆t
∂2un

∂x2
(x, t) ∀x ∈ [0, 1],

u0(x) = u0(x) ∀x ∈ [0, 1]

un(0) = g0(t) and un(1) = g1(t) ∀n > 0

(8.25)
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where un(x) denotes an approximation to u(x, n∆t). Applying the finite difference or finite
element approximation (7.2) to (8.25) yields a simple algorithm. The difficulty with this
simple algorithm is that it is unstable unless dt is sufficiently small.

8.4.2 Implicit Euler Time Discretization

The simplest implicit time discretization method for the heat equation uses the backward
(or implicit) Euler difference method. It takes the form

un+1(x) = un(x) + ∆t
∂2un+1

∂x2
(x, t) ∀x ∈ [0, 1],

u0(x) = u0(x) ∀x ∈ [0, 1]

un(0) = g0(t) and un(1) = g1(t) ∀n > 0

(8.26)

where un(x) again denotes an approximation to u(x, n∆t). Applying the finite difference or
finite element approximation (7.2) to (8.26) yields now a system of equations to be solved
at each time step. This algorithm is stable for all dt, but now we have to solve a system
of equations instead of just multiplying by a matrix. Note however that the system to be
solved is just the same as in the ODE boundary-value problems studied earlier, so the same
family of techniques can be used.

8.4.3 Variational form of the time discretization

The explicit Euler time stepping method can be written in variational form as

(un+1, v)L2(Ω) = (un, v)L2(Ω) + ∆t (F (v)− a(un, v)) ∀v ∈ V. (8.27)

Solving for un+1 requires inverting the mass matrix (6.24).

The implicit Euler time stepping method can be written in variational form as

(un+1, v)L2(Ω) + ∆t a(un+1, v) = (un, v)L2(Ω) + ∆t F (v) ∀v ∈ V. (8.28)

Solving for un+1 requires inverting linear combination of the stiffness matrix (6.21) and the
mass matrix (6.24). This is now in the familiar form: find un+1 ∈ V such that

a∆t(u
n+1, v) = F n

∆t(v) ∀v ∈ V,

where

a∆t(v, w) =

∫
Ω

vw + ∆tv′w′ dx, F n
∆t(v) = (un, v)L2(Ω) + ∆tF (v) ∀v, w ∈ V. (8.29)

October 2, 2017, do not distribute 75



76 CHAPTER 8. HEAT EQUATION

k a0 a1 a2 a3 a4 a5 a6 a7

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 6/2 −4/3 1/4
5 137/60 −5 10/2 −10/3 5/4 −1/5
6 49/20 −6 15/2 −20/3 15/4 −6/5 1/6
7 363/140 −7 21/2 −35/3 35/4 −21/5 7/6 −1/7

Table 8.1: Coefficients of the BDF schemes of degree k.

8.4.4 Mass lumping

It is disconcerting that the explicit Euler time-stepping scheme leads to a system of equations
(involving the mass matrix) that has to be inverted at each time step. This can be avoided in
many cases by replacing the exact integration in expressions like (un, v)L2(Ω) by appropriate
quadrature. For example, with piecewise linear approximation in one spatial dimension, we
could use trapezoidal rule for evaluating the expression in (6.24). In this case, instead of the
matrix M , we get the identity matrix, and the algorithm (8.27) gets transformed to

Un+1 = Un + ∆t (F−AUn) , (8.30)

where we are using the vector notation preceeding (6.22).

8.5 Backwards differentiation formulæ

A popular way to achieve increased accuracy in time-dependent problems is to use a back-
wards differentiation formula (BDF)

du

dt
(tn) ≈ 1

∆t

k∑
i=0

anun−i, (8.31)

where the coefficients {ai : i = 0, . . . k} are given in Table 8.1. The BDF for k = 1 is the
same as implicit Euler. The BDF formulæ satisfy [169]

k∑
i=0

aiun−i =
k∑
j=1

(−1)j

j
∆jun, (8.32)

where ∆un is the sequence whose n-th entry is un − un−1. The higher powers are defined
by induction: ∆j+1un = ∆(∆jun). For example, ∆2un = un − 2un−1 + un−2, and in general
∆j has coefficients given from Pascal’s triangle. We thus see that a0 6= 0 for all k ≥ 1;
a0 =

∑k
i=1 1/i. Similarly, a1 = −k, and for j ≥ 2, jaj is an integer conforming to Pascal’s

triangle.
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(a) (b)

Figure 8.4: Solution of (8.33) with initial data (8.5) at time t = 0.001, computed with
piecewise linears with 50 mesh points (uniform mesh). (a) One time step with ∆t = 0.001.
(a) Two time steps with ∆t = 0.0005.

Given this simple definition of the general case of BDF, it is hard to imagine what could go
wrong regarding stability. Unfortunately, the BDF method of order k = 7 is unconditionally
unstable and hence cannot be used. We leave as exercises to explore the use of the BDF
schemes.

8.6 The backwards heat equation

The heat equation is reversible with respect to time, in the sense that if we let time run
backwards we get an equation that takes the final values to the initial values. More precisely,
let u(x, t) be the solution to (8.1) for 0 ≤ t ≤ T . Let v(x, t) := u(x, T − t). Then v solves
the backwards heat equation

∂v

∂t
(x, t) +

∂2v

∂x2
(x, t) = 0 ∀x ∈ [0, 1], t > 0

v(x, 0) = v0(x) = u(x, T ) ∀x ∈ [0, 1]

v(0, t) = g0(T − t), v(1, t) = g1(T − t) ∀t > 0

(8.33)

and v(x, T ) will be the same as the initial data u0 for (8.1).
Although (8.33) has a well-defined solution in many cases, it is not well-posed in the

usual sense. It only has a solution starting from solutions of the heat equation. Moreover,
such solutions may exist only for a short time, and then blow up. Thus great care must be
used in attempting to solve the backwards heat equation.

One reason for interest in the backwards heat equation is in information recovery. If a
process blurs information via a diffusion process, then running the backwards heat equation
can potentially deblur the information. Thus this approach has been considered in image
processing [41].

An example of the difficulty in reversing the heat equation is shown in Figure 8.4. What
is depicted is an attempt to solve (8.33) with initial data (8.5) at time t = 0.001. What
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formula classification example formula
x2 + y2 = 1 elliptic Laplace u,xx + u,yy
x2 − y2 = 1 hyperbolic wave u,xx − u,yy
y = x2 parabolic diffusion/heat u,x − u,yy

Table 8.2: Classification of linear PDEs. The column marked “formula” gives a typical
formula for a conic section of whose name gives rise to the PDE classification name.

we see in Figure 8.4(a) is the result of using a uniform mesh in space with 50 points and
piecewise linear approximation, using ∆t = 0.001. What we see looks plausible, but when
we check this by cutting the time step in half, and doubling the number of time steps, we
see in Figure 8.4(b) that we get something radically different, with very many oscillations.
If we continue this, by cutting the time step in half and doubling the number of time steps,
we find even wilder oscillations.

What is going on? Remember that the heat equation always smooths the initial data
as we move forward in time. Thus when we run time backwards, we must get a solution
that is rougher than the initial data. Therefore there could not be a smooth solution for
the backwards heat starting with the nonsmooth initial data (8.5). Thus the progression
indicated in Figure 8.4 from panel (a) to panel (b) suggests an attempt to generate some
very singular object. Recall that the the time in both panels is the same, and (b) represents
using better time resolution. We leave as Exercise 8.15 to explore changing the spatial
resolution by increasing both the number of mesh points and the polynomial degree of the
finite element approximation.

8.7 Classification of PDEs

There are two major classifications of PDEs, one for linear PDEs and one for nonlinearities.
The linear classification is simple: elliptic, parabolic, and hyperbolic. This is based on a
simple algebraic dichotomy for second-order differential operators D in two dimensions.

But there are other equations of higher order that do not fit this classification, such as
the dispersive Airy equation ut + uxxx = 0. On the other hand, using a more sophisticated
classification [3], it is possible to see the Stokes equations as an elliptic system.

8.8 Exercises

Exercise 8.1 Verify that the Gaussian u(x, t) := 1
(t+to)1/2

e−x
2/(t+to) is an exact solution to

(8.1). Use this to test the accuracy of a numerical code for some to > 0. What happens if
you take to → 0?

Exercise 8.2 Generalize the heat equation (8.1) to two spatial dimensions in which the
spatial operator is the Laplace operator. Give a “method of lines” discretization for it. Test
the code on the two-dimensional version of the exact solution in Exercise 8.1.
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Exercise 8.3 Consider the generalized heat equation in two spatial dimensions (Exercise 8.2).
Determine the first two compatibility conditions on the initial and boundary data to insure
smooth solutions (see (8.6) and (8.6)). Give a demonstration of what happens if these are
violated.

Exercise 8.4 Give the second set of compatibility conditions (8.9) in the case of pure Dirich-
let conditions (8.2).

Exercise 8.5 Give the second set of compatibility conditions (8.9) in the case of pure Neu-
mann boundary conditions (8.3).

Exercise 8.6 Derive the third set of compatibility conditions in the case of pure Dirichlet
conditions (8.2), pure Neumann boundary conditions (8.3), and mixed Dirichlet and Neu-
mann boundary conditions (8.4).

Exercise 8.7 Show that the inhomogeneous initial and boundary-value problem (8.1)–(8.4)
for the heat equation can be written in the form (8.12) with

F (v) = (f, v) + g1(t)v(1)− g0(t)a(1− x, v) ∀v ∈ V. (8.34)

Exercise 8.8 Examine the numerical solution of (8.25) with incompatible data, e.g., where
u0(x) = 1 − 2x and g0(t) = g1(t) ≡ 0. How does the error depend on x and t? Does it
decrease as t increases? What is the rate of convergence in the L2 norm for the solution
‖u(·, t)‖L2(Ω).

Exercise 8.9 Examine the stability limit of the explicit Euler scheme.

Exercise 8.10 Examine the stability limit of the implicit Euler scheme.

Exercise 8.11 Examine the stability limit of the second-order backwards difference scheme.

Exercise 8.12 Try solving the backwards heat equation (8.33) with the Gaussian u(x, t) :=
1

(t0)1/2
e−x

2/(t0) as initial data.

Exercise 8.13 Give a variational formulation of the problem

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) + β

∂u

∂x
(x, t) + γu(x, t) = f ∀x ∈ [0, 1], t > 0

u(x, 0) = u0(x) ∀x ∈ [0, 1]
(8.35)

with a simple implicit Euler time-stepping. Assume that β and γ are known functions of x.

Exercise 8.14 Give a variational formulation of the problem

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) + n(u(x, t)) = f ∀x ∈ [0, 1], t > 0

u(x, 0) = u0(x) ∀x ∈ [0, 1]
(8.36)

with a simple implicit Euler time-stepping, where n is the nonlinear function n(u) = u2.
Describe Newton’s method to solve the nonlinear system at each time step.

Exercise 8.15 Solve (8.33) with initial data (8.5) at time t = 0.001 using different spatial
resolution by increasing both the number of mesh points and the polynomial degree of the
finite element approximation. Summarize what you learn.
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1 from dolfin import *

2 import sys, math

3 import time

4

5 dt=float(sys.argv[1])

6 deg=int(sys.argv[2])

7 mno=int(sys.argv[3])

8

9 # Create mesh and define function space

10 mesh = UnitIntervalMesh(mno)

11 V = FunctionSpace(mesh, "Lagrange", deg)

12

13 # Define Dirichlet boundary (x = 0 or x = 1)

14 def boundary(x):

15 return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

16

17 # Define boundary condition

18 g = Expression("0.5-std::abs(x[0]-0.5)")

19 u0 = Expression("0")

20

21 bc = DirichletBC(V, u0, boundary)

22

23 # Define variational problem

24 u = TrialFunction(V)

25 uold = Function(V)

26 v = TestFunction(V)

27 a = dt*inner(grad(u), grad(v))*dx + u*v*dx

28 F = uold*v*dx

29 u = Function(V)

30

31 uold.interpolate(g)

32 u.assign(uold)

33

34 # Compute one time step

35 solve(a == F, u, bc)

36

37 uold.assign(u)

38 plot(u, interactive=True)

Program 8.1: Code to implement the problem (8.1).
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Chapter 9

Stokes’ Equations

We now study models in which the unknown functions are vector valued. This does not
in itself present any major change to the variational formulation framework. However, for
incompressible fluids, significant new computational features emerge. This forces attention
on the numerical methods used to be sure of having valid simulations.

9.1 Model equations

The model equations for all fluids take the form

ut + u · ∇u +∇p = ∇·T + f ,

where u is the velocity of the fluid, p is the pressure, T is called the extra (or deviatoric)
stress and f is externally given data. The models differ based on the way the stress T
depends on the velocity u. Time-independent models take the form

u · ∇u +∇p = ∇·T + f . (9.1)

For incompressible fluids, the equation (9.1) is accompanied by the condition

∇·u = 0, (9.2)

which we will assume holds in the following discussion. For suitable expressions for T defined
in terms of u, the problem (9.1) and (9.2) can be shown to be well-posed, as we indicate in
special cases.

The simplest expression for the stress is linear: T = 1
2
η
(
∇u +∇ut

)
, where η denotes the

viscosity of the fluid. Such fluids are called Newtonian. Scaling by η, (9.1) becomes

1

η
u · ∇u +∇p̂−∆u = f̂ , (9.3)

where p̂ = (1/η)p and f̂ = (1/η)f . When η is large, the nonlinear term multiplied by η−1 is
often dropped, resulting in a linear system called the Stokes equations when (9.2) is added.
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When the nonlinear equation is kept, equations (9.3) and (9.2) are called the Navier-Stokes
equations, which we consider in Chapter 14.

The Stokes equations for the flow of a viscous, incompressible, Newtonian fluid can thus
be written

−∆u +∇p = f

∇·u = 0
(9.4)

in a domain Ω ⊂ Rd, where u denotes the fluid velocity and p denotes the pressure [116].
Here the dimension d of Ω is either 2 or 3; the two-dimensional case corresponds to fluid
flow that is indepenendent of the third dimension.

These equations must be supplemented by appropriate boundary conditions, such as the
Dirichlet boundary conditions, u = γ on ∂Ω. The key compatibility condition on the data
comes from the divergence theorem: ∮

∂Ω

γ · n ds = 0, (9.5)

which expresses conservation of mass. From now on, we assume that condition (9.5) holds.

9.1.1 Stokes variational formulation

The variational formulation of (9.4) takes the form: Find u such that u− γ ∈ V and p ∈ Π
such that

a (u,v) + b (v, p) = F (v) ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,
(9.6)

where, e.g., a(·, ·) = a∇(·, ·) and b(·, ·) are given by

a∇(u,v) :=

∫
Ω

∇u : ∇v dx =

∫
Ω

d∑
i,j=1

ui,jvi,j dx, (9.7)

b(v, q) := −
∫

Ω

d∑
i=1

vi,iq dx, (9.8)

and F ∈ V′, the dual space of V defined in Section 2.5. The variational formulation (9.6)
is derived (Exercise 9.1) by multiplying (9.4) by v with a “dot” product, and integrating by
parts as usual. Note that the second equations in (9.4) and (9.6) are related by multiplying
the former by q and integrating, with no integration by parts.

The spaces V and Π are as follows. In the case of simple Dirichlet data on the entire
boundary, V consists of the d-fold Cartesian product of the subset H1

0 (Ω) of H1(Ω) of
functions vanishing on the boundary. In this case, Π is the subset of L2(Ω) consisting of
functions having mean zero. The latter constraint corresponds to fixing an ambient pressure.
Note that

Π = ∇·V. (9.9)
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Another variational formulation for (9.4) can be derived which is equivalent in some ways,
but not identical to (9.6). Define

ε(u)ij = 1
2

(ui,j + uj,i) (9.10)

and

aε(u,v) := 2

∫
Ω

d∑
i,j=1

ε(u)ijε(v)ij dx. (9.11)

Then it can be shown (Exercise 9.2) that

aε(u,v) := a∇(u,v) (9.12)

provided only that ∇·u = 0 in Ω and v = 0 on ∂Ω or ∇·v = 0 in Ω and u = 0 on ∂Ω.
However, the natural boundary conditions associated with aε and a∇ are quite different [93].

Inhomogeneous Dirichlet data can be incorporated in a standard variational problem
much like the scalar case (Exercise 2.6 and Section 3.1.5) but with a twist. The variational
formulation (9.6) can be written with u = u0 + γ where u0 ∈ V and p ∈ Π satisfy

a (u0,v) + b (v, p) = F (v)− a(γ,v) ∀v ∈ V ,

b(u0, q) = −b(γ, q) ∀q ∈ Π .
(9.13)

The twist is that the second equation becomes inhomogeneous as well, unless by chance γ
is divergence free.

Changing notation, if necessary, from u0 to u, we can thus think of the general Stokes
variational problem as being of the following form:

Find u such that u ∈ V and p ∈ Π such that

a (u,v) + b (v, p) = F (v) ∀v ∈ V ,

b(u, q) = G(q) ∀q ∈ Π .
(9.14)

We now describe the basic theory that justifies the well-posedness of this variational formu-
lation.

9.1.2 Well-posedness of Stokes

We assume, as always, that the bilinear forms satisfy the continuity conditions

|a(v,w)| ≤ Ca‖v‖V‖w‖V ∀v,w ∈ V

|b(v, q)| ≤ Cb‖v‖V‖q‖Π ∀v ∈ V, q ∈ Π
(9.15)

for finite, positive constants Ca and Cb. This is easily proven for the Stokes problem. How-
ever, the Lax-Milgram theory does not suffice to establish the well-posedness of the Stokes
equations due in part to the asymmetry of the equations for the variables u and p. Indeed,
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the second equation in (9.14) may be thought of as a simple constraint: ∇·u = 0. Thus it
is natural to consider the space Z defined by

Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Π} = {v ∈ V : ∇·v = 0} . (9.16)

We may simplify the variational formulation (9.14) to: find u ∈ Z such that

a(u,v) = F (v) ∀v ∈ Z, (9.17)

which is a standard variational formulation. Thus the problem for u is wellposed if a(·, ·) is
coercive on Z:

‖v‖2
H1(Ω) ≤ c0 a(v,v) ∀v ∈ Z (9.18)

for some finite, positive constant c0. We will see that this framework is useful for other,
so-called mixed formulations as well.

The bound (9.18) can be proved for both of the forms a∇ and aε with suitable boundary
conditions, for all of V as well. The proof is familar in the case of a∇, since the only functions
for which a∇(v,v) = 0 are constants. The coercivity of aε is called Korn’s inequality [37].

Well-posedness for the pressure follows from the inf-sup condition

‖q‖L2(Ω) ≤ C sup
0 6=v∈V

b(v, q)

‖v‖H1(Ω)

, ∀q ∈ Π, (9.19)

which is proved [7] by solving ∇·v = q with v ∈ V and ‖v‖H1 ≤ C‖q‖L2 . (For motivation
regarding this inequality, see Exercise 2.7.) The term inf-sup encapsulates the fact that we
assume that (9.19) holds for all q ∈ Π, so that

1

C
≤ inf

06=q∈Π
sup

06=v∈H1(Ω)

b(v, q)

‖v‖H1(Ω)‖q‖L2(Ω)

.

Suppose that γ = 0 and F = 0. Then (9.17) implies that u = 0, and so from (9.14) we have

b(v, p) = 0 ∀v ∈ V.

It follows from (9.19) that p = 0. Thus coercivity of a(·, ·) and the inf-sup condition (9.19)
together guarantee uniqueness of the solution of (9.14). It can similarly be shown that they
imply existence and stability [87].

9.2 Mixed Method Formulation

Here it is useful to abstract the Stokes formulation to a general mixed form. This will be
pursued further in Section 12.3. The general formulation of (9.14) is of the form

a(u, v) + b(v, p) = F (v) ∀v ∈ V
b(u, q) = G(q) ∀q ∈ Π,

(9.20)
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where V and Π are two Hilbert spaces and F ∈ V ′ and G ∈ Π′ (the “primes” indicate dual
spaces, Section 2.5). The general formulation of the discretization of (9.14) is of the form

a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh
b(uh, q) = G(q) ∀q ∈ Πh,

(9.21)

where the default assumption is that Vh ⊂ V and Πh ⊂ Π. It is called a mixed method
since the variables v and q are mixed together. For the Stokes problem (9.14), the natural
variational formulation is already a mixed method, whereas it is an optional formulation in
other settings (see Section 12.3). The main twist in the variational formulation of mixed
methods with inhomogeneous boundary conditions is that the term G is not zero [166].

We assume there is a continuous operator D : V → Π such that

b(v, p) = (Dv, p)Π ∀p. (9.22)

In the Stokes problem, D = ∇· .
Let PΠ G denote the Riesz representation of G in Π, that is, PΠG ∈ Π satisfies

(PΠG, q)Π = G(q) ∀q ∈ Π . (9.23)

It is equivalent to pose the variational formulation (9.20) as

a(u, v) + b(v, p) = F (v) ∀v ∈ V
b(u, q) = (g, q)Π ∀q ∈ Π,

(9.24)

where g = PΠ G. This is the form of the mixed-method analyzed in [37]. In the Stokes
problem, g = −∇·γ.

In a similar way, we can define the Riesz representation of G in Πh, PΠhG ∈ Πh, by the
variational equation

(PΠhG, q)Π = G(q) ∀q ∈ Πh . (9.25)

Then the discrete mixed problem can be written

a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh
b(uh, q) = (gh, q) ∀q ∈ Πh,

(9.26)

where gh = PΠhG. Note that the second equation in (9.21) says that

PΠhDuh = PΠhG = gh, (9.27)

where we also use PΠhq to denote the Π-projection of q ∈ Π onto Πh (q = Duh here).
We assume that the bilinear forms satisfy the continuity conditions (9.15) and the coer-

civity conditions
α‖v‖2

V ≤ a(v, v) ∀v ∈ Z ∪ Zh, (9.28)

β‖p‖Π ≤ sup
v∈Vh

b(v, p)

‖v‖V
∀p ∈ Πh, (9.29)
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ρ

A B

B
t

0

Taylor−Hood matrix = AIterated Penalty matrix = 

Figure 9.1: Comparison of the matrix sizes for Taylor-Hood and the Iterated Penalty Method.
The full matrix for Taylor-Hood includes blocks B and Bt corresponding to the variational
form b(v, q) for v ∈ Vh and q ∈ Πh. The iterated penalty method involves a matrix just the
size of A, the matrix corresponding to the variational form a(v, w) for v, w ∈ Vh.

where α, β > 0. (For motivation regarding the second inequality, see Exercise 2.7.) Here Z
and Zh are defined by

Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Π} (9.30)

and
Zh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Πh} (9.31)

respectively.
The mixed formulation can be posed in the canonical variational form (2.25) by writing

A((u, p), (v, q)) :=a(u, v) + b(v, p) + b(u, q)

F((v, q)) :=G(q) + F (v)
(9.32)

for all (v, q) ∈ V := V × Π. More precisely, we solve for (u, p) ∈ V satisfying

A((u, p), (v, q)) = F((v, q)) ∀ (v, q) ∈ V . (9.33)

The discrete version of (9.33) can be solved by direct methods (e.g., Gaussian elimination).
However, this system is not positive definite, and more efficient algorithms can be used in
special cases, as we discuss in Section 9.6. You can see that the linear system is not positive
definite because it is not coercive:

A((0, q), (0, q)) = 0 ∀q ∈ Π.

The system is invertible, so it must have negative eigenvalues, because it is a symmetric
matrix.

9.3 Taylor-Hood method

One of the first widely-used pairs of spaces for the Stokes equations (9.14) was the so-called
Taylor-Hood spaces, as follows. Let V k

h denote C0 piecewise polynomials of degree k on a
triangulation Th of a polygonal domain Ω ⊂ Rd. Let

Vh =
{

v ∈
(
V k
h

)d
: v = 0 on ∂Ω

}
(9.34)
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and let

Πh =

{
q ∈ V k−1

h :

∫
Ω

q(x) dx = 0

}
. (9.35)

It has been proved that (9.28) and (9.29) hold for these spaces in both two and three
dimensions under very mild restrictions on the mesh [29].

Note that Zh 6⊂ Z for the Taylor-Hood method. One drawback of Taylor-Hood is that the
divergence free condition can be substantially violated, leading to a loss of mass conservation
[119]. This can be avoided if we force the divergence constraint to be satisfied by a penalty
method [42, 47]. Another issue for Taylor-Hood is the need to solve an indefinite linear
system. This can be alleviated by an iterated penalty method, as discussed in Section 9.6.

Another difficulty with the Taylor-Hood method is that it is necessary to construct the
constrained space Πh in (9.35). Many systems, including dolfin, do not provide a simple
way to construct such a subspace of a space like V k−1

h satisfying a constraint (e.g., mean
zero). Thus special linear algebra must be performed. Finally, we will see that it is possible
to avoid Πh completely, leading to smaller and better behaved systems (see Figure 9.1) [137].

9.4 Constraint counting

Analogous to (9.17), the discrete version of the Stokes equations can be written as: find
uh ∈ Zh such that

a(uh,v) = F (v) ∀v ∈ Zh. (9.36)

If we have Zh ⊂ Z, then Céa’s Theorem 3.1 implies the error u−uh is bounded by the best
approximation from Zh:

‖u− uh‖H1(Ω) ≤
Ca
α
‖u− v‖H1(Ω) ∀v ∈ Zh. (9.37)

In particular, this shows that the viability of the velocity approximation does not depend on
the inf-sup condition (9.29). If Vh is of the form (9.34), the space Zh contains the curl of C1

piecewise polynomials of one higher degree (k + 1), and this space has good approximation
properties for sufficiently high degree.

So it might appear that the pressure and its approximation play no significant role,
with the only issue being to see that the space Zh is not over-constrained. But in fact it
can be. When we choose the pressure space, we are choosing something to constrain the
divergence of the velocity space. This is the main issue with the linkage between the pressure
approximation space and the velocity approximation space.

To understand this, take Vh to be vector Lagrange elements of degree k in two dimensions
that vanish on ∂Ω, as in (9.34), where Ω is the rectangle depicted in Figure 9.2(a). The
divergence of such (vector) elements form a subspace of discontinuous, mean-zero finite
elements of degree k − 1. So we can begin by understanding how these two spaces are
related. Let us simply count the number of degrees of freedom for the mesh depicted in
Figure 9.2.
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(a) (b) (c)

Figure 9.2: (a) A triangulation with only one interior vertex; (b) degrees of freedom for
piecewise linear vector functions on this mesh that vanish on the boundary; (c) degrees of
freedom for piecewise quadratic vector functions on this mesh that vanish on the boundary.

There are only two degrees of freedom, as indicated in Figure 9.2(b), for piecewise linear
vector functions on this mesh that vanish on the boundary. That is, dimVh = 2 for k = 1. If
we take Πh to be piecewise constants on this mesh which have mean zero, then dim Πh = 3
(one for each triangle, minus 1 for the mean-zero constraint.) Thus we see that the inf-sup
condition (9.29) cannot hold; Vh is only two-dimensional, so the three-dimensional space
Πh must have a p orthogonal to ∇·v for all v ∈ Vh. Moreover, it is not hard to see that
Zh = {0}, the space with only the zero function.

For Vh being piecewise quadratic (k = 2) vector functions on the mesh in Figure 9.2(a),
the dimension of Vh is 10, as shown in Figure 9.2(c); there are 4 edge nodes and 1 vertex
node, and 2 degrees of freedom for each. If we take Πh to be discontinuous piecewise linears
on this mesh which have mean zero, then dim Πh = 11 (three for each triangle, minus 1
for the mean-zero constraint.) Thus we see that Vh is still too small to match Πh, just by
dimensional analysis.

One way to resolve this dilemma is to reduce the number of constraints implied by
b(v, q) = 0. This could be done by making the pressure space smaller, or (equivalently as
it turns out) reducing the accuracy of integration in computing b(v, q). Such reduced or
selective integration has been extensively studied [126]. The Taylor-Hood method makes Πh

smaller by requiring continuity; for k = 2, the dimension of Πh as defined in (9.35) on the
mesh in Figure 9.2(a) is 5.

9.4.1 Higher-degree approximation

Another way to eliminate the bad effects of constraints is to go to higher-degree polynomials.
We know that the velocity approximation just depends on having good approximation from
Zh, based on (9.37). Moreover, if Vh is as defined in (9.34), then we know that Zh contains
the curl of all C1 piecewise polynomials of degree k + 1 (that vanish to second order on the
boundary). In two dimensions, the Argyris element [37] is well defined for degree five and
higher, so it is natural to examine the case k ≥ 4 in two dimensions.

For Vh being piecewise quartic (k = 4) vector functions on the mesh in Figure 9.2(a),
dimVh = 50 (there are 3 nodes per edge, 3 nodes per triangle and one vertex node).
Correspondingly, if Πh consists of discontinuous piecewise cubics with mean zero, then
dim Πh = 39 (10 degrees of freedom per triangle and one mean-zero constraint). Thus
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Figure 9.3: (a) A triangulation based on the diagonals of a quadrilateral in which opposite
edges are parallel: a‖c, b‖d. (b) Notation for understanding local constraint at a singular
vertex.

we do have dimVh >> dim Πh in this case. However, the counting of constraints has to be
more careful. The divergence operator maps Vh to Πh, with its image being some subspace
Wh of Πh, and its kernel is Zh. So dimVh = dimWh + dimZh. We hope that Wh = Πh,
which is true if dimWh = dim Πh = 39. Thus we need to show that dimZh = 11 in this
case. More precisely, since dimWh ≤ dim Πh = 39,

dimZh = dimVh − dimWh ≥ dimVh − dim Πh = 50− 39 = 11.

Thus we need to show that dimZh ≤ 11.

We can write Zh = curlSh where Sh is the space of C1 (scalar) piecewise quintic functions
on the mesh in Figure 9.2(a) that vanish to second order on the boundary. One can check
that, indeed, this space is specified uniquely by 11 parameters [138]. Moreover, under some
mesh restrictions, it can be shown [168, 167] that the inf-sup condition (9.29) holds with
β > 0 independent of the mesh size.

When Πh = ∇·Vh, the resulting algorithm is often called the Scott-Vogelius method
[42, 47, 120, 121, 167, 168]. In Section 9.6, we consider an algorithm for solving for the
velocity and pressure without dealing explicitly with the pressure space Πh, facilitating the
choice Πh = ∇·Vh.

9.4.2 Malkus crossed-quadrilaterals

David Malkus realized that there was something special about triangulations involving
crossed-quadrilaterals, that is, quadrilaterals containing four triangles obtained by draw-
ing the two diagonals of the quadrilateral, as shown in Figure 9.3(a). He referred to such
elements as crossed triangles [125]. The vertices where the diagonals cross are known as
singular vertices [138, 139]. At such vertices, the characterization of ∇·Vh changes. In
addition to the fact that the average of p ∈ ∇·Vh must be zero over the four elements when
homogeneous Dirichlet conditions hold on the boundary of the quadrilateral, now there is a
local condition constraining p at the singular vertex. Since p is discontinuous, let us denote
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the four values of p at the singular vertex σ by

π1 = pab(σ), π2 = pbc(σ), π3 = pcd(σ), π4 = pda(σ), (9.38)

where pij denotes the restriction of p in the triangle with edges i, j at the central vertex σ.
Then the singular vertex condition is that

π1 − π2 + π3 − π4 = 0. (9.39)

To see why (9.39) must hold, it helps to consider a simple example in which the two diagonals
are orthogonal, as indicated in Figure 9.3(b). In this case, we can assume, without loss of
generality, that the edges lie on the x and y axes, as indicated in Figure 9.3(b). Let the
velocity vector be denoted by (u, v). Since u is continuous on the edge a, u,x is also continuous
on the edge a. Using notation similar to (9.38), we can say that uab,x(σ) − uad,x(σ) = 0.
Similarly, ubc,x(σ) − ucd,x(σ) = 0. Subtracting the second expression from the one before
gives

uab,x(σ)− ubc,x(σ) + ucd,x(σ)− uad,x(σ) = 0.

A similar argument can be applied to v,y, and adding the two expressions yields (9.39).
We leave an Exercise 9.4 to prove (9.39) in the general case when the diagonals are not
perpendicular.

The import of the condition (9.39) is a reduction in the size of the space∇·Vh. This means
that there are only two degrees of freedom in the target discontinuous piecewise constant
subspace in the case k = 1. Thus the two degrees of freedom indicated in Figure 9.2(b) are
just enough to match the corresponding pressure variables, leading to a well-posed numerical
method for k = 1 on crossed-triangle meshes. Moreover, an explicit basis of Πh is available.
In terms of the π variables, a basis consists of

(1, 0,−1, 0) and (1, 1,−1,−1),

in each quadrilateral. Unfortunately, the inf-sup condition (9.29) does not hold uniformly in
h: β → 0 as h → 0 [151, 152]. However, the velocity approximation is the expected order
due to the fact that the space Zh can be identified as the curl of the Powell space [150]. For
more details, see [151, 152]. In particular, these results show that the inf-sup condition is
not necessary, only sufficient, for successful velocity approximation.

9.5 The Scott-Vogelius algorithm

The Scott-Vogelius algorithm consists of using the velocity spaced defined in (9.34) for the
Taylor-Hood method, but instead of using (9.35) for the pressure space, we choose

Πh = ∇·Vh. (9.40)

This has been generalized to other choices of Vh [54, 73, 76, 95, 96, 189]. Another approach
to exact satisfaction of the divergence constraint is to work in spaces with relaxed regularity
[57].
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d k mesh restrictions references
2 2, 3 some crossed triangles required [151, 152]

no boundary singular vertices
2 ≥ 4 no nearly singular vertices [167, 168]

or boundary singular vertices
3 ≥ 6 only one family Th known [188]

Table 9.1: Known inf-sup bounds under mesh restrictions for exact divergence-free piecewise
polynomials; Vh defined in (9.34) and Πh given by (9.40). Key: d = dimension of Ω, k =
degree of polynomials.

9.5.1 Convergence of Scott-Vogelius

The choice of pressure space (9.40) implies that Zh ⊂ Z, and so the velocity error is governed
by best approximation (9.37). When the inf-sup condition (9.28) holds with β independent
of h, then best-approximation from Zh may be related to best-approximation from Vh:

‖u− uh‖H1(Ω) ≤
1

α
inf
v∈Zh
‖u− v‖H1(Ω) ≤

C

αβ
inf
v∈Vh
‖u− v‖H1(Ω). (9.41)

When the inf-sup condition holds independently of the mesh, one also obtains the following
approximation result for the pressure:

‖p− ph‖L2(Ω) ≤
C

β

(
inf
v∈Vh
‖u− v‖H1(Ω) + inf

q∈Πh
‖p− q‖L2(Ω)

)
. (9.42)

Table 9.1 describes mesh restrictions under which the inf-sup bound (9.29) is known
to hold with β independent of mesh size, in two and three dimensions, for various values
of k. Boundary singular vertices and nearly singular (interior) vertices are defined in [37,
page 319]. Note that there is no restriction against having singular interior vertices (crossed
triangles or crossed quadrilaterals) in the mesh in two dimensions. The inf-sup constant can,
however, degenerate if such vertices are nonsingular but very close to being singular [37,
page 319].

9.5.2 The unified Stokes algorithm

The Scott-Vogelius algorithm produces a very accurate velocity approximation with exact di-
vergence zero, but the corresponding pressure approximation is discontinuous. By contrast,
the Taylor-Hood pressure approximation is continuous but the velocity does not preserve
mass. The unified Stokes algorithm combines the best of these two methods and eliminates
the bad features. More precisely, the velocity approximation is exactly the same as for
the Scott-Vogelius algorithm, but the pressure is obtained by projecting the Scott-Vogelius
pressure onto the continuous pressure space (9.35) used in the Taylor-Hood method. Algo-
rithmically, write the Scott-Vogelius pressure p = ∇·w for some w ∈ Vh. Then the unified
Stokes pressure p̂h is defined by

(p̂h, q)L2(Ω) = (∇·w, q)L2(Ω) ∀q ∈ Πh.
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We will show subsequently that p̂h is easy to compute, by identifying w.
When the inf-sup condition holds independently of the mesh, the unified Stokes pressure

p̂h also satisfies [137]

‖p− p̂h‖L2(Ω) ≤
C

β

(
inf
v∈Vh
‖u− v‖H1(Ω) + inf

q∈Πh
‖p− q‖L2(Ω)

)
. (9.43)

9.6 Iterated Penalty Method

When a system of equations is written as one equation that holds for a constrained set of
variables, iterative techniques can be used to solve them that may be efficient. The idea is
to represent the constraint via an operator that is applied in an iterative fashion (with some
penalty) until the constraint is satisfied to a desired tolerance.

Consider a general mixed method of the form (9.21). To conform to the analysis in [37],
suppose now that Πh = DVh. Let ρ′ ∈ R and ρ > 0. The iterated penalty method defines
un ∈ Vh and pn by

a(un, v) + ρ′ (Dun,Dv)Π = F (v)− b(v, pn) + ρ′G(Dv) ∀v ∈ Vh
pn+1 = pn + ρ (Dun − PΠhG) ,

(9.44)

where PΠhG is defined in (9.25) and we start with p0 = 0. One important feature of the
iterated penalty method is that the linear system of equations represented by the first equa-
tion in (9.44) for un is symmetric if a(·, ·) is symmetric, and it is positive definite if a(·, ·) is
coercive and ρ′ > 0. If we begin with p0 = 0 then, for all n > 0,

pn = ρD
( n−1∑

i=0

ui
)
− nρPΠhG = Dwn − nρPΠhG, (9.45)

where

wn := ρ
n−1∑
i=0

ui. (9.46)

Note that

b(v, pn) = (Dv, pn)Π = (Dv,Dwn)Π − nρ(Dv, PΠhG)Π = (Dv,Dwn)Π − nρG(Dv), (9.47)

since Dv ∈ Πh. Therefore, the iterated penalty method can be written equivalently as

a(un, v) + ρ′ (Dun,Dv)Π = F (v)− (Dv,Dwn)Π + nρG(Dv) + ρ′G(Dv) ∀v ∈ Vh
wn+1 = wn + ρun,

(9.48)

where w0 = 0. For a problem with Dirichlet boundary data γ, where F (v) = −a(γ, v) and
G(Dv) = −(Dv,Dγ), the equations (9.48) become

a(un + γ, v) + ρ′ (D(un + γ),Dv)Π = − (Dv,Dŵn)Π ∀v ∈ Vh
ŵn+1 = ŵn + ρ(un + γ).

(9.49)
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In the case ρ′ = ρ (9.48) simplifies to

a(un, v) + ρ (Dun,Dv)Π = F (v)− (Dv,Dwn)Π + (n+ 1)ρG(Dv) ∀v ∈ Vh
wn+1 = wn + ρun.

(9.50)

Thus we see that the introduction of inhomogeneous boundary conditions does not have a
dramatic impact on the formulation of the iterated penalty method.

In the case of the Stokes equations, G(Dv) = −(∇· v,∇·γ)Π, so the iterated penalty
method with ρ′ = ρ is

a(un,v) + ρ (Dun,Dv)Π = F (v)− (Dv,D(wn + (n+ 1)ργ))Π ∀v ∈ Vh
wn+1 = wn + ρun.

(9.51)

Note that once the iteration has converged, we can define ph via (9.45):

ph = ∇·wn − nρPΠhG,

where n is the last iteration number. The unified Stokes pressure p̂h ∈ V k−1
h can be defined

variationally by

(p̂h, q)L2(Ω) = (∇·wn − nρPΠhG, q)L2(Ω) ∀q ∈ V k−1
h .

9.6.1 Convergence of iterated penalty

In [37, Chapter 13], it is proved that (9.44) converges for any 0 < ρ < 2ρ′ for ρ′ sufficiently
large, provided that the forms in (9.20) satisfy (9.15), (9.28) and (9.29), and that Πh = DVh.
From [37, (13.1.10)], we have

a(en, v) + ρ(Den,Dv)Π = a(en−1, v) + (ρ− ρ′)(Den−1,Dv)Π ∀ v ∈ Vh, (9.52)

where en = un − uh. The analysis thus simplifies for the case ρ = ρ′, as we now assume.
Applying (9.52) with v = en and using the Cauchy-Schwarz inequality (2.32) gives

a(en, en) + ρ(Den,Den)Π = a(en−1, en) ≤
√
a(en−1, en−1)

√
a(en, en).

Dividing by a(en, en), we find

a(en, en) + ρ(Den,Den)Π

a(en, en)
≤
√
a(en−1, en−1)√
a(en, en)

. (9.53)

Note that a(un, v) = F (v) = a(uh, v) for all v ∈ Zh. Therefore en ⊥a Zh, meaning a(en, v) =
0 for all v ∈ Zh. Define Z⊥h = {v ∈ Vh : v ⊥a Zh} = {v ∈ Vh : a(v, w) = 0∀w ∈ Zh}, and
set

λ = min
06=v∈Z⊥h

a(v, v) + ρ(Dv,Dv)Π

a(v, v)
. (9.54)
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Combining (9.53) and (9.54), we find

√
a(en, en) ≤ 1

λ

√
a(en−1, en−1). (9.55)

The expression (9.54) is the Rayleigh quotient that defines the lowest eigenvalue of the
generalized eigenproblem, to find e ∈ Z⊥h and λ > 0 such that

a(e, v) + ρ(De,Dv)Π = λ a(e, v) ∀ v ∈ Z⊥h . (9.56)

Note that λ = 1 + ρκ where

κ = min
06=v∈Vh, v⊥aZh

(Dv,Dv)Π

a(v, v)
. (9.57)

We have β ≥
√
κ, where β is the constant in the inf-sup condition (9.29), provided we define

‖v‖V =
√
a(v, v) (see Exercise 9.11). On the other hand, [37, (13.1.16)] implies that

√
κ ≥ β

( α

α + Ca

)
.

With the choice of norm ‖v‖V =
√
a(v, v), then Ca = α = 1. Thus β and

√
κ are essentially

equivalent parameters measuring the stability of the Stokes approximation. Note that if
en = e, where e is the eigenvector defined in (9.56), then

en+1 = λ−1en =
1

1 + ρκ
en.

The following collects results from [37, Chapter 13] and the previous discussion.

Theorem 9.1 Suppose that the forms in (9.20) satisfy (9.15), (9.28), and (9.29), and that
Πh = DVh. Then the algorithm (9.44) converges for any 0 < ρ < 2ρ′ for ρ′ sufficiently large.
For the choice ρ = ρ′, (9.44) converges geometrically with a rate given by

1

1 + κρ
,

where κ is defined in (9.57).

Thus we can always choose ρ large enough to ensure geometric convergence of the iterated
penalty algorithm.

9.6.2 Stopping criteria for iterated penalty

The following stopping criterion can be found in [37, Chapter 13].
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Theorem 9.2 Suppose that the forms in (9.20) satisfy (9.15), (9.28) and (9.29), and that
Πh = DVh. Then the errors in algorithm (9.44) can be estimated by

‖un − uh‖V ≤
(

1

β
+
Ca
αβ

)
‖Dun − PΠhG‖Π

and

‖pn − ph‖Π ≤
(
Ca
β

+
C2
a

αβ
+ ρ′Cb

)
‖Dun − PΠhG‖Π.

When G(q) = −b(γ, q), then PΠhG = −PΠhDγ and since Dun ∈ Πh,

‖Dun − PΠhG‖Π = ‖PΠhD (un + γ)‖Π ≤ ‖D (un + γ)‖Π, (9.58)

and the latter norm is easier to compute, avoiding the need to compute PΠhG. We formalize
this observation in the following result.

Corollary 9.1 Under the conditions of Theorem 9.2 the errors in algorithm (9.44) for the
Stokes equations can be estimated by

‖un − uh‖V ≤
(

1

β
+
Ca
αβ

)
‖D (un + γ)‖Π

and

‖pn − ph‖Π ≤
(
Ca
β

+
C2
a

αβ
+ ρ′Cb

)
‖D (un + γ)‖Π.

A code implementing the Iterated Penalty Method is given in Program 9.1.

9.7 Exercises

Exercise 9.1 Carry out the derivation of the variational formulation (9.6). (Hint: write
out the dot-products as a sum and apply the scalar case.)

Exercise 9.2 Prove that (9.12) holds provided only that ∇·u = 0 in Ω and v = 0 on ∂Ω
or ∇·v = 0 in Ω and u = 0 on ∂Ω. (Hint: first verify that

∇u : ∇v = 2ε(u) : ε(v)−
d∑

i,j=1

ui,jvj,i (9.59)

and then integrate by parts.)

Exercise 9.3 Define the linear functional F in (9.17) that corresponds to the nonhomoge-
neous Dirichlet problem in the variational formulation (9.14).

Exercise 9.4 Prove (9.39) in the general case when the diagonals are not perpendicular.
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(a) (b)

Figure 9.4: (a) A triangulation consisting of crossed quadrilaterals. (b) Support of additonal
velocity test functions.

Exercise 9.5 Consider a mesh consisting of crossed quadrilaterals, as shown in Figure 9.4(a).
Let Vh denote piecewise linears on this mesh that vanish on the boundary. Let Πh = ∇·Vh.
Prove that Πh consists of piecewise constants satisfying the constraint (9.39) in each quadri-
lateral together with the global mean-zero constraint. Show that each element of Πh can be
represented in each quadrilateral in the form of a sum of three basis functions

P1 = (1, 0,−1, 0) and P2 = (1, 1,−1,−1) and P3 = (1, 1, 1, 1),

where the individual values of the four-vector are the values of the basis function in each
triangle in a given quadrilateral. Note that the global mean-zero contstraint just involves
the coefficients of the basis functions P3 in each quadrilateral, namely that the sum of the
coefficients is zero. Prove the inf − sup condition for this mesh for the pair Vh and Πh. (Hint:
In Section 9.4.2, we indicated how to construct v ∈ Vh such that v is supported in a given
triangle and ∇·v = c1P1 + c2P2. Thus we need only construct v to match the pressures that
are piecewise constant on each quadrilateral. Consider piecewise linear velocities supported
on the mesh indicated in Figure 9.4(b). Construct two different velocity functions whose
divergence is as indicated in Figure 9.5. Use these functions to control a discrete form of the
gradient of the pressure and modify the argument in [37, Section 12.6].)

(a)

+1

x

y

0

0

−1

(b)

−1

0

0

+1

Figure 9.5: Values of divergence of piecewise linear vectors on the mesh indicated in Fig-
ure 9.4(a) for two different velocity test functions.
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Exercise 9.6 Consider the spaces introduced in Exercise 9.5, that is, let Vh be piecewise
linear functions on a crossed mesh that vanish on the boundary, and Let Πh = ∇·Vh. Use
the iterated penalty method introduced in Section 9.6 to solve the Stokes equations with these
spaces.

Exercise 9.7 The term spurious modes refers to pressure variables that are not properly
controlled by the divergence of the velocity test functions. You can have good approximation
in the velocity space and yet have spurious pressure modes. Consider the crossed meshes
in Figure 9.4(a) and let Vh be piecewise linear functions on such a mesh that vanish on
the boundary. Let Πh be all piecewise constants that have global mean zero on this mesh.
Prove that Zh has good approximation properties. Also show that the spurious modes can
be characterized as having the quartet of values given by the checkerboard pattern P4 =
(+1,−1,+1,−1). (Hint: note that Zh is the same as if we took Πh = ∇·Vh and apply the
stability result of Exercise 9.5.)

Exercise 9.8 Consider the spaces introduced in Exercise 9.7, that is, let Vh be piecewise
linear functions on a crossed mesh that vanish on the boundary. Let Πh be all piecewise
constants that have global mean zero on this mesh. Compute the solution of a smooth problem
with these spaces. What happens?

Exercise 9.9 The Darcy-Stokes-Brinkman models [186] involve an operator of the form

−η∆u + γu +∇p = f (9.60)

together with the usual divergence constraint ∇·u = 0 and boundary conditions. Here γ
can be a matrix function corresponding to the porosity in Darcy flow. When η is small,
we get Darcy flow. When γ is small, we get Stokes flow. In a time stepping scheme for
Stokes, γ = (∆t)−1I, where I is the identity matrix. The name Brinkman is associated with
the general model. Experiment with this model using the Scott-Vogelius element, using the
iterated penalty method to solve the linear system.

Exercise 9.10 Modify the proof of Exercise 2.7 to show that

‖Dw‖Π = sup
06=v∈Z⊥h

(Dv,Dw)Π

‖Dv‖Π

for all w ∈ Z⊥h .

Exercise 9.11 Suppose that ‖v‖V =
√
a(v, v) and Πh = ∇·Vh. Prove that

β = inf
06=q∈Πh

sup
06=v∈Vh

b(v, q)

‖v‖V ‖q‖Π

= inf
0 6=q∈Πh

sup
06=v∈Z⊥h

b(v, q)

‖v‖V ‖q‖Π

≥
√
κ,

where κ is defined in (9.57). (Hint: take q = Dw where w ∈ Z⊥h and show that

inf
06=w∈Z⊥h

sup
06=v∈Z⊥h

(Dv,Dw)Π

‖Dw‖Π‖v‖V
≥ inf

06=w∈Z⊥h

(Dw,Dw)Π

‖Dw‖Π‖w‖V
= inf

0 6=w∈Z⊥h

‖Dw‖Π

‖w‖V
=
√
κ

by taking v = w.)
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1 from dolfin import *

2 meshsize = 16

3 mesh = UnitSquareMesh(meshsize, meshsize, "crossed")

4 k=4

5 V = VectorFunctionSpace(mesh, "Lagrange", k)

6 # define boundary condition

7 gee = Expression(("sin(4*pi*x[0])*cos(4*pi*x[1])", \

8 "-cos(4*pi*x[0])*sin(4*pi*x[1])"))

9 bc = DirichletBC(V, gee, "on_boundary")

10 # set the parameters

11 f = Expression(("28*pow(pi, 2)*sin(4*pi*x[0])*cos(4*pi*x[1])", \

12 "-36*pow(pi, 2)*cos(4*pi*x[0])*sin(4*pi*x[1])"))

13 r = 1.0e3

14 # define test and trial functions, and function that is updated

15 u = TrialFunction(V)

16 v = TestFunction(V)

17 w = Function(V)

18 # set the variational problem

19 a = inner(grad(u), grad(v))*dx + r*div(u)*div(v)*dx

20 b = -div(w)*div(v)*dx

21 F = inner(f, v)*dx

22 u = Function(V)

23 pde = LinearVariationalProblem(a, F - b, u, bc)

24 solver = LinearVariationalSolver(pde)

25 # Scott-Vogelius iterated penalty method

26 iters = 0; max_iters = 10; div_u_norm = 1

27 while iters < max_iters and div_u_norm > 1e-10:

28 # solve and update w

29 solver.solve()

30 w.vector().axpy(-r, u.vector())

31 # find the L^2 norm of div(u) to check stopping condition

32 div_u_norm = sqrt(assemble(div(u)*div(u)*dx(mesh)))

33 print "norm(div u)=%.2e"%div_u_norm

34 iters += 1

35 print k,meshsize," %.2e"%errornorm(gee,u,norm_type=’l2’, degree_rise=3)

Program 9.1: Code to implement the Iterated Penalty Method.
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Chapter 10

Advection

Many models balance advection and diffusion. In the simplest case, this can be represented
as follows. We use notation and concepts from Chapter 2 without reference. The basic
advection-diffusion equation in a domain Ω is

−ε∆u+ β · ∇u = f in Ω, (10.1)

where β is a vector-valued function indicating the advection direction. For simplicity, we
again assume that we have boundary conditions

u = g on Γ ⊂ ∂Ω (Dirichlet)

∂u

∂n
= 0 on ∂Ω\Γ (Neumann)

(10.2)

where ∂u
∂n

denotes the derivative of u in the direction normal to the boundary, ∂Ω. Neumann
boundary conditions may or may not be a good model, but they are consistent with a
behavior where the solution is not changing much near the Neumann part of the boundary.
A major objective of the chapter is to decide where it is good (or bad) to pick Neumann
conditions. We will see that it is essential to have Dirichlet boundary conditions on what is
called the inflow part of the boundary.

10.1 Posing Boundary Conditions

In an advection-diffusion model, the quantity u is being advected in the direction of β. Thus
there is a sense of in-flow and out-flow parts of the boundary. Define

Γ0 = {x ∈ ∂Ω : β(x) · n = 0} , Γ± = {x ∈ ∂Ω : ±β(x) · n > 0} , (10.3)

where as usual n denotes the outward-directed normal to ∂Ω. Then Γ− represents the in-flow
part of the boundary, and Γ+ represents the out-flow part of the boundary. The boundary
condtion on the out-flow boundary requires some modeling since we often do not know what
comes next (after the material exits the domain). We will see what happens if we try to

October 2, 2017, do not distribute 99



100 CHAPTER 10. ADVECTION

specify something inappropriate there subsequently, but for now let us describe one typical
approach.

Since we usually do not know what u will look like near the out-flow part of the domain,
it would be best to do something neutral. In general, we would have

∂u

∂n
= gN on ∂Ω\Γ. (10.4)

Suppose that we use the variational space V defined in (2.6) and then use (3.13) to define u.
If we do not know what gN should be, we can try gN = 0. This corresponds to the boundary
condition

∂u

∂n
= 0 on ∂Ω\Γ (10.5)

that we have suggested in (10.2). The quality of this model must be assessed carefully, but
for now we proceed to see what can be said about the choices for Γ. We will see that Γ− ⊂ Γ
is a natural requirement.

10.2 Variational Formulation of advection-diffusion

We again use the variational space V defined in (2.6). As before, using the three-step recipe,
we define

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx

b(u, v) =

∫
Ω

(
β(x) · ∇u(x)

)
v(x) dx.

(10.6)

Here we see an alternative formulation: we could have integrated by parts in the advection
term. We leave as Exercise 10.7 to explore this possibility.

10.3 Coercivity of the Variational Problem

To see what coercivity means for the advection-diffusion problem, we again invoke the di-
vergence theorem (2.8) to yield∮

∂Ω

u v β · n ds =

∫
Ω

∇·
(
u v β

)
dx =

∫
Ω

(
uβ · ∇v + v β · ∇u+ u v∇·β

)
dx. (10.7)

In particular,

b(u, v) + b(v, u) =

∮
∂Ω

u v β · n ds−
∫

Ω

u v∇·β dx. (10.8)

We now consider coercivity of the bilinear form

aβ(u, v) = ε a(u, v) + b(u, v). (10.9)
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Let us assume that Γ is not empty. Since we already know that a(·, ·) is coercive on

V =
{
v ∈ H1(Ω) : v = 0 on Γ

}
,

it suffices to determine conditions under which b(v, v) ≥ 0 for all v ∈ V . From (10.8), we
have

2b(v, v) =

∮
∂Ω

v2β · n ds−
∫

Ω

v2∇·β dx. (10.10)

An important special case is when β is incompressible, meaning ∇·β = 0. In this case,
(10.10) simplifies to

2b(v, v) =

∮
Γ−∪Γ+

v2β · n ds ≥
∮

Γ−

v2β · n ds, (10.11)

since, by definition, ∮
Γ+

v2β · n ds ≥ 0.

and of course ∮
Γ0

v2β · n ds = 0.

Thus if we suppose that Γ− ⊂ Γ, meaning that the part of the boundary where we impose
Dirichlet boundary conditions includes all of Γ−, then b(v, v) ≥ 0 for all v ∈ V , and thus
aβ(·, ·) is coercive on V . In this case, u can be characterized uniquely via

u ∈ V satisfies aβ(u, v) = (f, v)L2(Ω) ∀v ∈ V. (10.12)

Since it is easy to see that the bilinear form b(·, ·) is continuous, the Lax-Milgram Theorem
2.1 implies the following.

Theorem 10.1 If Γ− ⊂ Γ and ε > 0, then the variational problem (10.12) is well posed.

In the case that ∇·β 6= 0, but ∇·β ≤ 0, coercivity of aβ(·, ·) again follows provided
Γ− ⊂ Γ. However, for more general β, no guarantees can be made.

10.4 Examples

We now use an augmented version of the method of manufactured solutions (Section 2.3) in
which we examine singular limits as ε→ 0. We expect from Exercise 5.1 that we will obtain
boundary layers in some cases.

Let Ω = [0, 1]2 and β = (1, 0). Note that ∇·β = 0 and that

Γ− = {(0, y) : y ∈ [0, 1]} , Γ+ = {(1, y) : y ∈ [0, 1]} ,

Γ0 = {(x, 0) : x ∈ [0, 1]} ∪ {(x, 1) : x ∈ [0, 1]} .
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Let uε denote the solution of (10.1), and in the case that ε → 0, we denote the limiting
solution by u0 (if it exists). We can solve (10.1) with ε = 0 formally for a possible limit u0

via

u0(x, y) =

∫ x

0

f(s, y) ds+ u0(0, y). (10.13)

We know that the variational problem (10.12) is well-posed provided Γ− ⊂ Γ (and provided
ε > 0). We assume that u(x, y) = g(x, y) for (x, y) ∈ Γ. If it also holds that u0(x, y) = g(x, y)
for (x, y) ∈ Γ, then (10.13) implies that the likely limit would be

u0(x, y) =

∫ x

0

f(s, y) ds+ g(0, y) ∀y ∈ [0, 1]. (10.14)

We now examine this hypothesis in various cases.

10.4.1 First example

If f ≡ 1, and (10.14) holds, then u0(x, y) = x + g(0, y) for all x, y ∈ [0, 1]2. This solution
has a chance of being compatible for ε > 0 if, for example, g(x, y) = a + by, since ∆u0 = 0
in this case. However, we need to pick the right boundary conditions if we want to get this
solution in the limit as ε→ 0.

If we expect to converge to the limit u0(x, y) = x+ g(y) = x+ a+ by, then the boundary
conditions should hold on u0. We assume that u0(0, y) = g(y) is imposed on Γ−. But on
Γ+, we have (u0),x(1, y) = 1, so we would need inhomogeneous Neumann data there. On
Γ0, we have (u0),y(x, 0) = g′(0) = b and (u1),y(x, 0) = g′(1) = b. So again we would need
inhomogeneous Neumann data there.

We leave to Exercise 10.5 to explore this problem.

10.4.2 Second example

On the other hand, a Neumann condition ∂u0
∂x

(1, y) = 0 holds if f(1, y) = 0, e.g., if f(x, y) =
1− x. Then

u0(x, y) = x− 1
2
x2 + g(0, y)

when ε = 0. Thus u0 satisfies a homogeneous Neumann condition on Γ+. If in addition,
∂g
∂y

(0, 0) = ∂g
∂y

(0, 1) = 0, then u0 satisfies a homogeneous Neumann condition on Γ0, that is,

the top and bottom of Ω = [0, 1]2. For example, we can take

g(x, y) = y2
(

1− 2

3
y
)
. (10.15)

In this case, we take Γ = Γ− and

u0(x, y) = x− 1
2
x2 + y2

(
1− 2

3
y
)
. (10.16)

When ε is small, uε should be a small perturbation of this. This problem has been explored
using Program 10.1 and some resulting data is collected in Table 10.1.
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degree mesh number ε ε−1‖uε − u0‖L2(Ω)

4 8 1.0e+00 0.27270
4 8 1.0e-01 0.71315
4 8 1.0e-02 0.86153
4 8 1.0e-03 0.87976
4 8 1.0e-04 0.88172
4 8 1.0e-05 0.88190
4 8 1.0e-06 0.88191
4 8 1.0e-07 0.88192
4 8 1.0e-08 0.88192

Table 10.1: The diffusion advection problem (10.1)–(10.2) defines uε. u0 is given in (10.16).

From Table 10.1, we see that uε → u0 as we had expected. More precisely, we can say
that

‖uε − u0‖L2(Ω) ≈ Cε, (10.17)

where we are converging to C = 0.88192 . . . as ε gets smaller. So we conclude that, if Γ = Γ−
and the Neumann boundary conditions for the limiting solutions are appropriate, then the
diffusion-advection problem is quite predictable for small ε.

The code to generate the data in Table 10.1 is given in Program 10.1. We leave as
Exercise 10.1 to explore this problem further. We now consider a problem with more complex
behavior.

10.4.3 Third example

In the previous example problem, we made the minimal assumption that Γ− ⊂ Γ. If we
also take Γ+ ⊂ Γ then we potentially obtain a constraint, in that (10.14) implies g(1, y) =∫ 1

0
f(s, y) ds+ g(0, y), that is,

∫ 1

0

f(s, y) ds = g(1, y)− g(0, y) for all y ∈ [0, 1]. (10.18)

If the data does not satisfy the constraint (10.18), we might expect some sort of boundary
layer for ε > 0. In the case that g is given in (10.15) and f(x, y) = 1− x, such a constraint
holds, and we see in Figure 10.1(b) that there is a sharp boundary layer for ε = 0.001. For ε =
0.1, Figure 10.1(a) shows that the solution deviates from u0 over a broader area. The middle
ground, where ε = 0.01, the boundary layer is still localized, as shown in Figure 10.2(a). If
we attempt to resolve this problem with too few grid points, as shown in Figure 10.2(b),
then we get spurious oscillations on the scale of the mesh.
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Figure 10.1: Diffusion-advection problem (10.1)–(10.2) with Γ = Γ− ∪ Γ+ and g given in
(10.15) and f(x, y) = 1 − x. Left: ε = 0.1, uε computed using piecewise linears on a
100 × 100 mesh. Right: ε = 0.001, uε computed using piecewise linears on a 1000 × 1000
mesh.

Figure 10.2: Diffusion-advection problem (10.1)–(10.2) with Γ = Γ− ∪ Γ+ and g given in
(10.15) and f(x, y) = 1 − x. Left: ε = 0.01, uε computed using piecewise linears on a
100× 100 mesh. Right: ε = 0.01, uε computed using piecewise linears on a 15× 15 mesh.
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Figure 10.3: Diffusion-advection problem (10.1)–(10.2) with Γ = Γ+ and g given in (10.15)
and f(x, y) = 1 − x. The solution uε was computed using piecewise linears on a 100 × 100
mesh. Left: ε = 1.0, Right: ε = 0.1.

10.4.4 Wrong boundary conditions

Let us now ask the question: what happens if Γ− 6⊂ Γ? Suppose that we take Γ = Γ+,
and we consider the problem (10.1)–(10.2) with g given in (10.15) and f(x, y) = 1 − x.
Numerical solutions for the variational problem (10.12) are depicted in Figure 10.3. These
look at first to be reasonable. At least the case ε = 1.0 looks plausible, and reducing ε
by a factor of 10 produces something like the boundary layer behavior we saw previously.
However, look at the scale. The solution is now extremely large. And if we continue to
reduce ε (see Exercise 10.3), the solution size becomes disturbingly large. Picking different
orders of polynomials and values for ε tend to give random, clearly spurious results. For
example, Figure 10.4 shows what happens if we pick ε slightly smaller and use quadratics as
well as linears. Now the scale of the solution is much larger, and the difference between the
result for linears and quadatics is large, even though they are superficially similar. Thus we
conclude that the coercivity condition provides good guidance regarding how to proceed.

10.5 Transport equation

In some cases, there is no natural diffusion in a system, and we are left with pure advection.
The resulting equation is often called a transport equation. Equations of this type play a
major role in non-Newtonian fluid models. As a model equation of this type, we consider

τu+ β · ∇u = f in Ω. (10.19)

Here we assume for simplicity that τ is a positive constant. Without a diffusion term, it is
not possible to pose Dirichlet boundary conditions arbitrarily. In the case where β · n = 0
on ∂Ω, the flow stays internal to Ω, and it has been shown [86, Proposition 3.7] that there is
a unique solution u ∈ L2(Ω) of (10.19) for any f ∈ L2(Ω), provided that β ∈ H1(Ω). Such
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Figure 10.4: Diffusion-advection problem (10.1)–(10.2) with Γ = Γ+ and g given in (10.15)
and f(x, y) = 1 − x and ε = 0.01 on a 100 × 100. The solution uε was computed using
piecewise linears (left) and piecewise quadratics (right).

results are extended in [26, 27] to the general case in which boundary conditions are posed
on Γ−.

Unfortunately, the Lax-Milgram theorem does not apply to the transport equation (10.19).
This equation is not coercive in standard spaces. On the other hand, more sophisticated
theory [86, 26, 27] has been developed to prove well-posedness of this problem. Moreover,
this theory justifies using a standard variational approach.

The variational formulation of (10.19) involves the bilinear form

aτ (u, v) =

∫
Ω

τuv + (β · ∇u)v dx. (10.20)

In this case, u can be characterized uniquely via

u ∈ V satisfies aτ (u, v) = (f, v)L2(Ω) ∀v ∈ V. (10.21)

In our simple example with β = (1, 0), (10.19) can be written

τu(x, y) + u,x(x, y) = f(x, y) ∀y ∈ [0, 1].

Fix y ∈ [0, 1] and write v(x) = eτxu(x, y). Then

v′(x) = eτx
(
τu(x, y) + u,x(x, y)

)
= eτxf(x, y),

so that

v(x) = v(0) +

∫ x

0

v′(s) ds = v(0) +

∫ x

0

eτsf(s, y) ds.

Therefore

u(x, y) = e−τxv(x) = e−τx
(
u(0, y) +

∫ x

0

eτsf(s, y) ds
)
∀(x, y) ∈ [0, 1]× [0, 1]. (10.22)
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Figure 10.5: Transport problem with τ = 3.0, with f = e−τx1 , computed using piecewise
linears on a 20 × 20. The boundary data g given in (10.15) was imposed on (left) Γ− and
(right) Γ+.

For example, if we take f(x, y) = e−τx, then u(x, y) = (g(y) +x)e−τx, where g represents the
Dirichlet data posed on Γ = Γ−.

The results of a numerical simulation for this problem are shown in Figure 10.5(a), with
τ = 3.0. In Figure 10.5(b), we constrast this with what happens if we pose boundary
conditions instead on Γ = Γ+. We see that a completely erroneous solution is obtained.
Curiously, when the mesh is further refined in the case Γ = Γ+, convergence does occur but
with wiggles similar to those seen in Figure 10.5(b) that eventually get small. However, we
have no explanation of this, nor do we have any guarantee that worse behavior will not occur
with other data.

The code to implement the transport problem (10.20) is given in Program 10.2. We leave
to Exercise 10.4 the further study of this problem.

10.6 Exercises

Exercise 10.1 Experiment further with the second example in this chapter by varying the
mesh size and polynomial degree. Do you still get convergence as in (10.17)? What is the
constant C? Does it vary with the mesh size and polynomial degree? Do you see any boundary
layer?

Exercise 10.2 Consider the problem (10.6)–(10.7) implemented via the variational formu-
lation (10.12). Explore the case Γ = Γ− ∪ Γ+ with ε = 0.001, data f and g as given in
Figure 10.1, on a 100× 100 mesh using piecewise linears. How large does the mesh need to
be to eliminate the oscillations you see? What happens with higher degree approximations?
How much smaller can you make the mesh? What gets the best balance of accuracy for time
of computation?
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Exercise 10.3 Consider the problem (10.6)–(10.7) implemented via the variational formu-
lation (10.12). Explore the case Γ = Γ+ for f and g as given in Figure 10.1. Solve with
piecewise linears on a 100×100 mesh with ε = 0.01. How big is the solution? Use quadratics
and quartics and compare the size. But also is the solution negative in some cases?

Exercise 10.4 Consider the transport problem (10.19) implemented via the variational for-
mulation (10.21) using the bilinear form in (10.20) where Ω and β are as in Section 10.4
and Γ = Γ−. Take f(x, y) = e−τx and g is your choice. Modify your code for the diffusion-
advection problem to implement this problem, or consult Program 10.2. Solve on various
meshes and with various polynomial orders with τ = 10.0, 1.0, 0.1 and other values of your
choice. Use the exact solution (10.22) to test your code. Then switch to Γ = Γ+ and see
what happens as the mesh gets finer.

Exercise 10.5 Consider the transport problem (10.19) implemented via the variational for-
mulation (10.21) using the bilinear form in (10.20) where Ω and β are as in Section 10.4
and Γ = Γ−. Take f(x, y) ≡ 1 and g(y) = a + by. Compare with the proposed limit
u0(x, y) = x + g(y) = x + a + by. Modify your code for the diffusion-advection problem
to implement this problem. Experiment with different choices of a and b. Solve on various
meshes and with various polynomial orders with ε = 10.0, 1.0, 0.1 and other values of your
choice. Explain what you see, and provide figures illustrating key conclusions. Also modify
the problem to include inhomogeneous Neumann data as suggested in Section 10.4, one of
which is u,x(1, y) = 1 on Γ+. (Also choose the corresponding Neumann data for Γ0.) How
does this change the solutions?

Exercise 10.6 Consider the transport problem with Dirichlet conditions posed on Γ = Γ− ∪
Γ+. Pick boundary data for which you know the exact solution. What happens?

Exercise 10.7 Consider the alternate variational formulation in which the bilinear form
b(·, ·) in (10.6) is defined by integrating by parts. What are the coercivity conditions for this
formulation? Experiment with this formulations following the outline of the chapter. (Hint:
consider (10.8).)
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1 from dolfin import *

2 import sys,math

3 from timeit import default_timer as timer

4

5 startime=timer()

6 pdeg=int(sys.argv[1])

7 meshsize=int(sys.argv[2])

8 acoef=float(sys.argv[3])

9

10 # Create mesh and define function space

11 mesh = UnitSquareMesh(meshsize, meshsize)

12 V = FunctionSpace(mesh, "Lagrange", pdeg)

13

14 # Define Dirichlet boundary (x = 0)

15 def boundary(x):

16 return x[0] < DOLFIN_EPS

17

18 # Define boundary condition

19 gee = Expression("x[1]*x[1]*(1.0-(2.0/3.0)*x[1])")

20 uex = Expression("(x[0]-(1.0/2.0)*x[0]*x[0])+ \

21 (x[1]*x[1]*(1.0-(2.0/3.0)*x[1]))")

22 bee = Constant((1.0,0.0))

23 bc = DirichletBC(V, gee, boundary)

24

25 # Define variational problem

26 u = TrialFunction(V)

27 v = TestFunction(V)

28 f = Expression("1.0-x[0]")

29 a = (acoef*inner(grad(u), grad(v))+inner(bee,grad(u))*v)*dx

30 L = f*v*dx

31

32 # Compute solution

33 u = Function(V)

34 solve(a == L, u, bc)

35 aftersolveT=timer()

36 totime=aftersolveT-startime

37 ue=interpolate(uex,V)

38 ge=interpolate(gee,V)

39 uerr=errornorm(ue,u,norm_type=’l2’, degree_rise=0)

40 print " ",pdeg," ",meshsize," %.1e"%acoef," %.1e"%uerr, \

41 " %.5f"%(uerr/acoef)," %.3f"%totime

Program 10.1: Code to implement the advection problem (10.1)–(10.2).
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1 from dolfin import *

2 import sys,math

3 from timeit import default_timer as timer

4

5 startime=timer()

6 pdeg=int(sys.argv[1])

7 meshsize=int(sys.argv[2])

8 acoef=float(sys.argv[3])

9

10 # Create mesh and define function space

11 mesh = UnitSquareMesh(meshsize, meshsize)

12 V = FunctionSpace(mesh, "Lagrange", pdeg)

13

14 # Define Dirichlet boundary (x = 0)

15 def boundary(x):

16 return x[0] < DOLFIN_EPS

17

18 # Define boundary condition

19 gee = Expression("x[1]*x[1]*(1.0-(2.0/3.0)*x[1])")

20 uex = Expression("(x[0]+(x[1]*x[1]*(1.0-(2.0/3.0)*x[1]))) \

21 *exp(-ac*x[0])",ac=acoef)

22 bee = Constant((1.0,0.0))

23 bc = DirichletBC(V, gee, boundary)

24

25 # Define variational problem

26 u = TrialFunction(V)

27 v = TestFunction(V)

28 f = Expression("exp(-ac*x[0])",ac=acoef)

29 a = (acoef*u*v+inner(bee,grad(u))*v)*dx

30 L = f*v*dx

31

32 # Compute solution

33 u = Function(V)

34 solve(a == L, u, bc)

35 aftersolveT=timer()

36 totime=aftersolveT-startime

37 uerr=errornorm(uex,u,norm_type=’l2’)

38 print " ",pdeg," ",meshsize," %.1e"%acoef," %.1e"%uerr," %.3f"%totime

39 # Plot solution

40 plot(u, interactive=True)

Program 10.2: Code to implement the transport problem (10.20).
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Chapter 11

Mesh Adaptivity

We consider two approaches to mesh adaptivity. In Section 11.2, refined meshes are shown
to improve approximation substantially. Such meshes are derived analytically based on a
priori information about the singularities of the solution. This approach establishes the
viability of adapting meshes to solutions. The second approach refines meshes automatically
based on preliminary computations using techniques that estimate the size of the error for
a given mesh. The feasibility of the latter approach is not at all obvious and requires some
explanation.

One of the major advances of computational mathematics in the 20th century was the
development of error indicators [37, Chapter 9]. Such indicators identify where the compu-
tational error is largest and thus suggest regions where the mesh should be refined. This
concept was pioneered mathematically by Ivo Babuška [12], primarily by focusing on the
residual error for the equation. Again, it is not at all obvious that the residual could indi-
cate where the error is large, but this issue is now well understood. The subject has developed
significantly in the subsequent decades [4, 154, 183]. Other approaches to error estimation
have also been widely used, especially the Zienkiewicz–Zhu error estimators [114, 135, 148].

11.1 Mesh terminology

There are various terms used to describe families of meshes. These become particularly
relevant in the case of mesh adaptivity because several meshes are typically generated and
we need to know what propterties hold uniformly for all of the meshes.

The weakest mesh restriction on a family of meshes {Th} is that they be nondegenerate.
We say that a mesh family is nondegenerate if there is a constant C <∞ such that for each
mesh, each element e in that mesh satisfies

ρmax(e)

ρmin(e)
≤ C. (11.1)

Here ρmin(e) (respectively, ρmax(e)) is the radius of the largest ball contained in e (respec-
tively, the radius of the smallest ball containing e).
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A stronger notion of size restriction is that of quasi-uniformity. For simplicity, assume
that for each mesh in the family, the parameter h satisfies

h = max {ρmax(e) : e ∈ Th} . (11.2)

That is, the mesh is labeled by its maximum element size. Then we say that a mesh family
is quasi-uniform if there is a constant C < ∞ such that for each mesh, each element e in
that mesh satisfies

h

ρmin(e)
≤ C. (11.3)

Note that any quasi-uniform family of meshes is necessarily nondegenerate.
In general, automatically refined meshes will often have the same maximal mesh size,

so the parameter defined in (11.2) is not ideal as a label for the mesh. Instead, we define
quasi-uniformity via the condition that there is a constant C such that for all h

max {ρmax(e) : e ∈ Th} ≤ C min {ρmin(e) : e ∈ Th} ,

where now h is any appropriate label for the mesh. For example, we might start with an
initial mesh T0 and generate further meshes T1, T2, . . . .

There are important classes of meshes that are degenerate. One such class relates to
problems with a large aspect ratio, and another involves problems where there is a discrep-
ancy between the approximation needs in one direction versus others [31, 32, 81, 113, 134].
Significant work regarding error estimators in anisotropic contexts has been done [6, 30, 62,
63, 64, 67, 112, 114, 115, 135, 148, 149, 172]. However, the subsequent discussion here will
be limited to the case of nondegenerate meshes.

11.2 Optimal mesh refinements

When the form of a singularity is known, it is possible to predict what an optimal mesh
refinement should be. We have seen that the gradient of the solution of the L-shaped
problem blows up like |(x, y)|−1/3 near the re-entrant corner. So suppose that, in general,

|∇ku(r)| ≈ C|r− r0|−k+γ for r ∈ Ω, (11.4)

where ∇ku denotes the tensor of partial derivatives of order k of u, and |∇ku| denotes the
Euclidean norm of the tensor represented as a vector (the square root of the sum of squares
of all entries). For the solution of the L-shaped problem, we have seen that this holds for
k = 1 and γ = 2/3. It is possible to show that (11.4) holds for all k ≥ 1 and γ = π/κ for
boundary vertices with angle κ. For simplicity, we assume that r0 = 0 from now on.

From (3.11) we have ‖u− uh‖H1(Ω) ≤ C infv∈Vh ‖u− v‖H1(Ω). For a non-uniform mesh,
we need to use a more precise characterization of the interpolant (3.8) error:

‖u− Ihu‖2
H1(Ω) ≤ C

∑
e

(
hm−1
e ‖u‖Hm(e)

)2
, (11.5)
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where the summation is over all of the elements e of the mesh subdivsion and he is the size
of e. Here we assume that the meshes are non-degenerate (11.1), so the “size” of e can be
defined in various ways that are equivalent up to a constant:

he = ρmin(e), he = ρmax(e), or he = |e|1/d, (11.6)

where |e| denotes the volume of an element e.
Since we are assuming that the derivatives of the solution degrade in a radial fashion,

let us also assume that the mesh is refined in a radial fashion and is non-degenerate (11.1).
For each element e, let re denote its centroid. We assume that there is a monotonic mesh
function µ such that

he ≈ (1/n)µ(|re|), (11.7)

where n is a parameter that we can use to refine the mesh. For example, we will consider
µ(r) = rβ for β > 0. With such a mesh and under the assumption (11.4), the error expression
(11.5) takes the form

n2−2m
∑
e

(
µ(|re|)m−1|re|−m+γ

√
|e|
)2

≈ n2−2m

∫
Ω

(
µ(|r|)m−1|r|−m+γ

)2

dr. (11.8)

Taking µ(r) = rβ, the integrand in (11.8) simplifies to |r|p where p = 2(β(m− 1)−m+ γ).
Such an expression is integrable in d dimensions if and only if p > −d, that is, if

β >
m− γ − d/2

m− 1
.

For example, if d = 2 and m = 2 (piecewise linears in two dimensions), then the requirement
is β > 1 − γ. For the L-shaped domain, this means β > 1

3
. However, for higher-order

approximations, the appropriate mesh conditions will be different. In addition, the other
corners of the L-shaped domain can also require mesh refinement. For these, γ = 2, and so
using cubics (m = 4) also requires β > 1

3
at these convex right angles. In this case, β > 7/9

is required at the re-entrant corner (for m = 4).
Recall that 1

2
≤ γ < ∞ in general (γ = π/κ). Thus when γ is sufficiently large (com-

parable with m − d/2), we can take β ≈ 0, meaning a mesh of essentially uniform size
(quasi-uniform). For example, for piecewise linears (m = 2), at the convex corners of the
L-shaped domain, no refinement is required, whereas for cubics such refinement would be
required to achieve high accuracy for the least cost. This may seem strange until we turn the
logic around. It says that there is no benefit to mesh refinement at the convex corners for
lower-order approximation. For higher-order approximation, a much coarser mesh is allowed
in the interior, but refinement is then required at all the corners.

The mesh parameter n can be related to the number of degrees of freedom N , at least
asymptotically, as follows. We can write

N ≈ c1

∑
e

|e|0 ≈ c2

∑
e

h−de |e|1 ≈ c3n
d

∫
Ω

|r|−βd dx ≈ c4n
d,

provided that β < 1, as we now assume.
Thus we see that it is theoretically possible to refine a mesh to achieve a more effective

approximation. Now we turn to the question of generating such meshes automatically.
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11.3 Residual error estimators

Many successful error estimators are based on the residual. Consider the variational form

aα(v, w) =

∫
Ω

α(x)∇v(x) · ∇w(x) dx (11.9)

with α piecewise smooth, but not necessarily continuous. We will study the corresponding
variational problem with Dirichlet boundary conditions on a polyhedral domain Ω in the
n dimensions, so that V = H1

0 (Ω). For simplicity, we take the right-hand side for the
variational problem to be a piecewise smooth function, f .

As usual, let Vh be piecewise polynomials of degree less than k on a mesh Th, and assume
that the discontinuities of α and f fall on mesh faces (edges in two dimensions) in Th. That
is, both α and f are smooth on each T ∈ Th. However, we will otherwise assume only
that the family of meshes Th is non-degenerate, satisfying (11.1), since we will want to allow
significant local mesh refinement.

Let u satisfy the usual variational formulation aα(u, v) = (f, v)L2(Ω) for all v ∈ V , and
let uh ∈ Vh be the standard Galerkin approximation. The residual Rh ∈ V ′ is defined by

Rh(v) = aα(u− uh, v) ∀v ∈ V. (11.10)

Note that, by definition,

Rh(v) = 0 ∀v ∈ Vh, (11.11)

assuming Vh ⊂ V .

11.3.1 Why the residual?

The role of the residual in linear algebra is well known. Suppose that we want to solve a
finite dimensional system

Ax = f. (11.12)

Suppose also that y is some approximation to x. The residual r measures how close y is to
solving (11.12):

r = f − Ay. (11.13)

Define e = x− y, the error in the approximation. Then

Ae = Ax− Ay = f − Ay = r. (11.14)

Thus the error e satisfies e = A−1r, that is, knowing the residual gives an estimate of the
error. We now return to the PDE case and show that a similar relationship holds.

October 2, 2017, do not distribute 114



11.3. RESIDUAL ERROR ESTIMATORS 115

11.3.2 Computing the residual

Let A denote the differential operator formally associated with the form (11.9), that is,
Av := −∇· (α∇v). The residual can be represented by

Rh(v) =
∑
T

∫
T

(
f +∇· (α · ∇uh)

)
v dx+

∑
e

∫
e

[αne · ∇uh]nev ds

=
∑
T

∫
T

(f −Auh)v dx+
∑
e

∫
e

[αne · ∇uh]nev ds ∀v ∈ V,
(11.15)

where ne denotes a unit normal to e and [φ]n denotes the jump in φ across the face normal
to n:

[φ]n(x) := lim
ε→0

φ(x+ εn)− φ(x− εn),

so that the expression in (11.15) is independent of the choice of normal n on each face. There
are two parts to the residual. One is the integrable function RA defined on each element T
by

RA|T := (f +∇· (α∇uh)) |T = (f −Auh) |T , (11.16)

and the other is the “jump” term

RJ(v) :=
∑
e

∫
e

[αne · ∇uh]nev ds ∀v ∈ V. (11.17)

The proof of (11.15) is derived by integrating by parts on each T , and the resulting boundary
terms are collected in the term RJ .

Assuming that aα(·, ·) is coercive on H1(Ω), and inserting v = eh in (11.10), we see that

1

c0

|eh|2H1(Ω) ≤ |aα(eh, eh)| = |Rh(eh)|. (11.18)

Therefore

‖eh‖H1(Ω) ≤ c0 sup
v∈H1

0 (Ω)

|Rh(v)|
‖v‖H1(Ω)

. (11.19)

The right-hand side of (11.19) is the H1(Ω)′ (dual) norm of the residual. This norm is
not easily computable in terms of the data of the problem (f and α) and uh. One typical
approach is to estimate it using what is known as a Scott-Zhang [187] interpolant Ih which
satisfies, for some constant γ0,

‖v − Ihv‖L2(T ) ≤ γ0hT |v|H1(T̂ ) (11.20)

for all T ∈ Th, where T̂ denotes the union of elements that contact T , and

‖v − Ihv‖L2(e) ≤ γ0h
1/2
e |v|H1(Te) (11.21)
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for all faces e in Th, where Te denotes the union of elements that share the face e, where he
(resp. hT ) is a measure of the size of e (resp. T ). Dropping the subscript “e” when referring
to a normal n to e, we get

|Rh(v)| = |Rh(v − Ihv)|

=
∣∣∣∑

T

∫
T

RA(v − Ihv) dx+
∑
e

∫
e

[αn · ∇uh]n(v − Ihv) ds
∣∣∣. (11.22)

Applying (11.20) and (11.21) to (11.22) we find

|Rh(v)| = |Rh(v − Ihv)|

≤
∑
T

‖RA‖L2(T )‖v − Ihv‖L2(T ) +
∑
e

‖ [αn · ∇uh]n ‖L2(e)‖v − Ihv‖L2(e)

≤
∑
T

‖RA‖L2(T )γ0hT |v|H1(T̂ ) +
∑
e

‖ [αn · ∇uh]n ‖L2(e)γ0h
1/2
e |v|H1(T̂e)

≤γ
(∑

T

‖RA‖2
L2(T )h

2
T +

∑
e

‖ [αn · ∇uh]n ‖2
L2(e)he

)1/2

|v|H1(Ω),

(11.23)

where γ = Cγ0 for some constant C that depends only on the maximum number of elements
in T̂ for each T . In view of (11.23), the local error indicator Ee is defined by

Ee(uh)2 :=
∑
T⊂Te

h2
T‖f +∇· (α∇uh)‖2

L2(T ) + he‖ [αn · ∇uh]n ‖2
L2(e). (11.24)

With this definition, the previous inequalities can be summarized as

|Rh(v)| ≤ γ
(∑

e

Ee(uh)2
)1/2

|v|H1(Ω), (11.25)

which in view of (11.19) implies that

|eh|H1(Ω) ≤ γc0

(∑
e

Ee(uh)2
)1/2

, (11.26)

where γ is a constant related only to interpolation error.
The key point of the above analysis is to identify the appropriate scaling to combine the

two error terms (11.16) and (11.17), as given in (11.24), in order to get the error bound
(11.26).

11.4 Local error estimates and refinement

In the previous section, the upper bound (11.26) for the global error |u− uh|H1(Ω) was given
in terms of locally defined, computable error estimators (11.24). If the data f and α are
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themselves piecewise polynomials of some degree, there is a lower bound for the local error
[37, Section 9.3]

|eh|H1(Te) ≥ c Ee(uh), (11.27)

where c > 0 depends only on the non-degeneracy constant for Th. One corollary of this
estimate is the reverse inequality to (11.26),

|eh|H1(Ω) ≥
c√
2

(∑
e∈Th

Ee(uh)2
)1/2

.

The
√

2 factor occurs because a sum over all edges (or faces) of integrals over Te duplicates
most of the elements in Th. A reverse inequality to (11.27) (a local upper bound) is not true
in general. However, the local lower bound (11.27) suggests the strategy that

the mesh should be refined wherever the local error indicator Ee(uh) is big.

Unfortunately, we cannot be sure that where it is small that the error will necessarily
be small. Distant effects may pollute the error and make it large even if the error indicator
Ee(uh) is small nearby.

11.4.1 Other norms

It is possible to have error estimators for other norms. For example, the pointwise error
u− uh at x can be represented using the Green’s function (Section 4.2) Gx via

(u− uh)(x) = aα(u− uh, Gx) = aα(u− uh, Gx − v) = Rh(G
x − v) ∀v ∈ Vh. (11.28)

Thus choosing v as the Scott-Zhang interpolant of Gx [65, page 719] leads to an error
indicator of the form

E∞(uh) := max
T∈Th

(
h2
T‖f +∇· (α∇uh)‖L∞(T ) + he‖ [αn · ∇uh]n ‖L∞(e)

)
. (11.29)

It can be proved [65] that there is a constant C such that

‖u− uh‖L∞(Ω) ≤ CE∞(uh).

The error estimators in [65] apply as well to nonlinear problems and to singular perturbation
problems as in Exercise 5.1. An extension to anisotropic meshes is given in [110] for two-
dimensional problems and piecewise linear approximation.

11.4.2 Other goals

Instead of attempting to estimate norms of the error, we can estimate linear functionals of
the error. For example, the quantity of interest (C6) in Section 5.2.1 is an integral (5.18).
The strategy of goal oriented error estimation [160] (a.k.a. dual weighted residual
method [22]) is to solve an adjoint problem to find z ∈ V such that

a∗(z, v) =M(v) ∀v ∈ V, (11.30)
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where M is the linear functional to be optimized. That is, we seek meshes Th such that
M(u − uh) is less than a given tolerance. Here, the adjoint form a∗(·, ·) is defined for any
bilinear form a(·, ·) via

a∗(v, w) = a(w, v) ∀v, w ∈ V. (11.31)

Figure 11.1: Adaptivity applied to the problem (4.10) using piecewise linears and an initial
mesh of size 4 with a goal M(u) =

∫
Ω
u2 dx. The initial, unrefined mesh is apparent in the

lower-left corner of the domain.

If a(·, ·) is symmetric, then a∗(·, ·) is the same as a(·, ·). But it is different for a form like
aβ(·, ·) defined in Section 10.2:

aβ(v, w) =

∫
Ω

∇v(x) · ∇w(x) +
(
β(x) · ∇v(x)

)
w(x) dx.

We see from (10.8) that, if ∇·β = 0 and Dirichlet conditions are imposed on the boundary
wherever β · n 6= 0, then

a∗β(v, w) = aβ(w, v) =

∫
Ω

∇v(x) · ∇w(x)−
(
β(x) · ∇v(x)

)
w(x) dx

= a−β(v, w) ∀v, w ∈ V.
(11.32)

Suppose as usual that u ∈ V satisfies a(u, v) = F (v) for all v ∈ V , that uh ∈ Vh satisfies
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a(uh, v) = F (v) for all v ∈ Vh, and that Vh ⊂ V . Then a(u− uh, v) = 0 for all v ∈ Vh, and

M(u− uh) = a∗(z, u− uh) = a(u− uh, z)
= a(u− uh, z − v) = Rh(z − v) ∀v ∈ Vh.

(11.33)

Note the analogy with (11.28), where instead of the Green’s function Gx we have z.
It is helpful to re-write (11.22) by re-balancing the jump terms via

|Rh(v)| =
∣∣∣∑

T

∫
T

RA(v − Ihv) dx+
∑
e⊂∂T

∫
e

[αn · ∇uh]∗n(v − Ihv) ds
∣∣∣, (11.34)

where [φ]∗n = 1
2
[φ]n for interior edges (or faces) and [φ]∗n = φ for boundary edges (or faces).

Thus the local error indicator ηT is defined by

ηT (v) =
∣∣∣ ∫

T

RA(v − Ihv) dx+
∑
e⊂∂T

∫
e

[αn · ∇uh]∗n(v − Ihv) ds
∣∣∣. (11.35)

Then (11.33) and (11.34) combine to give

|M(u− uh)| ≤
∑
T

ηT (z). (11.36)

The strategy then is to refine the mesh where ηT (z) is large.
The difficulty now is that we do not know z, and we need to compute it. Moreover, if we

simply use the same approximation space Vh to compute zh, then we get a false impression
(take v = zh in (11.33)). Thus there is a need to have a higher-order approximation of z
than would normally be provided via Vh. Different approaches to achieving this have been
studied [22], including simply approximating via a globally higher-order method.

T

Figure 11.2: Nearby elements are used to construct a higher-order approximation to z.

What is done in dolfin [160] (see also [22]) is to first compute zh using Vh, then interpo-
late it on patches around a given element using a higher-degree approximation, as indicated
in Figure 11.2, using the interpolant as an approximation to z. In Figure 11.2, we see what
would be done for a piecewise linear approximation, and we see that including three neigh-
boring triangles gives exactly the data needed to construct a quadratic. This approach is
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effective and relatively inexpensive, but there is a philosophical conundrum: if this approach
does give higher-order accuracy, why not simply use it instead of using error estimators?
One answer to this is that the error estimator is trying to find only where z − Ihz is large,
that is where the derivatives of z are large. This is a more restricted problem than trying to
get higher accuracy in general.

The concept of adjoint form can also be extended [160] to the case where a(·, ·) is defined
on a pair of spaces V ×W instead of V × V as is the usual case considered so far. It is also
possible to extend the theory to allow the goal functional M to be nonlinear.

11.4.3 Singularities

Another issue to consider is that there may be singularities in z that make its approxima-
tion poor. Fortunately, there is a duality between estimating the accuracy of uh and the
approximation of z [22] that can address this. However, there is a certain amount of art in
goal-based error estimation that cannot be fully justified rigorously. In any case, it is clear
from Figure 11.1 that the approach works. This figure depicts the solution of problem (4.10)
using piecewise linears with an initial mesh of size 4 with a goal M(u) =

∫
Ω
u2 dx. The

initial, unrefined mesh is apparent in the lower-left corner of the domain, and the adaptivity
scheme clearly finds the right place to refine the mesh. The code used to generate this figure
is given in Program 11.1.

11.4.4 The initial mesh

Mesh adaptivity employs a boot-strap process. That is, it uses an initial mesh to predict
where refinement is needed. This information is then used to refine the mesh, and the process
is iterated. But if the initial mesh is too coarse, the process can fail. Exploration of this is
part of Exercise 11.1.

11.4.5 A special case

Suppose that a(·, ·) is symmetric, so that a∗(·, ·) = a(·, ·), and that M(v) = F (v). Then
z = u. Such a situation occurs in Section 5.2.1, and it is explored further in Exercise 11.3.

11.4.6 Mesh generation

Even when properties of desired meshes are known, it is still a difficult task to generate
meshes with these properties [163].

11.5 Exercises

Exercise 11.1 Run Program 11.1 with meshsize =4, pdeg =1, qdeg =1, and mytol=0.01.
How many mesh refinements are performed? Note that Newton’s method is used since the
goal functional is nonlinear. Can you verify this by looking at the final mesh? Try different
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parameters for meshsize, pdeg, qdeg, and mytol, and explain what you observe. How coarse
can you take the initial mesh to be (see Section 11.4.4)?

Exercise 11.2 On page 113, we observe that our theoretical predictions of optimal mesh
refinement suggest that there is no benefit to mesh refinement at convex corners for piecewise
linear approximation, but for, say, cubic approximation, refinement at such corners would
be seen for sufficiently small tolerances. Explore this dichotomy for autmomatically refined
meshes via the problem in Exercise 11.1.

Exercise 11.3 Re-do the problem in Section 5.2.1 using adaptivity to compute C6 via (5.18),
with the goal

M(v) =

∫ ∞
0

∫ ∞
0

r2
1r

2
2e
−(r1+r2)v(r1, r2) dr1dr2.

Truncate the integral in this definition appropriately to match the computational approach
taken in Section 5.2.1.

Exercise 11.4 Consider the variational form

bβ(v, w) =

∫
Ω

(β · ∇v)w dx +

∮
Γβ−

u v β · n ds,

where we define Γβ± = {x ∈ ∂Ω : ±β(x) · n(x) > 0}. Suppose that ∇·β = 0. Use (10.8) to

show that bβ(v, w) = −b−β(w, v). (Hint: show that Γ−β− = Γβ+.)

Exercise 11.5 Consider the problem (4.10) using adaptivity with various goals. How coarse
can the initial mesh be to obtain reasonable results?

Exercise 11.6 Define a goal function M via

M(v) =

∫
Ω

δAx0
v dx,

where δAx0
is defined in (4.17) and A is sufficiently large. Explain what this goal is trying

to do in words (hint: look at Section 4.2). Write a code to use this goal in the problem
(4.16) with x0 near (1

2
, 1

2
), and explain what happens. Compare this with having the goal

M(v) =
∫

Ω
v(x)2 dx.
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1 from dolfin import *

2 import sys,math

3

4 parameters["form_compiler"]["quadrature_degree"] = 12

5

6 meshsize=int(sys.argv[1])

7 pdeg=int(sys.argv[2])

8 qdeg=int(sys.argv[3])

9 mytol=float(sys.argv[4])

10

11 # Create mesh and define function space

12 mesh = UnitSquareMesh(meshsize, meshsize)

13 V = FunctionSpace(mesh, "Lagrange", pdeg)

14

15 # Define Dirichlet boundary (x = 0 or x = 1 or y = 0 or y = 1)

16 def boundary(x):

17 return x[0] > 0.5 and x[1] < DOLFIN_EPS

18

19 # Define boundary condition

20 u0 = Constant(0.0)

21 bc = DirichletBC(V, u0, boundary)

22

23 # Define variational problem

24 u = Function(V)

25 v = TestFunction(V)

26 f = Expression("1.0")

27 J = u*u*dx

28 F = (inner(grad(u), grad(v)))*dx - f*v*dx

29

30 # Compute solution

31 solve(F == 0, u, bc, tol=mytol, M=J)

32 # Plot solution

33 plot(u.leaf_node(), interactive=True)

Program 11.1: Code to generate Figure 11.1.
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Chapter 12

Scalar Elliptic Problems

The general scalar elliptic problem takes the form

−
d∑

i,j=1

∂

∂xj

(
αij(x)

∂u

∂xi
(x)

)
= f(x) (12.1)

where the αij are given functions, together with suitable boundary conditions of the type
considered previously.

To be elliptic, the functions αij(x) need to form a postive definite matrix at almost every
point x in a domain Ω. Often, this is a symmetric matrix. More precisely, it is assumed that
for some finite, positive constant C,

C−1 ≤ |ξ|−2

d∑
i,j=1

αij(x) ξi ξj ≤ C ∀ 0 6= ξ ∈ Rd, for almost all x ∈ Ω. (12.2)

Here the expression “for almost all” means the condition can be ignored on a set of measure
zero, such as a lower-dimensional surface running through Ω. However, there is no need for
the αij

′s to be continuous, and in many important physical applications they are not.
An interpretation of the general scalar elliptic problem in classical terms is difficult when

the αij’s are not differentiable. However, the variational formulation is quite simple. Define

a(u, v) :=

∫
Ω

d∑
i,j=1

αij(x)
∂u

∂xi
(x)

∂v

∂xj
dx. (12.3)

Using this bilinear form, the problem (12.1) can be posed as in (2.25) where the boundary
conditions are incorporated in the space V as described in Section 2.2.

12.1 Discontinuous coefficients

It is frequently the case that the coefficients which arise in physical models vary so dra-
matically that it is appropriate to model them as discontinuous. These often arise due to
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a change in materials or material properties. Examples can be found in the modeling of
nuclear reactors [70], porous media [69], semi-conductors [18], proteins in a solvent [13, 102]
and on and on. However, the lack of continuity of the coefficients has less effect on the model
than might be thought at first.

The critical factor is the ellipticity of the coefficients. We suppose that the coefficients
form a positive definite matrix almost everywhere, that is, that

d∑
i=1

ξ2
i ≤ c0

d∑
i,j=1

αij(x)ξiξj ∀ξ ∈ Rd, x ∈ Ω0 (12.4)

for some positive constant c0 and some set Ω0 where the complementary set Ω\Ω0 has
measure zero, that is, contains no sets of positive volume. Examples of such sets are ones
which consist of sets of lower-dimensional surfaces. On the set Ω\Ω0 the coefficients may
jump from one value to another and so have no precise meaning, and we are allowed to ignore
such sets.

We also assume that the coefficients are bounded almost everywhere:

d∑
i,j=1

αij(x)ξiνj ≤ c1 |ξ| |ν| ∀ξ, ν ∈ Rd, x ∈ Ω0, (12.5)

for some finite constant c1, where |ξ|2 =
∑d

i=1 ξ
2
i .

The ellipticity constant ε is the ratio

ε :=
1

c0 c1

. (12.6)

For elliptic coefficients, the coercivity condition (2.22) and the corresponding stability result
(2.23) both hold, where C = c0 c1 = ε−1.

There is a subtle dependence of the regularity of the solution in the case of discontinuous
coefficients [133]. It is not in general the case that the gradient of the solution is bounded.
However, from the variational derivation, we see that the gradient of the solution is always
square integrable. A bit more is true, that is, the p-th power of the solution is integrable for
2 ≤ p ≤ Pε where Pε is a number bigger than two depending only on the ellipticity constant
ε in (12.6) (as ε tends to zero, Pε tends to two).

Using the variational form (12.3) of the equation (12.1), it is easy to see that the flux

d∑
i=1

αij(x)
∂u

∂xi
(x)nj (12.7)

is continuous across an interface normal to n even when the αij’s are discontinuous across
the interface. This implies that the normal slope of the solution must have a jump (that is,
the graph has a kink).
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12.2 Dielectric models

One of the most important scalar elliptic equations with discontinuous coefficients is a model
for the dielectric behavior of a protein in water. This takes the form

−∇ · (ε∇u) =
N∑
i=1

ci δxi in R3

u(x)→ 0 as x→∞,
(12.8)

where the dielectric constant ε is small inside the protein, which we assume occupies the
domain Ω, and large outside. Here, the point charges at xi are modeled via Dirac δ-functions
δxi . The constant ci corresponds to the charge at that point.

Confusion has arisen about the efficacy of error estimators due to the need for resolving
point singularities xi ∈ Ω resulting from point charges [100]; this has limited the use of error
estimators for such models. Error estimators necessarily indicate large errors anywhere there
are fixed charges, thus throughout the protein, not primarily at the interface. Indeed, the
singularity due to the point charges is more severe than that caused by the jump in the
dielectric coefficient ε.

But we can introduce a splitting u=v+w where

v(x) =
N∑
i=1

ci
|x− xi|

. (12.9)

Here we assume that units chosen so that fundamental solution of −ε0∆u = δ0 is 1/|x|,
where ε0 is the dielectric constant in Ω.

12.2.1 Equation for w

By definition, w is harmonic in both Ω and R3\Ω, and w(x)→ 0 as x→∞. But the jump
in the normal derivative of w across the interface B = ∂Ω is not zero. Define[

ε
∂w

∂n

]
B

= ε0
∂w

∂n

∣∣
B− − ε∞

∂w

∂n

∣∣
B+
,

where B− denotes the inside of the interface, B+ denotes the outside of the interface, and

n denotes the outward normal to Ω. The solution u of (12.8) satisfies
[
ε∂u
∂n

]
B

= 0, so

[
ε
∂w

∂n

]
B

= (ε∞ − ε0)
∂v

∂n

∣∣
B
.

From the intergration-by-parts formula (2.9), we have

a(w, φ) =

∮
B

[
ε
∂w

∂n

]
B
φ ds = (ε∞ − ε0)

∮
B

∂v

∂n
φ ds
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for all test functions φ. The linear functional F defined by

F (φ) = (ε∞ − ε0)

∮
B

∂v

∂n
φ ds (12.10)

is clearly well defined for any test function, since v is smooth except at the singular points xi,
which we assume are in the interior of Ω, not on the boundary B = ∂Ω. Thus w is defined
by a standard variational formulation and can be computed accordingly, modulo the need
to truncate the infinite domain at some distance from Ω. For example, we can define

BR =
{
x ∈ R3 : |x| < R

}
,

and define

aR(φ, ψ) =

∫
BR

ε∇φ · ∇ψ dx,

and solve for wR ∈ H1
0 (BR) such that

aR(wR, ψ) = F (ψ) ∀ψ ∈ H1
0 (BR), (12.11)

where F is defined in (12.10). Then wR → w as R→∞.

12.2.2 Point-charge example

Let us consider a single point charge at the origin of a spherical domain

Ω =
{
x ∈ R3 : |x| < R

}
of radius R > 0. Let ε0 denote the dielectric constant in Ω and ε∞ denote the dielectric
constant in R3\Ω. Then the solution to (12.8) is

u(x) =

{
1
|x| −

c
R
|x| ≤ R

1−c
|x| |x| ≥ R,

(12.12)

where
c = 1− ε0

ε∞
.

The verification is as follows. In Ω, we have ∆u = δ0. In R3\Ω, we have ∆u = 0. At the
interface B = ∂Ω = {x ∈ R3 : |x| = R},

∂u

∂n

∣∣
B− =

∂u

∂r
(R−) =

−1

R2
,

∂u

∂n

∣∣
B+

=
∂u

∂r
(R+) =

−(1− c)
R2

,

where B− denotes the inside of the interface and B+ denotes the outside of the interface.
Thus the jump is given by[

ε
∂u

∂n

]
B

= ε0
∂u

∂n

∣∣
B− − ε∞

∂u

∂n

∣∣
B+

=
−ε0 + (1− c)ε∞

R2
= 0.

October 2, 2017, do not distribute 126



12.3. MIXED METHODS 127

In this case, v(x) = 1/|x|, so

w(x) = −c

{
1
R
|x| ≤ R

1
|x| |x| ≥ R.

(12.13)

Thus if we solve numerically for w, we have a much smoother problem. But as R → 0, w
becomes more singular.

12.2.3 Error estimators for electrostatic models

Error estimators used in models in which the numerical techniques must resolve the point
singularities resulting from point charges [100] necessarily indicate large errors anywhere
there are fixed charges, thus throughout the protein, not primarily at the interface. Indeed,
the authors of [100, 15] considered a simplified algorithm to estimate errors due to the
protein-solvent interface in the second paper. Further, in the subsequent paper [50], the
authors considered the splitting advocated here and studied the corresponding improved
error estimator.

When using the solution splitting that we advocate, one would expect that the primary
numerical error would occur at the protein-water interface, due primarily to the jump in the
dielectric coefficients at this interface. Specific studies of error estimators and adaptivity for
elliptic problems with discontinuous coefficients have been an active area of research for over
a decade [146, 147, 52, 174, 43, 184, 49, 51, 109].

If the error is dominated by the jump in the solution gradient at the interface, it is possible
that the refinement necessary to represent the protein boundary already forces sufficient
accuracy near the interface. In any case, it may well be that simple error indicators [15] are
sufficient to obtain a good estimate of the errors. However, it seems prudent to examine
this issue in detail as it has the potential to benefit a large class of codes that currently do
not have a good way of determining appropriate resolution. Moreover, there is a reasonable
chance that significant efficiencies can be obtained with a state-of-the-art approach to mesh
refinement and coarsening [40].

12.3 Mixed Methods

The name “mixed method” is applied to a variety of finite element methods which have more
than one approximation space. Typically one or more of the spaces play the role of Lagrange
multipliers which enforce constraints. The name and many of the original concepts for such
methods originated in solid mechanics [9] where it was desirable to have a more accurate
approximation of certain derivatives of the displacement. However, for the Stokes equations
which govern viscous fluid flow, the natural Galerkin approximation is a mixed method.

One characteristic of mixed methods is that not all choices of finite element spaces will
lead to convergent approximations. Standard approximability alone is insufficient to guar-
antee success. Thus significant care is required in using them.
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We will focus on mixed methods in which there are two bilinear forms and two approx-
imation spaces. There are two key conditions that lead to the success of a mixed method.
Both are in some sense coercivity conditions for the bilinear forms. One of these will look
like a standard coercivity condition, while the other, often called the inf-sup condition, takes
a new form.

A model for fluid flow in a porous medium occupying a domain Ω takes the form

−
d∑

i,j=1

∂

∂xi

(
αij(x)

∂p

∂xj
(x)

)
= f(x) in Ω, (12.14)

where p is the pressure (we take an inhomogeneous right-hand-side for simplicity). Darcy’s
Law postulates that the fluid velocity u is related to the gradient of p by

ui(x) = −
d∑
j=1

αij(x)
∂p

∂xj
(x) ∀i = 1, . . . , d. (12.15)

The coefficients αij, which we assume form a symmetric, positive-definite matrix (almost
everywhere–frequently the coefficients are discontinuous so there are submanifolds where
they are ill defined), are related to the porosity of the medium. Of course, numerous other
physical models also take the form (12.14), as in Section 12.2.

Combining Darcy’s Law (12.15) and (12.14), we find ∇·u = f in Ω. A variational
formulation for (12.14) can be derived by letting A(x) denote the (almost everywhere defined)
inverse of the coefficient matrix (αij) and by writing ∇p = −Au. Define

a(u,v) :=
d∑

i,j=1

∫
Ω

Aij(x)ui(x)vj(x) dx. (12.16)

Then the solution to (12.14) solves

a(u,v) + b(v, p) = 0 ∀v ∈ V

b(u, q) = F (q) ∀q ∈ Π ,
(12.17)

where F (q) = −
∫

Ω
f(x) q(x) dx, Π = L2(Ω),

b(w, q) =

∫
Ω

w(x) · ∇q(x) dx = −
∫

Ω

∇·w(x) q(x) dx +

∮
∂Ω

q(x) w(x) · n(x) dx, (12.18)

and we have a new space V defined by

V :=
{
v ∈ L2(Ω)d : ∇·v ∈ L2(Ω), v · n = 0 on ∂Ω

}
.

The space V is based on the space called H(div; Ω) [178, Chapter 20, page 99] that has a
natural norm given by

‖v‖2
H(div;Ω) = ‖v‖2

L2(Ω)d + ‖∇·v‖2
L2(Ω) ; (12.19)

October 2, 2017, do not distribute 128



12.4. DISCRETE MIXED FORMULATION 129

H(div; Ω) is a Hilbert space with inner-product given by

(u,v)H(div;Ω) = (u,v)L2(Ω)d + (∇·u,∇·v)L2(Ω).

Thus we can write V := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}. The meaning of the boundary
condition v · n = 0 on ∂Ω can be made precise [178], but the tangential derivatives of a
general function v ∈ H(div; Ω) are not well defined.

The integration by parts in (12.18) follows from the divergence theorem. The bilinear
form a(·, ·) is not coercive on all of V, but it is coercive on the subspace Z of divergence-zero
functions, since on this subspace the inner-product (·, ·)H(div;Ω) is the same as the L2(Ω)
inner-product. In particular, this proves uniqueness of solutions. Suppose that F is zero.
Then u ∈ Z and a(u,u) = 0. Thus ‖u‖L2(Ω) = 0, that is, u ≡ 0. Existence and stability of
solutions follows from the inf-sup condition: there is a finite, positive constant C such that
for all q ∈ L2(Ω)

‖q‖L2(Ω) ≤ C sup
0 6=v∈H1(Ω)

b(v, q)

‖v‖H1(Ω)

≤ C ′ sup
06=v∈H(div;Ω)

b(v, q)

‖v‖H(div;Ω)

(12.20)

where the first inequality is proved just like (9.19) (the only difference being the boundary
conditions on v) and the second follows from the inclusion H1(Ω)d ⊂ H(div; Ω).

12.4 Discrete Mixed Formulation

Now let Vh ⊂ V and Πh ⊂ Π and consider the variational problem to find uh ∈ Vh and
ph ∈ Πh such that

a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh ,
b(uh, q) = 0 ∀q ∈ Πh . (12.21)

The case of an inhomogeneous right-hand-side in the second equation is considered in [37,
Section 10.5] and in [166].

One family of spaces that can be used in certain mixed methods is the Taylor-Hood family
consisting of the following spaces defined for k ≥ 2. Let the space W k

h denote the space of
continuous piecewise polynomials of degree k (with no boundary conditions imposed). Let
the space Vh be defined by

Vh =
{
v ∈ W k

h ×W k
h : v = 0 on ∂Ω

}
. (12.22)

and the space Πh be defined by

Πh =

{
q ∈ W k−1

h :

∫
Ω

q(x) dx = 0

}
. (12.23)
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Then for 0 ≤ m ≤ k

‖u− uh‖H1(Ω)2 ≤ Chm
(
‖u‖Hm+1(Ω)2 + ‖p‖Hm(Ω)

)
To approximate the scalar elliptic problem (12.14) by a mixed method, we have to contend

with the fact that the corresponding form a(·, ·) is not coercive on all of V. It is clearly
coercive on the space

Z = {v ∈ H(div; Ω) : ∇·v = 0}

so that (12.17) is well-posed. However, some care is required to assure that it is well-posed
as well on

Zh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Πh} .

One simple solution is to insure that Zh ⊂ Z and we will present one way this can be done.
Let Vh be as given in (12.22) and let Πh = ∇·Vh. Suppose that k ≥ 4. Then under

certain mild restrictions on the mesh [166] these spaces can be used. There are algorithms
[166] that allow one to compute using Πh = DVh without having explicit information about
the structure of Πh as described in Section 9.6. For more information on mixed methods,
see Section 9.2.

12.5 Numerical quadrature

The evaluation of forms having variable coefficients requires some sort of numerical quadra-
ture. This presents an additional degree of approximation and potential cause for error.

12.6 Exercises

Exercise 12.1 Use the variational formulation (12.11) to approximate the solution of (12.8)
using the splitting u = v+w where v is defined in (12.9). Use the example in Section 12.2.2
as a test case. Consider the impact of the approximation parameter R (see if the results
stablize as R →∞), as well as the choice of mesh and approximation space, on the results.
Choose an appropriate norm in which to measure the error.

Exercise 12.2 Use the variational formulation (12.11) to approximate the solution of (12.8)
directly via the approximation (4.17) to the Dirac δ-function developed in Section 4.2. That
is, define the linear functional FA (A > 0) by

FA(v) =
N∑
i=1

ci

∫
Ω

δAxi(x) v(x) dx,

and solve for uA,R ∈ H1
0 (BR) satisfying

aR(uA,R, v) = FA(v) ∀v ∈ H1
0 (BR).
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Use the example in Section 12.2.2 as a test case. Consider the impact of the approximation
parameters A and R (see if the results stablize as A,R→∞), as well as the choice of mesh
and approximation space, on the results. Choose an appropriate norm in which to measure
the error. Compare with the approach in Exercise 12.1.

Exercise 12.3 Carry out all of the details in the derivation of the variational formulation
of the porous medium equation (12.14). In particular, answer the questions

• How does the first equation in (12.17) ensure that ∇p = −Au?

• Why does the form b(w, q) =
∫

Ω
w(x) ·∇q(x) dx yield ∇·u = f via the second equation

in (12.17)?

Exercise 12.4 Prove that for any domain Ω ⊂ Rd and any v ∈ H1(Ω)d, d = 2 or 3,

‖v‖H(div;Ω) ≤
√
d ‖v‖H1(Ω).
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Chapter 13

Solid mechanics

The model equations for all solids take the form

ρu,tt = ∇·T + f ,

where u(x, t) is the displacement of the solid at the point x and time t, T is called the
Cauchy stress and f is externally given data. This is just a version of Newton’s Law: force
is equal to mass times acceleration. Each point in a body accelerates at the rate u,tt, and
∇·T + f is the force on it; ρ is the mass density.

Models of solides differ based on the way the stress T depends on the displacement u.
Time-independent models take the form

−∇·T = f . (13.1)

The divergence operator on a matrix function is defined by

(∇·T)i =
d∑
j=1

Tij,j.

There is a strong analogy between models for fluids and solids. The main unknown in fluid
models is the velocity v, which corresponds to the time derivative of the displacement u,t.
Thus the rate-of-strain tensor is the quantity related to stress in fluid models.

Many simplified models are used for solids. We derive some of them here to give an
example of one way that new models are derived from existing ones.

13.1 Linear elasticity

The simplest expression for the stress is linear: T = C : ε, where C is a material tensor, the
constituitive matrix, and ε = 1

2

(
∇u +∇ut

)
. Such solids are called elastic. For isotropic

models,

Cijkl = Kδijδkl + µ
(
δikδjl + δilδjk − 2

3
δijδkl

)
, for i, j, k, l = 1, 2, 3, (13.2)
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134 CHAPTER 13. SOLID MECHANICS

where δij is the Kronecker-δ, K is the bulk modulus (or incompressibility) of the material,
and µ is the shear modulus. The tensor contraction C : ε is defined by

(C : ε)ij =
d∑

kl=1

Cijklεkl.

Carrying out the tensor contraction, we have

Tij = Kδijεkk + 2µ
(
εij − 1

3
δijεkk

)
= λδijεkk + 2µεij

= λδij∇·u + µ
(
∇u +∇ut

)
ij

= λδij∇·u + µ
(
ui,j + uj,i

)
,

(13.3)

where λ(= K− 2
3
µ) and µ are known as the Lamé parameters, and the Einstein summation

convention was used (εkk =
∑3

k=1 εkk = ∇·u). We can write (13.3) succinctly as

T = λ(∇·u)I + µε, (13.4)

where I is the d× d identity matrix.

13.2 Elasticity variational formulation

The variational formulation of (13.1) takes the form: Find u such that u− γ ∈ V such that

aC (u,v) = F (v) ∀v ∈ V ,
(13.5)

where a(·, ·) = a∇(·, ·) and F (·) are given by

aC(u,v) :=

∫
Ω

T : ∇v dx = λ

∫
Ω

(∇·u)(∇·v) dx + µ

∫
Ω

(
∇u +∇ut

)
: ∇v dx, (13.6)

and

F (v) :=

∫
Ω

f · v dx. (13.7)

This is derived by multiplying (13.3) by v with a “dot” product, and integrating by parts
as usual.

The space V consists of the d-fold Cartesian product of the subset of H1(Ω) of functions
vanishing on the boundary.

13.3 Anti-plane strain

In anti-plane strain [21], the component of strain normal to a particular plane (we will take
it to be the (x1, x2) plane) is the only non-zero displacement, that is, u1 = u2 = 0, and thus
u = (0, 0, w). This is an idealized state when the dimension of Ω is large in the x3-direction,
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and the applied force is in that direction only, that is, f = (0, 0, f). It is assumed that the
displacement w = u3 is independent of x3, although it does depend on (x1, x2). In particular,
∇·u = 0. Thus

∇u =

 0 0 0
0 0 0
w,1 w,2 0

 and ε =
1

2

 0 0 w,1
0 0 w,2
w,1 w,2 0

 .

Therefore

T = µ

 0 0 w,1
0 0 w,2
w,1 w,2 0

 .

and so

∇·T = µ

 0
0

w,11 + w,22

 = µ

 0
0

∆w

 .

Thus the problem of anti-plane strain reduces to the familiar Laplace equation, −µ∆w = f .

13.4 Plane strain

In plane strain [21], the component of strain normal to a particular plane (we will take it to
be the (x, y) plane) is zero. This is the idealized state when the dimension of Ω is large in
the z-direction, and the applied forces in that direction are zero. Thus u = (u, v, 0) and

∇u =

u,x u,y 0
v,x v,y 0
0 0 0

 and ε =

 u,x
1
2
(u,y + v,x) 0

1
2
(u,y + v,x) v,y 0

0 0 0

 .

and thus the variational problem (13.5) applies where we identify the integration in (13.6)
and (13.7) as being just over a two-dimensional domain.

13.5 The Plate-Bending Biharmonic Problem

Plates and shells are thin structures for which simplified models are derived. A plate is planar,
the simplest case. We will limit discussion to this case, although much of the description has
an analog for shells. We give the details of the derivation of the plate model as an example
of how many models are derived.

Let us suppose that Ω̂ is some domain in the x, y plane, and

Ω =
{

(x, y, z) : (x, y) ∈ Ω̂, z ∈ [−τ, τ ]
}
,

where we assume that τ is small with respect to the dimensions of Ω̂. When the structure
is deformed, the behavior is different on each side of the midsurface τ = 0, as indicated in
Figure 13.1(a). Bending causes compression on one side and expansion on the other.
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13.5.1 Plate model assumptions

Using the Kirchhoff hypothesis,1 the displacement u = (u, v, w) satisfies

u ≈ −zw,x, v ≈ −zw,y.

See Figure 13.1(b) to see why this assumption is a good approximation.

(a)

midsurface

compression

expansion
(b)

x

wz

u

u

Figure 13.1: Relation between out-of-plane dispalcement and in-plane displacement leading
to the Kirchhoff hypothesis. (a) Bending causes a combination of compression and expansion
(or extension). (b) The slope of w causes a deformation in the (x, y) plane, that is, a change
in (u, v), that depends on z. This is shown in the (x, z) plane.

Thus the equations of elasticity can be approximated as an equation for just the deflection
w normal to the plane of the plate:

∇u =

u,x u,y u,z
v,x v,y v,z
w,x w,y w,z

 ≈
−zw,xx −zw,xy −w,x−zw,xy −zw,yy −w,y

w,x w,y 0

 .

Using this approximation, we obtain

ε =

−zw,xx −zw,xy 0
−zw,xy −zw,yy 0

0 0 0

 and ∇·u = −z∆w.

Using (13.4), we get

T = −zλ∆w

1 0 0
0 1 0
0 0 0

+ µ

−zw,xx −zw,xy 0
−zw,xy −zw,yy 0

0 0 0

 . (13.8)

13.5.2 Plate variational formulation

We want to see how this simplified model for the stress changes the variational formulation
(13.6). Multiplying (13.8) by ∇v, where v = −z∇φ and φ depends only on x, y, and
integrating over Ω, we find

λ

∫
Ω

z2∆w∆φ dx + µ

∫
Ω

z2

(
w,xx w,xy
w,xy w,yy

)
:

(
φ,xx φ,xy
φ,xy φ,yy

)
dx =

∫
Ω

f · v dx,

1Gustav Robert Kirchhoff (1824—1887) was a mathematical physicist, made famous by work done on
electrical circuits as a graduate student. Kirchhoff coined the term “black body radiation” and, with Bunsen,
discovered caesium and rubidium, among many other achievements.
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since 1 0 0
0 1 0
0 0 0

 : ∇v = −z∆w.

For simplicity, we consider the case where the body force f = 0. We can expand to get(
w,xx w,xy
w,xy w,yy

)
:

(
φ,xx φ,xy
φ,xy φ,yy

)
= w,xxφ,xx + 2w,xyφ,xy + w,yyφ,yy

= ∆w∆φ− w,xxφ,yy − w,yyφ,xx + 2w,xyφ,xy.

(13.9)

Note that the integral of z2 with respect to z over the plate thickness is equal to 2
3
τ 3. Then

the above becomes

2
3
τ 3

∫
Ω̂

(λ+ µ)∆w∆φ+ µ(−w,xxφ,yy − w,yyφ,xx + 2w,xyφ,xy) dxdy = 0.

Let aP (·, ·) be the bilinear form defined on H2(Ω) given by

aP (u, v) :=

∫
Ω

∆u∆v − (1− ν) (2uxxvyy + 2uyyvxx − 4uxyvxy) dxdy, (13.10)

where ν is a physical constant known as Poisson’s ratio, and 2(1−ν) = µ/(λ+µ). In classical
models for plate bending, ν is restricted to the range [0, 1

2
], although negative values of ν

correspond to auxetic materials [5].

13.5.3 Coercivity of the plate variational formulation

The variational form aP (·, ·) satisfies a G̊arding-type inequality,

aP (v, v) +K‖v‖2
L2(Ω) ≥ α‖v‖2

H2(Ω) ∀v ∈ H2(Ω) (13.11)

for all −3 < ν < 1, where α > 0 and K <∞ [2]. If ν = 1, this inequality cannot hold since
aP (v, v) then vanishes for all harmonic functions, v. Coercivity can be derived for 0 < ν < 1,
as follows. Write

aP (v, v) =

∫
Ω

ν (vxx + vyy)
2 + (1− ν)

(
(vxx − vyy)2 + 4v2

xy

)
dxdy

≥ min{ν, 1− ν}
∫

Ω

(vxx + vyy)
2 + (vxx − vyy)2 + 4v2

xy dxdy

= 2 min{ν, 1− ν}
∫

Ω

v2
xx + v2

yy + 2v2
xy dxdy

= 2 min{ν, 1− ν}|v|2H2(Ω).

(13.12)

Coercivity does not hold for functions v which have vanishing H2(Ω) semi-norm, that is,
|v|H2(Ω) = 0. Such functions must be linear polynomials, which we denote by P1. But
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(13.12) does imply that aP (·, ·) is coercive over any closed subspace, V ⊂ H2(Ω), such that
V ∩ P1 = Ø (see [37, Section 5.9]). Thus, there is a constant α > 0 such that

aP (v, v) ≥ α‖v‖2
H2(Ω) ∀v ∈ V. (13.13)

For V ⊂ H2(Ω) and F ∈ V ′, we consider the problem: find u ∈ V such that

aP (u, v) = F (v) ∀v ∈ V. (13.14)

As a consequence of the Lax-Milgram theorem 2.1, we have the following.

Theorem 13.1 If V ⊂ H2(Ω) is a closed subspace such that V ∩ P1 = Ø and 0 < ν < 1,
then (13.14) has a unique solution.

13.5.4 Essential boundary conditions

There are different boundary conditions relevant for physical applications. Let V ss be defined
by

V ss =
{
v ∈ H2(Ω) : v = 0 on ∂Ω

}
.

This is the subset of H2(Ω) consisting of functions which vanish to first-order only on ∂Ω.
This variational space, used in (13.14), provides the model known as the simply-supported
plate model. The displacement u is held at a fixed height but the plate is free to rotate
(∂u
∂ν
6= 0) at the boundary. The clamped plate model uses the variational space

V c =
{
v ∈ H2(Ω) : v =

∂v

∂ν
= 0 on ∂Ω

}
,

the subset of H2(Ω) consisting of functions which vanish to second order on ∂Ω. In the
clamped case, the rotation of the plate is constrained at the boundary.

13.5.5 Natural boundary conditions

Let us derive a formula that indicates the natural boundary conditions associated with
(13.10). We will see that, when integrating by parts, all of the terms multiplied by 1 − ν
cancel, as they all yield various versions of the cross derivative uxxyy. Applying the divergence
theorem to w = iuv, where i is either (1, 0) or (0, 1), we find∫

Ω

u vi dx = −
∫

Ω

ui v dx +

∮
∂Ω

u v i · n ds = −
∫

Ω

ui v dx +

∮
∂Ω

u v ni ds.

Therefore ∫
Ω

ujj vii dx = −
∫

Ω

ujji vi dx +

∮
∂Ω

ujj vi ni ds

=

∫
Ω

ujjii v dx +

∮
∂Ω

ujj vi ni ds−
∮
∂Ω

ujji v ni ds.

(13.15)
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Similarly, ∫
Ω

uji vji dx = −
∫

Ω

ujii vj dx +

∮
∂Ω

uji vj ni ds

=

∫
Ω

ujjii v dx +

∮
∂Ω

uji vj ni ds−
∮
∂Ω

ujii v nj ds.

(13.16)

Therefore∫
Ω

(
u11 v22 + u22 v11 − 2u12 v12

)
dx

=

∮
∂Ω

(
u22 v1 n1 + u11 v2 n2

)
ds− 2

∮
∂Ω

u12 v1 n2 ds

−
∮
∂Ω

v
(
u112 n2 + u221 n1 − 2u122 n1

)
ds

=

∮
∂Ω

(
u22 v1 n1 + u11 v2 n2 − 2u12 v1 n2

)
ds−

∮
∂Ω

v
(
u112 n2 − u122 n1

)
ds.

(13.17)

Note that u112 n2 − u122 n1 = u112 t1 + u122 t2 = ∇u12 · t = u12 t. Thus∫
Ω

(
u11 v22 + u22 v11 − 2u12 v12

)
dx

=

∮
∂Ω

(
u22 v1 n1 + u11 v2 n2 − u12 v1 n2 − u12 v2 n1

)
ds−

∮
∂Ω

v u12 t ds.

(13.18)

If a segment of the boundary is straight, then we can change coordinates so that the above
simplifies to ∫

Ω

(
u11 v22 + u22 v11 − 2u12 v12

)
dx =

∮
∂Ω

(
utt vn − uttnv

)
ds.

Integration by parts for the other part of the bilinear form (13.10) is relatively simpler (see
Exercise 13.4): ∫

Ω

∆u∆v dx = −
∫

Ω

∇(∆u) · ∇v dx +

∮
∂Ω

∆u
∂v

∂n
ds

=

∫
Ω

(∆2u) v dx−
∮
∂Ω

∂∆u

∂n
v ds+

∮
∂Ω

∆u
∂v

∂n
ds.

(13.19)

Therefore

aP (u, v) =

∫
Ω

(∆2u) v dx−
∮
∂Ω

(∂∆u

∂n
− 2(1− ν)uttn

)
v ds+

∮
∂Ω

(
∆u− 2(1− ν)utt

)
vn ds.

Thus, if aP (u, v) = (f, v)L2(Ω) for all v ∈ H2
0 (Ω), we find that ∆2u = f holds in the L2 sense,

independent of the choice of ν.
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In the simply-supported case (V = V ss), there is another, natural boundary condition
that holds. In this sense, this problem has a mixture of Dirichlet and Neumann boundary
conditions, but they hold on all of ∂Ω. The natural boundary condition is found using
integration by parts, but with v having an arbitrary, nonzero normal derivative on ∂Ω. One
finds [25] that the bending moment ∆u− 2(1− ν)utt must vanish on ∂Ω, where utt denotes
the second directional derivative in the tangential direction. These results are summarized
in the following.

Theorem 13.2 Suppose that V is any closed subspace satisfying H̊2(Ω) ⊂ V ⊂ H2(Ω). If
f ∈ L2(Ω), and if u ∈ H4(Ω) satisfies (13.14) with F (v) = (f, v), then u satisfies

∆2u = f

in the L2(Ω) sense. For V = V c, u satisfies

u =
∂u

∂ν
= 0 on ∂Ω

and for V = V ss, u satisfies

u = ∆u− 2(1− ν)utt = 0 on ∂Ω.

13.5.6 Approximating plates

To approximate (13.14), we need a subspace Vh of H2(Ω). For example, we could take a
space based on the Argyris elements [37, Examples 3.2.10 and 3.2.11]. With either choice of
V as above, if we choose Vh to satisfy the corresponding boundary conditions, we obtain the
following.

Theorem 13.3 If Vh ⊂ V is based on Argyris elements of order k ≥ 5 then there is a unique
uh ∈ Vh such that

aP (uh, v) = F (v) ∀v ∈ Vh.

Moreover,

‖u− uh‖H2(Ω) ≤ C inf
v∈Vh
‖u− v‖H2(Ω)

≤ Chk−1‖u‖Hk+1(Ω).
(13.20)

For more details regarding numerical methods for plate bending, see the survey [171].
Several mixed methods have been proposed [75, 77, 88] that reduce the biharmonic problem
to a system of second-order problems. However, only recently has a mixed method been
proposed that is faithful to the natural boundary condtions associated with the simply-
supported plate model [153]. A related mixed method suitable for clampled plates appears
in [111].
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13.6. THE BABUŠKA PARADOX 141

Figure 13.2: Polygonal approximation in the Babuška Paradox. At a vertex, the gradient
of the simply supported solution must vanish as its tangential derivatives are zero in two
independent directions.

13.6 The Babuška Paradox

The Babuška Paradox relates to the limit of polygonal approximations to a smooth boundary.
For example, let Ω be the unit disc, and let Ωn denote regular polygons inscribed in Ω with n
sides. Then the Paradox is that the solutions wn of the simply supported plate problems on
Ωn converge to the solution w of the clamped plate problem on Ω as n→∞ [132, Chapter
18, Volume II].

The reason for the paradox is that, at each vertex of Ωn, the gradient of v must vanish for
any sufficiently smooth function v that vanishes on ∂Ωn. This is illustrated in Figure 13.2.
In particular, ∇wn must vanish at all vertices of the polygon Ωn. Thus in the limit, ∇w = 0
at all points on the boundary, where w = limn→∞wn and wn denotes the solution of simply
supported plate problem on Ωn.

A corollary of this paradox is the following. Suppose we approximate a smooth domain
Ω by polygons Ωn and form the finite element approximation wn,h of the simply supported
plate problem, say with h = 1/n. Then as n→∞ (equivalently, h→ 0), we expect that wn,h
will converge to the solution w of the clamped plate problem on Ω, not the simply supported
problem. This type of numerical error is the most insidious possible, in that the convergence
is likely to be quite stable. There will be no red flags to indicate that something is wrong.

The Babuška Paradox has been widely studied [11, 131, 142, 155], and it is now generally
known as the Babuška-Sapondzhyan Paradox [48, 130, 156]. Since the biharmonic equation
arises in other contexts, including the Stokes equations, this paradox is of broader interest
[182, 176, 66, 46].

13.7 Membranes

Membranes are thin elastic media that do not resist bending. Their models are similar in
form to that of anti-plane strain (Section 13.3), but for different reasons. Membranes are
similar to plates in that they are thin, but only the vertical deformation plays a role. Thus
we assume that

∇u ≈

 0 0 0
0 0 0
w,1 w,2 0

 and ε = 1
2

 0 0 w,1
0 0 w,2
w,1 w,2 0

 .
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Therefore

T = µ

 0 0 w,1
0 0 w,2
w,1 w,2 0

 .

and so

∇·T = µ

 0
0

w,11 + w,22

 = µ

 0
0

∆w

 .

Thus the membrane problem reduces to the familiar Laplace equation, −µ∆w = f .

13.8 Exercises

Exercise 13.1 Show that for any smooth vector valued function u, the following holds:

∇·
(
∇u + (∇u)t

)
= 2∆u.

Exercise 13.2 Let A and B be any d× d matrices. Prove that

A : Bt = At : B.

(Hint: A : Bt =
∑d

i,j=1 aijbji.)

Exercise 13.3 Let A be any d× d symmetric matrix, that is, At = A. Let B be any d× d
matrix. Prove that

A : B = A :
(

1
2
(B +Bt)

)
.

(Hint: use Exercise 13.2.)

Exercise 13.4 Prove (13.19). (Hint: use (2.9) twice.)

Exercise 13.5 Let Ω̂ be the unit square, and let

Ω =
{

(x, y, z) : (x, y) ∈ Ω̂, z ∈ [−τ, τ ]
}
.

Compare the solution of the plate bending problem on Ω̂ to the solution of the full elasticity
problem on Ω for various values of τ .

Exercise 13.6 Verify the tensor identity ∆u = ∇· ε(u).
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Chapter 14

Navier-Stokes Equations

In Chapter 9, we derived the Navier-Stokes equations under the assumption that the stress
depends linearly upon the gradient of the fluid velocity. Here we develop the variational
theory for these equations and present some computational algorithms for solving them.

14.1 The Navier-Stokes Equations

The Navier-Stokes equations for the flow of a viscous, incompressible, Newtonian fluid can
be written

−∆u +∇p = −R (u · ∇u + ut)

∇·u = 0
(14.1)

in Ω ⊂ Rd, where u denotes the fluid velocity, p denotes the pressure, and R denotes the
Reynolds number [116]. In our context, R = 1/η where η denotes the fluid (kinematic)
viscosity.

These equations must be supplemented by appropriate boundary conditions, such as the
Dirichlet boundary conditions, u = γ on ∂Ω.

A complete variational formulation of (14.1) takes the form: Find u such that u−γ ∈ V
and p ∈ Π such that

a (u,v) + b (v, p) +R
(
c (u,u,v) + (ut,v)L2(Ω)

)
= 0 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,
(14.2)

where e.g. a(·, ·), b(·, ·) and c(·, ·, ·) are given by

a(u,v) :=

∫
Ω

n∑
i,j=1

ui,jvi,j dx, (14.3)

b(v, q) := −
∫

Ω

n∑
i=1

vi,iq dx, (14.4)
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c(u,v,w) :=

∫
Ω

(u · ∇v) ·w dx, (14.5)

and (·, ·)L2(Ω) denotes the L2(Ω)d-inner-product. The spaces V and Π are the same as for
the Stokes equations (Chapter 9), as are the forms a(·, ·) and b(·, ·). As noted in Chapter 9,
the a(·, ·) form can be either the gradient form (9.7) or the “epsilon” form (9.11).

14.1.1 Properties of the nonlinear term

The trilinear form (14.5) has some special properties that reflect important physical prop-
erties of fluid dynamics. To see these, we need to derive some calculus identities. For any
vector-valued function u and scalar-valued function v, the product rule for derivatives gives
(Exercise 14.2)

∇· (u v) = (∇·u)v + u · ∇v. (14.6)

For any vector-valued function u and scalar-valued functions v and w, applying the product
rule for derivatives again gives

∇· (u v w) = (∇·u)v w + (u · ∇v)w + (u · ∇w)v.

Thus if we apply the divergence theorem we get∮
∂Ω

(u · n)v w ds =

∫
Ω

(∇·u)v w dx +

∫
Ω

(u · ∇v)w dx +

∫
Ω

(u · ∇w)v dx. (14.7)

Thus if u satisfies the divergence constraint ∇·u = 0 in (14.1) and the product (u · n) v w
vanishes on ∂Ω, we have ∫

Ω

(u · ∇v)w dx = −
∫

Ω

(u · ∇w)v dx. (14.8)

Suppose now that v and w are vector-valued functions, and u ·n or v or w vanishes at each
point on ∂Ω. Applying (14.8), we find (Exercise 14.3)∫

Ω

(u · ∇v) ·w dx = −
∫

Ω

(u · ∇w) · v dx. (14.9)

Thus we have shown the following.

Lemma 14.1 Suppose that u satisfies the divergence constraint ∇·u = 0 in (14.1) and that
u·n or v or w vanishes at each point on ∂Ω. Then the trilinear form (14.5) is antisymmetric
in the last two arguments:

c(u,v,w) = −c(u,w,v). (14.10)

In particular, if u satisfies the divergence constraint ∇·u = 0 and v vanishes on ∂Ω, then
c(u,v,v) = 0.
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14.1.2 The nonlinear term with boundary conditions

When functions are nonzero on the boundary, the antisymmetry properties of the nonlinear
form are more complex. If ∇·u = 0, then using (14.7) we can show that∫

Ω

(u · ∇v) ·w dx = −
∫

Ω

(u · ∇w) · v dx +

∮
∂Ω

(u · n)v ·w ds. (14.11)

In particular,

c(u,v,v) =

∫
Ω

(u · ∇v) · v dx =
1

2

∮
∂Ω

(u · n)v · v ds =
1

2

∮
∂Ω

(u · n)|v|2 ds. (14.12)

14.2 Implicit time-stepping

The workhorse schmes for solving the time-dependent Navier-Stokes equations are implicit.
The simplest of these is the implicit Euler scheme, which is the lowest-order backwards
differentiation (BDF) scheme (Section 8.5). The implicit Euler time-stepping scheme for the
Navier-Stokes equations can be defined as follows. Expressed in variational form, it is

a
(
u`,v

)
+ b
(
v, p`

)
+Rc

(
u`,u`,v

)
+

R

∆t

(
u` − u`−1,v

)
L2(Ω)

= 0,

b
(
u`, q

)
= 0,

(14.13)

where v varies over all V (or Vh) and q varies over all Π (or Πh) and ∆t denotes the time-step
size. More efficient time-stepping schemes will take a similar form, such as the backwards
differentiation schemes. In particular, (14.13) is the first-order backwards differentiation
scheme.

At each time step, one has a problem to solve for (u`, p`) with the form ã(·, ·) is

ã(u,v) := a(u,v) + τ (u,v)L2(Ω) , (14.14)

where the constant τ = R/∆t. It takes the form

ã
(
u`,v

)
+ b
(
v, p`

)
+Rc

(
u`,u`,v

)
= τ

(
u`−1,v

)
L2(Ω)

,

b
(
u`, q

)
= 0.

(14.15)

However, (14.15) is nonlinear, so an algorithm must be chosen to linearize it.

14.2.1 Fixed-point iteration

One of the simplest solution methods is fixed-point iteration, which takes the form:

ã
(
u`,k,v

)
+ b
(
v, p`,k

)
= −Rc

(
u`,k−1,u`,k−1,v

)
+ τ

(
u`−1,v

)
L2(Ω)

,

b
(
u`,k, q

)
= 0.

(14.16)
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This iteration can be started with an extrapolated value, e.g., u`,0 := 2u`−1−u`−2, and once
convergence is achieved, we set u` = u`,k.

Note that we have u`,k = γ on ∂Ω, that is, u`,k = u`,k0 +γ where u`,k0 ∈ V . The variational
problem for u`,k can be written: Find u`,k0 ∈ V and p ∈ Π such that

ã
(
u`,k0 ,v

)
+ b
(
v, p
)

= −ã
(
γ,v

)
−Rc

(
u`,k−1,u`,k−1,v

)
+ τ
(
u`,v

)
L2(Ω)

∀v ∈ V

b
(
u`,k0 , q

)
=− b

(
γ, q
)
∀q ∈ Π.

(14.17)

This is of the form (9.21) with

F `,k(v) = −ã
(
γ,v

)
−Rc

(
u`,k−1,u`,k−1,v

)
+ τ
(
u`−1,v

)
L2(Ω)

∀v ∈ V

G
(
q
)

=− b
(
γ, q
)
∀q ∈ Π.

(14.18)

Again, the inhomogeneous boundary data γ appears in both right-hand sides, F `,k and G.

14.2.2 Stability of the exact solution

The nonlinear time-stepping scheme (14.15) has excellent stability properties. To see why,
let us assume for simplicity that the boundary data γ is zero. Then (14.10) implies

ã
(
u`,u`

)
= −Rc

(
u`,u`,u`

)
+ τ
(
u`−1,u`

)
L2(Ω)

= τ
(
u`−1,u`

)
L2(Ω)

. (14.19)

Thus the Cauchy-Schwarz inequality (2.32) implies

ã
(
u`,u`

)
≤ τ‖u`−1‖L2(Ω)‖u`‖L2(Ω) ≤ 1

2
τ
(
‖u`−1‖2

L2(Ω) + ‖u`‖2
L2(Ω)

)
Subtracting 1

2
τ‖u`‖2

L2(Ω) from both sides yields

a
(
u`,u`

)
+ 1

2
τ‖u`‖2

L2(Ω) ≤ 1
2
τ‖u`−1‖2

L2(Ω) ≤ a
(
u`−1,u`−1

)
+ 1

2
τ‖u`−1‖2

L2(Ω). (14.20)

Thus u` is non-increasing in the norm ‖v‖ =
√
a(v,v) + 1

2
τ‖v‖2

L2(Ω).

14.2.3 Convergence of fixed-point iteration

The convergence of the iterative scheme (14.16) can be analyzed as follows. Subtracting two
consecutive versions of (14.16), we find the following formula for ek := u`,k − u`,k−1:

ã
(
ek, ek

)
= R

(
c
(
u`,k−1,u`,k−1, ek

)
−c
(
u`,k−2,u`,k−2, ek

))
= R

(
c
(
u`,k−1,u`,k−1, ek

)
−c
(
u`,k−2,u`,k−1, ek

)
+

c
(
u`,k−2,u`,k−1, ek

)
−c
(
u`,k−2,u`,k−2, ek

))
= R

(
c
(
ek−1,u`,k−1, ek

)
+c
(
u`,k−2, ek−1, ek

))
.

(14.21)
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From the Cauchy-Schwarz inequality (see Exercise 14.1), we find

|c
(
u`,k−2, ek−1, ek

)
| ≤ ‖u`,k−2‖L∞(Ω)

(
a
(
ek−1, ek−1

))1/2 (
ek, ek

)1/2
.

From (14.10) and the Cauchy-Schwarz inequality, we find

|c
(
ek−1,u`,k−1, ek

)
| = |c

(
ek−1, ek,u`,k−1

)
| ≤ ‖u`,k−1‖L∞(Ω)

(
ek−1, ek−1

)1/2 (
a(ek, ek)

)1/2
.

Thus (14.21) implies

ã
(
ek, ek

)
≤ R‖u`,k−1‖L∞(Ω)

(
ek−1, ek−1

)1/2 (
a
(
ek, ek

))1/2

+R‖u`,k−2‖L∞(Ω)

(
a
(
ek−1, ek−1

))1/2 (
ek, ek

)1/2

≤ 1
2

(
R‖u`,k−1‖L∞(Ω)

)2 (
ek−1, ek−1

)
+ 1

2
a
(
ek, ek

)
+

1

2τ

(
R‖u`,k−2‖L∞(Ω)

)2
a
(
ek−1, ek−1

)
+
τ

2

(
ek, ek

)
= 1

2

(
R‖u`,k−1‖L∞(Ω)

)2 (
ek−1, ek−1

)
+

1

2τ

(
R‖u`,k−2‖L∞(Ω)

)2
a
(
ek−1, ek−1

)
+ 1

2
ã
(
ek, ek

)
≤R

2

2τ

(
‖u`,k−1‖2

L∞(Ω) + ‖u`,k−2‖2
L∞(Ω)

)
ã
(
ek−1, ek−1

)
+ 1

2
ã
(
ek, ek

)
.

(14.22)

Therefore

ã
(
ek, ek

)
≤ R2

τ

(
‖u`,k−1‖2

L∞(Ω) + ‖u`,k−2‖2
L∞(Ω)

)
ã
(
ek−1, ek−1

)
. (14.23)

Thus the fixed-point iteration for solving the nonlinear equations (14.15) for the time-
stepping is convergent provided τ is large enough and ‖u`,k−2‖L∞(Ω) and ‖u`,k−1‖L∞(Ω) stay
bounded. The latter can be monitored as the computation progresses. Note that the param-
eter R2

τ
appearing in (14.23) is equal to R∆t. Thus fixed-point iteration converges provided

R∆t
(
‖u`,k−1‖2

L∞(Ω) + ‖u`,k−2‖2
L∞(Ω)

)
< 1. (14.24)

14.3 Iterated Penalty Method

The iterated penalty method can be used to enforce the incompressiblity constraint as was
done for the Stokes system.

14.3.1 Iterated Penalty Method for Navier-Stokes

The iterated penalty method (9.48) (with ρ′ = ρ) for (14.17) takes the form

ã
(
u`,n,v

)
+ ρ

(
∇·u`,n,∇·v

)
L2 = F `,k(v)− ρ

(
∇·
(
w`,n + γ

)
,∇·v

)
L2 ∀v ∈ V

w`,n+1 = w`,n − ρ
(
u`,n + γ

)
,

(14.25)
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where either p`,0 = 0 or (i.e. w`,0 = 0) or w`,0 = w`−1,N where N is the final value of n at
time-step `−1. If for some reason p` = p`,n = PΠh∇·w`,n were desired, it could be computed
separately.

For example, algorithm (9.50) could be used to compute

ã (zn,v) + ρ (∇· zn,∇·v)L2 =− ρ
(
∇·
(
ζn −w`,n

)
,∇·v

)
L2 ∀v ∈ V

ζn+1 =ζn − ρ
(
zn −w`,n

) (14.26)

starting with, say, ζ0 ≡ 0. Then zn will converge to z ∈ Vh satisfying ∇· z = PΠh∇·w`,n =
p`,n. Note that (14.26) requires the same system to be solved as for computing u`,n in (14.25),
so very little extra code or data-storage is required.

The potential difficulty caused by having inhomogeneous boundary data can be seen for
high-order finite elements. For simplicity, consider the two-dimensional case. Let W k

h denote
piecewise polynomials of degree k on a triangular mesh, and let V k

h denote the subspace
of W k

h consisting of functions that vanish on the boundary. Let Vh = V k
h × V k

h , and let
Πh = ∇·Vh. Then each q ∈ Πh is continuous at all boundary singular [37, Section 12.6]
vertices, σi, in the mesh. On the other hand, inhomogeneous boundary conditions will require
the introduction of some γ ∈ W k

h ×W k
h . It is known [168] that ∇·

(
W k
h ×W k

h

)
consists of all

piecewise polynomials of degree k − 1, a larger space than Πh if boundary singular vertices
are present in the mesh. On the other hand, if there are no boundary singular vertices, there
is no need to form the projection since Πh =

{
q ∈ ∇·

(
W k
h ×W k

h

)
:
∫

Ω
q(x) dx = 0

}
in this

case.
A more complex time-stepping scheme could be based on the variational equations

a
(
u`,v

)
+ b
(
v, p`

)
+Rc

(
u`−1,u`,v

)
+

R

∆t

(
u` − u`−1,v

)
L2(Ω)

= 0,

b
(
u`, q

)
= 0,

(14.27)

in which the nonlinear term has been approximated in such a way that the linear algebraic
problem changes at each time step. It takes the form (9.21) with a form ã(·, ·) given by

ã (u,v; U) = a (u,v) +

∫
Ω

(τu · v + U · ∇u · v) dx (14.28)

where U = Run arises from linearizing the nonlinear term.
Even though the addition of the U term makes it non-symmetric, ã(·, ·) will be coercive

for τ sufficiently large (i.e., for ∆t/R sufficiently small). In fact, when ∇·U ≡ 0 then
integrating by parts yields∫

Ω

U · ∇v · v dx =

∫
Ω

d∑
i,j=1

Uivj,ivj dx =

∫
Ω

d∑
i,j=1

Ui
1

2

(
v2
j

)
,i
dx =− 1

2

∫
Ω

d∑
i,j=1

Ui,iv
2
j dx = 0

(14.29)
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for all v ∈ V so that
α‖v‖2

V ≤ ã(v,v) ∀v ∈ V (14.30)

for the same choice of α > 0 as before. Of course, ã(·, ·) is continuous:

ã(v,w) ≤ Ca‖v‖V ‖w‖V ∀v,w ∈ V (14.31)

but now Ca depends on both τ and U.

14.3.2 Convergence and stopping criteria

The convergence properties of (9.44) follow from [37, Chapter 13].

Theorem 14.1 Suppose that the forms (9.21) satisfy (9.15) and (9.29). for Vh and Πh =
DVh. Then the algorithm (9.44) converges for any 0 < ρ < 2ρ′ for ρ′ sufficiently large. For
the choice ρ = ρ′, (9.44) converges geometrically with a rate given by

Ca

(
1

β
+
Ca
αβ

)2/
ρ′ .

The following stopping criterion follows from [37, Chapter 13].

Theorem 14.2 Suppose that the forms (9.21) satisfy (9.15) and (9.29). for Vh and Πh =
DVh. Then the errors in algorithm (9.44) can be estimated by

‖un − uh‖V ≤
(

1

β
+
Ca
αβ

)
‖Dun − PΠ G‖Π

and

‖pn − ph‖Π ≤
(
Ca
β

+
C2
a

αβ
+ ρ′Cb

)
‖Dun − PΠ G‖Π.

When G(q) = −b(γ, q), then PΠG = −PΠDγ and since Dun ∈ Πh,

‖Dun − PΠ G‖Π = ‖PΠD (un + γ)‖Π

≤ ‖D (un + γ)‖Π,
(14.32)

and the latter norm is easier to compute, avoiding the need to compute PΠ G. We formalize
this observation in the following result.

Corollary 14.1 Under the conditions of Theorem (14.2) the errors in algorithm (9.44) can
be estimated by

‖un − uh‖V ≤
(

1

β
+
Ca
αβ

)
‖D (un + γ)‖Π

and

‖pn − ph‖Π ≤
(
Ca
β

+
C2
a

αβ
+ ρ′Cb

)
‖D (un + γ)‖Π.
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150 CHAPTER 14. NAVIER-STOKES EQUATIONS

14.4 Compatibility Conditions

For the Navier-Stokes equations, there are compatibility conditions like those found for the
heat equation in Section 8.2. Here we refer to these as “local” compatibility conditions since
they can be determined by purely local considerations. We begin with a description of these.
However, there are also non-local compatibility conditions for the Navier-Stokes equations,
and we describe them subsequently.

14.4.1 Local Compatibility Conditions

There are local compatibility conditions for the boundary and initial data for the Navier-
Stokes equations similar to the ones for the heat equation in order to have a smooth solution.
These can be derived again from the observation that that the values of u on the spatial
boundary have been specified twice at t = 0. The first condition is simply

u0(x) = γ(x) ∀x ∈ ∂Ω. (14.33)

Additional conditions arrise by using the differential equation at t = 0 and for x ∈ ∂Ω, but
we post-pone temporarily deriving one of these. However, we find a new type of condition,
namely,

∇·u0 = 0. (14.34)

Although this condition is quite obvious, it does pose a significant constraint on the initial
data.

If either of these compatibilities are not satisfied by the data (or by the approximation
scheme), wild oscillations will result near t = 0 and x ∈ ∂Ω. In such a nonlinear problem,
this can cause completely wrong results to occur.

Another condition that arises due to the incompressibility (or divergence-free) condition
is the following: ∮

∂Ω

n · γ = 0. (14.35)

This arises simply from (2.9), and it says that the amount of fluid coming into the domain
must balance the amount of fluid going out of the domain: the net mass flux into the
domain is zero. If this compatibility condition is violated, then the solution can clearly not
have divergence zero.

The compatibility conditions (14.33) and (14.34) do not have to be satisfied for the Navier-
Stokes equations (14.1) to be well-posed in the usual sense. There is a unique solution in any
case, but the physical model may be incorrect as a result if it is supposed to have a smooth
solution. Compatibility conditions are a very subtle form of constraint on model quality.

The compatibility conditions (14.33) and (14.34) are described in terms of local differential-
algebraic constraints. However, in Section 14.4.2 we will see that such compatibility con-
ditions can lead to global constraints that may be extremely hard to verify or satisfy in
practice.
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14.4.2 A nonlocal compatibility condition [98]

Simply applying the first equation in (14.1) on ∂Ω at t = 0 we find

−∆u0 +∇p0 = −R (γ · ∇u0 + γ ′) on ∂Ω (14.36)

where p0 denotes the initial pressure. Since p0 is not part of the data, it might be reasonable
to assume that the pressure initially would just adjust to insure smoothness of the system,
i.e., satisfaction of (14.36), which we can re-write as

∇p0 = ∆u0 −R (γ · ∇u0 + γ ′) on ∂Ω (14.37)

However, taking the divergence of the first equation in (14.1) at t = 0 we find

∆p0 = −R∇· (u0 · ∇u0) in Ω. (14.38)

Thus p0 must satisfy a Laplace equation with the full gradient specified on the bounary
by (14.37). This is an over-specified system (one too many boundary conditions, see Sec-
tion 18.1), so not all u0 will satisfy it. Note that

∇· (v · ∇v) =
∑
i,j

vi,jvj,i in Ω (14.39)

if ∇·v = 0.
The only simple way to satisfy both (14.37) and (14.38) is to have u0 ≡ 0 and γ = γ ′ = 0,

that is to start with the fluid at rest. For R > 0, it is easy to see that the system given by
(14.37) and (14.38) is over-specified since γ ′ can be chosen arbitrarily.

14.5 Exercises

Exercise 14.1 Prove that∣∣∣ ∫
Ω

(u · ∇v) ·w dx
∣∣∣ ≤ ‖u‖L∞(Ω)

∫
Ω

‖∇v(x)‖F |w(x)| dx,

where ‖M‖F :=
√
M : M denotes the Frobenius norm of any matrix M and |w(x)| denotes

the Euclidean norm of w(x). (Hint: for any matrix M and vector V , write
∑

i(MV )2
i =∑

i

(∑
jMijVj

)2
and apply the Cauchy-Schwarz inequality for vectors to show that |MV | ≤

‖M‖F |V |.)

Exercise 14.2 Prove (14.6). (Hint: just write

∇· (uv) =
∑
i

∂(uiv)

∂xi

and apply the product rule to each term, using the fact that u · ∇v =
∑

i ui
∂v
∂xi

.)
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152 CHAPTER 14. NAVIER-STOKES EQUATIONS

Exercise 14.3 Prove (14.9). (Hint: write out the dot products and apply (14.8).)

Exercise 14.4 Prove that
(1 + ct/k)k ≤ ect ∀k ≥ 1,

and show that in addition that

(1 + ct/k)k → ect as k →∞.

(Hint: use the identity xk = ek log x and prove the bound log(1 + y) ≤ y for y > 0.)

Exercise 14.5 A more stable time-stepping scheme is based on the variational equations

a
(
u`,v

)
+ b
(
v, p`

)
+Rc

(
u`,u`,v

)
+

R

∆t

(
u` − u`−1,v

)
L2(Ω)

= 0,

b
(
u`, q

)
= 0,

(14.40)

in which the nonlinear term has been evaluated at the current time step. This leaves a
nonlinear problem to be solved. Formulate Newton’s method for solving the nonlinear problem
(14.40) at each time step. How does the resulting linear algebraic problem change at each
time step? How does it compare with (14.28)?

Exercise 14.6 Consider the time-stepping scheme (14.40) in which the nonlinear term has
been evaluated at the current time step. Formulate a fixed point iteration for solving the
nonlinear problem (14.40) at each time step such that the resulting linear algebraic problem
does not change at each time step.

Exercise 14.7 Identify the differential equations corresponging to the following variant of
(14.2): Find u such that u− γ ∈ V and p ∈ Π such that

a (u,v) + b (v, p) +R
(
c (v,u,u) + (ut,v)L2(Ω)

)
= 0 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,
(14.41)

where we have switched the order of u and v in the “c” form. How does it compare with
(14.1)?

Exercise 14.8 Identify the differential equations corresponging to the following variant of
(14.2): Find u such that u− γ ∈ V and p ∈ Π such that

a (u,v) + b (v, p) +R
(
c (u,v,u) + (ut,v)L2(Ω)

)
= 0 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,
(14.42)

where we have switched the order of u and v in the “c” form. How does it compare with
(14.1)?

Exercise 14.9 Consider the variant of (14.2) in which we switch the order of u and v in
the “a” form. Does it change the equations from what appears in (14.1)? If so, to what? If
not, why not?
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Chapter 15

Geometry approximation

If the boundary ∂Ω of a domain Ω is curved, it is often necessary to approximate it in some
way. For simplicity, we will consider the Laplace equation (2.1), viz.,

−∆u = f in Ω

together with homogeneous Diriclet boundary conditions on all of ∂Ω:

u = 0 on ∂Ω.

Such boundary conditions are easy to satisfy on polygonal boundaries with piecewise poly-
nomials, provided only that the mesh match the vertices of the boundary (in two dimensions,
in three dimensions, edges must also be respected). However, for curved boundaries, exact
satisfaction of boundary conditions is typically not possible. There are various ways in which
this can be addressed:

• interpolate the boundary conditions [170] (a collocation approach)

• modify the polynomials via a change of coordinates (isoparametric elements)

• incorporate the boundary conditions into the variational form (Nitsche’s method).

The name isoparametric element was coined by Bruce Irons1 in part as a play on words,
assuming that the audience was familiar with isoperimetric inequalities. The concept of
employing a coordinate transformation to extend the applicability of finite elements was
initiated by Ian Taig and later developed by Irons [1].

15.1 Nitsche’s method

1Bruce Irons (1924—1983) is known for many concepts in finite element analysis, including the Patch
Test for nonconforming elements [58] and frontal solvers, among others.
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poly. order mesh no. γ L2 error
1 32 1.00e+01 2.09e-03
2 8 1.00e+01 5.16e-04
4 8 1.00e+01 1.77e-06
4 128 1.00e+01 4.96e-12
8 16 1.00e+01 1.68e-11
16 8 1.00e+01 2.14e-08

Table 15.1: L2 errors for Nitsche’s method for the problem in Section 2.3: effect of varying
polynomial order and mesh size for fixed γ = 10. Here we take h = N−1 where N is the
mesh number.

The method of Nitsche2 is useful for both curved and polygonal domains. It allows the
use of functions that do not satisfy Dirichlet boundary conditions to approximate solutions
which do satisfy Dirichlet boundary conditions. Define

aγ(u, v) =

∫
Ω

∇u · ∇v dx + γh−1

∮
∂Ω

uv dx−
∮
∂Ω

∂u

∂n
v dx−

∮
∂Ω

∂v

∂n
u dx, (15.1)

where γ > 0 is a fixed parameter and h is the mesh size [103, 180]. We claim that the
solution to Laplace’s equation satisfies the variational problem

u ∈ V such that aγ(u, v) = (f, v)L2 ∀v ∈ V,

where V = H1
0 (Ω). The reason is that, for u, v ∈ V ,

aγ(u, v) = a(u, v),

where a(·, ·) is the usual bilinear form for the Laplace operator:

a(u, v) =

∫
Ω

∇u · ∇v dx.

But more generally, we know from (2.9) that, for all v ∈ H1(Ω),∫
Ω

fv dx =

∫
Ω

(−∆u)v dx = a(u, v)−
∮
∂Ω

v
∂u

∂n
ds = aγ(u, v), (15.2)

since u = 0 on ∂Ω.
Now consider the discrete problem

find uh ∈ Vh such that aγ(uh, v) = (f, v)L2 ∀v ∈ Vh, (15.3)

2Joachim A. Nitsche (1926—1996) made major contributions to the mathematical theory of the finite
element method. In addition to his method for enforcing boundary conditions, his name is often invoked in
referring to the duality technique for proving error estimates in lower-order norms, as Nitsche’s Trick.
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15.1. NITSCHE’S METHOD 155

1 meshsize=int(sys.argv[1])

2 pdeg=int(sys.argv[2])

3 gamma=float(sys.argv[3])

4 h=1.0/float(meshsize)

5

6 # Create mesh and define function space

7 mesh = UnitSquareMesh(meshsize, meshsize)

8 n = FacetNormal(mesh)

9 V = FunctionSpace(mesh, "Lagrange", pdeg)

10

11 # Define variational problem

12 u = TrialFunction(V)

13 v = TestFunction(V)

14 f = Expression("(sin(mypi*x[0]))*(sin(mypi*x[1]))",mypi=math.pi)

15 a = inner(grad(u), grad(v))*dx -u*(inner(n,grad(v)))*ds- \

16 v*(inner(n,grad(u)))*ds+(gamma/h)*u*v*ds

17 L = (2*mypi*mypi)*f*v*dx

18

19 # Compute solution

20 u = Function(V)

21 solve(a == L, u )

22

23 print pdeg,meshsize," %.2e"%gamma," %.2e"%errornorm(f,u,norm_type=’l2’,\

24 degree_rise=3)

Program 15.1: Code to implement Nitche’s method for the problem (2.11).

where Vh ⊂ H1(Ω) is not required to be a subset of H1
0 (Ω). As a consequence of (15.3) and

(15.2), we have
aγ(u− uh, v) = 0 ∀v ∈ Vh. (15.4)

Nitsche’s method is of interest when Vh 6⊂ V , for otherwise we could use the usual
formulation. The bilinear form aγ(v, v) is not defined for general v ∈ H1(Ω). For example,
take Ω = [0, 1]2 and v(x, y) = 1 + x2/3 for (x, y) ∈ Ω. Then

v,x(x, y) = 2
3
x−1/3 for all x, y ∈ [0, 1]2.

Thus, v,x is square integrable on Ω, and since v,y = 0, it is also square integrable on Ω. So
v ∈ H1(Ω). But, v,x(x, y) → ∞ as x → 0 for all y ∈ [0, 1]. In particular, this means that
∂v
∂n

=∞ on the part of the boundary {(0, y) : y ∈ [0, 1]}.
Nitsche’s method can produce results of the same quality as are obtained with specifying

Dirichlet conditions explicitly, as indicated in Table 15.1 (compare with Table 3.1). The
code to generate Table 15.1 is given in Program 15.1. However, for particular values of γ,
the behavior can be suboptimal, as indicated in Table 15.2.
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poly. order mesh no. γ L2 error
1 8 1.00e+02 3.23e-02
1 8 1.00e+01 3.10e-02
1 8 2.00e+00 2.76e-02
1 8 1.50e+00 3.93e-02
1 8 1.10e+00 6.00e-02
1 8 1.00e+00 1.80e-01
1 16 1.00e+00 2.11e-01
1 32 1.00e+00 1.81e-01
1 64 1.00e+00 1.40e-01
1 128 1.00e+00 1.03e-01
1 256 1.00e+00 7.43e-02

Table 15.2: L2 errors for Nitsche’s method for the problem in Section 2.3: effect of varying
γ.

Since aγ(·, ·) is not continuous on H1(Ω), we cannot use our standard approach to analyze
the behavior of the Nitsche method (15.3). Or at least we cannot use the standard norms.
Instead we define

||| v ||| =
(
a(v, v) + h

∮
∂Ω

∣∣∣∂v
∂n

∣∣∣2 ds+ h−1

∮
∂Ω

v2 ds
)1/2

. (15.5)

The philosophy of this norm is that it penalizes departure from the Dirichlet boundary condi-
tion but it minimizes the impact of the normal derivative on the boundary. Correspondingly,
we define V to be the subset of H1(Ω) consisting of functions for which this norm is finite.

It is easy to see that this norm matches the different parts of the Nitsche bilinear form,
so that

|aγ(v, w)| ≤ C||| v ||| |||w ||| ∀v, w ∈ V. (15.6)

One can show [180] that
||| v ||| ≤ Ch−1‖v‖L2(Ω) ∀v ∈ Vh, (15.7)

for any space Vh of piecewise polynomials on a reasonable mesh. Moreover, for such spaces,
there exist γ0 > 0 and α > 0 such that, for γ ≥ γ0,

α||| v |||2 ≤ aγ(v, v) ∀v ∈ Vh. (15.8)

We assume that our solution u is sufficiently smooth that |||u ||| <∞. In this case, one can
prove [180] that

|||u− uh ||| ≤
(

1 +
C

α

)
inf
v∈Vh
|||u− v |||L2(Ω) ≤ C ′hk‖u‖Hk+1(Ω) (15.9)

using piecewise polynomials of degree k. In particular, this guarantees that

‖uh‖L2(∂Ω) ≤ Chk+1/2‖u‖Hk+1(Ω),

so that the Dirichlet boundary conditions are closely approximated by Nitsche’s method.
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15.2 Curved domains

When the boundary of a domain is not polygonal, for example, a circle, an error must be
made when using piecewise polynomials to approximate the solution of a PDE boundary-
value problem. What is typically done is to approximate the boundary ∂Ω by a polygonal
curve and an approximate domain is constructed accordingly. If the domain Ω is not convex,
then the approximate domain Ω̃ may not be contained inside Ω.

Let us consider using the Nitsche form (15.1) to solve Laplace’s equation with f = 4 on
the unit circle, with Dirichlet boundary conditions. The exact solution is

u(x, y) = 1− x2 − y2. (15.10)

To deal with the curved boundary, we use the mshr system which includes a circle as a
built-in domain type. We indicate how this is done in Program 15.2. What mshr does is to
approximate the circle by a polygon, as seen on the left side of Figure 15.1.

Figure 15.1: Using mshr to generate a mesh for a disc with piecewise linear approximation of
the solution (15.10). The parameter γ = 10 in Nitche’s method. (left) Coarse mesh generated
by using the meshsize parameter in Program 15.2 equal to 1. Values of the solution uh are
plotted. (right) Finer mesh generated by using the meshsize parameter in Program 15.2
equal to 5. Values of the error u− uh are plotted.

Instructing mshr to use a finer mesh produces an approximation that is uniformly small,
as seen on the right side of Figure 15.1, where the error only is plotted. We might expect
the error using quadratics would be essentially zero on such a mesh, since the exact solution
is itself a quadratic polynomial. However, there is a significant geomtric error due to the
polygonal approximation of the domain, as shown on the left side of Figure 15.2. Using
an even finer mesh as shown on the right side of Figure 15.2 indicates that the error is
concentrated in a boundary layer around the polygonal boundary approximation. In the
computations for the right side of Figure 15.2 we specified the segments parameter in the
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Circle function to be 18, instead of using the default value as in all other computations.
The corresponding code for this is

domain = Circle(dolfin.Point(0.0, 0.0),1.0,segments)

We leave as Exercise 15.3 to experiment with changing the segments parameter in the Circle
function in mshr.

Figure 15.2: Using mshr to generate a mesh for a disc with piecewise quadratic approximation
of the solution (15.10). Values of the error u − uh are plotted. The parameter γ = 10 in
Nitche’s method. (left) Same mesh as used on the right-hand side of Figure 15.1. Mesh
generated by using the meshsize parameter in Program 15.2 equal to 5. (right) Even more
refined mesh. Mesh generated by using the meshsize parameter in Program 15.2 equal to
10 and segments parameter set to 18.

As shown in Table 15.3, neither reducing the mesh size, nor increasing the polynomial
degree, can reduce the L2 error substantially. However, increasing the number of segments
in the approximation of the circle does allow the error to be decreased as desired. The limit
on accuracy due to the geometry approximation has been known for some time [24], and it is
known that the order of accuracy for quadratics and higher-order polynomials is restricted,
essentially because the geometry approximation is piecewise linear.

15.3 Exercises

Exercise 15.1 Experiment with Nitsche’s method for imposing homogeneous Dirichlet con-
ditions on the unit square. Choose different meshes, polynomial degrees, and parameter γ.
Can you take γ = 0? Can you take γ < 0?

Exercise 15.2 Experiment with Nitsche’s method for imposing homogeneous Dirichlet con-
ditions on the unit circle. Choose different meshes (using mshr), polynomial degrees, and
parameter γ. Do the results of Table 15.3 change substantially for larger γ? For smallr γ?
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polynomial degree meshsize L2 error segments

1 1 5.11e-02 default
2 1 1.14e-02 default
1 5 2.88e-02 default
2 5 1.16e-02 default
1 10 1.55e-02 default
2 10 1.16e-02 default
3 10 1.16e-02 default
2 10 3.69e-02 18
2 10 9.17e-03 36
2 10 2.27e-03 72

Table 15.3: Geometric error as a function of mesh size and polynomial degree. The parameter
γ = 10 in Nitche’s method.

Exercise 15.3 Modify the code in Program 15.2 to specify the number of segments used to
approximate the unit circle (using mshr). Verify the results of Table 15.3 and experiment
with other values of the parameters.
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1 from mshr import *

2 from dolfin import *

3

4 # Create mesh and define function space

5 domain = Circle(dolfin.Point(0.0, 0.0), 1.0)

6

7 # Create mesh and define function space

8 mesh = generate_mesh(domain, meshsize)

9

10 n = FacetNormal(mesh)

11 V = FunctionSpace(mesh, "Lagrange", pdeg)

12

13 # Define boundary condition

14 u0 = Constant(0.0)

15 bc = DirichletBC(V, u0, "on_boundary")

16

17 # Define variational problem

18 u = TrialFunction(V)

19 v = TestFunction(V)

20 ue = Expression("1.0-x[0]*x[0]-x[1]*x[1]")

21 f = Expression("4.0")

22 a = inner(grad(u), grad(v))*dx -u*(inner(n,grad(v)))*ds \

23 -v*(inner(n,grad(u)))*ds+(gamma/h)*u*v*ds

24 L = f*v*dx

25

26 # Compute solution

27 u = Function(V)

28 solve(a == L, u )

Program 15.2: Code to implement Nitche’s method for the Dirchlet problem for Laplace’s
equation with f ≡ 4 on the unit circle whose solution is given by (15.10).
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Chapter 16

Solvers

In large computations, the rate limiting step is often the solution of a linear system. In
some cases, it is sufficient to use Gaussian elimination or its variants (such as Cholesky
factorization). Such algorithms are called direct methods. However, for large, three-
dimensional simulations, iterative methods are frequently more efficient.

16.1 Direct methods

Gaussian elimination is the basis for all direct methods for solving Ax = f , where A is an
n× n matrix and x and f are vectors of length n. Its use can be traced to China centuries
before the birth of Gauss, and it is now widely taught in the pre-highschool curriculum. But
the modern view of Gaussian elimination is that it factors A into two triangular matrices:
A = LU . More precisely, L is lower-triangular with 1’s on the diagonal, and U is upper-
triangular. This factorization was known to Doolittle1 [68], and even Gauss [175]. Moreover,
Doolittle’s “contribution seems to have been to design a tableau in which the terms were
expeditiously recorded” [175], meaning that the factorization was directly computed, not
using the standard elimination method. The modern approach is to compute the factors
first, and then solve Ax = f by writing f = L(Ux). This means that f = Lg where Ux = g.
So we first solve Lg = f by forward substition [169], and then solve for x via backsubstition
[169]: Ux = g.

Backsubstition, as well as the factorization process, involves the diagonal entries uii of
U , which must be nonzero for the algorithm to work properly. This will hold under certain
conditions on A, as indicated in Table 16.1. Since the ordering of variables and equations
is arbitrary, we are allowed to do pivoting, meaning the rearrangement of the orderings.
This is done very efficiently in the factorization process, but the details do not matter here.
It is equivalent to think that the rearrangement has been done in advance. Partial pivoting
means that either the variables or equations are reordered. Full pivoting means that both
are reordered. The latter requires slightly more work than partial pivoting which in turn
takes slightly more work than doing no pivoting.

1Myrick Hascall Doolittle (1830–1913) was a mathematician who worked at the U.S. Coast and Geodetic
Survey in the Computing Division [38, 78].
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type of pivoting conditions on A that guarantee success
none symmetric, positive definite

partial A is invertible
full A is any matrix

Table 16.1: Conditions for matrix factorization.

Different factorizations are possible. The general factorization is A = LDU where D is
diagonal and both L and U have 1’s on the diagonals. This factorization is unique [169].
If A is symmetric, then it is easy to see that A = LDLt (Exercise 16.2). When A is also

positive definite, the Cholesky factorization A = L̃L̃t holds, where the diagonal entries of
L̃ are equal to

√
di,i. The positivity of the diagonal entries di,i of D is guaranteed by the

condition that A is positive definite (Exercise 16.3).

16.1.1 Singular equations

Some explanation is required regarding the third line in Table 16.1. The elimination (or
factorization) process with full pivoting can “solve” Ax = f for even singular matrices A in
the sense that it provides the information required to know if such a solution exists. More
precisely, it may be that the diagonal entries uii of U are zero for i > k for some k < n.
Then there is a solution x to Ax = f if and only if gi = 0 for i > k, where g is the solution
to Lg = f . More precisely, elimination with full pivoting will reduce the linear system after
k steps to 

u1,1 u1,2 · · · u1,k u1,k+1 · · · u1,n

0 u2,2 · · · u2,k u1,k+1 · · · u2,n
...

...
...

...
...

...
...

0 0 · · · uk,k uk,k+1 · · · uk,n
0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0





x1

x2
...
xk
xk+1

...
xn


=



g1

g2
...
gk
gk+1

...
gn


Null solutions Ax = 0 are of the form x1 = · · · = xk = 0 with xk+1, . . . , xn arbitrary. Code
to implement the pure Neumann problem is given in Program 16.1.

16.1.2 Singular example

The pure Neumann problem is singular if we use the variational space V = H1(Ω). The
condition for existence of a solution is f = 0, and the null space consists of all constant
functions. In practice, the factorization of the associated matrix A = LU will have round-off
error, so that un,n = ε. Similarly, it will happen that the discrete right-hand side will satisfy
f = ε′. Therefore, the direct factorization method will produce a solution uh such that
uh = Cε′/ε for some constant C. Thus we get an arbitrary, and potentially large, value for
uh. However, we can subtract uh from uh to get a reliable approximation.
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1 # Create mesh and define function space

2 mesh = UnitSquareMesh(meshsize, meshsize)

3 V = FunctionSpace(mesh, "Lagrange", degree)

4

5 # Define variational problem

6 u = TrialFunction(V)

7 v = TestFunction(V)

8 f = Expression("(cos(mypi*x[0]))*(cos(mypi*x[1]))",mypi=math.pi)

9 a = inner(grad(u), grad(v))*dx

10 L = (2*(math.pi)*(math.pi))*f*v*dx

11

12 # Compute solution

13 u = Function(V)

14 solve(a == L, u)

15 meanu=assemble(u*dx)

16 mu = Expression("meanyou",meanyou=meanu)

17 mconstu = Function(V)

18 mconstu=interpolate(mu,V)

19 fo=interpolate(f,V)

20 um = Function(V)

21 um.assign(u - mconstu)

22 inteff=assemble(fo*dx)

23 print meshsize,degree," %.1e"%meanu," %.1e"%inteff," %.1e"%(meanu/inteff),\

24 " %.2e"%errornorm(f,um,norm_type=’l2’, degree_rise=3)

Program 16.1: Code to implement the pure Neumann problem.

If un,n = ε, then the system is not actually singular, so we do not really need the restriction
f = 0. But if we allow f to be large, then instead an added constant of size Cε′/ε, we will
have an added constant of size C/ε, something of order of one divided by the size of round-off
error, and this can potentially polute the entire solution process. So it is essential to match
the constraint on the right-hand side as nearly as possible.

16.1.3 A nonsingular approach

It is possible to pose the pure Neumann problem in a way that is non-singular and still use
the full space V = H1(Ω) or subsets Vh ⊂ V . Consider a mixed method in which we define
Π = R. Define the variational form

b(v, q) =

∫
Ω

v(x) q dx = q

∫
Ω

v(x) dx ∀v ∈ V, q ∈ Π.

Consider the variational problem to find u ∈ V and p ∈ Π such that

a(u, v) + b(v, p) = F (v) ∀v ∈ V
b(u, q) = 0 ∀p ∈ Π.

(16.1)

October 2, 2017, do not distribute 163



164 CHAPTER 16. SOLVERS

meshsize degree uh fh uh/fh ‖u− (uh − uh)‖L2(Ω)

16 1 1.1e+13 1.3e-03 8.1e+15 2.11e-02
16 2 -1.4e-03 -5.2e-18 2.6e+14 6.87e-05
16 1 1.1e+13 1.3e-03 8.1e+15 2.11e-02
32 1 6.5e+10 3.3e-04 2.0e+14 2.09e-03
64 1 2.8e+09 8.1e-05 3.4e+13 5.25e-04
128 1 1.5e+08 2.0e-05 7.2e+12 1.32e-04
256 1 8.4e+06 5.1e-06 1.7e+12 3.30e-05
16 2 -1.4e-03 -5.2e-18 2.6e+14 6.87e-05
16 4 2.0e-03 6.5e-18 3.1e+14 2.42e-08

Table 16.2: REsults

Assuming for the moment that this is well posed, the solution u has mean zero (by the
second equation in (16.1)). That is, u ∈ Z, where

Z =
{
v ∈ H1(Ω) :

∫
Ω

v(x) dx = 0
}

is the same as the space V in (2.14) for which the pure Neumann problem is well posed.
Thus

a(u, v) = F (v) ∀v ∈ Z, (16.2)

since b(v, q) = 0 for all v ∈ Z and q ∈ Π. So we obtain a solution to the pure Neumann
problem. We leave as Exercise 16.4 to prove that the mixed method (16.1) is well posed. As
with Taylor-Hood, we can form a single variational problem (9.32) and then solve this by
Gaussian elimination. But again, the problem has lost the positive-definiteness of the linear
system represented by (16.2). But we can use the iterated penalty method to solve (16.1) as
we do for the Stokes equations.

16.1.4 A positive-definite approach

To conform to the presentation of the iterated penalty method described in Section 9.6,
define the operator D by

Dv =
1

|Ω|

∫
Ω

v(x) dx, |Ω| =
∫

Ω

1 dx. (16.3)

Correspondingly, we define

(p, q)Π =

∫
Ω

p q dx = p q |Ω|. (16.4)

Note that

b(v, q) = q

∫
Ω

v(x) dx = q |Ω| Dv = (Dv, q)Π.
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algorithm sufficient conditions on A for convergence
Jacobi generalized diagonally dominant

Gauss-Seidel symmetric, positive definite
SOR symmetric, positive definite

Table 16.3: Stationary iterative methods for solving AX = F and conditions on A that
guarantee convergence.

Thus the iterated penalty method (9.48) (with ρ = ρ′) takes the form

a(un, v) + ρ (Dun,Dv)Π = F (v)− (Dv,Dwn)Π ∀v ∈ Vh
wn+1 = wn + ρun,

(16.5)

since G is zero in this case. We again begin with w0 = 0. Note that

(Dv,Dw)Π = DvDw |Ω| = 1

|Ω|

∫
Ω

v(x) dx

∫
Ω

w(x) dx.

We leave as Exercise 16.5 to implement the algorithm (16.5).

16.2 Stationary iterative methods

There are three important classes of iterative methods. The first of these are known equiv-
alently as stationary iterative methods and relaxation methods [90, 104]. Examples
include Jacobi, Gauss-Seidel, SOR, SSOR, etc.; these basic techniques are still used in certain
contexts, and many of the concepts behind them are frequently used in more complicated
solvers. In particular, relaxation methods are frequently used as smoothers for multigrid
methods. Typically, the simpler the iterative method, the easier it is to implement a parallel
version.

Suppose that we are solving a linear system AX = F . The general form of a stationary
iterative scheme is

Nxn+1 = PXn + F,

where A = N − P and N is chosen to be an easily invertible matrix, e.g., diagonal (Jacobi)
or triangular (Gauss-Seidel, SOR). The error En = X −Xn satisfies

xn+1 = MXn,

where M = N−1P . Thus convergence is equivalent to ρ(M) < 1 where ρ is the spectral
radius. It is known [169] that Jacobi is convergent for generalized diagonally dominant
matrices, and Gauss-Seidel and SOR are convergent for symmetric, positive definite matrices.

October 2, 2017, do not distribute 165



166 CHAPTER 16. SOLVERS

algorithm matrices for which the method applies
CG symmetric, positive definite

MINRES symmetric
GMRES invertible

Table 16.4: Krylov subspace based methods for solving AX = F and conditions on A that
guarantee convergence.

16.3 Krylov methods

Krylov2 methods are a class of techniques based on projecting the solution onto an increasing
subspace of vectors that is efficient to create.

Suppose that we are solving a linear system AX = F . Then the Krylov subspace of order
k is the linear space spanned by

F,AF, . . . , AkF.

Such vectors are easily created iteratively via AiF = A(Ai−1F ), where A0F = F .
The first of the Krylov methods is called conjugate gradients (a.k.a. CG) and was

developed by Hestenes3 and Stiefel4. Conjugate gradients converges for symmetric positive
definite matrices, and it has an optimality property [169] that makes it extremely attractive.

The algorithm MINRES is applicable to symmetric but indefinite matrices [143]. Al-
though CG and MINRES utilize the same Krylov space of vectors, they minimize different
quantities. CG minimizes ‖X −Xk‖A, where ‖y‖A =

√
ytAy, whereas MINRES minimizes

‖F − AXk‖`2 , where ‖y‖`2 =
√
yty. It is easy to see that CG requires A to be positive defi-

nite, since ‖·‖A is not a norm otherwise. For symmetric, positive definite matrices, MINRES
can outperform CG in some cases [80].

The algorithm GMRES [162, 91, 44] can be used for general matrices. The Arnoldi
algorithm [39, 92] is closely related to GMRES.

16.4 Multigrid

Multigrid methods apply to problems posed on grids that are sufficiently structured to talk
about coarse grids and fine grids. In a variational setting, this occurs if we have a sequence
of subspaces V i ⊂ V with the property that V i ⊂ V i+1. The solutions to the variational

2Alexei Nikolaevich Krylov (1863–1945) was very active in the theory and practice of shipbuilding and
is commemorated by the Krylov Shipbuilding Research Institute.

3Magnus Rudolph Hestenes (1906–1991) obtained a Ph.D. at the University of Chicago with Gilbert Bliss
in 1932.

4Eduard L. Stiefel (1909–1978) is known both as a pure mathematician (for his work on the Stiefel-
Whitney characteristic classes) and as a computational mathematician (he was also an early user and devel-
oper of computers [177]). Stiefel was the advisor of Peter Henrici as well as 63 other students over a period
of 37 years. Henrici was the advisor of Gilbert Strang, one of the early pioneers of the mathematical theory
of the finite element method.
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problems

Find ui ∈ V i such that a(ui, v) = F (v) ∀v ∈ V i (16.6)

are then increasingly accurate approximations to the solution u of the variational problem

Find u ∈ V such that a(u, v) = F (v) ∀v ∈ V. (16.7)

But more importantly, ui can be used as an initial guess for an iterative scheme for solving
for ui+1. However, the real power of multigrid is deeper than this. Suppose that we are
trying to solve for ui ∈ V i satisfying (16.6) and we have an approximate solution wi ∈ V i.
Then the residual error ri = ui − wi satisfies

a(ri, v) = a(ui, v)− a(wi, v) = F (v)− a(wi, v) ∀v ∈ V, (16.8)

which does not involve knowing ui. The magic of multigrid is to approximate (16.8) on a
coarser space (V i−1). Of course, we need to know that wi is smooth enough that this is an
effective strategy, but this can be achieved by using a variety of iterative methods, such as
the stationary iterative methods, to remove high frequencies. For details, see [37].

It is not strictly required to have V i ⊂ V i+1. There are two ways in which V i 6⊂ V i+1

occurs. One is when discontinuous finite element spaces are used [36]. Another is when the
underlying grids are not nested [120, 190, 40, 89].

Multigrid methods were initiated by Bakhvalov5 [16] in 1966. Achi Brandt [34] began
popularizing and developing the method in 1977. Bank and Dupont [19, 20] gave one of
the first proofs of convergence of the method, in research that initiated at the University of
Chicago.

The linear system in the iterated penalty method for solving the Stokes problem described
in Section 9.6 becomes ill-conditioned for ρ large. But there are multigrid methods available
to solve such systems whose performance does not deteriorate for large ρ [117].

16.5 Preconditioners

The convergence rate of many iterative methods depends on the condition number of the
linear system. For a symmetric, positive definite linear system, we can take the condition
number to be defined as the ratio of the largest eigenvalue divided by the smallest eigenvalue.
Linear systems associated with partial differential operators often have a condition number
that grows inversely with the mesh resolution. This is because the PDE often has eigenvalues
of unbounded size, and the finer the mesh the larger the eigenvalues that can be resolved.
In particular, eigenfunctions often oscillate with a frequency roughly proportional to the
eigenvalue. Thus the finer meshes resolve higher frequencies. Therefore iterative methods
introduce a limit on our ability to resolve solutions based on mesh refinement.

We have seen that round-off is strongly amplified by the condition number of a linear
system. One approach to this dilemma is to use higher-order approximations, but this is

5Nikolai Sergeevich Bakhvalov (1934—2005) studied with both Sobolev and Kolmogorov.
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limited by the fact that the higher-order approximation resolves higher frequency eigenfunc-
tions, so the condition number is not reduced. A better approach is to scale the linear system
appropriately to control the size of the eigenvalues.

The simplest scaling is diagonal preconditioning. For a given matrix A, define diag (A)
to be the diagonal matrix with the same diagonal entries as A. Then the diagonal precon-
ditioning of A is the matrix diag (A)−1A. Fortunately, it is simple to compute the inverse
of a diagonal matrix P = diag (A)−1. A more complex version of this idea is to produce a
preconditioner by using an incomplete factorization of the system [94, 28] in which a sparsity
condition is enforced autocratically. That is, Gaussian elimination (or other direct method)
is performed in a way that only creates certain nonzero elements in the resulting factors. If
for example we restrict the factors to be only diagonal, then the algorithm is equivalent to
diagonal preconditioning. On the other hand, we make no restriction on sparsity, and allow
arbitrary fill-in, then the algorithm produces the exact inverse (via forward and backward
solution algorithms). The general case falls in between.

One common choice is to limit the sparsity of the factors to be the same as the sparsity
pattern of the original matrix. Such a factorization is obtained by following an elimination
algorithms (e.g., Gaussian elimination, Cholesky factorization, etc.), but when the algorithm
calls for fill-in to occur, these additions to the original sparse structure of A are ignored.
This yields a matrix P with the same sparsity pattern as A and yet P is in some sense an
approximation to A−1.

The benefit of preconditioning is that the iterative method performs as if the matrix
condition number is that of the preconditioned system PA [71]. Thus significant benefit can
occur. The main objective is to choose P to be as close to A−1 as possible.

The discrete Green’s function provides a way to solve a system [165], and this can be
used to create an efficient, parallel algorithm to implement a preconditioner [165].

A general understanding of preconditioners for linear systems arising in solving PDEs
is given in [128]. They describe how to extend the concept of preconditioner to the PDE
itself, and this in turn, when discretized, provides an effective preconditioner that can be
robust with respect to mesh size and parameters in the PDE. In (16.9), we see two ways to
construct preconditioners, and [128] advocates the bottom-left of the diagram.

PDE operator A
discretization−−−−−−−−−−−−→ Ahyapprox.

inverse

yapprox.
inverse

preconditioner P for PDE
discretization−−−−−−−−−−→ Ph .

(16.9)

16.6 Exercises

Exercise 16.1 Complete and execute the code in Program 16.1.

Exercise 16.2 Suppose that an n × n matrix A is symmetric: At = A. Suppose also that
A has a factorization A = LDU . Show that A = LDLt. (Hint: use the uniqueness of the
factorization.)
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Exercise 16.3 Suppose that an n× n matrix A is symmetric (At = A) has a factorization
A = LDLt where L is lower triangular and has 1’s on the diagonal. Prove that A is positive
definite if and only if the diagonal entries of D are positive. (Hint: a matrix is positive
definite if and only if XAX > 0 for any vector X 6= 0. Use the factorization to expand
XAX.)

Exercise 16.4 Consider the mixed method in Section 16.1.3. Prove that the mixed method
(16.1) is well posed, that is show that all the conditions in Section 9.2 are satisfied. In
particular, the main ones to check are (9.28) and (9.29). (Hint: Π and Πh are the same in
this case, and Zh = Vh ∩ Z.)

Exercise 16.5 Implement the iterated penaly method in Section 16.1.4, that is, the algo-
rithm (16.5). Solve the problem in Exercise 2.5. Compare with what is obtained via Gaussian
elimination.

Exercise 16.6 Consider the iterated penaly method

a(un, v) + ρ

∫
Ω

un(x)v(x) dx = F (v)−
∫

Ω

v(x) dx

∫
Ω

wn(x) dx ∀v ∈ Vh

wn+1 = wn + ρun.

(16.10)

How does this compare with the algorithm (16.5)? Solve the problem in Exercise 2.5. Com-
pare with what is obtained via Gaussian elimination.
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Chapter 17

Tutorial on mshr

mshr is the mesh generation component of FEniCS. It generates simplicial meshes in 2D
and 3D that can be used in dolfin from geometries described by using constructive solid
geometry (CSG). CSG creates complicated geometries from simpler ones using Boolean op-
erations. The set-theoretic aspect of CSG allows arbitrary points in space to be classified
as being either inside or outside the geometry created by CSG. This avoids issues related to
other approaches in which it is possible to have topological inconsistencies [53].

The main author of mshr is Benjamin Kehlet (benjamik@simula.no) and contributors
include Anders Logg (logg@chalmers.se), Johannes Ring (johannr@simula.no), and Garth
N. Wells (gnw20@cam.ac.uk). mshr is hosted at

https://bitbucket.org/benjamik/mshr

and the documentation for mshr is currently under development at

https://bitbucket.org/benjamik/mshr/wiki

For bug reports and feature requests, visit mshr’s issue tracker at BitBucket:

https://bitbucket.org/benjamik/mshr/issues

We begin by describing primatives that construct geometries in two dimensions using
input parameters. Then we describe unary operators (rotation, translation, scaling) that
can be applied to a given geometry. Finally, we consider the fundamental binary operators
required to make complex geometries.

17.1 2D built-in geometries

The following geometries can be generated from parameters. They can be subsequently
combined via the geometry algebra as desired.
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17.1.1 Circle

Circle(c, r[, segments])

This function creates a domain in the plane whose boundary is a circle centered at c with
radius r.

Parameters

• c: center (a dolfin.Point)

• r: radius (a positive real number)

• segments: number of segments when computing the polygonal approximation of the
curved boundary [optional].

Optional parameters are enclosed in square brackets. The default size for the number of
segments in Circle is 32.

Examples:

domain = Circle(dolfin.Point(0.0, 0.0), 1.0)

domain = Circle(dolfin.Point(0.0, 0.0), 1.0, 33)

17.1.2 2D axis-aligned rectangle

Rectangle(a,b)

This function creates a domain in the plane whose boundary is a 2-dimensional, axis-
aligned rectangle, specified by its lower-left and upper-right corners.

Parameters

• a: lower-left corner (a dolfin.Point)

• b: upper-right corner (a dolfin.Point)

Example:

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.))

October 2, 2017, do not distribute 172



17.1. 2D BUILT-IN GEOMETRIES 173

17.1.3 2D ellipse

Ellipse(c, a, b[, segments])

This function creates a two-dimensional ellipse centered at c with horizontal semi-axis a
and vertical semi-axis b.

Parameters

• c: the center (a dolfin.Point)

• a: the horizontal semi-axi (a positive real number)

• b: the vertical semi-axi (a positive real number)

• segments: number of segments when computing the polygonal approximation of the
curved boundary [optional].

Optional parameters are enclosed in square brackets. The default size for the number of
segments in Ellipse is 32.

Example:

domain = Ellipse(dolfin.Point(0.0,0.0), 2.0, 1.0, 16)

17.1.4 2D polygon

Polygon(vertices)

This function creates a polygon defined by the given vertices. Vertices must be in counter-
clockwise order, and the resulting edges must be free of self-intersections.

Parameters

• vertices: A vector of dolfin.Points.

Example: The code

from mshr import *

import dolfin

domain = Polygon([dolfin.Point(0.0, 0.0),\

dolfin.Point(1.0, 0.0),\

dolfin.Point(0.0, 1.0)])

generates a unit right triangle.
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17.2 Unary operators on geometries

Once a geometry has been created, there are some simple operations that can be performed
to derive new geomtries from given ones.

17.2.1 Translation

CSGTranslation(geometry, tvec)

This function translates an input geometry by a vector tvec.

Parameters

• geometry: a CSG geometry

• tvec: translation vector (a dolfin.Point)

17.2.2 Scaling

CSGScaling(geometry, sfak)

This function scales an input geometry by a scaling factor sfak.

Parameters

• geometry: a CSG geometry

• sfak: scaling factor (a real number).

17.2.3 2D rotation

CSGRotation(geometry, [center,] theta)

This function rotates an input geometry by an angle theta in two dimensions; optionally,
the rotation can be about a center other than the origin.

Parameters

• geometry: a CSG geometry

• center: center-point for the rotation [optional] (a dolfin.Point)

• theta: rotation angle in radians (a real number).

The default value for center is the origin 0.

Example: The code
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Figure 17.1: Laplace’s equation on the set difference of two domains.

from mshr import *

import dolfin

square = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.))

diamond = CSGRotation(square,math.pi/4)

rotates the unit square by 45 degrees.

17.3 Geometry algebra

CSG geometries can be defined by combining geometric primitives through the boolean
operations intersection, union and difference. Here are some small 2D examples.

17.3.1 Set difference

Consider the code

from mshr import *

import dolfin

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.)) -

Circle(dolfin.Point(0.5, 1.0), 0.5)
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Figure 17.2: Laplace’s equation on the sum (union) of two domains.

The geometry consists of a square with a circle removed. The minus sign (-) represents the
boolean set difference:

A− B = {x ∈ A : x 6∈ B} .

The functions Rectangle and Circle are built-in mshr functions to be described subse-
quently. This yields the domain with cusps shown in Figure 17.1.

The construct dolfin.Point(0., 1.) creates a two-dimensional vector recognized by
mshr from two real number inputs.

17.3.2 Set union

Similarly, the plus sign (+) in the context of geometries represents the boolean set union:

A + B = {x : either x ∈ A or x ∈ B} .

For example,

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.)) + \

Circle(dolfin.Point(0.5, 1.0), 0.5)

creates a box with a circular disc on top, which looks like a gravestone, as shown in Fig-
ure 17.2.
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Figure 17.3: Laplace’s equation on the intersection of two domains.

17.3.3 Set intersection

Finally, the multiplication sign (*) in the context of geometries represents the boolean set
intersection:

A ∗ B = {x ∈ A : x ∈ B} .

For example,

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.)) * \

Circle(dolfin.Point(0.5, 1.0), 0.5)

creates a bowl, as shown in Figure 17.3.

17.4 Exercises

Exercise 17.1 Implement Laplace’s equation with homogeneous Dirichlet boundary condi-
tions on the “gravestone” domain

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.)) +

Circle(dolfin.Point(0.5, 1.0), 0.5)

with right-hand side f ≡ 1.

Exercise 17.2 Use the Polygon function to create a rectangle aligned with the axes. Im-
plement Laplace’s equation with homogeneous Dirichlet boundary conditions with right-hand
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side f ≡ 1 on this domain and compare with using the built-in Rectangle primitive. (Hint:
start with the triangle example and fill in the blanks

rectangul = Polygon([dolfin.Point(0.0, 0.0), dolfin.Point(1.0, 0.0),\

......................., dolfin.Point(0.0, 1.0)])

Exercise 17.3 Make a diamond domain in two ways: 1) rotate a Rectangle and 2) using
the Polygon function. Compare the results by implementing Laplace’s equation with homo-
geneous Dirichlet boundary conditions with right-hand side f ≡ 1 on these domains.

Exercise 17.4 Make a circular domain in two ways: 1) using the Circle function. 2) using
the Ellipse function with a and b the same. Compare the results by implementing Laplace’s
equation with homogeneous Dirichlet boundary conditions with right-hand side f ≡ 1 on
these domains.

Exercise 17.5 Implement Laplace’s equation with homogeneous Dirichlet boundary condi-
tions on the non-simply connected domain

domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(1., 1.)) - \

Circle(dolfin.Point(0.5, 0.5), 0.25)

with right-hand side f ≡ 1.

Exercise 17.6 Implement Laplace’s equation with homogeneous Dirichlet boundary condi-
tions on the non-simply connected domain given by the unit square with your intials (font
optional) remove.

Exercise 17.7 Using two Circle functions, create an annular domain

Ω =
{
x ∈ R2 : 1

2
< |x| < 1

}
.

Implement Laplace’s equation with approriate Dirichlet boundary conditions on the non-
simply connected domain Ω so that the exact solution is log |x|. Determine the accuracy as
a function of mesh size and polynomial degree. (Hint: see Program 4.2.)
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Pitfalls in Modeling using PDEs

Systems of partial differential equations provide the basis for some of the most powerful
models of physical and social phenomena. The formalism of such models allows a remarkable
level of automation of the process of simulating complex systems. Leveraging this potential
for automation has been developed to the greatest extent by the FEniCS Project. However,
using partial differential equation models, and numerical methods to solve them, involves
numerous pitfalls. We highlight many of these pitfalls and discuss ways to circumvent them.

It is simply not possible to provide a solution to all systems of differential equations.
Any given differential equation may be ill-posed, meaning that it does not make sense to talk
about the solution for one reason or another. At the moment, there is no simple criterion to
determine if a system of differential equations is well-posed. As a result, it is not possible
to provide software that solves all systems of differential equations automagically. The first
step, then, is to determine if a system being studied is well-posed.

There are several ways in which a differential equation can fail to be well-posed. The
most serious potential pitfall for a differential equation is the lack of a solution regardless of
any boundary conditions or initial conditions. In Section 18.4, we give an example of such
an equation with this extreme behavior. Although it may be quite rare, such a pitfall does
exist if one tries to solve arbitrary systems of partial differential equations.

If a physical system is supposed to have a unique state given suitable determining condi-
tions, then a mathematical model having multiple solutions is seriously flawed. The typical
cause of a system of partial differential equations to have too many solutions is a lack of
boundary conditions. It is not at all trivial to determine what the right number of boundary
conditions might be for an arbitrary system of partial differential equations, and getting it
wrong could lead to either too many solutions or too few! In section Section 18.1 we present
a case where both of these can be seen.

Equally damaging, but often more subtle to detect, is the lack of continuous dependence
of the solution on the data of a mathematical model, at least when the physical problem
should have this property. Continuous dependence of the solution on the data will be verified
for many systems of partial differential equations using various techniques subsequently.
However, it is not always required that a physical problem have this property. One such
“ill-posed” problem is considered in Section 8.6.
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All of these shortcomings of models can be summarized as a lack of well-posedness. We
will discuss some techniques to determine if a particular differential equation is well-posed,
but this is generally beyond the scope of the book. Rather, it is assumed that the reader is
trying to solved a well-posed problem.

Equally difficult to insure, even for differential equations that are well-posed, is the
stability and consistency (and equivalently, convergence) of the numerical approximations.
Even for well-posed systems of differential equations, there is no automatic way to define a
discrete approximation scheme that will always converge to the solution of the differential
equation as the approximation is refined. We discuss various pitfalls and examine in depth
many of the most critical. However, we make no attempt to be exhaustive. We are mainly
concerned with the implementation of convergent algorithms using structured programming
techniques. It is assumed that the reader is trying to solved a well-posed problem with a
stable and consistent numerical approximation.

A basic language we frequently employ is that of the variational formulation of differen-
tial equations. This is a powerful formulation that allows a simple proof of well-posedness in
many cases. Moreover, it leads to stable and consistent numerical schemes through the use
of appropriate approximation spaces of functions. In this way, finite element methods, spec-
tral methods, spectral element methods, boundary element methods, collocation methods,
variational difference methods and other discretization methods can be derived and analyzed
with respect to stability and consistency.

18.1 Right-sizing BCs

Differential equations typically have too many solutions of the equations themselves to spec-
ify a solution in any reasonable sense. A unique solution, required by most physical models, is
typically determined by boundary conditions and, for time-dependent problems, initial condi-
tions. We will use the following notation of partial differential equations for the “Laplacian”
operator

∆ :=
d∑
i=1

∂2

∂xi2
. (18.1)

Consider the Laplace equation

−∆u = f (18.2)

Then for f ≡ 0 the solutions are harmonic functions, and the real part of any complex
analytic function in the plane (in two space dimensions) is harmonic. For any solution to
(18.2), we can get another by adding any harmonic function. Thus there are way too many
solutions to (18.2) without any further restrictions.

We will see in Chapter 2 that specifying the value of u on the boundary of some open
set Ω makes the solution of (18.2) unique in Ω. That is, the system of equations

−∆u =f in Ω

u =g on ∂Ω
(18.3)
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has a unique solution, under suitable smoothness conditions on f , g and the boundary ∂Ω.
There is no unique type of boundary condition that is appropriate for a given system of

differential equations. For example, the system

−∆u =f in Ω

∂u

∂n
=g on ∂Ω

(18.4)

also has a solution, under suitable smoothness conditions on f , g and the boundary ∂Ω,
provided in addition that a simple compatibility condition exists between f and g, namely,∫

Ω

f(x) dx +

∮
∂Ω

g(s) ds = 0. (18.5)

This compatibility condition is a consequence of the divergence theorem (2.8) together with
the observations that ∂u

∂n
= (∇u) · n and ∆u = ∇· (∇u). Here, n is the outward-directed

normal to ∂Ω.
For any solution u to (18.4), u + c is also a solution for any constant c. Thus there is a

certain degree of non-uniqueness here, but it can be seen (Section 2.4) that this is all there
is. That is, solutions to (18.4) exist and are unique up to an additive constant, provided the
single compatibility contion (18.5) holds.

If some is good, then one might think more is better. However, it is easy to see that the
system of equations

−∆u =f in Ω

u =g0 on ∂Ω

∂u

∂n
=g1 on ∂Ω

(18.6)

has too many boundary conditions. Since the condition u = g0 on ∂Ω already uniquely
determines the solution u, it will only be a miracle that ∂u

∂n
= g1 also holds on ∂Ω. More

precisely, there is a linear mapping A defined on functions on ∂Ω such that (18.6) has a
solution if and only if g1 = Ag0 (see Exercise 18.4). Similarly, the system

−∆u =f in Ω

∇u =g on ∂Ω
(18.7)

is over-specified. It is closely related to (18.6) if we observe that the second equation says
that the tangential derivative of u is equal to that of g0. The over-determined boundary-
value problem (18.7) appears in a non-local compatibility condition for the Navier-Stokes
equations (Section 14.4.2).

18.2 Numerical Stability

The simplest differential equation to solve is an ordinary differential equation

du

dt
= f(u, t) (18.8)
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with initial value

u(0) = u0 (18.9)

where we are interested in solving on some interval [0, T ].
The definition of the derivative as a limit of difference quotients suggests a method of

discretization:
du

dt
(t) ≈ u(t+ ∆t)− u(t)

∆t
(18.10)

where ∆t is a small positive parameter. This suggests an algorithm for generating a sequence
of values un ≈ u(n∆t) given by (for example)

un = un−1 + ∆tf(un, tn) (18.11)

where tn = n∆t.
The algorithm (18.11) is called the implicit Euler method, and it can be shown that it

generates a sequence with the property that

|u(tn)− un| ≤ Cf,T∆t ∀tn ≤ T (18.12)

provided that we solve the implicit equation (18.11) for un exactly and we compute with
exact arithmetic. The issue of solving the nonlinear equation at each step is important but
not a show-stopper. However, the requirement of using finite-precision arithmetic means
that the best error behavior we could expect is

|u(tn)− un| ≤ Cf,T∆t+ nε ∀tn ≤ T (18.13)

where ε measures the precision error that occurs at each step in (18.11). It is useful to
re-write (18.13) using the fact that n = tn/∆t as

|u(tn)− un| ≤ Cf,T∆t+
tnε

∆t
(18.14)

which shows that the error reaches a minimum and cannot be reduced by reducing ∆t.
One way to increase the accuracy in (18.13) is to use a more accurate approximation of

the derivative than (18.10), such as given by the backwards differentiaion formulæ (BDF)
defined in Section 8.5

du

dt
(t) ≈ 1

∆t

k∑
i=0

aiun−i (18.15)

where the coefficients {ai : i = 0, . . . k} are chosen so that (18.15) is exact for polynomials
of degree k. The BDF for k = 1 is the same as implicit Euler. Using the approximation
(18.15), we get an algorithm of the form

k∑
i=0

aiun−i = ∆tf(un, tn) (18.16)
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which can be solved for un provided a0 6= 0. In this case, the final error estimate would be

|u(tn)− un| ≤ Cf,T,k∆t
k +

tnε

∆t
. (18.17)

Ultimate accuracy is still limited, but smaller absolute errors (with larger ∆t) can be achieved
with higher values of k. For example, suppose that

• ε = 10−6 (which corresponds to single precision on a 32-bit machine)

• T = 1 and

• (for the sake of argument) Cf,T,k = 1.

Then with implicit Euler (k = 1) the smallest error we can get is 10−3 with ∆t = 10−3. On
the other hand, with k = 2 we get an error of size 10−4 with ∆t = 10−2. Not only is this a
smaller error but less work needs to be done to achieve it. In practice, the constant Cf,T,k
would depend on k and the exact error behavior would likely be different in detail, but the
general conclusion that a higher-order scheme may be better still holds. The BDF methods
for k = 2 and 3 are extremely popular schemes.

We see that higher-order schemes can lead to more managible errors and potentially less
work for the same level of accuracy. Thus it seems natural to ask whether there are limits
to choosing the order to be arbitrarily high. Unfortunately, not all of the BDF schemes are
viable. Beyond degree six, they become unconditionally unstable. Let us examine the
question of stability via a simple experiment. Suppose that, after some time T0, it happens
that f(u, t) = 0 for t ≥ T0. Then the solution u remains constant after T0, since du

dt
≡ 0.

What happens in the algorithm (18.16) is that we have

k∑
i=0

aiun−i = 0 (18.18)

for n ≥ T0/∆t. However, this does not necessarily imply that un would tend to a constant.
Let us examine what the solutions of (18.18) could look like.

Consider the sequence un := ξ−n for some number ξ. Plugging into (18.18) we find

0 =
k∑
i=0

aiξ
−n+i = ξ−n

k∑
i=0

aiξ
i (18.19)

If we define the polynomial pk by

pk(ξ) =
k∑
i=0

aiξ
i (18.20)

we see that we have a null solution to (18.18) if and only if ξ is a root of pk. If there is a
root ξ of pk where |ξ| < 1 then we get solutions to (18.18) which grow like

un = ξ−n =

(
1

ξ

)tn/∆t
. (18.21)
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Figure 18.1: Roots of polynomials (18.20) with the smallest modulus are plotted for degrees
k = 5 (triangle), k = 6 (asterisk), and k = 7 (plus). The solid line indicates the unit circle
in the complex plane.

Not only does this blow up exponentially, the exponential rate goes to infinity as ∆t → 0.
This clearly spells disaster. On the other hand, if |ξ| > 1, then the solution (18.21) goes
rapidly to zero, and more rapidly as ∆t→ 0. For roots ξ with |ξ| = 1 the situation is more
complicated, and ξ = 1 is always a root because the sum of the coefficients ai is always zero.
Instability occurs if there is a multiple root on the unit circle |ξ| = 1. In general, one must
consider all complex (as well as real) roots ξ.

Given this simple definition of the general case of BDF, it is hard to imagine what could
go wrong regarding stability. Unfortunately, the condition that |ξ| ≥ 1 for roots of pk(ξ) = 0
restricts k to be six or less for the BDF formulæ. In Figure 18.1, complex roots with the
smallest modulus are plotted for degrees k = 5 (triangle), k = 6 (asterisk), and k = 7 (plus).
The solid line indicates the unit circle in the complex plane. Unfortunately, for k = 7 there
is a pair of complex conjugate roots z± = 0.0735±0.9755ι with (the same) complex modulus
less than 1: |z±| ≈ 0.97827.

In Chapter 9, the inf-sup condtion for mixed methods encapsulates another type of
numerical stability that effects the choice of finite element spaces suitable for fluid flow
problems.
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Figure 18.2: Cantor function (18.22).

18.3 The right box

The variational formulation of PDEs is not only a convenient way to describe a model, it
also provides a way to ensure that a model is well-posed. One of the critical ingredients in
the variational formulation is the space of functions in which one seeks the solution. We can
see that this is just the right size to fit the needs of most modeling problems.

We can think of the space of functions in the variational formulation of PDEs as a box
in which we look for a solution. If the box were too big, we might get spurious solutions. If
it is too small, then we may get no solutions.

A box too small is easy to describe: it would be natural to think we could just work
with the space Cm of functions whose derivatives up through order m are continuous. If
the number of derivatives in the PDE is less than or equal to m, then all derivatives are
classically defined, and the equation itself makes sense as a equation among numbers at all
points in the model domain. However, many problems naturally arise that do not fit into this
box. For example, when the geometry of the boundary of a domain in two-dimensions has
an interior angle that is greater than π (and hence the domain is not convex), a singularity
arises even for the Laplace equation (Chapter 2).

A box too big can be described already in one-dimension. The famous Cantor “middle-
thirds” function is defined as follows on the unit interval [0, 1]:

C(x) :=


1
2

1
3
≤ x < 2

3
1
2
C(3x) 0 ≤ x < 1

3
1
2
(1 + C(3x− 2)) 2

3
≤ x < 1

(18.22)

The recursive nature of this definition means that it can easily be computed. Any pro-
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gramming language allowing recursion is suitable for implementation. By definition, the
derivative of C is zero at almost every point (a notion made precise by Lebesgue measure
theory [35].)

This is problematic, since we expect solutions of linear PDEs to be unique in most cases.
But the simplest equation u′ = f would have u + C as a solution for any given solution u.
However, the derivative of C does not qualify as a Lebesgue integrable function.

Thus the choice of spaces V of functions whose derivatives are Lebesgue integrable func-
tions provides just the right size box in the variational formulation. These are called Sobolev
spaces, and they are reviewed in Chapter 20.

18.4 Local Solvability

When we state an equation such as ∆u = f , we presume that it is possible to specify u, at
least locally, by giving a combination of its derivatives (u,11 + u,22 + · · · ). What is it that
makes this possible? That is, should we always assume that an arbitrary combination of
derivatives can be specified without any internal consistency required?

It is easy to see one kind of partial differential equation that would make little sense:

∂2u

∂x ∂y
= − ∂2u

∂y ∂x
, (18.23)

since we know that for smooth functions, the order of cross derivatives does not matter.
Thus (18.23) corresponds to an equation of the form t = −t and has only the zero solution.

There are some differential equations that simply have no solution even locally, indepen-
dent of any boundary conditions. A famous example is due to Hans Lewy. Consider the
equation

∂u

∂x1

− ι ∂u
∂x2

+ 2(ιx1 − x2)
∂u

∂x3

= f, (18.24)

where ι is the imaginary unit, ι =
√
−1. Then for most infinitely differentiable functions

f there is no solution of this equation in any open set in three-space. Note that this has
nothing to do with boundary conditions, just with satisfying the differential equation. This
equation is a complex equation (ι =

√
−1) but it can easily be written as a system of two

real equations for the real and imaginary parts of u respectively (see Exercise 18.3).
There is a general condition that must be satisfied in order that linear partial dif-

ferential equations have a local solution. This condition is known as the local solv-
ability condition. To explain the condition, we need to introduce some notation. Let

D = −ι
(
∂
∂x1
, . . . ,

∂

∂xj
, . . . , ∂

∂xd

)
stand for the vector of complex partial differentials, and let

α = (α1, . . . , αj, . . . , αd) be a multi-index (i.e., a vector of non-negative integers), so that

Dαu := (−ι)|α| ∂
α1

∂xα1
1

· · · ∂
αj

∂x
αj
j

· · · ∂
αd

∂xαdd
u , (18.25)

where |α| := α1 +· · ·αj+· · ·αd. For any d-dimensional variable ξ, we can form the monomial

ξα := ξ1
α1 · · · ξjαj · · · ξdαd (18.26)
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so that Dα is the same as ξα with the substitution ξj = −i∂/∂xj. In this notation, the Lewy
equation (18.24) becomes

−ιD1u+D2u− 2(x1 + ιx2)D3u = f (18.27)

The reason for the factor −ι in the definition of D is so that the Fourier transform of D
works out nicely; if û denotes the Fourier transform of u, then D̂αu(ξ) = ξαû(ξ).

Suppose that the differential operator in question takes the form

P (x, D) =
∑
|α|≤m

aα(x)Dα , (18.28)

that is, suppose that we want to consider linear partial differential equations of the form

P (x, D)u =
∑
|α|≤m

aα(x)Dαu = f (18.29)

for some f . We can form the corresponding symbol P (x, ξ) of the linear partial differential
operator

P (x, ξ) =
∑
|α|≤m

aα(x)ξα , (18.30)

Define the principal part of the symbol, Pm, by

Pm(x, ξ) =
∑
|α|=m

aα(x)ξα , (18.31)

and correspondingly the complex conjugate of the principal part of the symbol, Pm, by

Pm(x, ξ) =
∑
|α|=m

aα(x)ξα . (18.32)

Also define the following partial derivatives of the principal part of the symbol:

P (j)
m (x, ξ) :=

∂Pm
∂ξj

(x, ξ) , Pm,j(x, ξ) :=
∂Pm
∂xj

(x, ξ) (18.33)

and define their complex conjugates analogously. Finally, define the commutator C2m−1(x, ξ)
of the principal part of the symbol via

C2m−1(x, ξ) := ι

d∑
j=1

(
P (j)
m (x, ξ)Pm,j(x, ξ)− P

(j)

m (x, ξ)Pm,j(x, ξ)
)

(18.34)

which is a polynomial of degree 2m− 1 in ξ with real coefficients.

Theorem 18.1 If the differential equation (18.29) has a solution in a set Ω for every smooth
f that vanishes near the boundary of Ω, then

C2m−1(x, ξ) = 0 (18.35)

for all ξ and all x ∈ Ω such that Pm(x, ξ) = 0.
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Here, the notion of “solution” is very weak; it need not be a smooth solution. Thus
the result provides a very stringent condition on the symbol in order to expect any sort of
solution at all. For a complete description of this and other examples see [101]; see [33]
for more recent results and references. The most striking feature of the local solvability
condition (18.35) is that it is a “closed” condition. Otherwise said, “non-solvability” is
an open condition: if C2m−1(x, ξ) 6= 0 then small perturbations would not be expected to
make it vanish. Moreover, even if (18.35) holds for one set of coefficients aα, it may fail to
hold for a small perturbation. Finally, we will be interested in nonlinear partial differential
equations; if these have a solution, then the solution can be viewed as solutions to linear
partial differential equations with appropriate coefficients (which depend on the particular
solution).

Despite the pessimism implied by the local solvability condition (18.35), we will see that
there are indeed broad classes of nonlinear partial differential equations which can be proved
to have solutions. But this should not be taken for granted in general. In proposing a new
model for a new phenomenon, the first question to ask is whether it makes sense at this most
fundamental level.

18.5 PDE’s in classical spaces

We have emphasized working with PDEs in Sobolev spaces but without indicating why this
is necessary. It turns out that the usual Ck spaces of functions with k-th order continuous
derivatives are not appropriate for characterizing PDEs. We will just give an extended
example to explain this and leave it to references [74, 85] for more details. Consider the
Laplace equation

−∆u = f, (18.36)

for the moment in all of Rd without regard for boundary conditions. Then a solution can be
generated by convolution with the fundamental solution G:

u = G ∗ f, (18.37)

where the convolution operator is defined by v ∗ w(x) =
∫
Rd v(x− y)w(y) dy and

G(x) =

{
c2 log |x| d = 2

cd|x|2−d d ≥ 3.
(18.38)

To have a classical solution to (18.36), we would demand that u ∈ C2, and we might expect
this for f ∈ C0. We will see that this is not the case.

We can differentiate the expression (18.38) to represent derivatives of u in terms of f via

Dαu = (DαG) ∗ f, (18.39)

using a well-known property of convolution, where Dα is defined in (18.25). It is not hard
to show that

DαG(x) = Aα(x)|x|−d for |α| = 2, (18.40)
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where Aα is homogeneous of degree zero. Thus DαG is what is known as a Calderón-
Zygmund singular kernel, and the mapping f → (DαG) ∗ f is a singular integral operator.
Such operators are known [85, Section 9.4] to be bounded on Lp for 1 < p < ∞, but not
for the extreme values of p, as we will see shortly. The key property of singular kernels
that supports this is that Aα has mean zero. This cancellation property allows the singular
integral to be controlled in a natural way, but only in a mean sense. If we take

f(x) =
Aα(x)

| log |x||
χ(|x|), χ(r) =


1 r ≤ 1

4

2− 4r 1
4
≤ r ≤ 1

2

0 r ≥ 1
2

, (18.41)

we get a divergent integral for Dαu = (DαG) ∗ f ,

Dαu(0) =

∫
|x|≤1

2

Aα(x)2χ(|x|)
|x|d | log |x||

dx = Cα,d

∫ 1
2

0

χ(r) dr

r| log r|
=∞, (18.42)

indicating that Dαu(x) → ∞ as x → 0. Thus we see that bounded f can lead to solutions
u of (18.36) whose second derivatives are not bounded. We leave as Exercise 18.6 to explore
this.

Our example shows why the Calderón-Zygmund theorem fails for p = ∞, since f is
bounded and the second derivatives of u are not bounded. But it also does more, as the
function f is both bounded and continuous, since f(x) → 0 as x → 0. Our example shows
that, not only is u 6∈ C2, its second derivatives are not even bounded. In [85, exercise
4.9(a)], a different example is given in which f is continuous but u 6∈ C2. The root cause
of this behavior is the fact that the solution operator for the Laplace equation involves an
aggregation of values. Thus if f has bad behavior over an extended region, this can add up
to yield unexpected behavior of the solution.

18.6 Exercises

Exercise 18.1 Consider the example following (18.17). How small can the error in (18.17)
be made using a 5-th order (k = 5) BDF formula? What value of ∆t yields the smallest
error?

Exercise 18.2 Compute the solution of an ordinary differential equation using the 7-th order
(k = 7) BDF formula. What happens after a few times steps?

Exercise 18.3 Write (18.24) as a system of two real equations for the real and imaginary
parts of u respectively.

Exercise 18.4 Give a precise definition of the “Dirichlet to Neumann” map A such that
(18.6) has a solution if and only if g1 = Ag0.
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Exercise 18.5 Prove that the local solvability condition (18.35) does not hold for the equa-
tion (18.24).

Exercise 18.6 Compute A(2,0) in (18.40) for d = 2, that is,

A(2,0)(x, y) =
∂2

∂x2
log |(x, y)|.

Take f as defined in (18.41) and solve −∆u = f in a domain containing the origin, with
your choice of boundary conditions. Compute the second derivatives of u near the origin.
Do they blow up as the mesh is made finer?
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Chapter 19

Notation

Here we collect different kinds of notation used in the book for reference and review.

19.1 Sets and logic

We use the notation Rd to denote d-dimensional space. We write sets as

{x : x satisfies some property} .

19.1.1 = versus := versus ≡
The equal sign (=) is overloaded in technical usage. In many programming languagues, it is
used to mean assignment. We sometimes use the expression := to mean is defined to be, as
in A := B means that A is, by definition, equal to B, as opposed to the usual use of = to
mean that they can be shown to be equal.

For example, the unit disc Ω in R2 can be defined as

Ω :=
{
x ∈ R2 : |x| < 1

}
.

If we want to define B to be A, we write A =: B.
The expression u ≡ 0 is used for emphasis to say that the function u is identically zero

at every point.

19.1.2 a ∈ A and ∀a ∈ A
For any set A, we use the short-hand a ∈ A to mean that a is an element of the set A.

The notation ∀a ∈ A means for all a ∈ A.

19.1.3 Subsets: A ⊂ B

Let A and B be subsets of Rd. Then we write A ⊂ B if a ∈ B for all a ∈ A (∀a ∈ A).
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19.1.4 Set restriction: f |B
When a function is defined on a set A, and B is a subset of A, we write f |B to denote the
function restriced to the subset B. Thus we can say f |B = 0 as a shorthand to mean that f
is zero on the subset B.

19.1.5 Set complements: A\B
Let A and B be subsets of Rd. Then we write A\B for the set of points in A that are not
in B:

A\B = {a ∈ A : a 6∈ B} .

19.1.6 inf and sup, min and max

We often write

min
a∈A
· · · , max

a∈A
· · · ,

to mean the minimum or maximum of something over a set A. This presumes that the
minimum or maximum is attained over the set when it is an infinite set. To be cautious for
infinite sets, we replace min by inf (max by sup) to allow for the possibility that the extreme
value is not attained within the set. For example, max0<x<π/2 sinx is not well defined, but
sup0<x<π/2 sinx = 1 is well defined.

19.1.7 Summation
∑

The summation of n things ai, i = 1, . . . , n, is written

n∑
i=1

ai = a1 + a2 + · · ·+ an.

19.2 Vectors and matrices

19.2.1 Vector dot product u · v
If u = (u1, . . . , ud) and v = (v1, . . . , vd) are d-dimensional vectors, then the dot product is
defined by

u · v =
d∑
i=1

uivi = u1v1 + · · ·+ udvd.

The dot product is often written as utv. Here the superscript means transpose. We then
think of u = (u1, . . . , ud) and v = (v1, . . . , vd) as d× 1 matrices, so that ut is a 1× d matrix,
and utv is interpreted as a matrix product.
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19.2.2 Euclidean norm |u|
The Euclidean norm of a vector is its length in d-dimensional space:

|u| =
( d∑
i=1

u2
i

)1/2

=
√

u · u.

19.2.3 Matrix-vector product Mv

If M is a d× d matrix

M =

m11 · · · m1d
... · · · ...

md1 · · · mdd


and v = (v1, . . . , vd) is a d-dimensional vector, then the matrix-vector product Mv is a
d-dimensional vector whose entries are defined by

(
Mv

)
i

=
d∑
j=1

mijvj.

19.2.4 Frobenius product of matrices M : N

If M and N are d× d matrices, then M : N is the number

M : N =
d∑

i,j=1

mijnij.

This is the same as the dot product of M and N if we think of them as d2-dimensional
vectors.

19.2.5 Frobenius norm of a matrix |M|
If M is a d× d matrix, then |M| is the number

|M| =
√
M : M =

( d∑
i,j=1

m2
ij

)1/2

.

This is the same as the Euclidean norm of M if we think of it as a d2-dimensional vector.

19.3 Notation for derivatives

19.3.1 Partial derivatives

The notation ∂u
∂xj

denotes the (partial) derivative of the scalar function u with respect to the

jth coordinate xj, with the other coordinates being held fixed. We similarly use the notation
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uxj , u,xj and u,j as shorthand for ∂u
∂xj

. When we make the coordinates explicit, e.g., (x, y, z),

we will similarly write ux (or u,x), uy (or u,y) and so forth for ∂u
∂x

, ∂u
∂y

, etc.

19.3.2 Higer-order derivatives

Higher-order derivatives are defined by compounding them:

∂2u

∂x2
j

=
∂

∂xj

( ∂u
∂xj

)
.

The derivatives can be mixed:
∂2u

∂xi∂xj
=

∂

∂xi

( ∂u
∂xj

)
.

19.3.3 Vector functions

For a vector valued function w = (w1, . . . , wd), we use the notation wi,j to denote ∂wi
∂xj

.

19.4 Notation for integrals

The notation ∫
Ω

f(x) dx

denotes the integral of the scalar valued function f over the domain Ω in d-dimensional
space. Similarly, ∮

∂Ω

f(s) ds

denotes the integral of the scalar valued function f over the boundary of the domain Ω,
which is denoted by ∂Ω.

19.5 Some calculus identities

19.5.1 Gradient ∇
The gradient of a scalar function u is the vector-valued function

∇u = (ux1 , . . . , uxd) = (u,x1 , . . . , u,xd) =
( ∂u
∂x1

, . . . ,
∂u

∂xd

)
.

19.5.2 Divergence ∇·
The divergence of a vector-valued function w is the scalar-valued function given by

∇·w =
d∑
i=1

∂wi
∂xi

=
d∑
i=1

wi,i.
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19.5.3 Laplace operator ∆

The Laplace operator is defined by

∆u =
d∑
i=1

∂2u

∂x2
i

= u11 + · · ·+ udd = u,11 + · · ·+ u,dd.

19.5.4 div, grad, and all that

The Laplace operator is sometimes written as ∇2. We prefer this notation for something
else (Section 19.6.3). But

∆u = ∇· (∇u)

(Exercise 2.2).

19.5.5 Directional derivative

The directional derivative u · ∇ can be defined for any tensor-valued function, and it does
not change the arity of the tensor. For a scalar-valued function v, the definition is a syntactic
tautology:

u · ∇v := u · (∇v) =
d∑
i=1

uiv,i =
d∑
i=1

ui
∂v

∂xi
.

For a vector-valued function v, u · ∇v is a vector-valued function whose components are
defined by

(u · ∇v)i = u · ∇vi, i = 1, . . . , d.

19.5.6 Symmetric gradient ε(u)

For u a vector-valued function, ∇u is a matrix-valued function, but that matrix is usually
not symmetric. The symmetric part of that matrix is defined by

ε(u)ij = 1
2

(ui,j + uj,i)

and appears in several places, e.g., in (9.10).

19.5.7 Divergence of a tensor

In Section 19.5.2, the divergence of a vector-valued function is defined. This can be extended
to any tensor-valued function. In particular, if M is a matrix-valued function, then ∇·M is
a vector-valued function defined by

(
∇·M)i =

d∑
j=1

mij,j.
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Then

∇· ε(u) = ∆u

(Exercise 13.6).

19.5.8 Normal derivative

The derivative of u in the direction normal to the boundary ∂Ω is written ∂u
∂n

, and it can be
defined by

∂u

∂n
= n · ∇u,

where n is the outward-directed normal to ∂Ω.

19.6 Inner-products and norms

19.6.1 The space L2(Ω)

The L2(Ω) inner-product is defined by

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx.

The corresponding norm is

‖v‖L2(Ω) =
√

(v, v)L2(Ω) =
(∫

Ω

v(x)2 dx
)1/2

.

For vector-valued functions, we have

(u,v)L2(Ω) =

∫
Ω

u(x) · v(x) dx,

and

‖w‖L2(Ω) = ‖ |w| ‖L2(Ω) =
(∫

Ω

|w(x)|2 dx
)1/2

.

The space L2(Ω) is defined by

L2(Ω) =
{
v : ‖v‖L2(Ω) <∞

}
,

and the space L2(Ω)d is defined by

L2(Ω)d =
{
v : ‖v‖L2(Ω) <∞

}
.
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19.6.2 The space H1(Ω)

The H1(Ω) inner-product is defined by

(u, v)H1(Ω) =

∫
Ω

u(x)v(x) +∇u(x) · ∇v(x) dx

The corresponding norm is

‖v‖H1(Ω) =
√

(v, v)H1(Ω) =
(∫

Ω

v(x)2 + |∇v(x)|2 dx
)1/2

.

For vector-valued functions, ∇u and ∇v are matrices, so

(u,v)H1(Ω) =

∫
Ω

u(x) · v(x) +∇u(x) : ∇v(x) dx.

‖w‖H1(Ω) =
(∫

Ω

|w(x)|2 + |∇w(x)|2 dx
)1/2

,

where |∇w(x)| is the Frobenious norm (Section 19.2.5) of the matrix ∇w(x). The space
H1(Ω) is defined by

H1(Ω) =
{
v : ‖v‖H1(Ω) <∞

}
,

and the space H1(Ω)d is defined by

H1(Ω)d =
{
v : ‖v‖H1(Ω) <∞

}
.

19.6.3 The space Hm(Ω)

We define ∇mu to be the tensor of all mth order derivatives of u. For m = 1, ∇mu = ∇u.
The arity of a tensor is the number of indices it has. So a scalar has arity 0, a vector has
arity 1, and a matrix has arity 2. We can define ∇mu inductively by ∇mu = ∇

(
∇m−1u

)
.

For a tensor T of any arity (Tijk...`), we can generalize the Frobenious norm (Sec-
tion 19.2.5) for matrices to define

|T| =
( ∑
ijk...`

(
Tijk...`

)2
)1/2

.

Then

‖v‖Hm(Ω) =
(∫

Ω

m∑
j=0

|∇jv(x)|2 dx
)1/2

,

and the space Hm(Ω)d is defined by

Hm(Ω)d =
{
v : ‖v‖Hm(Ω) <∞

}
.

This definition of Hm(Ω)d is equivalent to the one where

‖v‖Hm(Ω) =
(∫

Ω

v(x)2 + |∇mv(x)|2 dx
)1/2

,

in the sense that each of the two norms can be bounded by a constant times the other.
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19.7 Variational forms

Here we collect some of the key variational forms defined previously.

19.7.1 Laplace form (2.7)

a(u, v) =

∫
Ω

∇u · ∇v dx.

19.7.2 Robin form (3.19)

aRobin(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx +

∮
∂Ω

α(s) v(s)u(s) ds,

where α > 0 is required for coercivity.

19.7.3 Laplace plus potential (5.3)

aZ(u, v) =

∫
Ω

∇u(x) · ∇v(x) + Z(x)u(x)v(x) dx,

where Z is a given function.

19.7.4 van der Waals form (5.9)

aκ(u, v) =

∫
Ω

1
2
∇u(r1, r2) · ∇v(r1, r2) +

(
κ(r1) + κ(r2)

)
u(r1, r2) v(r1, r2) dr1dr2,

where κ(r) = r−2 − r−1 + 1
2

and Ω = [0,∞]× [0,∞].

19.7.5 One-dimensional Laplace forms (6.5) and (6.39)

a(u, v) =

∫ 1

0

u′(x)v′(x) + α(x)u′(x)v(x) + β(x)u(x)v(x) dx.

The form (6.5) corresponds to α = β ≡ 0.

19.7.6 Heat equation (8.29)

a∆t(v, w) =

∫
Ω

v(x)w(x) dx + ∆t

∫
Ω

∇v(x) · ∇w(x) dx,

where ∆t > 0 is the time step. This is the general form in d-dimensions; in (8.29) it is
defined for d = 1.
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19.7.7 Stokes’ equations ∇ form (9.7)

a∇(u,v) =

∫
Ω

∇u : ∇v dx =

∫
Ω

d∑
i,j=1

ui,jvi,j dx.

19.7.8 Stokes’ equations divergence form (9.8)

b(v, q) = −
∫

Ω

d∑
i=1

vi,iq dx.

19.7.9 Stokes’ equations ε form (9.11)

aε(u,v) = 2

∫
Ω

d∑
i,j=1

ε(u)ijε(v)ij dx,

where
ε(u)ij = 1

2
(ui,j + uj,i)

was defined in (9.10) (also see Section 19.5.6).

19.7.10 Stokes iterated penalty form (9.51)

aρ(u,v) = a(u,v) + ρ

∫
Ω

(∇·u)(∇·v) dx,

where a(·, ·) can be either (9.7) or (9.11), and ρ > 0.

19.7.11 Advection-diffusion form (10.9)

aβ(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx +

∫
Ω

(
β(x) · ∇u(x)

)
v(x) dx,

where β is a given function.

19.7.12 Transport form (10.20)

aτ (u, v) =

∫
Ω

τuv + (β · ∇u)v dx.

where τ > 0 and β is a given function.

19.7.13 Scalar elliptic form (12.3)

a(u, v) =

∫
Ω

d∑
i,j=1

αij(x)
∂u

∂xi
(x)

∂v

∂xj
dx,

where αij is a given matrix-valued function.
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19.7.14 Darcy’s Law (12.16) and (12.18)

a(u,v) =
d∑

i,j=1

∫
Ω

Aij(x)ui(x)vj(x) dx,

where Aij is a given matrix-valued function.

b(w, q) =

∫
Ω

w(x) · ∇q(x) dx = −
∫

Ω

∇·w(x) q(x) dx +

∮
∂Ω

q(x) w(x) · n(x) dx,

where n is the unit (outer) normal to ∂Ω.

19.7.15 Elasticity form (13.6)

Under the assumption that the material is isotropic,

aC(u,v) =

∫
Ω

T : ∇v dx = λ

∫
Ω

(∇·u)(∇·v) dx + µ

∫
Ω

(
∇u +∇ut

)
: ∇v dx,

where µ and ν are the Lamé parameters.

19.7.16 Plate bending form (13.10)

aP (u, v) =

∫
Ω

∆u∆v − (1− ν) (2uxxvyy + 2uyyvxx − 4uxyvxy) dxdy,

where ν is Poisson’s ratio, and 2(1−ν) = µ/(λ+µ), where µ and ν are the Lamé parameters.

19.7.17 Navier-Stokes nonlinear form (14.5)

c(u,v,w) =

∫
Ω

(u · ∇v) ·w dx.

The directional derivative u · ∇v is defined in Section 19.5.5.

19.7.18 Navier-Stokes time-stepping form (14.14)

ã(u,v) = a(u,v) + τ (u,v)L2(Ω) ,

where τ = R/∆t, R is the Reynolds number, and ∆t is the time step.

19.7.19 Navier-Stokes iterated penalty form (14.26)

ã (zn,v) + ρ (∇· zn,∇·v)L2 ,

where a(·, ·) can be either (9.7) or (9.11), and ρ > 0.

October 2, 2017, do not distribute 200



19.7. VARIATIONAL FORMS 201

19.7.20 Nitsche’s method form (15.1)

aγ(u, v) =

∫
Ω

∇u · ∇v dx + γh−1

∮
∂Ω

uv dx−
∮
∂Ω

∂u

∂n
v dx−

∮
∂Ω

∂v

∂n
u dx,

where γ > 0 is a fixed parameter and h is the mesh size.
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Chapter 20

Tutorial on Sobolev spaces

The coercivity result (2.22) is the key to well-posedness of boundary-value problems for
elliptic problems. It implicitly encodes both a statement of stability and a description of
suitable boundary conditions. Here, we offer a tutorial on why this is true, as well as some
other results in approximation theory that are closely connected. It is intriguing that the
concepts of approximability and coercivity can be so closely linked. For simplicity, let us
assume that Ω is convex, so that for any two points in Ω, all points on the line joining them
is also in Ω. Most of the results derived in this simple setting can be proved for more general
domains [37].

20.1 An integral representation

We begin with a very simple representation using integral calculus. Suppose that x and y
are two points in some domain Ω in d-dimensional space, and observe that we can write

u(y)− u(x) =

∫ 1

0

(y − x) · ∇u(x + s(y − x)) ds . (20.1)

This is just the multi-dimensional version of the calculus theorem

f(1)− f(0) =

∫ 1

0

f ′(s) ds . (20.2)

We can obtain (20.1) from (20.2) by defining f(s) := u(x + s(y − x)).
Let us now integrate (20.1) with respect to y over Ω, to get

|Ω|(u− u(x)) =

∫
Ω

∫ 1

0

(y − x) · ∇u(x + s(y − x)) ds dy , (20.3)

where |Ω| is the measure of Ω and u denotes the mean of u:

u :=
1

|Ω|

∫
Ω

u(y) dy . (20.4)
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z

y

x

Figure 20.1: Notation for integral represenation.

Make the change of variables z = x + s(y− x), so that y = x + s−1(z− x) and dy = s−ddz;
see Figure 20.1. With this representation, the variable z also ranges over all of Ω, but not
independently of s. The range of values of s is restricted by the fact that y = x + s−1(z−x)
must remain in Ω; and for each z ∈ Ω, there is a σ(z) such that x+ σ(z)−1(z− x) ∈ ∂Ω. In
fact, σ(z) is just |z−x| divided by the distance from x to ∂Ω along a line passing through z.
Since z ∈ Ω, this description of σ(z) shows that it is always less than one. More importantly,
σ(z)−1 ≤ diam(Ω)|z− x|−1, where diam(Ω) denotes the diameter of Ω (the largest distance
between any two points in Ω).

Plugging and chugging, we get via Fubini’s Theorem that

u(x) =u− 1

|Ω|

∫
Ω

∫ 1

σ(z)

(z− x) · ∇u(z)s−1−d ds dz ,

=u− 1

|Ω|

∫
Ω

1

d

(
σ(z)−d − 1

)
(z− x) · ∇u(z) dz ,

=u+

∫
Ω

k(x, z) · ∇u(z) dz ,

(20.5)

where k(x, z) := 1
|Ω|d

(
σ(z)−d − 1

)
(x− z). Note that

|k(x, z)| ≤ diam(Ω)d

|Ω|d
|x− z|1−d (20.6)

is integrable in z for x fixed.

20.2 Sobolev inclusions and Riesz potentials

The kernel in (20.6) is bounded by what are called Riesz potentials which have simple
properties. In this section, we derive various bounds for such potentials. Our main results
will include an inclusion relation of the form

Wm
p (Ω) ⊂ W k

q (Ω) (20.7)
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for suitable indices m, k, p, q. We can anticipate (and remember) the appropriate relationship
among these indices by considering units of the semi-norms

| · |Wm
p (Ω) and | · |Wk

q (Ω). (20.8)

These units can be determined either by a dimensional analysis, or by scaling the spatial
variable by a dilation. In either case, it is easy to see that the dimensions are

L−m+d/p and L−k+d/q (20.9)

respectively, since each differentiation contributes a factor of L−1, and the Lebesgue measure
contributes a factor of Ln/p (due to the fact that the 1/p-th root is taken: note that the
derivatives are raised to the p-th power first). Comparing these exponents suggests that we
should have

m− d

p
≥ k − d

q
(20.10)

in order for (20.7) to hold. That is, the way to count Sobolev derivatives is to take the
number of Lp derivatives and subtract d/p from that. It is clear that if we can prove (20.7)
for m = 1 and k = 0 then the general result obtains by iterating on the indices, as follows.
It immediately follows for k = m− 1 by applying the first case to derivatives of order m− 1.
Applying this result together with the corresponding result for m← m− 1 and k ← m− 2
yields the desired result when m − k = 2, with appropriate “p” indices. The general result
is obtained by continuing in this way.

Now let us show how (20.7) can be verified, and explain the fine print on exactly when
it applies.

Lemma 20.1 If f ∈ Lp(Ω) for 1 < p <∞ and m > d/p, then

g(x) :=

∫
Ω

|x− z|−n+m |f(z)| dz ≤ C‖f‖Lp(Ω) ∀x ∈ Ω. (20.11)

This inequality also holds for p = 1 if m ≥ d.

Proof. First assume that 1 < p < ∞ and m > d/p. Let 1/p + 1/q = 1. By Hölder’s
inequality, we have∫

Ω

|x− z|−n+m |f(z)| dz ≤
(∫

Ω

|x− z|(−n+m)q dz

)1/q

‖f‖Lp(Ω)

≤ C

(∫ diam(Ω)

0

r(−n+m)q+d−1 dr

)1/q

‖f‖Lp(Ω)

= C ‖f‖Lp(Ω) .

(20.12)

If m ≥ d, then |x− z|−n+m is bounded, and∫
Ω

|x− z|−n+m |f(z)| dz ≤ C‖f‖L1(Ω). (20.13)
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Corollary 20.1 For u ∈ W 1
p (Ω),

‖u− u‖L∞(Ω) ≤ C|u|W 1
p (Ω),

provided that d < p ≤ ∞ or d = 1 and p ≥ 1.

Lemma 20.2 (Sobolev’s Inequality) Suppose Ω is bounded and convex. If u is in Wm
p (Ω)

where either (i) 1 < p < ∞ and m > d/p or (ii) p = 1 and d = 1, then u is continuous on
Ω and

‖u‖L∞(Ω) ≤ C‖u‖Wm
p (Ω).

Proof. The inequality holds because

‖u‖L∞(Ω) ≤ ‖u− u‖L∞(Ω) + ‖u‖L∞(Ω)

≤ |u|W 1
p (Ω) + ‖u‖L1(Ω)

≤ C‖u‖W 1
p (Ω).

(20.14)

The proof that u is continuous on Ω follows by a density argument.

We can think of the Riesz potentials as arising just by convolution. That is, we can define
g in (20.11) as g = K ∗ |f | where we extend f by zero outside Ω and

K(x) = |x|m−n (20.15)

on a ball of radius diam(Ω) and zero outside. Strictly speaking, the definitions (20.11) and
(20.15) of g agree only on Ω. Thus by Young’s inequality we have

‖g‖Lr(Ω) ≤ ‖K‖Lq(Ω)‖f‖Lp(Ω)

≤ C‖f‖Lp(Ω)

(20.16)

(provided that K ∈ Lq(Ω)) where

1

r
=

1

p
+

1

q
− 1 =

1

p
− 1

q′
(20.17)

and 1/q+ 1/q′ = 1. Then it is easy to see that K ∈ Lq(Ω) provided q(m− n) + n− 1 > −1.
This is equivalent to m > n/q′, or −1/q′ > −m/n. Thus we have g ∈ Lr(Ω) provided

1

r
=

1

p
− 1

q′
>

1

p
− m

n
(20.18)

By more precise arguments, it is in fact possible to prove [129] that the Riesz potential
(20.15) maps Lp(Ω) to Lr(Ω) precisely for 1

r
= 1

p
− m

n
. Thus the following holds.

Theorem 20.1 For u ∈ W 1
p (Ω),

‖u− u‖Lr(Ω) ≤ C|u|W 1
p (Ω), (20.19)

provided that
1

r
≥ 1

p
− 1

n
(20.20)
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20.3 Compactness in Sobolev spaces

In Section 20.2 we saw that Sobolev spaces with one set of indices are naturally included in
another, eg. (20.7). We now want to show that this inclusion is a compact mapping, that is,
a bounded set in the stronger norm is compact in the weaker norm.

Our main ingredient is Theorem 20.1. We apply this on a triangulation Th of Ω of size h
to get an approximation result for piecewise constant approximation.

Lemma 20.3 For u ∈ W 1
p (Ω), let uh denote the piecewise constant approximation of u on

a triangulation Th of Ω of size h. Then

‖u− uh‖Lr(Ω) ≤ Ch1−n/p+n/r|u|W 1
p (Ω), (20.21)

provided that
1

r
≥ 1

p
− 1

n
(20.22)

Let K be a bounded subset of W 1
p (Ω); that is, assume that |u|W 1

p (Ω) ≤ γ for all u ∈ K.
Let ε > 0. For any h > 0, the image of K via the projection u → uh is a bounded set in a
finite dimensional space. In fact, we can cover the set Kh := {uh : u ∈ K} by a finite union
of balls in Lr(Ω) of radius ε/2 centered at a simple lattice centered on piecewise constant
functions vjh. Then for any u ∈ K we have uh in such a ball around some particular vjh for
some j. Therefore

‖u− vjh‖Lr(Ω) ≤ ‖u− uh‖Lr(Ω) + ‖uh − vjh‖Lr(Ω)

≤ Ch1−n/p+n/rγ + ε/2

≤ ε

(20.23)

provided that we choose h small enough, if the exponent 1 − n/p + n/r is positive. Thus
we have shown that, for any ε > 0, we can cover K by a finite number of balls of radius ε
in Lr(Ω). Thus K is compact in Lr(Ω) [161]. Thus we have proved the following result for
m = 1 and k = 0. The general result follows by iterating on the indices.

Theorem 20.2 Let K be a bounded subset of Wm
p (Ω). Then K is a compact subset of

W k
r (Ω) if

k − n

r
< m− n

p
. (20.24)

20.4 Polynomial approximation in Sobolev spaces

We can think of Theorem 20.1 as an approximation result, which applied to a set of elements
of a subdivision of size h yields a result like Lemma 20.3 for piecewise constant approximation.
It is useful to ask about higher-order approximation, and we can use Theorem 20.1 to generate
such a result.
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Suppose we apply Theorem 20.1 to a derivative u(α). Then we have

‖u(α) − u(α)‖Lr(Ω) ≤ C|u|
W
|α|+1
p (Ω)

, (20.25)

provided that
1

r
≥ 1

p
− 1

n
(20.26)

as we now assume. Let cα = u(α)/α!. Note that

∂αxβ = δα,βα! , (20.27)

where δα,β is the Kronecker δ: equal to one if α = β and zero otherwise. Thus ∂αcαx
α = u(α).

Therefore
‖∂α(u− cαxα)‖Lr(Ω) ≤ C|u|

W
|α|+1
p (Ω)

. (20.28)

Now apply this for all α such that m = |α| and set

qm(x) =
∑
|α|=m

cαx
α (20.29)

Observe that (20.27) implies that

|u− qm|Wm
r (Ω) ≤ C|u|Wm+1

p (Ω) . (20.30)

Write qm = Qmu where Qm is the (bounded linear) operator which takes u to qm. Then we
have

|u−Qmu|Wm
r (Ω) ≤ C|u|Wm+1

p (Ω) . (20.31)

Iterating (20.31), we find

|(u−Qmu)−Qm−1(u−Qmu)|Wm−1
r′ (Ω) ≤ C|u−Qmu|Wm

r (Ω)

≤ C|u|Wm+1
p (Ω)

(20.32)

Define Qm
1 u = Qmu+Qm−1(u−Qmu) and Qm

0 = Qm for completeness. Note that

|u−Qm
1 u|Wm

r′ (Ω) = |(u−Qmu)−Qm−1(u−Qmu)|Wm
r (Ω)

= |u−Qmu|Wm
r′ (Ω)

≤ C|u|Wm+1
p (Ω)

(20.33)

since the derivatives of order m vanish on Qm−1. Thus we have

|u−Qm
1 u|Wm

r (Ω) + |u−Qm
1 u|Wm−1

r (Ω) ≤ C|u|Wm+1
p (Ω) . (20.34)

Iterating, we can show that there exists a mapping Qm
m onto polynomials of degree m such

that
‖u−Qm

mu‖Wm
r (Ω) ≤ C|u|Wm+1

p (Ω) . (20.35)
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[183] Rüdiger Verfürth. A posteriori error estimation techniques for finite element methods.
Oxford University Press, 2013.
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