
FRACTAL ANALYSIS  
APPLICATIONS IN PHYSICS,  
ENGINEERING AND TECHNOLOGY

Edited by Fernando Brambila

FRACTAL ANALYSIS 
APPLICATIONS IN PHYSICS, 
ENGINEERING AND TECHNOLOGY

Edited by Fernando Brambila

Fernando Brambila holds a PhD degree from UNAM, Mexico. His 
thesis on scattering theory was directed by Gunther Uhlmann 
at MIT. He obtained a postdoctoral position at ICTP, Italy, and 
has a diploma in Senior Technology Innovation Management at 

IPADE, Harvard. His research areas are mathematical analysis, partial differential 
equations, vectorial tomography, and hydraulic engineering. More recently, he has 
done research on fractional calculus and fractal geometry and applications with his 
collaborators K. Oleschko (UNAM), C. Fuentes (IMTA), and C. Chavez (UAQ). He is a 
full-time professor at the Mathematics Department of the School of Science at the 
National Autonomous University of Mexico, UNAM. He is a doctoral thesis advisor 
of F. Aceff, R. Mercado, J. Rico, B. Martinez, and C. Torres. Also, he is the former 
president of the Mexican Mathematical Society, and he is currently the president of 
AMITE (Mexican Association for Innovation in Educational Technology).

Fractal analysis has entered a new era. The applications to different areas of knowl-
edge have been surprising. Let us begin with the fractional calculus-fractal geome-
try relationship, which allows for modeling with extreme precision of phenomena 
such as diffusion in porous media with fractional partial differential equations in 
fractal objects. Where the order of the equation is the same as the fractal dimen-
sion, this allows us to make calculations with enormous precision in diffusion phe-
nomena—particularly in the oil industry, for new spillage prevention. Main appli-
cations to industry, design of fractal antennas to receive all frequencies and that is 
used in all cell phones, spacecraft, radars, image processing, measure, porosity, tur-
bulence, scattering theory. Benoit Mandelbrot, creator of fractal geometry, would 
have been surprised by the use of fractal analysis presented in this book:

“Part I: Petroleum Industry and Numerical Analysis”; “Part II: Fractal Antennas, 
Spacecraft, Radars, Image Processing, and Measure”; and “Part III: Scattering The-
ory, Porosity, and Turbulence.” It’s impossible to picture today’s research without 
fractal analysis. 

INTECHOPEN.COM

ISBN 978-953-51-3191-5

©
 iS

to
ck

 / 
an

dr
ey

li 

FRACTA
L A

N
A

LYSIS A
PPLICATIO

N
S IN

 PH
YSICS, EN

G
IN

EERIN
G

 A
N

D
 TECH

N
O

LO
G

Y
Edited by Fernando Bram

bila





FRACTAL ANALYSIS -
APPLICATIONS IN

PHYSICS, ENGINEERING
AND TECHNOLOGY

Edited by Fernando Brambila



Fractal Analysis - Applications in Physics, Engineering and Technology
http://dx.doi.org/10.5772/65531
Edited by Fernando Brambila

Contributors

Alexander Potapov, Zeinab Eskandari, Asghar Keshtkar, Javad Ahmadi-Shokouh, Leila Ghanbari, Janusz Dudczyk,
Jason Griggs, Wojciech Krzysztofik, Koji Nagata, Hiroki Suzuki, Shinsuke Mochizuki, Yasuhiko Sakai, Ksenia Potienko,
Andrew Sedelnikov, Vlastimil Hotař, Oluranti Agboola, Maurice Onyango, Patricia Popoola, Opeyemi Alice Oyewo,
Carlos Torres, Benito Fernando Martinez-Salgado, Rolando Rosas-Sampayo, Carlos Fuentes, Anthony Torres

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

© The Editor(s) and the Author(s) 2017
The moral rights of the editor(s) and the author(s) have been asserted.
All rights to the book as a whole are reserved by InTech. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without InTech's written permission. Enquiries
concerning the use of the book should be directed to InTech's rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. More details and guidelines
concerning content reuse and adaptation can be found at http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

Publishing Process Manager Mirena Calmic
Technical Editor SPi Global
Cover InTech Design team

First published June, 2017
Printed in Croatia
Legal deposit, Croatia: National and University Library in Zagreb

Additional hard copies can be obtained from orders@intechopen.com

Fractal Analysis - Applications in Physics, Engineering and Technology, Edited by Fernando Brambila
p. cm.
Print ISBN 978-953-51-3191-5
Online ISBN 978-953-51-3192-2



BOOK
CITATION

INDEX

TH

OMSON REUTERS

IN D EXE D

Interested in publishing with us? 
Contact book.department@intechopen.com

World’s largest Science,  
Technology & Medicine  

Open Access book publisher

PUBLISHED BY

Selection of our books indexed in the 
Book Citation Index in Web of Science™ 

Core Collection (BKCI)

3,000+ 
OPEN ACCESS BOOKS

BOOKS
DELIVERED TO 

151 COUNTRIES

12.2%
AUTHORS AND EDITORS  

FROM TOP 500 UNIVERSITIES

AUTHORS AMONG

TOP 1% 
MOST CITED SCIENTISTS

101,000+
INTERNATIONAL  

AUTHORS AND EDITORS

99+ MILLION
DOWNLOADS

Numbers displayed above are based on data collected at the time of publication, for latest information visit www.intechopen.com





Contents

Preface VII

Section 1 Petroleum Industry, Numerical Analysis and
Fractal History    1

Chapter 1 Applications of Radial Basis Function Schemes to Fractional
Partial Differential Equations   3
Carlos Alberto Torres Martínez and Carlos Fuentes

Chapter 2 Application of Fractional Calculus to Oil Industry   21
Benito F. Martínez-Salgado, Rolando Rosas-Sampayo, Anthony
Torres-Hernández and Carlos Fuentes

Section 2 Industry, Antennas, Spacecraft, Radar, Images, Measure    43

Chapter 3 Fractals in Antennas and Metamaterials Applications   45
Wojciech Jan Krzysztofik

Chapter 4 ASCCC Fractal and Its Application in Antenna
Miniaturization   83
Zeinab Eskandari, Asghar Keshtkar, Javad Ahmadi‐Shokouh and
Leila Ghanbari

Chapter 5 Application of Fractal Analysis While Designing of Family of
Spacecraft for Needs of Space Industry   97
Andrew V. Sedelnikov and Ksenia I. Potienko

Chapter 6 Specific Emitter Identification Based on Fractal Features   115
Janusz Dudczyk

Chapter 7 Application of Fractal Dimension in Industry Practice   137
Vlastimil Hotař



Chapter 8 Factors Affecting Accuracy and Precision in Measuring Material
Surfaces   173
Jason A. Griggs

Section 3 Applications, Scattering, Porosity, Turbulence    185

Chapter 9 On the Indicatrixes of Waves Scattering from the Random
Fractal Anisotropic Surface   187
Alexander A. Potapov

Chapter 10 Fractal Geometry and Porosity   249
Oluranti Agboola, Maurice Steven Onyango, Patricia Popoola and
Opeyemi Alice Oyewo

Chapter 11 Analysis and Application of Decaying Turbulence with Initial
Fractal Geometry   267
Hiroki Suzuki, Shinsuke Mochizuki, Yasuhiko Sakai and Koji Nagata

ContentsVI



Preface

Fractal analysis has entered a new era. The applications to different areas of knowledge
have been surprising. Let us begin with the fractional calculus-fractal geometry relationship,
which allows for modeling with extreme precision of phenomena such as diffusion in po‐
rous media with fractional partial differential equations in fractal objects. Where the order of
the equation is the same as the fractal dimension, this allows us to make calculations with
enormous precision in diffusion phenomena—particularly in the petroleum industry, for
new spillage prevention.

On the subject of fractional calculus, it is a problem proposed 300 years ago. In the I’Hopital
letters, Leibniz and Bernoulli asked themselves how to define the fractional derivative and
give it a physical and geometrical interpretation. Answers (but only about the definition)
have been around since 1720, when Euler generalized the concept of n! for real and complex
numbers with the Gamma function in order to give us the first answer to it. Then, in 1850,
Riemann and Liouville gave us an answer about fractional integrals, so, too, others like
Grunwald and Letnikov. But the physical and geometrical interpretation has only appeared
in our days now that we understand that there is a relationship between fractional calculus
and fractal geometry.

We have several partial answers to this 300-year-old problem:

the order of the fractional partial differential equations turned out to be related to the fractal
dimension of the geometry where the phenomena take place. And the success of fractional
calculus modeling physical phenomena reveals an underlying fractal nature of reality (S.
Butera and M. Di Paola).

We have also made progress with the Nigmatullin-Rutman controversy—and the clarifica‐
tions of Nigmatullin-Le Mehaute.

It’s important to keep in mind Metzler, Glockle, and Nonnenmacher, who clarify that the
parameters of the fractional partial differential equation that came from the anomalous dif‐
fusion are uniquely determined by the fractal Hausdorff dimension of the underlying object
and the anomalous diffusion experiment.

An important note is that the fractional derivatives are not the weak Fourier-Laplace deriva‐
tives nor are the fractional operators pseudo-differential operators.

Fractal analysis is no longer just creating nice images, nor is it a branch of mathematics with
little interaction with the other areas.

In the history of fractal geometry, important contributions were made toward seeing nature
as it is, rather than as an approximation to classical geometry.

With the mathematics deduced from classical geometry, we could only model approxima‐
tions of nature. Part of the history of fractal geometry was using them to create images of
nature on a computer. For example, in 1978, Loren Carpenter achieved unprecedented im‐
ages of mountains by using fractals, for a Boeing Commercial Aircraft. Carpenter based his
work on the book Fractals form, change and dimension, by Benoit Mandelbrot. And so began



the era of fractal images. Consider, for example, the lava scene from the movie Star Trek III
—a masterpiece of fractal use.

This story takes us to 1999—the use of fractal antennas for cell phones. N. Cohen construct‐
ed the first fractal antenna for personal use; then, R. Hohlfeld and N. Cohen published an
article in which they proved mathematically that in order to receive many frequencies, it is
necessary to have fractal antennas.

More recently, while analyzing heart rate charts at Harvard, H. Goldberger realized that
fractal analysis of these graphs allowed him to distinguish between a heart in good health
and one that is not in good health.

It has also helped us detect changes and abnormalities in blood flow, which allows us to
determine whether an organ, such as a kidney, has or will have cancerous tumors. Early
cancer detection by use of fractal analysis, basically.

Power laws in nature are deduced from fractal dimension.

Fractals also allow us to know about the health of a forest. When we see a tree, we realize
that a similar pattern is repeated all throughout the forest itself.

Now, we enter the modern part of fractal geometry. In this book, we have applications that
Mandelbrot would have surely loved to see. Applications for the petroleum industry, nu‐
merical analysis, fractal antennas for cell phones, spacecraft, radars, image processing, meas‐
ure, porosity, turbulence, scattering theory…

This book is divided into three sections, where the research chapters are presented in the
following way.

The first part, called “Petroleum Industry, Numerical Analysis, and Fractal History," is
about the use of fractal geometry and fractional calculus to model the difference in pressure
with which the oil will come out. A history of fractional calculus and its relation accompany
this section to the fractal dimension of the medium. That is because porosity can be meas‐
ured using the fractal dimension, as shown by K. Oleschko. We also have in this section the
numerical analysis for fractional partial differential equations, a new area of research.

Our second part is called “Industry, Antennas, Spacecraft, Radar, Images, and Measure." It
presents applications of fractal analysis that are quite important today, such as fractal anten‐
nas and metamaterials that are used in all cell phones. Such topics include miniaturization
and its use for efficiency in industry, spacecraft, microaccelearation, radars, image process‐
ing, industrial applications, time series, and precision measuring.

The third part is “Applications, Scattering, Porosity, and Turbulence." These classical sub‐
jects where mathematical modeling has used quantum mechanics, partial equations, and ge‐
ometry nowadays have benefited from the use of fractal analysis. The applications of
scattering theory of porosity and turbulence are of greater precision, for example.

It’s impossible to picture today’s research without fractal geometry.

Prof. Fernando Brambila
Mathematics Department, School of Sciences

National Autonomous University of Mexico, Mexico
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Chapter 1

Applications of Radial Basis Function Schemes to
Fractional Partial Differential Equations

Carlos Alberto Torres Martínez and Carlos Fuentes

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67892

Abstract

In modeling using diffusion equations, the relationship between fractal geometry and
fractional calculus arises by modeling the conditions of the medium as a fractal whose
fractional dimension determines the order of this equation. For this reason, it is very
useful to have numerical methods that solve them and discretization of the domain is
not determinant for the efficiency of the algorithm. In this work, it is proposed to show
that meshless methods, in particular methods with radial basis functions (RBF), are an
alternative to schemes in differences or structured meshes. We show that we can obtain
numerical solutions to some fractional partial differential equations using collocation
and RBF, over non equally distributed data.

Keywords: fractional partial differential equations (FPDE), meshless methods, radial
basis functions (RBF), Caputo derivative, Riemann-Liouville derivative, Riesz deriva-
tive, diffusion-convection

1. Background

1.1. Radial basis function methodology

The Hardy-based radial-based functions (RBF) methodology [1] arises from the need to apply
multivariate interpolation to cartography problems, with randomly dispersed data (also
known as collocation nodes). Micchelli [2], Powell et al. [3] gave it a great boost by proving
non-singularity theorems. Later, Kansa [4, 5] proposed to consider the analytical derivatives of
the FBR to develop numerical schemes that deal with partial differential equations (PDE).

Regarding PDE over spaces of dimension greater than one, we generally opt for finite element
(FE) type discretizations on meshes, structured or not; also pseudo spectral (PS) methods
through base functions such as Fourier or Chebyshev. The high degree of computational

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



efficiency in the procedure raises the cost in the regularity constraints on the form of the
computational domain.

The FE methods involve decomposition of the domain; for example, in two dimensions rect-
angles are constructed with curvilinear mappings that allow the refinement of the mesh in
critical areas. However, this type of implementation is complex and very close nodes are
needed, mainly at the domain boundaries, which impairs stability conditions in time.

For this reason, we look for numerical techniques that do not depend to a great extent on data
distribution. RBF collocation methods belong to the “meshfree” methods; that is, they only
require scattered collocation nodes on the domain and the boundary. They are also an alterna-
tive for dealing with problems in larger dimensions and irregular domains. Hence, in recent
decades, such methods have attracted the attention of researchers in order to solve partial
differential equations. See for example: Chen et al. [6].

This type of technique approximates the solution by means of a linear combination of radial
basis functions, which are globally defined and of exponential convergence, but they produce
dense and badly conditioned interpolation matrices. On the other hand, some RBFs contain a
shape parameter, a number that influences the precision of the numerical results [7, 8].

There are algorithms that also produce better conditioned interpolants, even when the shape
parameter tends to zero, with a double precision arithmetic. Some of them are: Contour-Padé [9]
and RBF-QR [10]. Related to the latter is the recent RBF-GA [11].

The RBF-QR method provides a numerically more stable alternative for converting basis that
are very similar to each other, or almost linearly dependent on a set of scattered nodes, to a
very well conditioned base that generates exactly the same space. This method was originally
implemented for nodes on the surface of a sphere in Fornberg and Piret [10]. And recently for
an arbitrary set of nodes in one, two, and three dimensions [12, 13].

1.2. Fractional calculus and differential equations: about some applications

The growing interest in fractional calculus has been motivated by applications of fractional
equations in different fields of research.

One of the applications considered in this work is that of convection-diffusion equations, which
appear not only in many applications of models in Physics and Chemistry [14–17], in problems
of flow or heat transfer, but also in other fields such as financial [18, 19]. The solution of a
convection-diffusion problem can be interpreted as a probability distribution of one or more
underlying stochastic processes [18]. The classical diffusion equation (or heat equation) and its
Gaussian solution existed long before Einstein established a connection with random walks.

The anomalous diffusion equations, on the other hand, were originally developed from sto-
chastic walks models [20]. The parameters of these equations are uniquely determined by the
fractal dimension of the underlying object [21].

Recent applications of these anomalous diffusion-convection models—those related to oil
extraction and hydrological models for aquifers, food production and water distribution in
large cities, are quite important [22]. Determining the behavior of the fluid inside the reservoir

Fractal Analysis - Applications in Physics, Engineering and Technology4



and the loss of permeability of the medium assists in the investigation of the mechanisms of oil
migration. In this context, the geometric and physical interpretation of fractional derivatives in
these differential equations is a “ultra slow” or “ultra fast” diffusion.

The relationship between fractal geometry and fractional calculus is given from the consider-
ation that a particle moves in a porous medium with fractal structure [23]. Thus, when
considering the derivative over that variable, a fractional derivative is obtained.

Fuentes et al. [24, 25] proposed a model that represents anomalous diffusion of petroleum
(very fast or very slow) in three types of medium with different porosities: fractures, vugs and
matrix. This model has a dimensionless form, which is seen as

ð1� ωf � ωυÞ ∂
α1pm
∂tα1

¼ ð1� κf � κυÞ 1r
∂
∂r

r
∂β1pm
∂rβ1

� �
þ λmf ðpf � pmÞ þ λmυðpυ � pmÞ, ð1Þ

ωf
∂α2pf
∂tα2

¼ κf
1
r
∂
∂r

r
∂β2pm
∂rβ2

� �
� λmf ðpf � pmÞ þ λf υðpυ � pf Þ, ð2Þ

ωυ
∂α3pυ
∂tα3

¼ κv
1
r
∂
∂r

r
∂β3pm
∂rβ3

� �
� λmvðpυ � pmÞ þ λfυðpυ � pf Þ: ð3Þ

This model must be solved for p’s (pressure) at time t in the matrix of the medium pm, the
fractured medium pf, and the vugular medium pv .

κ represents each permeability tensor, which is assumed to be constant; r is the dimensionless
variable related to the ratios of the wellbore. Values λ are dimensionless values and they are
defined in terms of transfer coefficients at each interface, the radius of the wellbore, the dynamic
viscosity of the fluid and the permeability tensor.

If time orders α’s are less than one we say that the process is subdiffusive and if it is greater
than one it is called superdiffusive. Spatial orders β’s result from generalizing the classic Darcy
law, which corresponds to β = 1.

The above equations, like the flow equation that considers the medium as a whole, are
modified Bessel’s equations.

Different porosities imply different fractal dimensions and therefore, fractional derivatives
with different orders.

In Fractional Calculus there is not a single definition of derivative and between these defini-
tions, in general, not equivalent to each other. Definitions such as Riemann-Liouville, Riesz,
Caputo, Weyl or Grünwald-Letnikov are the most used to model anomalous diffusion, from a
porous medium with fractal dimension.

But, fractional equations present serious numerical and mathematical difficulties in the context
of diffusion equations. From the computational point of view, the challenge to overcome is to
attenuate the numerical cost of the matrices that result in discretizing the problem. The
proposal is to consider radial basis interpolators [26], taking into account that the domain
geometry does not determine the efficiency of the algorithm and sounds like an immediate
alternative for generalizing larger dimensions.

Applications of Radial Basis Function Schemes to Fractional Partial Differential Equations
http://dx.doi.org/10.5772/67892
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2. Introduction

The objective in this work is to deal with fractional differential operators, using radial basis
functions (RBF) and optimizing discretization processes of such fractional operators, through
QRmatrix decomposition and to attenuate the bad condition due to the shape parameter. With
RBF-QR, a very high precision and convergence are obtained without the need to increase a
polynomial term to the interpolator [13]. As the computational cost increases, so does the
range of problems to which such a technique can be applied.

3. Radial basis function method for interpolation

Definition 1. Let s be a positive integer, a function ϕ : Rs ! R is called radial whenever there is a
function in one variable φ : ½0,∞Þ ! R such that

ϕðxÞ ¼ φðrÞ, where r ¼ jjxjj ð4Þ

and jj � jj is a norm in Rs (usually the Euclidean standard norm). Table (1) shows some examples, about
the more used real functions φðrÞ.
A standard interpolator in terms of radial basis functions, given the data uk, of some real
function u, in the corresponding collocation nodes xk, k ¼ 1,…, N, has the form [13]

sεðxÞ ¼
XN

k¼1

λkφðεjjx� xkjjÞ ð5Þ

where φ is one real variable function and the constant value ε is called shape parameter.

RBF name RBF φðrÞ

Piecewiese smooth, global

Polyharmonic spline rm, m ¼ 1; 3; 5;…

rmlnðrÞ, m ¼ 2; 4; 6;…

Compact support (’Wendland’) ð1� εrÞmþpðεrÞ, p polynomial.

Smooth, global

Gaussian (GA) e�ðεrÞ2

Multiquadric (MQ)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðεrÞ2

q

Inverse quadric (IQ) 1=ð1þ ðεrÞ2Þ
Inverse multiquadric (IMQ) 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðεrÞ2

q

Bessel (BE) (d ¼ 1; 2;…) Jd=2�1ðεrÞ=ðεrÞd=2�1

Table 1. Common elections for φðrÞ.

Fractal Analysis - Applications in Physics, Engineering and Technology6



Note 1. The radial basis function (FBR) we will take for the approach and examples is the Gaussian
function:

φðrÞ ¼ e�r2 r ≥ 0: ð6Þ

Because it is globally smooth and for which the RBF method can be applied together with QR matrix
decomposition [26].

Notation 1. Considering one dimensional case, we abbreviate φkðxÞ :¼ φðεjjx� xkjjÞ. Now the inter-
polator (5) is written as

sεðxÞ �
XN

k¼1

λkφkðxÞ: ð7Þ

The unknown coefficients λk can be determined by interpolation conditions

sεðxiÞ ¼ ui, i ¼ 1,…, N:

producing the linear equations system

λ1φ1ðx1Þ þ⋯þ λNφNðx1Þ ¼ u1
⋮ ⋮ ⋮

λ1φ1ðxNÞ þ⋯þ λNφNðxNÞ ¼ uN

which can be described in matrix form

φ1ðx1Þ ⋯ φNðx1Þ
⋮ ⋮ ⋮

φ1ðxNÞ ⋯ φNðxNÞ

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

λ1

⋮
λN

2
64

3
75

|fflfflffl{zfflfflffl}
λ

¼
u1
⋮
uN

2
64

3
75

|fflfflffl{zfflfflffl}
uX

:

Thus

Aλ ¼ uX, where A ¼
Φðx1ÞT

⋮
ΦðxNÞT

2
64

3
75 and ΦðxÞ :¼

φ1ðxÞ
⋮

φNðxÞ

2
4

3
5: ð8Þ

A is called Gram matrix.

4. RBF methodology for the discretization of differential operators

Suppose we want to apply a differential operator L to the function uðxÞ in every evaluation
node from the set Z ¼ {z1,…, zNe }, given the values of the function at collocation nodes
X ¼ {x1,…, xN}

Applications of Radial Basis Function Schemes to Fractional Partial Differential Equations
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LuZ ≈DuX: ð9Þ

where LuZ ¼
Luðz1Þ

⋮
LuðzNeÞ

2
4

3
5 and uX ¼

uðx1Þ
⋮

uðxNÞ

2
4

3
5.

Assuming that L is linear, we apply it to the RBF interpolator, for each of the evaluation nodes,
as an approximation to the values of L in u:

LsεðziÞ ¼
XN

k¼1

λkLφkðziÞ, i ¼ 1; 2,…, Ne;

Lðsεðz1ÞÞ ¼ λ1Lφ1ðz1Þ þ⋯þ λNLφNðz1Þ
⋮ ⋮ ⋮

LðsεðzNeÞÞ ¼ λ1Lφ1ðzNeÞ þ⋯þ λNLφNðzNeÞ

ð10Þ

which in the matrix form is

Lsε ¼ Bλ ð11Þ

where

Lsε ¼
Lðsεðz1ÞÞ

⋮
LðsεðzNeÞÞ

2
4

3
5, B ¼

Lφ1ðz1Þ ⋯ LφNðz1Þ
⋮ ⋮ ⋮

Lφ1ðzNe Þ ⋯ LφNðzNeÞ

2
4

3
5:

The coefficient matrix λ ¼
λ1
⋮
λN

2
4

3
5 is calculated by solving for λ in Eq. (8). In this way, from

Eq. (11) we obtain

Lsε ¼ ðBA�1ÞuX: ð12Þ

Thus, the matrix BA�1 is that matrixDwhich is mentioned in Eq. (9) and that approximates the
values of the differential operator applied to the function.

5. Fractional calculus definitions

The definitions shown in this section are based on the texts of Podlubny [27] and Samko [28].

Generalizing the formula of Cauchy, we obtain

J n
�
f ðtÞ
�
:¼
Z

⋯
Z t

0
f ðτÞdτ ¼ 1

ðn� 1Þ!
Z t

0
ðt� τÞn�1f ðτÞdτ

Definition 2. The left-sided Riemann-Liouville fractional integral of order α of function f(x) is
defined as

Fractal Analysis - Applications in Physics, Engineering and Technology8



RL
a I

α
x f ðxÞ ¼

1
ΓðαÞ

Z x

a
ðx� τÞα�1f ðτÞdτ, x > a: ð13Þ

Definition 3. The right-sided Riemann-Liouville fractional integral of order α of function f(x) is
defined as

RL
xI

α
b f ðxÞ ¼

1
ΓðαÞ

Z b

x
ðτ� xÞα�1f ðτÞdτ, x < b: ð14Þ

Based on the definition of fractional integral, the following fractional derivatives are constructed,
which we will use in the numerical examples

Definition 4. The left-sided Riemann-Liouville fractional derivative of order α of function f(x)
is defined as

RL
aD

α
x f ðxÞ ¼

1
Γðm� αÞ

dm

dxm

Z x

a
ðx� τÞm�α�1f ðτÞdτ, x > a, ð15Þ

where m ¼ ⌈α⌉.

Definition 5. The right-sided Riemann-Liouville fractional derivative of order α of function f(x)
is defined as

RL
xD

α
b f ðxÞ ¼

ð�1Þm
Γðm� αÞ

dm

dxm

Z b

x
ðτ� xÞm�α�1f ðτÞdτ, x < b, ð16Þ

where m ¼ ⌈α⌉.

Definition 6. [28–30] The Riesz fractional operator for α on a finite interval 0 ≤ x ≤ L is defined as

∂α

∂jxjα f ðx, tÞ ¼ �cα RL
aD

α
x þRL

x Dα
b

� �
f ðx, tÞ, ð17Þ

where

cα ¼ 1
2 cos πα

2

� � , α 6¼ 1, ð18Þ

RL
aD

α
x f ðx, tÞ ¼

1
Γðm� αÞ

dm

dxm

Z x

a
ðx� τÞm�α�1f ðτ, tÞdτ, ð19Þ

RL
xD

α
b f ðx, tÞ ¼

ð�1Þm
Γðm� αÞ

dm

dxm

Z b

x
ðτ� xÞm�α�1f ðτ, tÞdτ, ð20Þ

where m ¼ ⌈α⌉.

Definition 7. The left-sided Caputo fractional derivative of order α of function f(x) is defined as
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C
aD

α
x f ðxÞ ¼

1
Γðm� αÞ

Z x

a
ðx� τÞm�α�1f ðmÞðτÞdτ, x > a, ð21Þ

and m ¼ ⌈α⌉.

The fact that the derivative of integer order appears within the integral in Definition 7, makes
Caputo derivative the most suitable for dealing with initial conditions of the FPDEs.

Definition 8. The right-sided Caputo fractional derivative of order α of function f(x) is defined as

C
xD

α
b f ðxÞ ¼

ð�1Þm
Γðm� αÞ

Z b

x
ðτ� xÞm�α�1f ðmÞðτÞdτ, x < b, ð22Þ

and m ¼ ⌈α⌉.

6. Numerical examples

6.1. Fractional partial differential equation with Riesz space fractional derivatives

The equation that we take in this part is the advection-diffusion equation (see [30, 6]).

∂uðx, tÞ
∂t

¼ �Kα
∂αuðx, tÞ
∂jxjα , x∈ ½0,π�, t∈ ð0, T�,

uðx; 0Þ ¼ u0ðxÞ,
uð0, tÞ ¼ uðπ, tÞ ¼ 0,

ð23Þ

where u can be, for example, the concentration of a dissolute substance, Kα the dispersion
coefficient and the fractional derivative of Riesz is given with fractional order 1 < α ≤ 2.

Taking advantage of the fact that for RBFs we can consider non-equispaced collocation nodes,
we divide the interval ½0, π� into N nodes, using Chebyshev distribution (see Figure 1):

xi ¼ π
2
cos ðθiÞ þ π

2
, θi ¼ π� i

π
N � 1

, i ¼ 0; 1,…, N � 1:

The FPDE is solved by the method of lines based on the spatial trial spaces spanned by the
Lagrange basis associated to RBFs. The Lagrange basis L1ðxÞ,…, LNðxÞ is generated by radial
functions φjðxÞ ¼ φðjx� xjjÞ, j ¼ 1; 2,…, N, taking into account the collocation nodes. This is

done by solving the system

Figure 1: Chebyshev nodes distribution over [0, π] interval.

Figure 1. Chebyshev nodes distribution over ½0;π� interval.

Fractal Analysis - Applications in Physics, Engineering and Technology10



LðxÞT ¼ ΦðxÞTA�1 ð24Þ

where

LðxÞT ¼ ½ L1ðxÞ ⋯ LNðxÞ �, ΦðxÞT ¼ ½φ1ðxÞ ⋯ φNðxÞ � ð25Þ

and the Gram matrix

A ¼
φ1ðx1Þ ⋯ φNðx1Þ

⋮ ⋮ ⋮
φ1ðxNÞ ⋯ φNðxNÞ

2
4

3
5:

If L is a differential operator and RBF φ is sufficiently smooth, then the application of such
operator to the Lagrange base is calculated through the relation

ðLLÞðxÞ ¼ ðLφÞA�1:

Because of Lagrange’s standard conditions, the zero boundary conditions in x1 ¼ 0 and xN ¼ π
are de facto fulfilled if we use an approximation generated by the functions L2,…, LN�1. This
approximation is then represented as

uðx, tÞ ¼
XN�1

j¼2

βjðtÞLjðxÞ,

with unknown vector

βðtÞ ¼
β2ðtÞ
⋮

βN�1ðtÞ

2
4

3
5:

Evaluating the interpolator at the PDE in each node xi, we obtain

XN�1

j¼2

β0jðtÞLjðxiÞ ¼ �Kα

XN�1

j¼2

βjðtÞ
∂α

∂jxjα LjðxiÞ

and initial conditions

βjð0Þ ¼ u0ðxjÞ, 2 ≤ j ≤N � 1:

From the latter two equations we obtain the following system of ordinary differential
equations

β0ðtÞ ¼ �Kα
∂α

∂jxjα L
� �

� βðtÞ, βð0Þ ¼ U0,

where
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∂α

∂jxjα L ¼

∂α

∂jxjα L2ðx2Þ ⋯
∂α

∂jxjα LN�1ðx2Þ
⋮ ⋯ ⋮

∂α

∂jxjα L2ðxNÞ ⋯
∂α

∂jxjα LN�1ðxNÞ

2
6664

3
7775 and U0 ¼

u0ðx2Þ
⋮

u0ðxN�1Þ

2
4

3
5: ð26Þ

According to the equation data in articles [30, 6], the problem (23) is taken with parameters
α ¼ 1:8, Kα ¼ 0:25 and u0ðxÞ ¼ x2ðπ� xÞ. For the numerical solution, Gaussian RBF is used
with a shape parameter ε ¼ 0:8, applying the scheme shown in Section 6.1. Graphs are shown
in Figure 2.

6.2. Riemann-Liouville space-fractional diffusion equation

In this part we consider the problem introduced by Sousa [31] and taken up in Ref. [26] by
Cécile and Hanert, the fractional diffusion equation in one dimension

∂f ðx, tÞ
∂t

¼ dðxÞRL0 Dα
x f ðx, tÞ þ qðx, tÞ, x∈ ½0; 1� and t > 0 ð27Þ

with RL
0D

α
x Riemannn-Liouville derivative, 1 < α ≤ 2,

dðxÞ ¼ Γð5� αÞ
24

xα y qðx, tÞ ¼ �2e�tx4:

Initial conditions are considered

f ðx; 0Þ ¼ x4, x∈ ða, bÞ ð28Þ

and Dirichlet boundary conditions

f ð0, tÞ ¼ 0, f ð1, tÞ ¼ e�t: ð29Þ

The exact solution to Eq. (27) is
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Figure 2. RBF approximation to solution, for Eq. (23), with α ¼ 1:8, ε ¼ 0:8 and Kα ¼ 0:25.
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f ðx, tÞ ¼ e�tx4:

We apply RBF and the method of lines with Lagrange polynomials, in a similar way as it was
applied in Section 6.1. With N ¼ 21 Chebyshev collocation nodes and Ne ¼ 100 evaluation
nodes, various values for the order of the derivative α and for shape parameters.

The results obtained by Sousa [31] were obtained by applying implicit Crank-Nicholson
schemes for time. The discretization of the fractional derivative was done using splines, with
second-order precision. The results of both Sousa and RBF are shown in Tables 2 and 3, taking
into account the error

jjuexact � uapproximatedjj∞ ð30Þ

where jj � jj∞ is the ℓ∞ norm.

Global ℓ∞ error (30) of time converged solution for three mesh resolutions at t ¼ 1 for α ¼ 1:2, α ¼ 1:4 and Δt ¼ Δx.

Δx α ¼ 1:2 Rate α ¼ 1:4 Rate

1/15 0:1275 · 10�2 0:9070 · 10�3

1/20 0:7571 · 10�3 1.8 0:5327 · 10�3 1.8

1/25 0:5030 · 10�3 1.8 0:3486 · 10�3 1.9

1/30 0:3566 · 10�3 1.9 0:2461 · 10�3 1.9

Global ℓ∞ error (30) of time converged solution for three mesh resolutions at t ¼ 1 for α ¼ 1:5, α ¼ 1:8 and Δt ¼ Δx.

Δx α ¼ 1:5 Rate α ¼ 1:8 Rate

1/15 0:7660 · 10�3 0:4380 · 10�3

1/20 0:4493 · 10�3 1.9 0:2540 · 10�3 1.9

1/25 0:2929 · 10�3 1.9 0:1649 · 10�3 1.9

1/30 0:2067 · 10�3 1.9 0:1150 · 10�3 2.0

Table 2. Comparison of results for FPDE (27): Sousa results [31].

Global ℓ∞ error (30) of time converged solutions at t ¼ 1 for α ¼ 1:2; 1:4; 1:5; 1:8 and shape parameters ε ¼ 0:6; 1:2.

ε ¼ 0:6

(r)1-2 Order Maximal error ε ¼ 1:2

α ¼ 1:2 0:35574 · 10�4

α ¼ 1:4 0:46508 · 10�4

α ¼ 1:5 0:60498 · 10�4

α ¼ 1:8 0:16994 · 10�4 0:18125 · 10�4

Table 3. Comparison of results for FPDE (27): RBF results.

Applications of Radial Basis Function Schemes to Fractional Partial Differential Equations
http://dx.doi.org/10.5772/67892

13



6.3. Caputo time fractional partial differential equations

In this part we consider examples of fractional partial differential equations (see [32]) of the
type

∂αuðx, tÞ
∂tα

þ δ
∂uðx, tÞ

∂x
þ γ

∂2uðx, tÞ
∂x2

¼ f ðx, tÞ, ð31Þ

where t > 0, x∈ ½a, b�, 0 < α ≤ 1, δ and γ are real parameters, bounded initial condition u(x,0)
¼ u0ðxÞ and Dirichlet boundary conditions uða, tÞ ¼ g1ðtÞ and uðb, tÞ ¼ g2ðtÞ, t ≥ 0. Caputo Deriv-
ative will be considered and rbf-qr routines from www.it.uu.se/research/scientific_computing/
software/rbf_qr

6.3.1. Example 1

Putting δ ¼ 1, γ ¼ �1 and f ðx, tÞ ¼ 2t2�α

Γð3�αÞ þ 2x� 2 in Eq. (31), we obtain a non-homogeneous,

fractional and linear Burger equation

∂αuðx, tÞ
∂tα

þ ∂uðx, tÞ
∂x

� ∂2uðx, tÞ
∂x2

¼ 2t2�α

Γð3� αÞ þ 2x� 2: ð32Þ

Using initial condition

uðx; 0Þ ¼ x2, ð33Þ

Dirichlet boundary conditions

uð0, tÞ ¼ t2, uð1, tÞ ¼ 1þ t2: ð34Þ

The exact solution (see [33]) is

uðx, tÞ ¼ x2 þ t2, ð35Þ

This problem is solved using the method described in section 6.1 along with QR decomposi-
tion for spatial part and an implicit scheme for time, on domain ½0; 1�, fractional derivative of
order α ¼ 0:5; several shape parameters are considered and the one that gives the best approx-
imation is taken. Figure 3 shows a 3D image of the solution and maximal error for the solution
at time t ¼ 1.

In Figure 4 we compare errors that result when choosing uniform collocation nodes (with a
fixed step size) and Chebyshev, on definition interval ½0; 1�. The election of Chebyshev nodes is
due to attenuating instability, which manifests as oscillations in the graph, called the Gibbs
phenomenon [34, 35].

[41 uniform collocation nodes and 100 evaluation nodes, maximal error for t ¼ 0:5, α ¼ 0:5,
ε ¼ 3:6 is 0:83595 · 10�4.] [41 Chebyshev collocation nodes and 100 evaluation nodes, maximal
error for t ¼ 0:5, α ¼ 0:5, ε ¼ 3:6 is 0:14385 · 10�4.]
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6.3.2. Example 2

Putting δ ¼ 1, γ ¼ 0 and f ðx, tÞ ¼ t1�α

Γð2�αÞ sin ðxÞ þ t cos ðxÞ in Eq. (31), we obtain

∂αuðx, tÞ
∂tα

þ ∂uðx, tÞ
∂x

¼ t1�α

Γð2� αÞ sin ðxÞ þ t cos ðxÞ: ð36Þ

Initial condition

uðx; 0Þ ¼ 0, ð37Þ

Next function is the exact solution (see [33]), which is used to set boundary conditions.

uðx, tÞ ¼ t sin x: ð38Þ

The problem is solved by Lagrange (like Section 6.1) and RBF-QR, for α ¼ 0:6, N ¼ 121
collocation nodes on interval ½�3; 3�. In Figure 5 we notice that when the number of uniform
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Figure 3. Numerical solution for Eq. (32) with α ¼ 0:5.
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Figure 4. Comparison between results for Eq. (32) with α ¼ 0:5 and t ¼ 0:5, due to election of nodes. (a) 41 uniform
collocation nodes and 100 evaluation nodes, maximal error for t ¼ 0:5, α ¼ 0:5, ε ¼ 3:6 is 0:83595 · 10�4. (b) 41 Chebyshev
collocation nodes and 100 evaluation nodes, maximal error for t ¼ 0:5, α ¼ 0:5, ε ¼ 3:6 is 0:14385 · 10�4.
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Figure 7. Numerical solution for Eq. (39), order α ¼ 0:7 (subdiffusive phenomenon).
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Figure 5. Unstability due to node election, for Eq. (36). (a) 121 uniform collocation nodes and 101 evaluation nodes,
maximal error for t ¼ 2, α ¼ 0:6, ε ¼ 1:5 is 0:10558 · 1019. (b) 121 Chebyshev collocation nodes and 101 evaluation nodes,
maximal error for t ¼ 2, α ¼ 0:6, ε ¼ 0:2 is 0:71054 · 10�15.
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Figure 6. Numerical solution for equation (39), order α ¼ 0:5 (superdiffusive phenomenon).

Fractal Analysis - Applications in Physics, Engineering and Technology16



collocation nodes grows, there are large oscillations which cause unstability. For this reason,
Chebyshev nodes are also preferred, as they attenuate this misbehavior.

6.3.3. Example 3

Putting δ ¼ 0, γ ¼ �1 and f ðx, tÞ ¼ 0 in Eq. (31), we obtain

∂αuðx, tÞ
∂tα

¼ ∂2uðx, tÞ
∂x2

: ð39Þ

using initial condition

uðx; 0Þ ¼ 4xð1� xÞ, ð40Þ

boundary conditions

uð0, tÞ ¼ uð1, tÞ ¼ 0: ð41Þ

The exact solution of this problem is not known, but is shown as an example of subdiffusive
phenomenon which was discussed in the introduction. The problem is solved using the
method described in section 6.1 along with QR decomposition for spatial part and an implicit
scheme for time, on domain ½0; 1�, fractional derivative of order α ¼ 0:5 and α ¼ 0:7, according
to the results shown in Refs. [36, 32]. Figures 6 and 7 show these results. Figure 8 shows a what
if situation when α ¼ 1:2 (superdiffusive phenomenon), mentioned in Section 1.2.

7. Discussion

The idea was to show that radial basis schemes are efficient and are on par with schemes like
Finite Differences. They are an option to deal with multidimensional and irregular domain
problems. The challenge is to adapt them to deal with diffusive problems, particularly with
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Figure 8. Numerical solution for Eq. (39), order α ¼ 1:2 (superdiffusive phenomenon).
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multidimensional systems of equations that consider that the medium does not have a single
characteristic.

Fuentes et al. show in the work “The fractal models of saturated and unsaturated flows
(capillary, diffusion and matrix) at micro, macro and mega scales”, for the PEMEX oil com-
pany, how to model the pressure which the oil must leave in a wellbore, from a system of triple
porosity and permeability of the fractured medium.

By converting the model into a dimensionless system, in terms of radial distances, non-mesh
schemes such as RBFs sound like a viable option and it is a work that is still being addressed.
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Abstract

In this chapter, we present a discussion about the practical application of the fractal
properties of the medium in the mathematical model through the use of fractional
partial derivatives. We present one of the known models for the flow in saturated media
and its generalization in fractional order derivatives. In the middle section, we present
one of the main arguments that motivate the use of fractional derivatives in the porous
media models, this is the Professor Nigmatullin’s work. The final part describes the
process for obtaining the coupled system of three equations for the monophase flow
with triple porosity and triple permeability, briefly mentioning the method used for the
first solutions of the system.

Keywords: fractional calculus, fractional derivatives, anomalous diffusion, porous
media, fractal dimension

1. Introduction

The objects of nature rarely have a classical geometric form; in the particular case of oil reservoirs,
the ground where the wells are found has been considered with Euclidean geometry; this is not
sufficient in many cases to give good approximations in the mathematical models. Since its forms
are closer to the fractal geometry, the knowledge of this can be useful to develop models that
allow us to better manage the wells. This work presents an approach in fractional derivatives for
the triple porosity and triple permeability monophasic saturated model, based on the one
proposed by Camacho et al. [1, 2] and generalized partially by Fuentes et al. [3]. The main
contribution is to consider the link between fractional equations and fractal geometry through
the revision of Alexander-Orbach’s conjecture [23], taken to the particular case.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Background of the approach of models of diffusion on fractal media

Fractional calculus was originated as a way to generalize classic calculus; however, it is more
difficult to find a direct physical interpretation than in the classical version. When we consider
an oil well as a fractal, it is important to choose which of its properties can be useful for
elaborating a mathematical model [20, 21, 26, 27].

Alexander and Orbach [4] calculated the “spectral dimension (fracton)”; this parameter is
associated to volume and fractal connectivity by being considered as an elastic fractal net of
particles connected by harmonic strings. Thus, we consider the particle movement over this
fractal and we find a relation of root mean square of an r aleatory walker dependent of time
over the fractal, which is in accordance to the following relation:

〈r2ðtÞ〉 ≈ t2=ð2þθÞ, ð1Þ

where r is in euclidean space. Alexander and Orbach defined ds ¼ 2df
2þθ as the spectral dimension

or fracton, where dw ¼ 2þ θ is the dimension of the walk, θ gives us the dependence of the
diffusion constant over the distance and df is the effective dimension [24, 25].

O’Shaughnessy and Procaccia [5] used the concepts of Alexander and Orbach to formulate
their fractal diffusion equation:

∂pðr, tÞ
∂t

¼ 1
rdf�1

∂
∂r

K1r�θrdf�1 ∂pðr, tÞ
∂r

� �
, r > 0; K1constant; ð2Þ

with solution.

Pðr, tÞ ¼ 2þ θ
dfΓðdf =ð2þ θÞÞ

1

ð2þ θÞ2K1t

" #df =ð2þθÞ
exp � r2þθ

ð2þ θÞ2K1t

" #
, ð3Þ

of which one finds a power law

〈r2ðtÞ〉 ¼
Γ

df þ 2
2þ θ

h i

Γ
df

2þ θ

h i ½ð2þ θÞ2K1t�2=ð2þθÞ ¼ 〈r2ð1Þ〉r2=ð2þθÞ: ð4Þ

Metzler et al. [6] started with the characterization of an anomalous diffusion process 1. Here,
they consider dw ¼ θþ 2 as the anomalous diffusion exponent, they are referencing the work of
Havlin and Ben-Avraham [7] to calculate diffusion with a media (1). They obtain an “approach
exponential”:

Pðr, tÞ ≈At�df =dwe�cðr=RÞu , ð5Þ

valid in the asyntotic range r=R≫ 1, and t ! ∞ with R and r defined by
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R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
〈r2ðtÞ〉p

u ¼ dw
dw � 1

:

8<
: ð6Þ

Thus, it is possible to obtain the solution of the fractional derivative diffusion equation:

∂2=dw

∂t2=dw
Pðr, tÞ ¼ 1

rds�1

∂
∂r

rds�1 ∂
∂r

Pðr, tÞ
� �

ð7Þ

where

∂2=dw

∂t2=dw
Pðr, tÞ ¼ 1

Γ 1� 2
dw

� � ∂
∂t

ðt
0
dτ

Pðr, τÞ
ðt� τÞ2=dw

, 0 ≤
2
dw

< 1: ð8Þ

3. Brief history of fractional calculus

In mathematics, one way to obtain new concept is to generalize by extending one definition or
context for values not previously considered. For example, it is possible to generalize the
power concept of xn, for natural n values such as the concept of x, n times, to negative integers
n, as the product of 1

x, n times, then to n rational values such as
ffiffiffiffiffi
xpq

p
, if n ¼ p

q
, with positive p and

q. In each step, the generalization modifies the concept a little, but it keeps the previous one as
a particular case. This process can continue all the way to a complex n. In the same way as
generalizations in differential and integral calculus have been made, in this case the generali-

zation goes toward the n order of the dny
dxn

derivative [22].

Leibniz: In a letter dated September 30, 1695, L’Hôpital, he has been inquired about the

meaning of dny
dxn, if n ¼ 1

2
, in response he wrote: “You can see by that, sir, that one can express

by an infinite series a quantity such as d1=2xy or d1:2xy. Although infinite series and geometry
are distant relations, infinite series admits only the use of exponents that are positive and
negative integers, and does not, as yet, know the use of fractional exponents.” Later in the

same letter, Leibniz continues: “Thus, it follows that d1=2x will be equal to x
ffiffiffiffiffiffiffiffiffiffiffiffi
dx : x

p
. This is an

apparent paradox from which, one day, useful consequences will be drawn.”

In his correspondence with Johan Bernoulli, Leibniz mentioned to him general order deriva-
tives. In 1697, he established that differential calculus can be used to achieve these generaliza-

tions and used the d1=2 notation to denote order 1
2
derivative [22].

Euler: In 1730, Euler proposed derivatives as rate between functions and variables that can be
expressed algebraically; the solution with this approach when the orders are not integers is the
use of interpolations.

The (fractional) non-integer order derivative motivated Euler to introduce the Gamma func-
tion. Euler knew that he needed to generalize (or, as he said, interpolate), the 1 � 2⋯n ¼ n!
product for non-integer n. He proposed an integral:
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Yn

k¼1

n ¼
ð1
0
ð�logxÞndx, ð9Þ

and used it to partially solve the Leibniz paradox. He also gave the basic fractional derivative
(with modern notation Γðnþ 1Þ ¼ n!):

dαxβ

dxα
¼ Γðβþ 1Þ

Γðβ� αþ 1Þ x
β�α, ð10Þ

which is valid for non-integer α and β [22].

Laplace and Lacroix: Laplace also defined his fractional derivative via an integral. In 1819,
Lacroix, applying the (10) formula and the Legendre symbol for Gamma function, was able to

calculate the derivative with y = x and n ¼ 1
2
. He was also the first to use the term “fractional

derivative.” He thus achieved
d1=2y
dx1=2

¼ 2
ffiffiffi
x

p
ffiffiffiffi
π

p : ð11Þ

Fourier: Joseph Fourier (1822), in his famous book “The Analytical Theory of Heat” making use
of this expression of a function and an interpretation of the sines and cosines derivatives gave
his definition of a fractional derivative:

f ðxÞ ¼ 1
2π

ð∞
�∞

f ðαÞdα
ð∞
�∞

cos pðx� αÞdp, ð12Þ

then

dn

dxn
cos pðx� aÞ ¼ pn cos pðx� αÞ þ 1

2
nπ

� �
, ð13Þ

for an integer n. Formally replacing n with an arbitrary u, he obtained the generalization:

du

dxu
f ðxÞ ¼ 1

2π

ð∞
�∞

f ðαÞdα
ð∞
�∞

pu cos pðx� aÞ þ 1
2
uπ

� �
dp: ð14Þ

Fourier thus establishes that the u number can be regarded as any quantity, positive or
negative [8, 22].

Abel: In 1823, N. H. Abel published the solution of a problem presented by Hyugens in 1673:
The tautochrone problem. Abel gave his solution in the form of an integral equation that is
considered the first application of fractional calculus. The integral he worked with is

ðx
0
ðx� tÞ�1

2f ðtÞdt ¼ k: ð15Þ

This integral is, except for the 1=Γ 1
2ð Þ factor, a fractional integral of 1/2 order, Abel wrote the left

part as π d�
1
2

dx�
1
2

h i
f ðxÞ, thus he worked with both sides of the equation as
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ffiffiffiffi
π

p
f ðxÞ ¼ d

1
2

dx1
2
k: ð16Þ

The first integral equation in history had been solved. Two facts may be observed: the regard
for the sum of the orders, and that unlike in classical calculus, the derivative of a constant is not
zero [8, 22].

Liouville: In 1832, Liouville made the first great study of fractional calculus. In his work, he

considered d1=2

dx1=2

� �
e2x. The first formula he obtained was the derivative of a function:

f ðxÞ ¼
X∞
n¼0

cneanx,RðanÞ > 0; ð17Þ

from which he got

Dνf ðxÞ ¼
X∞
n¼0

xnaνne
anx: ð18Þ

that can be obtained using the extension

Dνeax ¼ aνeax, ð19Þ

for an arbitrary number ν. A second definition was achieved by Liouville from the defined
integral:

I ¼
ð∞
0
ua�1e�xudu, a > 0; x > 0; ð20Þ

of which, after a change of variable and a suitable rewriting is obtained

D�νx�a ¼ ð�1ÞνΓðaþ νÞ
ΓðaÞ x�a�ν, a > 0: ð21Þ

Liouville also tackled the tautochrone problem and proposed differential equations of arbi-
trary order.

In 1832, he wrote about a generalization of Leibnitz’s rule about the nth derivative of a product:

Dνf ðxÞgðxÞ ¼
X∞
n¼0

ν
n

� �
Dnf ðxÞDν�ngðxÞ, ð22Þ

where Dn is the ordinary n order differential operator, Dν�n fractional operator, and ν
n

� �
the

generalized binomial coefficient, expressed in terms of the Gamma function, Γðνþ 1Þ
n!Γðν� nþ 1Þ.

Liouville expanded the coefficients in Eq. (18) as
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aνn ¼ lim
h!0

1
hν

ð1� e�hanÞν, an > 0;

ð�1Þνaνn ¼ lim
h!0

1
hν

ð1� ehanÞν, an < 0:
ð23Þ

And inserted those equations in Eq. (18) to get

dν

dxν
f ðxÞ ¼ lim

h!0

1
hν
X∞
n¼0

ð�1Þm
ν

n

 !
f ðx�mhÞ

" #( )
,

¼ ð�1Þνlim
h!0

1
hν
X∞
n¼0

ð�1Þm
ν

n

 !
f ðxþmhÞ

" #( )
:

ð24Þ

These formulas would be retaken by Grünwald in 1867.

Riemann: Riemann developed his Fractional Calculus theory when he was preparing his Ph.D.
thesis, but his oeuvre was published posthumously around 1892. He searched for a generali-
zation of Taylor’s series, in which he defined the n-th differential coefficient of a f(x) function as
the hn coefficient in the f(x + h) expansion with integer powers of h. Thus, he generalizes this
definition to non-integer powers and demands that

f ðxþ hÞ ¼
Xn¼∞

n¼�∞

c� nþ αð∂nþτ
x f ÞðxÞhnþα, ð25Þ

be valid for n∈N, a∈R. The cnþα factor is determined by the ∂βð∂αf Þ ¼ ∂βþαf condition, and he

found that it was 1
Γðnþ αþ 1Þ. Riemann then derived Eq. (25) expression for negative α:

∂αf ¼ 1
Γð�αÞ

ðx
k
ðx� tÞ�α�1f ðtÞdtþ

X∞
n¼1

Kn
x�α�n

Γð�n� αþ 1Þ , ð26Þ

where k, Kn are finite constants. Then, he extended the result to non-negative α.

Sonin and Letnikov: The Russian mathematicians N.Ya. Sonin (1868) and A.V. Letnikov (1868–
1872) [29] made contributions taking as basis the formula for the nth derivative of the Cauchy
integral formula given by

Dnf ðzÞ ¼ n!
2πi

ð

C

f ðξÞ
ðξ� zÞnþ1 dξ: ð27Þ

They worked using the contour integral method, with the contribution of Laurent (1884), they
achieved the definition:

cD�α
x f ðxÞ ¼ 1

ΓðαÞ
ðx
c
ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð28Þ
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For an integration to an arbitrary order, when x > c has the Riemann definition, but without a
complementary definition, when c = 0 we get the shape known as Riemann-Liouville fractional
integral:

0D�α
x f ðxÞ ¼ 1

ΓðαÞ
ðx
0
ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð29Þ

Assigning c values in Eq. (19), we get different integrals of fractional order, which will be
fundamental to define fractional derivatives.

If c = �∞, we get

�∞D�α
x f ðxÞ ¼ 1

ΓðαÞ
ðx
�∞

ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð30Þ

Using integration properties, more definitions will be given.

Grünwald: Another contribution is that of Grünwald (1867) and Letnikov (1868). This exten-
sion of the classical derivative to fractional order is important because it lets us apply it in
numerical approximations. They started with the definition of derivative as a limit given by
Cauchy (1823):

df
dx

¼ lim
h!∞

½f ðxÞ � f ðx� hÞ�
h

: ð31Þ

First generalizing for a nth integer derivative we get

Dnf ðxÞ ¼ lim
h!0

Xn

j¼0
½ð�1Þj n

j

� �
f ðx� jhÞ�

hn
,

n∈N, and f ∈Cn½a, b�, a < x < b:

ð32Þ

Grünwald generalizes Eq. (32) for an arbitrary q value, expressing it as

Dq
af ðxÞ ¼ lim

N!∞
h�q
N

XN

j¼0

ð�1Þj �n
j

� �
f ðx� jhNÞ

2
4

3
5, q∈R, ð33Þ

where the binomial coefficient is

q
j

� �
¼ qðq� 1Þðq� 2Þ⋯ðq� jþ 1Þ

j!
, ð34Þ

also showing that

ð�1Þj q
j

� �
¼ j� q� 1

j

� �
¼ Γðj� qÞ

Γð�qÞΓðjþ 1Þ : ð35Þ
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and with those previous results, it is possible to establish this important property for α∈R and
n∈N

dn

dxn
Dα

a f ðxÞ ¼ Dnþα
a f ðxÞ: ð36Þ

In the twentieth and twenty-first centuries, more definitions will rise, but they will be given in
terms within the Riemann-Liouville fractional integral and will be part of the Modern Frac-
tional Calculus Theory, in all their fundamental definitions [22].

4. Fractional calculus

Wewill now present the assorted definitions and notations of fractional derivatives that will be
used throughout this work. It is worth pointing out that this is necessary because such notation
is currently standardized [18, 19].

4.1. Riemann-Liouville fractional derivative

The Riemann-Liouville derivative is the basis to define most fractional derivatives; it general-
izes the Cauchy’s formula for derivatives of high order. For an f function defined in a [a, b]
interval, a α∈C value with RðαÞ > 0 defines the left and right Riemann-Liouville integrals by

RL
a I

α
x f

� �ðxÞ ¼ 1
ΓðαÞ

ðx
a

f ðtÞ
ðx� tÞ1�α dt, ðx > aÞ, ð37Þ

RL
xI

α
b f

� �ðxÞ ¼ 1
ΓðαÞ

ðb
x

f ðtÞ
ðt� xÞ1�α dt, ðx < bÞ: ð38Þ

Following Riemann’s notion of defining fractional derivatives as the integer order derivative of
an fractional integral, we have the left and right derivative proposal as follows:

ðRLaDα
x f ÞðxÞ ¼

d
dx

� �n�
ðRLa In�α

x f ÞðxÞ
�
, x > a, ð39Þ

ðRLxDα
b f ÞðxÞ ¼ � d

dx

� �n�
ðRLbIn�α

x f ÞðxÞ
�
, x < b, ð40Þ

with n ¼ �⌊RðαÞ⌋, i.e., n ¼ ⌊RðαÞ⌋þ 1.

As shown in Refs. [8–10], these operators generalize the usual derivation. In other words,
when α∈N0, then

ðRLaD0
xf ÞðxÞ ¼ ðRLxD0

b f ÞðxÞ ¼ f ðxÞ, if α ¼ 0; ð41Þ

ðRLaDn
xf ÞðxÞ ¼ f ðnÞðxÞ, ðRLxDn

b f ÞðxÞ ¼ ð�1Þnf ðnÞðxÞ: ð42Þ
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It is also possible to prove that the semigroup propriety about the order of integral operators
(i.e., for α∈CðRðα > 0ÞÞ, β∈CðRðβÞ > 0Þ) is achieved:

�
RL
a I

α
x

�
RL
a I

β
xf
��

ðxÞ ¼
�

RL
a I

αþβ
x f

�
ðxÞ, ð43Þ

�
RL
xI

α
b

�
RL
xI

β
b f
��

ðxÞ ¼
�

RL
xI

αþβ
b f

�
ðxÞ: ð44Þ

For the derivatives, we have

�
RL
aD

α
x

�
RL
aD

β
xf
��

ðxÞ ¼
�

RL
aD

αþβ
x f

�
ðxÞ �

Xm

j¼1

�
RL
aD

β�j
x f

�
ðaÞ ðx� aÞ�j�α

Γð1� j� αÞ : ð45Þ

For f ðxÞ∈Lpð1 ≤ p ≤∞Þ, the following relationships are valid:
�

RL
aD

β
x

�
RL
aI

α
x f
��

ðxÞ ¼RL
a I

α�β
x f ðxÞ, ð46Þ

�
RL
xD

β
b

�
RL
xI

α
b f
��

ðxÞ ¼RL
x I

α�β
b f ðxÞ: ð47Þ

If α = β, we have the identity operator and the operators turn out to be inverted. On the other
hand, if the order of the operators is inverted, it will have

�
RL
a I

β
x

�
RL
aD

α
x f
��

ðxÞ ¼ f ðxÞ �
Xn

j¼1

f ðn�jÞ
n�α ðaÞ

Γðα� jþ 1Þ ðx� αÞα�j, ð48Þ

where RðαÞ > 0;n ¼ ⌊RðαÞ⌋þ 1 and f n�αðxÞ ¼ ðRLa In�α
x f ÞðxÞ in analogy for the right derivative.

All these properties can be used in the phenomena modeling and its solution; such models have
shown to improve usual approaches. However, when using equations with Riemann-Liouville
type fractional derivatives, the initial conditions cannot be interpreted physically; a clear exam-
ple is that the derivative Riemann-Liouville of a constant is not zero, contrary to the impression
that the derivatives gives a notion about the change that the function experiences when advanc-
ing in the time or to modify its position. This was the motivation for another definition that is
better coupled with physical interpretations; this is the derivative of Caputo type.

4.2. Caputo fractional derivative

Michele Caputo [11] published a book in which he introduced a new derivative, which had
been independently discovered by Gerasimov (1948). This derivative is quite important,
because it allows for understanding initial conditions, and is used to model fractional time. In
some texts, it is known as the Gerasimov-Caputo derivative.

Let [a, b] be a finite interval of the real line R, for α∈CðRðαÞ ≥ 0Þ. The left and right Caputo
derivatives are defined as
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C
aD

α
xy

� �ðxÞ ¼ 1
Γðn� αÞ

ðx
a

yðnÞdt

ðx� tÞα�nþ1 ¼ RL
aI

n�α
x Dny

� �ðxÞ, ð49Þ

C
xD

α
b y

� �ðxÞ ¼ ð�1Þn
Γðn� αÞ

ðb
x

yðnÞdt

ðt� xÞα�nþ1 ¼ ð�1Þn RL
xI

n�α
b Dny

� �ðxÞ, ð50Þ

where D ¼ d
dx and n ¼ ��RðαÞ, i.e., n ¼ RðαÞ þ 1 for α∉N0 and n ¼ α for α∈N0. And if

0 < RðαÞ < 1

C
aD

α
xy

� �ðxÞ ¼ 1
Γð1� αÞ

ðx
a

y0dt
ðx� tÞα ¼ RL

a I
1�α
x Dy

� �ðxÞ, ð51Þ

C
xD

α
b y

� �ðxÞ ¼ � 1
Γðn� αÞ

ðb
x

y0dt
ðt� xÞα ¼ � RL

xI
1�α
b Dy

� �ðxÞ: ð52Þ

The connection between Caputo and Riemann derivatives is given by the relations

C
aD

α
xy

� �ðxÞ ¼ RL
aD

α
x yðtÞ �

Xn�1

k¼0

yðkÞðaÞ
k!

ðt� aÞk
" # !

ðxÞ, ð53Þ

C
xD

α
b y

� �ðxÞ ¼ RL
xD

α
b yðtÞ �

Xn�1

k¼0

yðkÞðbÞ
k!

ðb� tÞk
" # !

ðxÞ: ð54Þ

In particular, if 0 < RðαÞ < 1, Eqs. (53) and (54) relation take the following shapes:

C
aD

α
xy

� �ðxÞ ¼ RL
aD

α
x ½yðtÞ � yðaÞ�

� �
ðxÞ, ð55Þ

C
xD

α
b y

� �ðxÞ ¼ RL
xD

α
b ½yðtÞ � yðbÞ�

� �
ðxÞ: ð56Þ

For α = n, then the Caputo derivatives match classical derivatives except for the sign of the
right derivative.

However, for k ¼ 0; 1;…, n� 1, we have

C
aD

α
x ðt� aÞk

� �
ðxÞ ¼ 0; C

xD
α
b ðb� tÞk

�
ðxÞ ¼ 0;

�
ð57Þ

in particular,
C
aD

α
x1

� �ðxÞ ¼ 0; C
xD

α
b 1

� �ðxÞ ¼ 0: ð58Þ

On the other hand, if RðαÞ > 0 and λ > 0, then

C
aD

α
x e

λt� �ðxÞ 6¼ λαeλt, for α∈R: ð59Þ

The Caputo derivatives behave like inverted operators for the left Riemann-Liouville fractional
integrals RL

a I
α
x and RL

xI
α
b , if RðαÞ > 0 and yðxÞ∈C½a, b�
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�
C
aD

α
x

�
RL
aI

α
xy
��

ðxÞ ¼ yðxÞ,
�

C
xD

α
b

�
RL
xI

α
b y
��

ðxÞ ¼ yðxÞ: ð60Þ

On the other hand, if RðαÞ > 0 and n ¼ �⌊�RðαÞ⌋, then for good conditions for y(x)

�
RL
a I

α
x

�
C
aD

α
xy
��

ðxÞ ¼ yðxÞ �
Xn�1

k¼0

yðkÞðaÞ
k!

ðx� aÞk, ð61Þ

�
RL
xI

α
b

�
C
xD

α
b y
��

ðxÞ ¼ yðxÞ �
Xn�1

k¼0

ð�1ÞkyðkÞðbÞ
k!

ðb� xÞk: ð62Þ

In particular if, 0 < RðαÞ ≤ 1, then
�

RL
a I

α
x

�
C
aD

α
xy
��

ðxÞ ¼ yðxÞ � yðaÞ, ð63Þ
�

RL
xI

α
b

�
C
xD

α
b y
��

ðxÞ ¼ yðxÞ � yðbÞ: ð64Þ

In his early articles and several after that, Caputo used a Laplace transformed of the Caputo
fractional derivative, which is given by

ðL{C0Dα
xy}ÞðsÞ ¼ sαðLyÞðsÞ �

Xn�1

k¼0

sα�k�1ðDkyÞð0Þ: ð65Þ

When 0 < α ≤ 1, then

ðLfC0Dα
xygÞðsÞ ¼ sαðLyÞðsÞ � sα�1yð0Þ: ð66Þ

These derivatives can be defined over the whole real axis resulting in the expressions:

CDα
xy

� �ðxÞ ¼ 1
Γðn� αÞ

ðx
�∞

yðnÞðtÞdt
ðx� tÞα�nþ1 , ð67Þ

C
xD

αy
� �ðxÞ ¼ ð�1Þn

Γðn� αÞ
ð∞
x

yðnÞðtÞdt
ðt� xÞα�nþ1 , ð68Þ

with x∈R.

5. Fractal geometry and fractional calculus

The phenomenon of anomalous diffusion is mathematically modeled by a fractional partial
differential equation. The parameters of this equation are uniquely determined by the fractal
dimension of the underlying object.

Application of Fractional Calculus to Oil Industry
http://dx.doi.org/10.5772/intechopen.68571

31



There are some results that show the relationship between fractals and fractional operators
[24]; two of the most important that motivated the particular study of the equations to deter-
mine the pressure deficit in oil wells are highlighted below.

5.1. Cantor’s Bars and fractional integral

In 1992, Nigmatullin [12] presents one of the most distinguished contributions to the search of
the concrete relationship between the fractal dimension of a porous medium and the order
of the fractional derivative to model a phenomena through such a medium; in this, he achieves
the evolution of a physical system of a Cantor set type.

In his research, Nigmatullin proposes a relationship between the fractal dimension of a Cantor
type set and the order of a fractional integral of the Riemann-Liouville type. The systems he
considers are named phenomena with “memory.” The use of fractional derivatives given by
assuming a transference function J(t) in relationship to a rectifiable function f(t) through the
convolution operator with a distribution K*(t) establishes that

JðtÞ ¼ K⋆ðtÞ � f ðtÞ ¼
ðt
0
K⋆ðt� τÞf ðτÞdτ: ð69Þ

Where the distribution to apply (see Refs. [13, 14]) is a so-called “Cantor’s Bars” KT,νðtÞ,
supported in the [0, T] interval, with a fractal dimension ν ¼ lnð2Þ=lnð1=ξÞ, with ξ∈ ½0; 1=2�
being the compression factor, normalized in L1.

Through the result of distribution values, he establishes the relation:

JðtÞ ¼ 〈KT,νðtÞ〉 � f ðtÞ ¼ BðνÞT�νRL
0D

�ν
x ½f ðtÞ� ¼ BðνÞT�ν

ΓðνÞ
�
tν�1 � f ðtÞ

�
, ð70Þ

〈KT,νðtÞ〉 ¼
ð1=2
�1=2

KT,νðtξ�xÞð2ξÞ�x dx ¼ BðνÞ
ΓðνÞ

t
T

� �ν�1

, ð71Þ

BðνÞ ¼
ð1=2
�1=2

qνðzþ xlnξÞ dx: ð72Þ

Thus, assuming a porous medium with a ν fractal dimension, we establish a fractional deriv-
ative of �ν order.

The initial results were strongly questioned by different authors, including Roman Rutman
(see Refs. [15, 16]), who asserts that the relation is so artificial. However, recent works suggest
that Nigmatullin’s statements are not far from reality, but it is necessary to reduce the set of
functions and that of fractals for which the necessary convergence is fulfilled.

6. Fractional calculus for modeling oil pressure

In this section, the Equation Continuity which follows from the law of conservation of mass is
established. Darcy’s law is used to relate fluid motion to pressure and gravitational gradients.
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The combination of the Continuity Equation and Darcy’s Law leads to a heat-conducting
differential equation in mathematical physics describing the transfer of the fluid. We obtain a
system formed by three partial differential equations, one for each fluid. This multiphase
system must be solved considering the relevant boundary and initial conditions [30].

In the particular case of naturally fractured reservoirs (see Refs. [1, 2]), usually it is possible to
discern three porosity types: matrix, fracture, and vugs; with this conception, it is accepted that
the three porosities have associated a solid phase, and with this both Continuity Equation and
Darcy’s law can be expressed for each fluid in each geometrical media. If we only consider oil
(monophasic) in a isotropic and saturated media, we can obtain a three equations system; for this,
we begin with standard continuity equation and standard Darcy’s law, respectively (see Ref. [17]):

∂ðρθÞ
∂t

þ ∇ � pðρqÞ ¼ ρϒ , q ¼ � 1
μ
kðpÞð∇p� ρg∇DÞ, ð73Þ

where θ is the volumetric content of fluid; q ¼ ðq1, q2, q3Þ is the Darcy flux, with its spatial
components (x ,y, z), t is the time; ρ is the density of the fluid; μ is the dynamic viscosity of the
fluid; g gravitational acceleration; ϒ is a source term and represents a volume provided per
volume unit of porous media in the time unity; p is the pressure; D is the depth as a function of
spatial coordinates, usually identified to the vertical coordinate z; k is the permeability tensor
of the partially saturated porous media and it depends on the pressure. The relations θ(p) and
k(p) are the fluid-dynamics characteristics of the media.

General fluid transfer equation results combining the formulas in Eq. (73):

∂ðρθÞ
∂t

¼ ∇ � p½ρ
μ
kðpÞð∇p� ρg∇DÞ� þ ρϒ : ð74Þ

This differential equation contains two dependent variables, namely the humidity content and
fluid pressure, but they are related. For this reason, the saturation S(p) is defined so that

θðpÞ ¼ φðpÞSðpÞ ð75Þ

where φ is the total porosity of the medium, and the specific capacity defined by

CðpÞ ¼ dðρφSÞ
dp

¼ φS
dρ
dp

þ ρS
dφ
dp

þ ρφ
dS
dp

, ð76Þ

in consequence

∂ðρθÞ
∂t

¼ CðpÞ ∂p
∂t

, ð77Þ

6.1. Triadic media

The porous media is considered to be formed by three porous media: the matrix, fractured
media, and vuggy media. The total volume of the porous media (VT) is equal to the sum of the
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total volume of the matrix (Vm), of the total volume of the fractured medium (VF) and of the
total volume of the vuggy media (VG). In other words

VT ¼ VM þ VF þ VG, ð78Þ

each of the porous media contains solids and voids so that

VM ¼ VMS þ VMV ð79Þ
VF ¼ VFS þ VFV ð80Þ
VG ¼ VGS þ VGV : ð81Þ

The porous medium as everything contains solids and voids, with the following relations:

VT ¼ VTS þ VTV, VTS ¼ VMS þ VFS þ VGS, VTV ¼ VMV þ VFV þ VGV : ð82Þ

The volume fraction occupied by the matrix is defined as (νM), the volume fraction occupied by
the fractured media as νF, and the fraction that occupies the vuggy media as (νG) relative to the
total volume of the porous medium given by

νM ¼ VM

VT
, νf ¼ VF

VT
, νG ¼ VG

VT
, νM þ νF þ νG ¼ 1: ð83Þ

The porosity of the porous media (φ), in matrix (φM), fracture media (φF) and vuggy media
(φG) are defined by

φ ¼ VTV

VT
, φM ¼ VMV

VM
, φF ¼ VFV

VF
, φG ¼ VGV

VG
: ð84Þ

From the above equations, we deduce the relation between the porosities:

φ ¼ νMφM þ νFφF þ νGφG ð85Þ

When the empty space contains fluid partially, the total volumetric content of the fluid (θ) as
the total fluid volume (VTW) with respect to the total volume of the porous medium is
ðVTÞ : θ ¼ VTW=VT . In an analogous way, the volumetric content of fluid in the matrix is defined
θM ¼ VMW=VM, in the fractured media θF ¼ VFW=VF and vuggy media θG ¼ VGW=VG. It
follows that

θ ¼ νMθM þ νFθF þ νGθG ð86Þ

which is reduced to Eq. (85) when the porous medium is fully saturated with fluid. It is
satisfied: 0 < θ < φ; 0 < θM < φM; 0 < θF < φF; 0 < θG < φG. The relation between the total
volumetric flow of the fluid per unit area in the porous medium (q), the volumetric flow per
unit area in the matrix (qM), the volumetric flow per unit area in the fractured medium qF, and
the volumetric flow per unit area in the vuggy media (qG) is analogous to Eq. (86), namely
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q ¼ νMqM þ νFqF þ νGqG ð87Þ

The continuity equations for the matrix, the fractured medium, and the vuggy media consid-
ering Eq. (86) acquire the form

∂ðρθiÞ
∂t

þ ∇ � pðρqiÞ ¼ ρϒi, i ¼ M, F, G: ð88Þ

Darcy’s law for the matrix, the fractured medium, and the vuggy media, takes the form

qi ¼ � 1
μ
kiðpiÞð∇pi � ρg∇DÞ, i ¼ M, F, G ð89Þ

The equation of continuity of the porous medium, Eq. (73), is deduced from the sum of Eq. (88)
previously multiplied by νm, νF, νG, respectively, if the source terms are related by

ϒ ¼ νMϒM þ νFϒF þ νGϒG ð90Þ

from Eqs. (87) and (89), the following relationships are deduced:

kðpÞ ¼ νMkMðpMÞ þ νFkFðpFÞ þ νGkGðpGÞ ð91Þ

ΦðpÞ ¼ νMΦMðpMÞ þ νFΦFðpMÞ þ νGΦGðpGÞ ð92Þ

where Φ represents the potential of Kirchoff which is generically defined as

ΦðpÞ ¼
ðp
�∞

kðuÞdu ð93Þ

If there is no fluid gain or loss in the porous medium, then ϒ = 0 and in consequence:

νMϒM ¼ ϒMF þ ϒMG ð94Þ
νFϒF ¼ �ϒMF þ ϒFG ð95Þ
υGϒG ¼ �ϒMG � ϒFG ð96Þ

where ϒMF is the input of fluid that receives the matrix from the fractured medium, ϒMG is the
fluid input that receives the matrix of the vuggy media, and ϒFG is the contribution of fluid
that receives the fractured medium from the vuggy media.

The system of differential equations is defined as follows:

∂ðρθMÞ
∂t

¼ ∇ � p½ρ
μ
kMðpMÞð∇pM � ρg∇DÞ� þ ρ

νM
ðϒMF þ ϒMGÞ ð97Þ

∂ðρθFÞ
∂t

¼ ∇ � p½ρ
μ
kFðpFÞð∇pF � ρg∇DÞ� � ρ

νF
ðϒMF þ ϒFGÞ ð98Þ
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∂ðρθGÞ
∂t

¼ ∇ � p½ρ
μ
kGðpGÞð∇pG � ρg∇DÞ� � ρ

νG
ðϒMG þ ϒFGÞ: ð99Þ

The contributions of fluid in each porous medium are modeled with the following relations:

ϒMF ¼ aMFðpF � pMÞ, ð100Þ

ϒMG ¼ aMGðpG � pMÞ, ð101Þ

ϒFG ¼ aFGðpG � pFÞ, ð102Þ

where aMF, aMG, and aFG are transfer coefficients at each interface, which may depend on the
pressures on the adjacent media.

6.2. Monophasic flow saturated in triadic media

In the case of the monophasic flow saturated in triadic means, the continuity equations in each
porous medium can be written as follows:

∂ðρφiÞ
∂t

þ ∇ � pðρqiÞ ¼ ρϒi, i ¼ M,F,G: ð103Þ

Darcy’s law for each porous media takes the form

qi ¼ � 1
μ
kið∇pi � ρg∇DÞ, i ¼ M,F, G: ð104Þ

The substitution of Darcy’s law in the continuity equation leads to the following equations:

∂ðρφMÞ
∂t

¼ ∇ � p½ρ
μ
kMð∇pM � ρg∇DÞ� þ ρ

νM
ðϒMF þ ϒMGÞ, ð105Þ

∂ðρφFÞ
∂t

¼ ∇ � p½ρ
μ
kFð∇pF � ρg∇DÞ� � ρ

νF
ðϒMF � ϒFGÞ, ð106Þ

∂ðρφGÞ
∂t

¼ ∇ � p½ρ
μ
kGð∇pG � ρg∇DÞ� � ρ

νG
ðϒMF þ ϒFGÞ: ð107Þ

When the fluid is considered at constant density and viscosity and the means of constant
permeability, with D = z, we have

φMcM
∂pM
∂t

¼ kM
μ

ΔpM þ 1
νM

ðϒMF þ ϒMGÞ, cM ¼ 1
φM

∂φM

∂pM
, ð108Þ

φFcF
∂pF
∂t

¼ kF
μ
ΔpF �

1
νF

ðϒMF � ϒFGÞ, cF ¼ 1
φF

∂φF

∂pF
, ð109Þ
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φGcG
∂pG
∂t

¼ kG
μ
ΔpG � 1

νG
ðϒMF � ϒFGÞ, cG ¼ 1

φG

∂φG

∂pG
ð110Þ

6.3. Triple porosity and triple permeability model

The porosity of each medium has been defined as the volume of the space occupied by the
medium. However, the porosity can be defined as the volume of empty space in each medium
with respect to the volume of the total space occupied by the porous medium as a whole. These
new porosities will be denoted with subscripts in lowercase letters and clearly have

φm ¼ νMφM, φf ¼ νFφF,φg ¼ νGφG ð111Þ

φ ¼ φm þ φf þ φg ð112Þ

In an analogous way, the corresponding Darcy´s flow can be defined in each medium:

qm ¼ νMqM, qf ¼ νFqF, qg ¼ νGqG ð113Þ

q ¼ qm þ qf þ qg ð114Þ

Eq. (113) implies that the permeability of the Darcy’s law in each medium is defined as

km ¼ νMkM, kf ¼ νFkF, kg ¼ νGkG ð115Þ

The nest system by Eqs. (108)–(110), by congruently changing the subscripts in uppercase by
lowercase in the pressures, in terms of compressibility, is written as follows:

φmcm
∂pm
∂t

¼ km
μ
Δpm þ ðϒmf þ ϒmgÞ, cm ¼ 1

φm

∂φm

∂pm
, ð116Þ

φf cf
∂pf
∂t

¼ kf
μ
Δpf � ðϒmf � ϒf gÞ, cf ¼ 1

φf

∂φf

∂pf
, ð117Þ

φgcg
∂pg
∂t

¼ kg
μ
Δpg � ðϒmg þ ϒmgÞ, cg ¼ 1

φg

∂φg

∂pg
ð118Þ

with pm � pM, pf � pM, pg � pG,ϒmf � ϒMF,ϒmg � ϒMG,ϒf g � ϒFG, cm � cM, cf � cF, cg � cG.

The substitution of Eqs. (116)–(118) in Eqs. (100)–(102) leads to the system of differential
equations that finalize the pressure in the matrix, fractured media, and vuggy media:

φmcm
∂pm
∂t

¼ km
μ
Δpm þ amf ðpf � pmÞ þ amgðpg � pmÞ, ð119Þ

φf cf
∂pf
∂t

¼ kf
μ
Δpf � amf ðpf � pmÞ þ af gðpg � pf Þ, ð120Þ
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φgcg
∂pg
∂t

¼ kg
μ
Δpg � amgðpg � pmÞ � af gðpg � pf Þ, ð121Þ

in which this system constitutes a triple porosity and triple permeability model. In polar coordi-
nates, the system reduces to

φmcm
∂pm
∂t

¼ km
μ
1
r
∂
∂r

ðr ∂pm
∂r

Þ þ amf ðpf � pmÞ þ amgðpg � pmÞ, ð122Þ

φf cf
∂pf
∂t

¼ kf
μ
1
r
∂
∂r

ðr
∂pf
∂r

Þ � amf ðpf � pmÞ þ af gðpg � pf Þ, ð123Þ

φgcg
∂pg
∂t

¼ kg
μ
1
r
∂
∂r

ðr
∂pg
∂r

Þ � amgðpg � pmÞ � af gðpg � pf Þ ð124Þ

6.4. Dimensionless variables

Now we will give a process of dimensionlessness to better manage the variables. This is a
technique commonly used to make the parameters or variables in an equation having no units,
bring to a range the possible values of a variable or constant in order that its value is known,
and in this way, more manipulable.

The system of Eqs. (122)–(124) takes the following form after making the changes mentioned in
the previous paragraph:

ð1� ωf � ωvÞ ∂pDm

∂tD
¼ ð1� κf � κvÞ 1

rD

∂
∂rD

ðrD ∂pDm

∂rD
Þ þ λmf ðpDf � pDmÞ þ λmvðpDv � pDmÞ ð125Þ

ωf
∂pDf

∂tD
¼ κf

1
rD

∂
∂rD

ðrD
∂pDf

∂rD
Þ � λmf ðpDf � pDmÞ þ λf vðpDv � pDf Þ ð126Þ

ωv
∂pDv

∂tD
¼ κv

1
rD

∂
∂rD

ðrD ∂pDv

∂rD
Þ � λmvðpDv � pDmÞ � λf vðpDv � pDf Þ ð127Þ

where

ωf ¼
φf cf

φmcm þ φf cf þ φvcv
,ωg ¼ φvcv

φmcm þ φf cf þ φvcv
, rD ¼ r

rw
ð128Þ

κf ¼
kf

km þ kf þ kv
,κg ¼ kv

km þ kf þ kv
ð129Þ

λmf ¼
amfμr2w

km þ kf þ kv
,λmv ¼ amvμr2w

km þ kf þ kv
,λf v ¼

af vμr2w
km þ kf þ kv

ð130Þ

pDj ¼
2πhðkm þ kf þ kvÞðpi � pjÞ

Q0B0μ
, tD ¼ tðkm þ kf þ kvÞ

μr2wðφmcm þ φf cf þ φvcvÞ
ð131Þ
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Eqs. (128)–(131) represent dimensionless variables so they have no units. The boundary condi-
tions to which the previous model is subjected are

lim
rD!1

rDð1� κf � κvÞ ∂pDm

∂rD
þ rDκv

∂pDv

∂rD
¼ �1 ð132Þ

pwðtÞ ¼ pDmðrD, tÞjrD¼1 ¼ pDf ðrD, tÞjrD¼1 ¼ pDvðrD, tÞjrD¼1 ¼ �1 ð133Þ

Substituting derivatives ∂pDi
∂tD

by Caputo fractional derivatives∂
αi pDj

t
αi
D

with 0 < αi≦1, and ∂
∂rD

ðrD∂pDj

∂rD
Þ by

Riemann-Liouville complementary derivative, i. e., with infinite limit of integration, (also

called Weyl derivative) ∂γi
∂r

γi
D
ðrD∂βi pDj

∂r
βi
D

Þ, with 1 < γi þ βi ≤ 2, i ¼ 1; 2; 3; j ¼ v, f , m; αi, βi,γi rational

numbers.

The choice of the derivatives, Caputo and Riemann-Liouville (Weyl), obeys the nature of the
problem and the ease with which they can be manipulated.

The monophase flow model with triple porosity and triple permeability is expressed as fol-
lows: For the matrix

ð1� ωf � ωvÞ ∂
α1pm
∂tα1

¼ ð1� κf � κvÞ 1r
∂γ1

∂rγ1
r
∂β1pm
∂rβ1

� �
þ λmf ðpf � pmÞ þ λmvðpv � pmÞ, ð134Þ

for fracture media

ωf
∂α2pf
∂tα2

¼ κf
1
r
∂γ2

∂rγ2
r
∂β2pf
∂rβ2

 !
� λmf ðpf � pmÞ þ λf vðpv � pf Þ, ð135Þ

for vuggs

ωv
∂α3pv
∂tα3

¼ κv
1
r
∂γ3

∂rγ3
r
∂β3pv
∂rβ3

� �
� λmvðpv � pmÞ � λf vðpv � pf Þ: ð136Þ

We reduce this system by applying semigroup properties with respect to the order of the Weyl
derivative, assuming: 0 < αi ≤ 1 and 1 < αi þ βi ≤ 2. Let ω ¼ 1� ωf � ωv;κ ¼ 1� κf � κv, put-
ting pm = p; pf = f; pv = u; r = x; ηi ¼ γi þ βi. Then, the previous system can be expressed as

∂α1p
∂tα1

¼ κ
ω

�γ1
1
x

∂η1�1p
∂xη1 � 1

þ ∂η1p
∂xη1

� �
þ λmf

ω
ðf � pÞ þ λmv

ω
ðu� pÞ, ð137Þ

∂α2 f
∂tα2

¼ κ
ωf

�γ2
1
x

∂η2�1f
∂xη2 � 1

þ ∂η2 f
∂xη2

� �
� λmf

ωf
ðf � pÞ þ λf v

ωf
ðu� f Þ, ð138Þ

∂α3u
∂tα3

¼ κ
ωv

�γ3
1
x

∂η3�1u
∂xη3 � 1

þ ∂η3u
∂xη3

� �
� λmv

ωv
ðu� pÞ þ λf v

ωv
ðu� f Þ: ð139Þ
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The above approach can be solved by numerical methods as finite differences along with a
predictor-corrector, such as Daftardar-Gejji works, for example in [19] and compared with
previous ones, such as that presented by Camacho et al. [18, 28], the approximations are
significantly improved. However, there is still work to be completed; the optimal solution
method has not been found and the best way to determine the appropriate order, so far
numerical methods, has been used to estimate the order that best approximates measurements.

The application of the fractional calculation can be very useful for the modeling of anomalous
diffusion phenomena in which the fractal structure better reflects the real conditions of the
medium, as it is the case of the reservoirs in which because of its very nature it is difficult to
find a structure Euclidian.
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Abstract

Recently, telecommunication systems have been requiring more advanced features in
the design and operation. Among others a smaller size of devices, which can be
integrated for multiple mobile communication systems, applied in one user’s device
board, such as PDA or smart phone. Moreover, the cost of mass production should be
minimized as much as possible. To meet part of that request, the antennas of these
devices should have small size, lower weight, operating in multiple frequency bands
and/or be broadband. There are many research methods to achieve this goal, one of
which is using the fractal geometries for the shape of antenna elements. In recent
years, there are many fractal shapes that have been proposed for such applications,
and the designed antennas have significantly improved antenna features such as
smaller size, operating in multi-frequency bands, with improved power gain and
efficiency. In recent years, the new approach for modern antenna the metamaterials,
MTM, is adopted, and sometimes that based on the fractal geometry is adopted.

Keywords: fractal geometries, fractal dimension, IFS, fractal antenna, antenna elements,
multiband, power gain, efficiency, compact size, antenna array, metamaterials, MTM

1. Introduction

Antenna structures are well known, it takes them a lot of research and development centres.
Relatively rarely appearing solutions that represent a new approach in the view of the traditional
methods of design are applied to modern radio communication systems [9]. So far, the antenna
had simple shapes that are described in Euclidean geometry. In the past dozen years, many
scientists around the world tried to make the structure of fractal geometry for applications in the
field of electromagnetism, which led to the development of new innovative construction of
antennas and artificial dielectric/magnetic materials, so-called metamaterials, MTM.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Structure based on fractal geometry cannot be described in the traditional Euclidean geometry.
They are built with sequence of replicas based on the same shapes, which could be scaled,
rotated and displaced in the space. In the research environment in the field of electromagne-
tism, intriguing was the answer to the question whether the properties of fractals can be useful
in the design of elements of specific electromagnetic properties.

Fractals are abstract objects that, as satisfying in the strict sense of mathematical description,
cannot be physically implemented, because these are infinite. However, you can make some
assumptions in relation to the ideal fractal, which allow for constructing electromagnetic
instruments, such as antennas, filters and microwave substrates having high surface imped-
ance, circuit filters, electronic components of frequency-stop-band properties and others. Typ-
ically, these shapes are called pre-fractals or truncated fractals. You can apply different
geometries, such as configurations of multiple triangles or other complicated constructions to
build antennas that may be similar to fractal shapes and extract some of their advantages,
which in theory can be obtained as a result of mathematical abstraction. Generally, the fractal
antenna technology is a term used to describe these antenna engineering techniques, which are
based on such mathematical concepts that provide generation of new antennas with some
features that were not possible even in the mid-1980s.

To sum up the results of the work carried out so far, you can formulate the following benefits
resulting from the application of the fractal technology:

1. Self-similarity is useful in the design of multi-frequency antenna, as, for example, the
devices based on the Sierpinski fractal gasket or carpet, Minkowski fractal loop or patch
that have been used in the design of multi-band antenna.

2. The self-filling property is useful for the design of electrically small antennas, such as
Hilbert fractal, Peano fractal and Koch fractal monopoles or loops and the microstrip
antennas.

3. The mass fractals and the boarder fractals are useful in obtaining high directivity and low
sidelobes antenna elements and arrays.

4. Recently, the self-filling in space curves like Hilbert and Peano fractals were used to obtain
high-impedance ground plane EBG, so-called metamaterials, used to design high perfor-
mance, low profile, conformal antennas with enhanced radiation characteristics and
improved power gain of various communication and radar applications.

Fractal geometry has many applications in life and open up new research directions in many
fields such as biology and economics. In many EM devices, the self-similarity and plane-filling
nature of fractal geometries are often qualitatively linked to its frequency characteristics, i.e.
multi-frequency operation, or small size in low frequency bands. In addition, fractal geome-
tries have been used in the electromagnetic radiation, and especially in the design of antennas
with compact size and operating at multiband frequency. Some important characteristics of
fractal geometries can be applied to design antenna. The self-similar design is used to operate
the multi-band antenna. The self-space-filling structure of the fractal is used to design the small
antennas. Mass fractals and boundary fractals are used to design array antennas.
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1.1. Brief introduction to fractal geometry

The original inspiration for the development of fractal geometry came largely from an in-depth
study of the patterns of nature (see Figure 1).

The fractals, for example, have been successfully applied to the modelling of complex objects
found in nature, such as systems of galaxies and strokes of clouds, mountain ranges, coast-
lines, snowflakes, trees, foliage plants and many others. By millions of years of evolution,
nature optimizes architecture biological structures for effective distribution and use of energy,
and, in principle, fractal shapes can be found in each of these structures.

Mandelbrot realized [10] that very often it is impossible to describe the objects that occur in
nature using only Euclidean geometry, by means of straight lines, circles, cubes and the like.
He proposed that fractals and fractal geometry can be used to describe real objects, such as
trees, flashes of lightning, meandering rivers and coasts, to name just a few. Fractal dimensions
need not be expressed using integers, so intuitively, we present them as a measure of how
much space does the fractal occupies.

Fractals can be found in nature or could be generated using mathematical rules. Probably the
easiest way to define a fractal is to describe it as an object, which is similar in varying degrees
of zoom, and as a result, with the symmetry of the whole scale, with each a small part of the
entire structure of the replacement object. Some examples of objects that have the characteris-
tics of the self-similarity are shown in Figure 2.

Here are five properties, which most fractals have:

• They are made up of elements with any small scale,

• They are usually defined by a simple recursive processes,

• They are too irregular to be described using traditional Euclidian geometry,

• They have some type of self-similarity,

• They have fractal dimensions.

Figure 1. Fractal objects in nature: leaf of fern (a), the most popular—snowflakes (b) and human lungs formed by fractal
canopies (c).
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1.2. Why use the antenna of fractal geometry?

Antennas are generally narrowband devices. Their properties depend on the size of the
referenced to the wavelength. This means that for fixed antenna sizes, its parameters: power
gain, input impedance, the radiation patterns, the side lobe level and distribution of surface
currents will be continued strong changes when the operating frequency will change. Frequency
dependency also means that the antenna should retain the minimum size in relation to the
wavelength of operation, to work effectively. This means that for a given frequency, the antenna
cannot be arbitrarily small, usually of the minimum size level of a quarter wavelengths.

These well-known rules for antenna engineers are being used for dozens of years in
constructing the antennas of telecommunications systems. However, the dependence of the
wavelength antenna size is still a problem in many systems where previously used antennas
are not particularly useful. In this sense, the application of fractal geometry in the design of
antennas and antenna arrays can help in dealing with the problems of designing antennas
that meet the requirements of modern communication systems not found so far. The reason
why the fractal design of antennas and MTM appears as an attractive way to make it is few-
fold (Figure 3).

First, this is because you should expect each antenna similar to other, which is built with
multiple copies of the same in different scales in size, to act in a similar way, for a few
wavelengths. This means that the antenna should keep similar parameters of radiation for a
few wavelengths.

Second, because the properties of the self-filling to an area of some fractals (fractal size) may
allow small objects in the fractal shape to make better use of the small surrounding space.
Fractal antenna and antenna arrays design derives from a mixture of two seemingly
unconnected disciplines, namely, the theory of electromagnetism and geometry. From the first
spiral and log-periodic antennas, developed in the early sixties of the 20th century by D.E.
Isbell, R. DuHamelet and variants by P. Mayes [48] and from the works of Benoit Mandelbrot
fractal geometry, the fractal antenna appears as a natural way to solve the problem of antenna
working on multiple frequencies and antennas of reduced size.

Figure 2. The self-similar components of different fractals: Sierpinski gasket (a), dragon (b) and Koch’s curve (c).
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Figure 3. Fractal antennas (a) and the various fractal geometries, fall into few main categories: loops, dipoles, multiband
fractal patches, antenna arrays, metamaterials (b).
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1.3. How can you adopt fractal shapes in the design of antennas?

While Euclidean geometry is limited to points, lines, surfaces, and volumes, fractals include
geometry, which come down between the two shapes. Therefore, a fractal can be a line, which
is coming to the surface. The line can bend in such a way so as to effectively fill almost the
entire surface. These properties of self-fill space lead to curves that are electrically very long
but are located in a small space. This property can in effect lead to the miniaturization of
antenna elements. In the previous section, it was mentioned that pre-fractals limit the com-
plexity of fractal geometry, which is not recognized for specific applications. For antennas, it
can mean that the curvatures, which are much smaller than the wavelength of the frequency
range in use, can be dropped [11].

This causes the infinitely complex structure, which can be analysed only mathematically, not to
be created physically. You can, however, show that the number of iterations required to
achieve the benefits of miniaturization is limited to a few, before there will be the complexities
difficult to distinguish in the so created structure. Not yet released many interesting works,
which relate to the nascent field of the fractal electrodynamics.

Much of the pioneering work has been documented in Refs. [12, 13]. Most of them apply to
mathematical foundations, as well as researches in the field of fractal antennas and/or EM
wave reflection analysis of fractal surface. The area self-filling properties by the Hilbert fractal
and related curves, e.g. the Peano fractal, make them attractive candidates for use in the design
of antennas.

The Hilbert fractal self-filling properties were tested in Ref. [11] as an effective method to
design a compact resonant antenna. The first four steps (iterations) of the construction of the
Hilbert curve are shown in Figure 4.

The fractal structure of self-affine geometry [14] is shown in Figure 4b. It is constructed by
scaling of the square, with a factor 3 in the horizontal direction, and a factor 2 in the vertical
direction, creating six rectangles, out of which was removed in the top of the middle rectangle.
This is the first iteration. The second iteration of this procedure is repeated for the remaining
rectangles, and it can continue indefinitely. Such a way of generating fractal structures is
defined by using the iterative function system (IFS).

1.4. The language of fractals

1.4.1. Iterated function system

A universal method to generate a variety of fractal structures is the iterative function system
(IFS) introduced in Refs. [10, 15�22], that is based on the use of a series of affine transforma-
tions, w, defined by

w
x
y

� �
¼ a b

c d

� �
x
y

� �
þ e

f

� �
ð1Þ

where real number coefficients (a, b, c, d, e, f) are responsible for movement of fractal element in
space: a, d—scaling, b, c—rotation by ϕ1, ϕ2 angles with respect to axis of coordinating system
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and e, f—linear translation by the vector (e, f), respectively (see Figure 5). They are expressed
as follows: a ¼ δ1 cosϕ1; d ¼ δ2 cosϕ2; b ¼ δ2 sinϕ2; c ¼ δ1 sinϕ1.

Suppose now that you should consider w1, w2,…, wi as a system of linear affine transforma-
tions, and let A be the initial geometry. A new geometry you create by applying a series of
transformations to the initial geometry and collecting the results of w1 (A), w2 (A),…, wi (A),
which can be represented as follows:

WðAÞ ¼ ∪Ii¼1wiðAÞ ð2Þ

where W is known as the Hutchinson operator [15, 22].

The structure of the fractal can be obtained by using the operator W repeatedly, starting from
the initial through geometry. For example, when the initial geometry represents A0, the next
generation it gains as a result of

Figure 4. The four iterations of Hilbert fractal self-filing curve (a) and the self-affine fractal multiband antenna (b).

Figure 5. The affine transforms.
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A1 ¼ WðA0Þ; A2 ¼ WðA1Þ; …; Akþ1 ¼ WðAkÞ ð3Þ

Iterative system IFS generates sequences that converge to the final image A∞, and it is that the

WðA∞Þ ¼ A∞ ð4Þ

The result obtained is called an attractor of the IFS and represents a “fixed point” operator W.
For the Koch fractal curve (Figure 2c), the affine transformation matrix has the form

wq
x
y

� �
¼ δq1 cosθq1 �δq2 sinθq2

δq1 sinθq1 δq2 cosθq2

� �
x
y

� �
þ tq1

tq2

� �
ð5Þ

where the scaling factor is expressed as δq ¼ ð2þ 2 cosθqÞ�1, θqi is the inclination angle of the
second subsection with respect to the first and tqi is an element displacement on the plane.

Figure 6 illustrates the iterated function system procedure for generating the well-known Koch
fractal curve.

In this case, the initial set, A0, is the line interval of unit length, i.e., A0 ¼ fx : x∈ ½0, 1�g;
θq ¼ 600, and δq ¼ 1

3.

The results of the four linear transformations are combined together to form the first iteration
of the Koch’s curve, described by A1. The second iteration, A2, of the Koch’s curve can be
obtained by applying to the A1 same four affine transformations.

The Koch’s curves of higher order are generated by repeating the iterative process, until you
reach the desired resolution. The first four iterations of the Koch curve are shown in Figure 6c.
Table 1 shows the collection of the basic fractal structures, with particular importance for the
construction of antennas for the low-frequency bands, multi-frequency operated as well as for
the construction of metamaterials.

1.4.2. Self-affine sets

Self-affine sets form an important class of sets, which include self-similar sets as a particular
case. An affine transformation S : Rn ! Rn is as follow [15]:

wðx, yÞ ¼ Tðx, yÞ þ t ð6Þ

where T is the affine transformation on Rn, which can be represented in (n x n)-matrix
notation, and t is the vector in space Rn.

As you can see that the affine transformation is a combination of translation, rotation, dilation
and reflection (Figure 4b). In particular, w could convert the sphere to an ellipsoid, squares to
parallelograms, etc. Unlike the similarity, affine transformations are accomplished with differ-
ent coefficients in different directions.

If w1,…, wm are self-affine construction onRn, so it is a unique, unchanging set of F for the wi is
referred to as the self-affine set of equations. In Figure 5, w1, w2 and w3 are defined as
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transformations that map the section into three equal sections, obviously. It is natural, there-
fore, to search for the description for size self-affine transformations, which will serve as the
generalization of the formula for systems and geometries with similar affine transformations.

We hope that the dimension depends on the formula of affine transformation set in a relatively
simple way, easily presented to the matrix and/or the vectors that represent transformation.
Unfortunately, the situation is more complicated. If the affine transform change continuously,
the dimensions of the set of self-affine do not need to change continuously. Such intermittent
behaviour becomes more difficult for the more complex affine transformation; therefore, it
may be difficult to obtain a general expression in the form of affine sets.

1.4.3. The fractal dimension

In general, we can imagine objects that have a zero dimension, 0D (points), 1D (lines), 2D
(plane) and 3D (solid). We feel comfortable with the objects of such dimensions. We create a 3D

Figure 6. The IFS (a), the affine transformation matrix (b) and the first four iteration steps of construction (c) of the Koch
fractal curve.
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image of our world by combining 2D images from each of our eyes. You can also imagine
multidimensional objects, that is, 4D, 5D, 6D. And, what about objects which have non-integer
dimensions, such as 2.12 D, 3.79 D or 36.91232 … (D)? Classical methods of geometry and
calculus are not suitable for studying fractals, and that is why we need alternative techniques.

There are many definitions of fractal dimensions [22], many of them are evaluated in Ref. [15]
that include: similarity dimension, DS; the division dimension, DD; the Hausdorff dimension,
DH; the boxing counting dimension, DB; the correlation dimension, DC; the information dimen-
sion, DI; the point wise dimension, DP; the averaged point wise dimension, DA; and the
Lyapunov dimension, DL. The last seven dimensions listed are particularly useful in identifying
the fractal structures in the form of strange attractors, related to the chaotic dynamics.

So, the main tool for the description of fractal geometry is a dimension, in many forms. In a
large simplification, the dimension determines how much space has been filled. This is a
measure of how many are exposed irregularities when we look at in a very small scale. The
dimension contains a lot of information about the geometric properties of the fractal structure.

In the classification of fractals, one of the most important is the Hausdorff dimension [22]. In
fact, Mandelbrot suggested that fractal can be defined as an object that has a Hausdorff
dimension, exceeding its topological dimension. A complete mathematical description of
Hausdorff dimension is beyond the scope of this text [15]. In addition, the Hausdorff dimen-
sion is not particularly useful for an engineer or a scientist wanting to evaluate the fractal
object, because it is virtually impossible to designate the actual data.

The Hausdorff dimension, for example, and the box counting dimension can be defined for
any sets and you can show that they are equal to the similarity dimension. We will focus on the
use of the similarity dimension, DS, to characterize the properties of regular fractals. The
dimension DS is a key parameter for describing the structure of the self-similar fractal and is
defined by the segmenting of the volume covering the fractal, on cubes of side δ. We assume
that at least one of the cubes will contain the described fractal

NðδÞe δ�D ð7Þ

The concept of dimension is closely associated with scaling. Consider lines, surfaces, and solids,
divided by self-similar shorter segment, smaller surfaces and little volumes, with a side δ. For
simplicity, assume that the length L, the area A and the volume V are equal to unity. First,
consider the line, divided into N smaller segments, each with a length of δ. In this case δ is the
factor scale that means δ/L = δwith line of a unity length of N equal segments, scaled by δ = 1/N.

Now consider the unit area. If we divide it into N segments, each with an area δ2, because A =
Nδ2 = 1, i.e. per unit area consists ofN identical scaled by δ = 1/N ^ (1/2). Using similar reasoning,
the unit for volumeV = n δ ^ 3 = 1, which is the unit of volume consists ofN identical cubes scaled
by δ = 1/N ^ (1/3) self-similar parts. Comparing the above expressions, we see that the exponent δ
in each case is a measure of the similarity of the object. We can generally describe it as

N δDS ¼ 1 ð8Þ

In logarithmic measure, it leads to an expression,
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DS ¼ logðNÞ
logð1δÞ

ð9Þ

Note that here the letter “S” denotes the similarity dimension. The above expression has been
derived using familiar objects, which have the same integer Euclidean, topological and simi-
larity dimensions, i.e. a straight line, planar surface and solid object, where DE = DS = DT.
However, Eq. (9) may also be used to produce dimension estimates of fractal objects where DS
is non-integer. The DS dimensions of all representative fractals are introduced in Table 1.

2. Useful fractal geometry in antenna engineering

After reviewing the properties of fractal geometry, you might want to explain what benefits
you can get with such geometry used in the construction of antennas. Fractals are abstract
objects, which cannot be implemented physically. You can apply some simplification in
approach to an ideal of fractals, which will allow you to use them in the construction of
antennas. Such simplified geometries are called pre-fractals or truncated fractals.

Configurations, consisting of many triangles or multilevel meandered structures, that are close
to the fractal shapes and have some advantages, which in theory can be obtained only as a
result of mathematical abstraction, can be used as antennas. Generally, the term “fractal
antenna technology” is used to describe these antenna engineering techniques, which are
based on mathematical concepts, enabling the creation of a new generation of antennas, which,
even in the mid-1980s, were often regarded as impossible to achieve.

As a result of the works carried out so far, you can point to the benefits of using the fractal
antenna technology: (1) self-similarity is useful in the design of the antenna working on
multiple frequencies, for example, the Sierpinski triangle, fractal tree and the Cantor set; (2)
self-filling reduces the overall dimension and is useful for the design of small antennas, such as
monopoles/loops/microstrip patches of Hilbert, Peano, Minkowski, Koch fractal shapes; (3)
mass fractals and boundary fractals are used in the construction of antenna of high directivity
and low sidelobes level.

Probably the earliest publication in which the term fractal radiating element, fractal antenna for
the determination of elements made of crooked wires appeared was released in May 1994 [23].

2.1. Fractal dipole antenna

An interesting study of the space-filling properties of fractal antennas is to investigate fractal
dipole antennas. Three types of Koch fractals were compared as dipoles. They are depicted in
Figure 6c and Table 1, for the first stages of growth. The Koch fractal dipole is shown in
Figure 7.

The output structure for construction of fractal Koch [24] and fractal tree [25] was dipole
antenna of height h. As previously calculated (Table 1), Koch fractal has a fractal (similarity)
size ofDS = 1.2619. Fractal tree is similar to a real tree, in the sense that at the top each branch is
divided into more branches. In the tree, flat (two-dimensional) each of the three branches is
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divided into two sections. The length of each branch remains the same, in this way, going from
the base of the tree to the top of the branches have the same length as the initiator. Fractal
dimension (the similarity) is equal to DS = 1.395 for flat tree and 1.5849 for the three-
dimensional tree.

Decrease in the resonance frequency has the same effect as the miniaturization of antenna at a
constant frequency. The same can be said about the flat antenna structures. The use of non-
planar structures, 3-D, increases this effect.

As you can see from the research, the benefits of the application of fractal for miniaturization
antennas are already achieved by the first few iterations. By observing the resonance frequency
of the antenna, it is also very interesting to look at the quality factor Q of these antennas
[15, 26]. It can be observed if due to fact that fractal wire antenna fills the space more effectively
than linear dipole, it has lower Q-factor. Quality factor is reduced for greater number of
iterations, what can be expected. Any increase in the generation of iteration brings the geom-
etry of fractal away from the linear one-dimensional dipole and closer to the ideal fractal.

As mentioned many times before, an important feature of much fractal geometry is the self-
filling. The size of the antenna is a critical parameter, because the electromagnetic properties
depend on the antenna dimensions related to the wavelength (λ). In many applications, the
amount of space occupied by an antenna is a factor limitations, therefore, may not be comparable
to the wavelength, but less, that are called the small antennas. It is said that the antenna is
electrically small, when its largest dimension is smaller than the diameter of the sphere of which
the radius r is of specified dependency r = λ/2π [15]. Wheeler and Chuwere the first who showed
the fundamental limitations of such antennas. Hilbert, Koch, Peano fractals are especially useful
in the design of small antennas. The purpose of this section is to present characteristics of
miniature microstrip (printed) antennas in the shape of a Hilbert curves and Koch patches.

2.2. Fractal patch antennas

Fractals can be used for miniaturization of surface antenna, as well as linear elements. Applies
the same concepts in order to increase the electrical dimensions of flat radiating element as
wire were [15–21, 26, 27]. Flat antenna can be seen, as a microstrip line with extended

Figure 7. Koch fractal dipole printed on microwave laminate (a), wire fractal tree (b) and resonant frequencies of Koch,
two-dimensional and three-dimensional trees fractals versus iteration (c).
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transverse dimensions. Therefore, if the electric current is forced to flow along the meandered
fractal path instead of a simple Euclidean path, the area required for the placement of resonant
transmission line can be greatly reduced. This technique has been applied to the design of, so-
called microstrip antennas of different shapes of patches of fractal geometry, which are fabri-
cated (printed) by means of photo etching technology or in the fast laser prototyping pro-
cesses.

One of the fractal structures was discovered in 1916 by Polish mathematician Wacław
Sierpiński. So called, Sierpinski gasket applied to the construction of the antenna has the
properties of multi-frequency operations, due to the fact that it is made up of similar triangles,
in each of the roof in the heights scaled with the factor δ. This design was first proposed by
Puente et al. [28] (Figure 8).

From the point of view of antenna engineering, interpretation shown in Figure 8a is such that
the dark areas of the triangle represent the conductive metallic surfaces, white areas of the
triangle represent surfaces where metal has been removed. With few exceptions (notably log-
periodic aerials), typically we use a single antenna for our system (frequency) as shown in
Figure 8b. So, in this case, we have three antennas in one compact configuration. The geometry
of fractal antenna in the form of a Sierpinski gasket is completely determined by four param-
eters: the height h of the triangle, the countersink angle α, the number of iterations I, and by the

Figure 8. Sierpinski fractal gasket triangle of fifth-iteration as monopole antenna (a), second-iteration Sierpinski triangle
as equivalent antenna to an array of three triangles (b) and input reflection coefficient of antenna (a) versus frequency (c).
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scaling factor (δ = hi/hi + 1, where hi is the height of triangle). As it was described in Ref. [20], the
Sierpinski monopole behaves like the antenna of logarithmic-periodic geometry [16, 19, 29]
(Figure 8c), with the each next resonant frequencies separated by the distant relative but
reversed to self-similarity scale factor δ = 2. The antenna has similar parameters for the next
resonant frequency, with a moderate bandwidth BW = 21% [15�17, 28, 29, 48].

f ri ¼ 0:3 cos
α
2

� � ffiffiffiffiffiffiffiffiffi
2:5
εref f

s
c
h
δi ð10Þ

where c is the speed of light in vacuum, h is the height of the largest gasket, δ is the log period
scaling factor, i is a natural number of iterations, and εreff r is the effective permittivity of the
antenna substrate.

Figure 9 shows the new flat IFA antenna (inverted-F-antenna) made in the form of the Hilbert
fractal curve for use in handset of mobile cellular phone GSM 900/1800 system. Such geometry
of the antenna effectively increases the length of the path for the electrical current comparably
to a simple antenna IFA, occupying the same surface. Such solution allows significant minia-
turization of the antenna. To support the two frequency bands of GSM, two antenna elements
are designed in the shape of a fractal Hilbert.

Antenna, consisting of two elements in the form of a Hilbert pre-fractal, as shown in
Figure 9, is designed for GSM 900/1800 mobile system handset [9]. The smaller element,
near the power point, works on a higher frequency of 1.8 GHz, while the bigger one at
f = 900 MHz. Each element has been built in the form of a Hilbert curve of second iteration
i = 2. The antenna was fabricated on one-side metalized microwave laminate of type
DUROID-5880 (hs = 0.125 mm, εrr = 2.2, tanδ = 0.009) and placed on the foam, Rochacell 51

Figure 9. Photo of miniaturized Hilbert fractal PIFA antenna (a) and input impedance plot on Smith Chart (b).
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IG/A (hf = 9 mm, εrr = 1.071, tanδ = 0.0031). This design is about 50% (~4.3 cm3) of the volume
occupied by the conventional microstrip planar inverted-F, PIFA antenna.

Another microstrip patch antenna with edges in the shape of a Koch pre-fractal [30] is shown
in Figure 10. It was designed for the handset terminal, smartphone, cooperating with several
mobile communication systems: GSM1800, UMTS and HiperLAN2. Application of PIFA
antenna in conjunction with the fractal geometry reduces antenna size by 62% compared to
the conventional PIFA.

Two identical PIFA antennas, in the form of Koch pre-fractal (as former one), are placed above
the screen of finite sizes (100 · 45 mm2—the typical size of a smartphone) have been applied
for MIMO (Multiple Input Multiple Output) system.

The Sierpinski fractal carpet (Figure 10b) was used by the Spanish company FRACTUS, to
build the build-in antenna of a mobile cellular system GSM 900/1800 handset.

3. Metamaterials in electromagnetics applications

3.1. Introduction

Basic research and applications of electromagnetism have undergone different phases of
development, keeping pace with the general socio-technology growth [3]. Currently, there is a
huge demand for small antennas for mobile communication systems [31]. In the microwave
frequency range, It is tried to solve the problem by the use of artificial dielectrics and or
magnetic materials, so-called metamaterials, MTMs. They have been used in place of tradi-
tional one as surrounding environment, e.g. the substrates or ground planes to build antennas,
filters and other microwave devices. The MTMs are also used, as energy absorbers of electro-
magnetic waves in order to eliminate the effects of surface currents, which can cause unwanted
EM-coupling between nearly situated elements or produce the reflected signals (echoes) in
radar applications.

Figure 10. Photos of the microstrip patches of Koch fractal double-PIFA (a) and Sierpinski carpet (b) antennas.
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We distinguish two main categories of metamaterials: (1) SNGs are such one, which are
characterized by single-negative (�ε or �μ) and DNG the double-negative (�ε and �μ)
material parameters, built with the cells of small sizes (~λ/10); (2) EBGs are so-called electro-
magnetic bandgap materials, and FSSs are the frequency selective materials, where the peri-
odic structure is built out of cells of size comparable with the wavelength (typical λ/2).

The MTMs completely revolutionized the construction technologies of small microwave com-
ponents such as antennas, filters, and others that provide high directivity (antenna) attenua-
tion (filters) in a wide range of frequencies that are comparable to those they had previously
used in microwave devices of much larger sizes.

3.2. Electromagnetic environment of negative material parameters

Electromagnetic materials in nature play a major role in operation of the instruments operating
on the basis of the phenomena of electricity and magnetism, such as capacitors, inductors,
resonant circuits and, in general, the physics of propagation of EM waves. The discovery of
artificially made materials with unusual properties such as negative electrical permittivity and/
or permeability, causing the occurrence of negative refractive index, negative propagation of
EM waves and the inverse Doppler effect [3, 33–37] changed the way of thinking of scientists
and engineers.

It is well known that the reaction of the system for the presence of the electromagnetic field
depends to a large extent on the properties of the materials used and the parameters of the
environment in which they occur. Therefore, the behaviour of the material (environment), in
the presence of the electromagnetic field, depends on the macroscopic material parameters:
permittivity ε, permeability μ and conductivity σ. Figure 11 shows the classification of mate-
rials on the basis of the parameters ε and μ.

Figure 11. Material classifications.
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Concept of metamaterial (MTM) technology appeared in the 1990s, with the work of about
macroscopic composites of synthetic cells, periodic over the matter [2]. However, the initial
attempts to use “artificial” materials were initiated in the end of nineteenth century in 1898
by Jagadis Chunder Bose carried out by his experiment with coiled structures [38].
Lindman was next in the artificial media explorers, who researched the artificial chiral
media in 1914 [39].

In the last 20 years since the end period of twentieth century, an increased interest in MTM
technologies has been observed. This involves researches on super lens, applications in
telecommunications, including antennas and transmission lines [40], and nowadays in the
direction of improving the parameters of microwave devices, which will then satisfy the
electromagnetic compatibility of communication systems [41]. As mentioned previously,
MTM is the composite of macroscopic cells of periodically or non-periodically distributed
all around structure, whose parameters depend on the cells architecture and the chemical
composition [42]. MTMs are formed through the introduction of integration (e.g. molecules)
in the structure of the material of the dielectric substrates. These inclusions change the
electromagnetic properties of dielectric material of interest. In this work, different MTM
patterns as fractal cells, and CLL cells, are applied. Almost all bulk MTMs used at the present
state of art are based on cell structures that consist of a dense array of thin wires DWA, a ring
resonator—RR (Ring Resonator) or CLL (Capacitively Loaded Loop) in SRR (Split Ring
resonator) or CSRR (Complementary Split Ring Resonator) configuration topologies. They
are oriented according to the wave direction.

V. G. Veselago suggested a novel aspect at this new kind of materials [3]. Theoretical
foundation of the occurrence of the “electromagnetic materials that exhibit both negative values
for ε and μ” was published in 1968 [32]. It describes some of the properties of these mate-
rials, such as (1) a negative refractive index, (2) phase reverse, (3) left-handed triad, (4)
reversed the effect of the Vavilov-Cerenkov, (5) inverted Doppler effect, (6) anisotropy
frequency dispersion and so on. Using them, it means the MTM, to build electromagnetic
instruments makes the lens completely flat, and the waves on the border of media with such
materials are reflected in the same direction where they come from. Nowadays a number of
names for the MTM with negative permittivity and negative permeability have been used
such as (1) LH—left-handed media; (2) NRI—a negative refraction index media; (3) the
BWM backward wave media; and (4) DNG MTM double negative-MTM.

3.3. Dipoles and loops as the building cells of metamaterial

The structures proposed in Ref. [32] do not exist in nature; therefore, try to create them
artificially in the laboratory. The MTMs are created in the form of small cells as inclusions or
homogeneities embedded in the host medium. They could also be attached or embedded on
the surface of the host substrate. One of the most widely used structures MTM are arrays of
densely spaced elementary electrical dipoles, in the form of thin wires [43] (Figure 12).

If the operating frequency is lower than the cut-off frequency of an array (“plasma frequency”),
the equivalent effective permittivity (1) is negative (ENG). When a lattice constant a is much
smaller than a wavelength (a ≪ λ), the wire array can be thought as a continuous plasma like
material described by an equivalent macroscopic ε—relative permittivity [4]:

Fractals in Antennas and Metamaterials Applications
http://dx.doi.org/10.5772/intechopen.68188

63



εref f , z ¼ ε,ref f , z � jε, ,ref f , z ¼ 1�
f 2p

f 2 � jγf
ð11Þ

where, εref f , z denotes the effective relative permittivity in the z-direction, f and fp represent the
signal frequency and the cut-off-frequency of the array, respectively, whereas γ is a factor that
represents losses.

Eq. (11) applies only if the propagation takes place in transversal (x-y) plane.

The plasma frequency generally depends on the geometry of the system (a lattice constant,
wire radius). The relative ε in the transversal directions (x and y) is always positive and, in a
case of thin wires, is approximately equal to that of vacuum (εref x,y ffi 1). Permittivity is
positive above the plasma frequency (EPS). However, if the frequency is only slightly higher
than the plasma frequency, the structure will support the propagation of waves with a wave-
length much longer than the length of the wave in free space, because of the relative permit-
tivity that takes very small positive values (εr ≪ 1). In this region, the structure behaves like a
low-loss of epsilon-near-zero, ENZ MTM.

Such MTMs give rise to the phenomena of ultra-reflection and spatial filtering, which can be
used to increase the directivity of simple antennas. Currently, the MTMs are implemented in
the form of an array of metallization properly oriented in space, which is therefore internally
homogeneous and microscopic. On the other hand, the size of the metallization and the
distance between them are very small compared to the wavelength (electrically small).
Relying on the theory of effective media, it is reasonable, therefore, to seek the bulk proper-
ties, in this case, the bulk permittivity and permeability that characterize the macroscopic
behaviour of the medium.

Figure 12. An array of dipoles in the form of thin-wires-based MTM (a) and effective permittivity of such MTM (b).
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Since the first theoretical introduction in Ref. [6], an array of SRR inclusions (Figure 13a) has
been widely used for the synthesis of MNG metamaterials [4].

A SSR can be thought of as a small, CLL-loaded antenna [4]. If the antenna is working just
above the resonance frequency, local distributed magnetic field will be almost in the opposite
phase relative to the incident field. Therefore, the resulting local magnetic field will be smaller
than the incident field. It leads to a negative magnetic polarity and negative effective perme-
ability of the resulting metamaterial. It has been shown that the effective permeability of such
metamaterials can be specified on the basis of an analysis of loop antenna system used in the
cells that make up the MTM [4].

μref f ¼ μ,
ref f � jμ, ,

ref f ¼ 1�
f 2mp � f 20

f 2 � f 20 � jγf
ð12Þ

where f is the frequency of the signal, fmp denotes the frequency in lossless case when μeff = 0 (“mag-
netic plasma frequency”), f0 is the frequency at which μeff diverges (the resonant frequency of SRR)
and γ represents the losses.

Eq. (12) describes the simplified SRR model that does not take into account the minor electrical
polarization [44] and some small bi-anisotropic effects [45], which obviously influences the
effective permeability. The SRR is treated as a purely magnetic particle.

Figure 13b shows the dependence of the effective permeability μeff as a function of frequency.
The frequencies of the fmp and f0 depend on architecture of SSR distribution, as well as its
geometric parameters (internal and external radiuses and the width of the slits) [44]).

Figure 13. An array of SRRs (a) and effective permeability of array (b).

Fractals in Antennas and Metamaterials Applications
http://dx.doi.org/10.5772/intechopen.68188

65



A general SRR-array-based MNG MTM can be described by a 2 · 2 uniaxial permeability
tensor:

μ ¼ μ0
μtr 0
0 μlr

� �
¼ μ0ðμ

0
r � jμ

00
r Þ ¼ μ0μr ð13Þ

where μ0 is the absolute permeability and μtr and μlr are the relative permeability in the
transversal (x) and longitudinal (y) directions, respectively.

Current implementations of MTM rely on “infinite” rods and split-ring resonators (SRRs), as
shown in Figure 14, to achieve a negative permittivity and a negative permeability, respectively.

The MTM, built from the rings (loop antenna) and rods (small electric dipole) from micro-
scopic view, is seen as a homogeneous effective medium, characterized by the material param-
eters ε and μ. This approach is possible because the sizes of the rings and rods as well as the
distances between them are very small compared to the wavelength.

The shapes of the rings, their effective radii, width of metallization and many other factors
directly translate into MTM properties: the position of the resonance frequency and plasma
frequency that control directly into frequency bandwidth in which appear the negative values
of �ε and/or �μ [44]. Therefore, the design and optimization of the geometry of the rings have
still been a current area of research.

For lossy DNG MTM material, negative permeability and permittivity can be determined by
using the Drude model [44] as follows:

εðωÞ ¼ ε0 1� ω2
pe

ωðω� jΓeÞ

" #
ð14Þ

μðωÞ ¼ μ0 1� ω2
pm

ωðω� jΓmÞ

" #
ð15Þ

where ωpe, ωpm and Γe, Γm mean plasma frequency and the damping frequency, respectively.

Figure 14. Synthesis of DNG MTM.
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Analysis based on the Drude model can be implemented in the FDTD method by introduction
of appropriate density of electric current to the equations that describe their temporal behav-
iour. For modelling of E (M) NG MTM, the dispersion permittivity or permeability is replaced
by the frequency-independent constants.

Many research groups in the world have been studying various aspects of this class of MTM,
where a number of ideas and suggestions for future applications of these materials have been
proposed. Initially, it was to enter the isotropic material parameters, namely scalar permeabil-
ity (ε) and scalar permeability (μ). The isotropic approximation, however, is valid for single
polarization of excitation of MTM containing rings in the two dimensions, such as in the
original experiment. Later versions of the MTM were built by using rings in only one direction
only, which violates the principle of isotropy and creates a MTM internally anisotropic. The
relative parameters of the material, therefore, must be described in the form of tensors, char-
acterizing the model of biaxial media.

3.4. Negative refractive index

The phenomenon of EM-waves refraction with a negative refraction coefficient has been
studied taking into account the EM wave scattering incident at any angle to the boundary
surface of the DPS-DNG materials, as shown in Figure 15.

Enforcing the electromagnetic boundary conditions at the interface, one obtains the law of
reflection and Snell’s Law from phase matching:

θref 1 ¼ θref 2 ð16Þ

θtrans ¼ sgnðn2Þ sin �1 n1
jn2j sinθinc

� �
ð17Þ

It should be noted that if the refractive index of medium is negative, it means the angle of
refraction, in accordance with of the Snell’s law, should be “negative”. This suggests that the
refraction is abnormal, and the angle of refraction is on the same side of the normal to the
interface as the incident wave angle is (see Figure 16).

Figure 15. Refraction properties of the resonant MTM.
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3.5. Metamaterials of high impedances surface

MTMs with high-impedance surface HIS are also known as artificial magnetic conductors
that drew the attention of investigators in the past few years [5]. These surfaces have a
reflectivity coefficient Γ ffi +1 when plane wave illuminate it, in contrast to the typical Γ ffi�1
in the case of the surfaces of perfectly electrically conductive (PEC). These structures can
meet the interesting application in the design of the antenna [46] and the thin absorbing
screens.

For example, a dipole antenna located above such HIS MTM has an image current with the
same phase as the current on the host dipole, such phenomena increase the level of EM-waves
radiation as well as the efficiency of dipole antenna. Several different types of HIS as the
modified ground planes have been studied by a number of research groups [46, 47].

Because the magnetic conductive surfaces do not occur naturally, it is necessary to create them
artificially to meet the surface conduction properties in selected frequency ranges. This can be
achieved by utilizing the resonant properties of inclusions on the non-conducting substrate
host layer in parallel with the ground plane. Near resonance frequency on inclusions of strong
surface currents is induced and together with the conductive ground plane, this structure
behave as an equivalent magnetic conductor PMC also known as HIS, for a frequency range
corresponding to the vicinity of a resonance of the surface.

Figure 16. Imaging with DPS and DNG materials.
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Periodical MTM can be divided into two groups: (1) the three-dimensional volumetric struc-
ture and (2) the two-dimensional surfaces. The latter, have such advantages as low profile, low
weight and low-cost production. Therefore, such a solution is proposed in mobile wireless
communication systems [4].

The artificial surfaces have been testing for many years and so far have developed such as
frequency-selective surfaces (FSSs) [9]; artificial soft and hard surfaces LIS and HIS, respec-
tively [10], and micro-machined substrates [4]. Recently, the planar EBG surfaces are proposed
[4], which have some specific properties relative to incident waves, respectively when

i. an incident wave is a surface wave (k2x þ k2y ≥ k20, where the kx and ky are wavenumbers in

horizontal direction, while the k0 is the wavenumber in a free space), analyses of such
structure shows if it has the property of bandgap (EBG) material, it means that a surface
wave cannot propagate along it for any incident angle and polarization, and

ii. an incident wave is plane wave (k2x þ k2y < k20), the reflection coefficient of a material is

equal Γ = +1 for a specific frequency, which resembles to the PMC that does not exist in
nature. The simplest example of a textured electromagnetic surface is a metal plate, in
which milling out the grooves (corrugations) with a depth of d = λ/4 [32, 38], is shown
in Figure 17a.

This structure depending on the polarization and direction of propagation of the EM-wave is
described as a soft or hard surface [4]. The action of such surface, relative to EM-fields we can
understand treating the corrugations as transmission quarter-wavelength lines, short-circuited
at the bottom of each groove, which is transformed in the open-circuit at the top of the surface.
This provides a high impedance (hard surface) for electric fields polarized perpendicular to the
grooves and low impedance (loft surface) for parallel-polarized electric fields. Soft LIS and
hard HIS surfaces are used in various applications, such as modification of radiation patterns
of aperture antennas (open-end waveguide, horn, parabolic dish, slot, microstrip, etc.), the
elimination of surface currents between the radiating elements of flat antenna arrays

Figure 17. A traditional corrugated surface consists of a metal slab with narrow quarter-wavelength long slots (a) and a high-
impedance surface is built as a thin two-dimensional lattice of plates attached to a ground plane by metal-plated vias (b).
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(minimization of mutual couplings) or modelling of parameters of the edges on which the
diffraction of EM-waves occur.

More compact metal constructions, with a thickness much less than λ/4, that change the
boundary conditions for the EM-wave, were proposed in Ref. [4]. They are built of metal in
the shape of mushrooms (flat metal square over short-pin), about the size of a much smaller
wavelength, as shown in Figure 17b. Each of these “mushrooms” can be modelled as an LC-
resonant circuit. The structure has reduced thickness that is achieved by means of capacitive
load. These materials provide high-impedance boundary conditions for both polarization
and all directions of propagation of waves, and act as hard surfaces. EM waves reflecting
from such surface do not change the phase, ϕ = 0, as opposed to reflection from the perfect
conductor, for which ϕ = π.

It is sometimes known as artificial magnetic conductor, because tangential component of
magnetic field H is equal to zero on the surface, such as the E-field tangential component
on the surface of a perfect conductor (metal). In addition to the unusual behaviour of
phase of the reflected EM-wave, these materials have a bandgap of the surface wave in
which they prevent the occurrence of TM and/or TE-surface waves. Hence, it can be
treated as a kind of bandgap structure for electromagnetic waves (EBG) or photonic
crystal for surface waves [4]. Although the surface waves cannot propagate in such
structures, leaky TE-modes of EM-wave can propagate within the bandgap, which can be
useful in some applications.

One of the possibilities to form inclusions that are resonant but have an electrically small
footprint at their resonant frequency is the use of the space-filling curves of fractal
geometry.

4. Metamaterials based on fractal geometries

At the beginning of the twenty-first century appeared the new MTM configurations, based on
fractal geometry. This allows for a significant reduction in the size of individual cells, which are
built of artificial materials, which, in turn, translates into higher homogeneity of the material
and the reductions in the profile of artificial ground [1].

Many shapes have been proposed for artificial magnetic materials [6]. Figure 18 shows some of
these topologies.

Figure 18. Some particles used inmagneticMTM: SRR (a),meta solenoid (b), split spiral (c), and ringwith arbitrary shape (d).
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New structures, despite of the other shapes, provide unchanged mechanism of its operation.
When the resonant-cells are immersed in the media, where there an external magnetic field
Hext exists, the changes in magnetic flux density, covered by these inclusions in the shape of the
rings, induces in them the electromotive force (emf). Voltages of emf cause the current flow on
the ring surface, which, in turn, induces a dipole magnetic moment. In turn, the dipole
magnetic moment is the source of the effective permeability. We will try to determine the
magnetic moments of any shape cell-inclusions (see Figure 18d). The electromagnetic proper-
ties of the proposed structures were examined in detail and compared to a property of spiral-
shaped cells.

4.1. MTM based on Hilbert fractal curves

In this chapter, we introduce combination of the square spiral loop configuration with fractal
Hilbert curves as inclusions for artificial magnetic material to further increase the miniaturiza-
tion potential (Figure 19).

It is shown that by using third-order fractal Hilbert curves, inclusions as small as λ/55
(Figure 19c) (λ the wavelength in the host dielectric at the resonance frequency) can be
realized.

To analytically predict the behaviour of Hilbert curve inclusions, the equivalent circuit model
parameters are provided in Ref. [6]. The unit cell shown in Figure 19c has dimension (as in
Figure 18d) has dimension Δx, Δy and Δz, in the x, y and z directions, respectively. The
resultant permeability is described by following expression [6]:

μrf ¼ 1� S
ΔzΔx

jωLef f
Ref f � 1

ωCef f
þ jωLef f

ð18Þ

whereω is the external field frequency, S is the surface enclosed by inclusion, and Reff, Leff and Ceff

are equivalent circuit model components, derived in [6] for the proposedHilbert curve inclusions.

Figure 19. A unit cell of inclusion with SRR (a), square spiral (b) and third order Hilbert fractal (c), respectively.
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The relative permeability of different order Hilbert fractal curve unit cells was derived in Ref. [6]
and shown in Figure 20.

Figure 20 shows of the permeability plots versus frequency of single cell of MTM structure in
the form of the Hilbert fractal curve (Figure 19c). They are quite similar to the characteristics
of the MTM cell in the form of a square spiral (Figure 19b), which was used before fractals [6].
It should be noted that the external dimensions of fractal cells (λ/55) are much smaller than
the dimensions of the split spiral cell (λ/46), having the same copper strip width w and
separation s between them (s = w = 0.127 mm), as well as the host dielectric substrate (εr =
3.38, tanδ = 0.0027). For higher iterations of the Hilbert fractal, the differences become greater.

In addition, as shown in Figure 20, when the number of iterations of the Hilbert fractal is
increased, the permeability plot becomes smoother. Therefore, the use of fractal structures
causes decrease in changes of the permeability depending on the frequency, which, in turn,
reduces the coefficient of dispersion in an artificial medium. For frequencies below the reso-
nance, the imaginary part of the permeability takes larger values for fractal Hilbert inclusions
than for rectangular spiral cells. Moreover, the Hilbert cells with higher iterations have higher
values for the imaginary component μ of the permeability.

Therefore, at frequencies below resonance, the Hilbert inclusions bring greater losses com-
pared to the spiral cells. It has been shown that using four-order fractal Hilbert, we can build
a very small MTM cells, with dimensions of the order of 0.014λ in the dielectric substrate. This
size corresponds to 63% of the size of the spiral cell and 32% of the size of the SRR cell (see
Figure 19).

4.2. MTM composed of fractal tree sphere

Properties of an artificial dielectric MTM depend primarily on the type of inclusions, as well
as their distribution in the host environment. Some types of cell geometry considered in the
past to build for artificial dielectric materials include small dipoles and loops. In this chapter,

Figure 20. Real (a) and imaginary (b) part of permeability of MTM with Hilbert fractal curve inclusion.
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we will consider the possibility of using for this purpose the fractal tree, which could approx-
imate the sphere [7]. It will be a sort of a combination of aspects of both the geometry of the
dipole and the sphere.

MTMs will be considered here that are composed of a new type of molecule called fractal tree
sphere. A fractal sphere is collection of symmetric self-similar fractal tree dipoles arranged to
form a sphere-like structure as illustrated in Figure 21.

The effective dielectric constant of artificial dielectric MTM is evaluated from effective electric
and magnetic polarizabilities, respectively:

p ¼ εðaeeEþ aemηHÞ ð19Þ

m ¼ ame

η
Eþ ammH ð20Þ

The effective dielectric constant of fractal sphere MTM is evaluated as follows:

εef f ¼ ε
ð1þ 0:66 NaeeÞ ð1� 0:33 NammÞ � 0:22N2a2em
ð1� 0:33 NaeeÞ ð1� 0:33 NammÞ � 0:11N2a2em

ð21Þ

where N is the inclusion volume density.

The real and imaginary parts of the effective constant for the three iterations of the fractal
sphere are shown in Figure 22.

The plots of an effective dielectric constant for an artificial dielectric MTM consisting of
conventional dipole inclusions are inserted in Figure 22a, b for comparison purposes. In this
case, maximum number Nmax of inclusions that can be placed in a cubic meter volume
without intersection was considered. It could be seen that each, successive iteration of the
fractal tree sphere molecules produces a characteristic downward shift in the corresponding
peak value of the εeff. Also, it is seen that a medium composed of third iteration fractal tree
spheres behaves as a dual-band artificial dielectric MTM. It has been shown that fractal

Figure 21. Fractal trees of first (a), second (b), and third iteration (c), approximating the spheres, as viewed along any
axes.
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spheres have a lower resonant frequency than those solid spheres of the same physical size.
These properties have been exploited to develop a new class of low-frequency multiband
MTM.

4.3. Fractal self-space-filling curve high-impedance ground planes

Because the magnetic conductive surfaces do not occur naturally, as mentioned earlier, it is
necessary to artificially create such a surface that meet the requirements in the specified
frequency range [4]. This can be achieved using the resonant properties of inclusions in non-
conducting layer of the substrate in parallel with a conductive plane host substrate. Near
resonance of the inclusions, the strong currents are induced on the surface of the material,
which causes the material to behave as an equivalent magnetic conductor. One of the possible
inclusions, which possess the resonant properties and are electrically small (≪λ) is the use of
self-filling fractal curves.

The self-filling of the surfaces curves are, in general, the continuous maps of the area by an
interval [0, 1] on standardised square [0, 1] · [0, 1]. In the year 1890, Peano first proposed the
self-filling curve, now called the Peano curve [12]. In 1891, David Hilbert introduced its version
of the same—filling curve [4]. The curves are iterative, both fill the entire surface, when the
number of iterations (so called curve order) tends to infinity; this means that the curves pass
through each points on the surface of the square. While both curves pass through each point on
the surface for i = ∞, it realizes this in a quite different way, as you can see for the first three
iterations of the Peano curves and Hilbert, shown in Figure 23.

These curves offer certain attractive properties; that is, a structure of this shape can be made
from an electrically long metallic wire compacted within a very small footprint area. As the
iteration order of the curve increases, a space-filling curve may maintain its footprint size

Figure 22. Real (a) and imaginary (b) part of effective dielectric constant of the fractal tree sphere.
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while its length increases. Moreover, these space-filling geometries can be planar structures,
thus allowing for ease of fabrication.

The total lengths of these Peano, DP, and Hilbert, DH, curves as a function of the iteration order
number i, are given by Eqs. (22a) and (22b), respectively.

DP ¼ L
32i � 1
3i � 1

ð22aÞ

DH ¼ L
22i � 1
2i � 1

ð22bÞ

where L is a linear side length of the curve.

As you can see, the Peano curve has a higher compression ratio (e.g. greater total length) than
Hilbert curve for a fixed order. The space-filling curve elements can resonate at frequencies
where the curve side dimension can be considered as electrically very small. The higher order
curve has a lower resonant frequency; thus, it takes up less surface area in relation to the
resonant wavelength. The cost of the implementation of the compact resonant is seen in
narrower bandwidth.

This effect has also been observed in the design of electrically small antenna based on
Peano or Hilbert curves [4]. The element in the form of Peano curve with the same surface
and order of iteration as an element of a Hilbert curve has a much lower resonance
frequency, at the expense of a much narrower bandwidth, due to the higher compression
ratio of Peano curve.

To construct a high impedance surface, HIS, the Peano curve elements can be placed in a
planar, 2D array as shown in Figure 24.

Figure 23. Peano (a) and Hilbert (b) fractal space-filling curves for first three iterations.
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In this case, each element was designed as a thin metallic strip with a strip width of 0.5 mm.
The footprint dimensions remain identical (30 · �30 mm). The Peano array was placed a
distance (15 mm) above a conducting ground plane of infinite extent. The supporting dielectric
substrate is considered air here, although any other dielectric can be considered.

A separation distance was of 3.75 mm between each Peano curve inclusion within the array.
This distance was chosen to be equal to the length of a single section of the curve itself.
Figure 24b shows the magnitude and phase of the reflection coefficient Γ versus frequency.
For the frequency of fHIS = 1.53 GHz, in the case of the incident EM-wave polarized in the
x-direction, where phase is ϕ = 0 over the entire surface of HIS, above the ground plane the
reflection coefficient is Γ= +1; that is, it satisfies the conditions of a magnetic conductor
MTM. Beyond the resonance across the entire surface of HIS, the reflection coefficient is Γ=
�1 and, therefore, behaves as an electric conductor. Note that the cells of MTM in the form
of a fractal Hilbert curve are of external sizes appropriately as 0.063 λHIS and 0.153 λHIS and
thickness of substrates around 0.031 λHIS and 0.076 λHIS, respectively, at fHIS (Figure 24b).
That is, these cells are small electrically for both polarities [4].

MTM cells in the form of self-filling Peano and Hilbert curves can offer a lot of interesting
features in electromagnetic applications. One of the most interesting features is the ability to
work in resonant conditions where electrical dimensions of area filled by the curve are very
small. This means that the self-filling curves can be excellent candidates for building surface
and bulk media, where electrically small inclusions are desirable, for the design of specific
electromagnetic properties of MTM. One of the most important uses of HIS surface is to use
them to improve the performance of low-profile antennas.

4.4. EBG structures based on fractal cells

Recently, a novel electromagnetic bandgap (EBG) structure design based on fractal, the Sierpinski
gaskets are proposed. They are arranged by repetition of 60� each to introduce the hexagonal unit

Figure 24. The HIS build-up of second order Peano fractal above conducting ground plane (a) and reflection coefficient
for normally incident wave with polarizations in x- and y-planes (b).
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cells [8]. By changing the gapsG2 between two adjacent Sierpinski triangles inside EBG unit cell, it
can separately introduce two EBG structures that have broadband and dual band-gap. Single cell
geometry exhibits symmetry in six-planes, which makes it polarisation angle-independent. The
proposed EBG structures, photo-etched on the FR4 microwave laminate (εr = 4.4, h = 1.6 mm, tanδ
= 0.02) are shown in Figure 25.

The Sierpinski gasket is a well-known fractal. Dark parts in this figure represent the metallic
periodic structure, which is etched on a dielectric substrate. Unit cell dimensions areW = 10 mm,

W1 ¼ W � 2ðG1 þ G2Þ=
ffiffiffi
3

p
, W2 ¼ 0:5 W1, W3 ¼ 0:25 W1, W4 ¼ W1=8, G1 = 1 mm, G2 = 0.5mm,

and the metallization thickness is 18 μm. The Sierpinski gasket triangles are arrangement to

Figure 25. Sierpinski gasket fractal triangle (a), two-dimensional sketch of unit hexagonal cell (b) and three-dimensional
of EBG array (c).

Figure 26. Operation bandwidth of HIS MTM based on an array of hexagonal cells of Sierpinski fractal triangles.
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repeat each 60�. The resonance frequencies and the EBG operation bandwidth can be modified
by changing the width and the gap G1 between the hexagonal lattices. Moreover, by changing
the gap G2 between Sierpinski triangles units, it can introduce two EBG structures separately. The
first one, which is called broadband EBG structure (BEBG), has a broader bandgap with the
value of G2 up to 0 mm. The simulation results of the EBG structures based on Sierpinski are
shown in Figure 26.

The EBG structure has a bandgap, in the frequency range from 5.07 to 7.58 GHz, for G2 = 0.5 mm.
A wider bandwidth of operation frequency, with smaller EBG cell-size was obtained due to
significantly reduced capacity C of an equivalent parallel resonant circuit, as well as limitation
of the relative permittivity.
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Abstract

In this chapter, ASCCC fractal is defined. The name “ASCCC” is based on the process
that the fractal is built. It is made by adding and subtracting circles to the circumference
of a circle. Then the necessary formulas to build up the first and higher orders of ASCCC
fractal are derived. By calculating the perimeter of each order, it is shown that the
ASCCC fractal has a great capability in antenna miniaturization. Based on first-order
ASCCC fractal, a systematic approach is designed to miniaturize an antipodal dipole at
any arbitrary frequency. Then the proposed method is applied at band LTE13
(746–787 MHz), which is controversy for mobile antenna, because it causes the size of a
common antenna to become very large for a handheld mobile. It is illustrated that not
only the ASCCC fractal is successful in miniaturization of dipole antenna, but also it is
very good at improving the antenna’s efficiency in comparison with its counterparts like
Koch dipole/monopole.

Keywords: fractal antenna, antenna miniaturization, antenna’s efficiency, antipodal
dipole antenna, mobile antenna

1. Introduction

Nowadays, there is demand for antennas which fit in small space while have good radiation
performance. Therefore, miniaturization techniques are inevitable in antenna design. Most of
miniaturization techniques are based on slot loading, lumped loading, material loading,
meandering, using fractal shapes or meta-materials. Generally, these techniques cause radia-
tion efficiency and bandwidth to reduce. The antenna performance can be improved if the
available volume within the Chu’s sphere is used effectively. Fractal, meander and volumetric
antennas are based on this method [1]. However, volumetric antennas are not suitable for

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



planar structures. The meander antennas [2] and some fractal antennas such as Hilbert [1] and
Koch dipole/monopole [3, 4] have some sections of cancelling current from adjacent conductors
that cause the efficiencynot to improve significantly. Furthermore, the resonance frequency cannot
be found analytically because the physical length is not equivalentwith electrical length [1, 2].

In this chapter, a novel fractal named adding and subtracting circles to the circumference of a
circle (ASCCC) is defined and the required formulas are derived to build it. The ASCCC fractal
is made by adding and subtracting an even number of circles on circumference of a circle, in
brief named as adding and subtracting circles to the circumference of a circle (ASCCC). Then, a
procedure is shown to miniaturize an antipodal dipole based on first order of ASCCC fractal at
any arbitrary frequency. A formula is extracted to determine the resonance frequency of the
ASCCC dipole with excellent precision. The proposed procedure is used to design a mobile
antenna at challenging band of LTE13 (746–787 MHz). Because of low frequency nature of
LTE13, the in-building penetration and area coverage are very good [6]. On the other hand, the
size of antenna becomes so large at LTE13 that it is not suitable for a handheld mobile [7].
Therefore, some miniaturization techniques should be applied to the design. One of the great
advantages of ASCCC dipole antenna is using the Chu’s sphere so effectively that the antenna’s
efficiency improves considerably in addition to antenna miniaturization. Actually, the currents
in adjacent teeth of ASCCC fractal dipole do not weaken the effect of each other, so very good
efficiency is obtained. This advantage also makes the physical length to be approximately
equal with electrical length.

The design is simulated by full-wave software (Ansoft-HFSS version 15). The results of simu-
lation and measurement are in very good agreement. The efficiency of the proposed dipole
antenna is higher than the existing works at LTE13 for handheld mobile antenna [8–25]. Also,
the design obtains 40% size reduction compared with a common dipole. Furthermore, the
ASCCC design has advantages of being planar and vialess [5].

In Section 2, the ASCCC fractal is explained. Then in Section 3, a procedure is shown to use
ASCCC fractal in arms of an antipodal dipole. Theoretically, how to design an ASCCC dipole
antenna for a special band is discussed. Next, a mobile antenna is designed, simulated and
measured at LTE13. Finally, the conclusion is presented in Section 4.

2. ASCCC fractal

ASCCC fractal is based on adding and subtracting an even number of circles alternately on
circumference of an initial circle. In brief, it is named as adding and subtracting circles to the
circumference of a circle (ASCCC). It should be noted that radius of secondary circles (R2) must
be smaller than the radius of initial circles (R1). To make ASCCC fractal clear, firstly consider a
circle with radius R1 as shown in Figure 1(a). Then, arbitrary even numbers of circles (n1) with
radius R2 (R2 < R1) are placed to the circumference of Figure 1(a) such that their centres are on
the initial circle and two adjacent circles have two common points that one of them is on the
circumference of initial circle and the other one is inside of it. These conditions lead n1 to be at
least 4 (for n1 ¼ 2, two adjacent circles have two common points but both of them are on the
circumference of initial circle and R2 > R1) and secondary circles cover whole circumference of
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the initial circle. For example, Figure 1(b) shows 20 secondary circles that have been placed on
an initial circle with R1 ¼ 21 m. Figure 1(c) illustrates how secondary circles are added and
subtracted alternately. The radius of the secondary circles (R2) is calculated as follows. Firstly, it
is supposed that each secondary circle occupies 2θ angle on the initial circle as in Figure 2(a).
Two radiuses of R1 and one radius of R2 can make an isosceles triangle with a θ vertex angle as
in Figure 2(b). Then, its two leg length and base length are equal to R1 and R2, respectively. R2

is determined by a trigonometric relationship as in Eq. (1) with respect to Figure 2(c). It should
be noted that the value of θ is known because 2θ is related to n1 as in Eq. (2). If Eq. (2) is
substituted in Eq. (1) and some simplifications are done, the R2 can be written as in Eq. (3).

sin
θ
2
¼ R2

2R1
! R2 ¼ 2R1 sin

θ
2

ð1Þ

2θ ¼ 2π
n1

! θ ¼ π
n1

ð2Þ

R2 ¼ 2R1 sin ðπ=2n1Þ ð3Þ

Zero, first and second orders of ASCCC fractal for R1 ¼ 21 mm, n1 ¼ 12 and n2 ¼ 10 are shown
in Figure 3(a)–(c). Figure 4(a)–(c) illustrates the stages of producing Figure 3(a)–(c).

Perimeter of the first-order ASCCC (P1) is equal to perimeter of n1=2 full circle with radius R2.
So, it is determined by Eq. (4). To understand clearly Eq. (4), firstly consider two adjacent
circles shown in Figure 1(b). One of them is supposed to be added (united) and another one is
subtracted from the initial circle. Therefore, the effect of these two adjacent circles on the
perimeter of Figure 1(c) is equal to the circumference of one full circle with radius R2. Since
the total number of secondary circles is n1, the total perimeter of Figure 1(c) is equal to
ðn1=2Þð2πR2Þ.

P1 ¼ ðn1=2Þð2πR2Þ ð4Þ

For calculating the perimeter of the second-order ASCCC fractal (P2), as it is made of ðn1=2Þ
full-circle that each has n2/2 full-circles with radius R3; therefore, its perimeter is equal to the
perimeter of a total number of ðn1=2Þðn2=2Þ full-circle with radius R3 as in Eq. (5).

Figure 1. ASCCC fractal with R1 ¼ 21 mm and n1 ¼ 20 (a) initial circle, (b) 20 secondary circles with R2 ¼ 3.295 mm are
placed on the circumference of initial circle and (c) secondary circles are united and subtracted alternately [5].
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Figure 2. (a) A secondary circle occupies 2θ angle on the initial circle, (b) the radiuses of initial circle and secondary circle
make an isosceles triangle with a θ vertex angle and (c) R1 and R2 in the isosceles triangle.

Figure 3. ASCCC fractal for R1 ¼ 21 mm, n1 ¼ 12 and n2 ¼ 10 (a) initial circle with R1 ¼ 21 mm, (b) first-order ASCCC
with n1 ¼ 12 and (c) second-order ASCCC with n2 ¼ 10 [5].

Figure 4. An illustration for building of second-order ASCCC fractal (a) for simplicity, third-order circles are placed only
on inner (outer) edge of secondary circles which are supposed to be subtracted (added). (b) Secondary circles are added
and subtracted alternatively and (c) third circles are added and subtracted alternatively [5].
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P2 ¼ ðn1=2Þðn2=2Þð2πR3Þ ¼ ðn1=2Þðn2=2Þ
�
2π� 4R1 sin ðπ=2n1Þ sin ðπ=2n2Þ

�
ð5Þ

Eqs. (6) and (7) show the ratio of P1 and P2 to the perimeter of initial circle (P0), respectively. If
n1 and n2 have large values, sine function could be approximated by its argument. Then,

Eqs. (6) and (7) can be written as (π/2) and ðπ=2Þ2, respectively. Therefore, the perimeter of
ASCCC fractal can be multiplied by (π/2) in each order.

P1

P0
¼ 2n1πR1 sin ðπ=2n1Þ

2πR1
¼ n1 sin ðπ=2n1Þ ð6Þ

P2

P0
¼ 2n1n2πR1 sin ðπ=2n1Þ sin ðπ=2n2Þ

2πR1
¼ n1n2 sin ðπ=2n1Þ sin ðπ=2n2Þ ð7Þ

Now, it is time to compare P1 (the perimeter of the first-order ASCCC with initial (R1) and
secondary (R2) radiuses) to the circumference C1 of a common circle with radius R1 þ R2 that
occupies the same space on a board. Eq. (8) shows the ratio of P1 to C1. Eq. (9) presents the
solutions of Eq. (8) for different n1. When the argument of sine is much smaller than unity, the
sine can be approximated to its argument. Therefore, approximation sin (π/2n1) ≈ π/2n1 is used
for n1 1≥ 10. As it is seen, the ratio [Eq. (9)] is greater than one for n1 ≥ 6, so P1 is larger than C1.
Therefore, if a way is found to force the current to travel the perimeter P1, antenna miniaturi-
zation is obtained for n1 ≥ 6 [5].

P1

C1
¼ 2n1πR1 sin ðπ=2n1Þ

2πðR1 þ R2Þ ¼ n1 sin ðπ=2n1Þ
1þ 2 sin ðπ=2n1Þ ð8Þ

P1

C1
¼

0:867 n1 ¼ 4
1:023 n1 ¼ 6
1:122 n1 ¼ 8

1:191 ≤
π=2

1þ ðπ=n1Þ ≤
π
2

n1 ≥ 10

8>>>><
>>>>:

ð9Þ

3. An application of ASCCC fractal in antenna miniaturization

In this section, it is shown that an antipodal dipole antenna is miniaturized by applying the
first-order ASCCC fractal to arms of the dipole antenna. The procedure could be applied to
any arbitrary frequency [5].

3.1. The proposed design

In this section, it is shown that an antipodal dipole antenna is miniaturized by applying the
first-order ASCCC fractal to arms of the dipole antenna. Figure 5(a)–(d) presents the utilized
method. In the first step, two first-order ASCCC fractals with the same n1 but different R1 are
designed (Figure 5(a)). To distinguish R1 of fractals, R1i is chosen for inner fractal and R1o for
outer fractal. In the next step, the inner fractal is subtracted from the outer fractal as shown in
Figure 5(b). Then, the shape is split into two equal halves as shown in Figure 5(c). Finally, each
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half is employed as an arm in a balanced antipodal dipole as illustrated in Figure 5(d). The first
resonance of the proposed dipole is calculated by Eq. (10). In Eq. (10), c is the speed of light and
λ is the resonance wavelength.

f ¼ c=λ ð10Þ

In a common dipole antenna, the length in which current travels along the two arms is equal to
λ/2 of the first resonance wavelength. In calculation of λ/2, it should be noted that current
tends to travel the shortest path. In Figure 5(d), the current is confined to area between inner
and outer fractals. The perimeter of inner fractal is shorter than the perimeter of outer one.
Therefore, the inner fractal perimeter is more likely to be tracked. To be sure that current does
not find any shorter path than the inner perimeter, R1o should be chosen as close to R1i as
possible. As a result, the current travelling length is approximately equal to the inner fractal
perimeter that is determined by using Eq. (4). Then, the resonance frequency could be written
as in Eq. (11). In Eq. (11), P1i is the perimeter of inner fractal in Figure 5(d).

f ¼ c
λ
¼ c

2P1i
¼ c

4n1πR1i sin ðπ=2n1Þ ð11Þ

To design a balanced feedline, the method described in Refs. [26] and [27] is used. The line
parameters are given in Figure 6. The exponential part of line is made by Eqs. (12) and (13).
Wcps is equal to (R1o þ R2o) – (R1i þ R2i). Lexp, Lm, Wgnd and p are arbitrary parameters that are
chosen with respect to a good S11 result.

y ¼ � A� exp ðpxÞ þ Wcps

2
� A

� �� �
ð12Þ

A ¼ Wgnd �Wcps

2
�
exp ðp� L exp Þ � 1

� ð13Þ

3.2. Simulation and measurement results

The method described in Section 3.1 is used to design a handset mobile antenna at the LTE13
band (746–787 MHz). The antenna is printed on an FR4 substrate with εr ¼ 4.4 and tan

Figure 5. A method to use ASCCC fractal in arms of an antipodal dipole antenna (a) two first-order ASCCC fractal with
same n1 but different R1 are designed, (b) inner fractal is subtracted from the outer one, (c) the shape is split into two equal
halves and (d) each half is employed as an arm in an antipodal dipole antenna [5].
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Figure 6. Geometry and parameters of the balanced feedline.
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δ ¼ 0.02. Firstly, an initial resonance frequency within band LTE13 should be picked out to
determine λ/2 by Eq. (10). As the length λ/2 is approximately equal to the perimeter of inner
ASCCC, as shown in Figure 5(a), so R1i is determined by Eq. (4). To stay in safe side, a
frequency of 750 MHz is picked out for the initial design because a good S11 in lower frequen-
cies needs longer length in arms while preparing longer length is harder to obtain. Please note
that the value of n1 is arbitrary. The larger n1 results in the smaller R2i, so a more compact
design is obtained. In the simulations, feedline parameters have been chosen as: Lm ¼ 5 mm,
Lexp ¼ 25 mm, Wgnd ¼ 20 mm, Wms ¼ 3.04 mm and p ¼ 150.

R1i ¼ 20.28 mm is found for n1 ¼ 20 at 750 MHz. To determine a value for R1o, some
simulations are done for different R1o radiuses (R1o ¼ 23, 24.5 and 26 mm). The simulated S11
results are shown in Figure 7. As seen, a smaller R1o makes a better confinement of current to
the inner fractal perimeter; therefore, the resonance frequency is closer to the initial design. On
the other hand, a bigger R1o results in better S11 and wider bandwidth because of a larger
radiating area. However, R1o ¼ 23 mm cannot be chosen. Although resonance frequency is
closer to the initial design, the whole band of LTE13 cannot be covered. The problem could be
tackled as follows. If a bigger R1i is chosen, the resonance frequency is lowered, so more
freedom is prepared to pick out larger values for R1o that could somehow compensate for
lowering of frequency while enough bandwidth and good S11 are obtained at the LTE13 band.
By a little try and error, it is found the whole LTE13 band could be covered with good S11 for
R1i ¼ 20.5 mm and R1o ¼ 25.5 mm. As it is seen, the selected R1i is so close to the initial design
(R1i ¼ 20.28 mm) and the proposed formulas prepare very good primary guess.

A fabricated prototype of the proposed antenna is shown in Figure 8. The overall size of
the printed antenna is 62 � 115 � 1.6 mm3 that is suitable for a handheld mobile. The
simulated and measured results of S11 are presented in Figure 9. It is seen that there is
very good agreement between them. The small resonance at 1.045 GHz is due to the type
of feedline.

Figure 7. S11 parameter for different R1o (R1i ¼ 20.28 mm, n1 ¼ 20) [5].
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Figure 8. Fabricated prototype of the proposed design [5].

Figure 9. Simulation and measurement results of S11 against frequency [5].

ASCCC Fractal and Its Application in Antenna Miniaturization
http://dx.doi.org/10.5772/intechopen.68431

91



Figure 10. Simulated 3D radiation patterns at 769 MHz [5].

Figure 11. Simulated and measured radiation patterns at 769 MHz (a) E-plane and (b) H-plane [5].

Figure 12. Simulated and measured radiation efficiency for LTE13 [5].
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Figures 10 and 11present the 3-Dandpolar radiationpatterns of theproposedantenna at 769MHz,
respectively. As they show, the antenna has a dipolar radiation pattern. Figure 12 shows the
efficiency of antenna. The measured efficiency is obtained by the improved Wheeler-cap
method [28]. Antenna efficiency varies from79.28 to 88.01%.As it is seen, the antenna has very high
efficiencyat LTE13, on the contraryof the otherdesigns for this band that are listed inTable 1 [8–25].

Finally, the antenna exhibits 40% size reduction in comparison with a common dipole. This is
evidence that the proposed procedure is a good technique in antenna miniaturization [5].

4. Conclusion

In this chapter, ASCCC fractal is defined and its driving formulas are extracted. It is shown
that ASCCC fractal has a great potential in antenna miniaturization and improving efficiency.
A miniaturization method was designed for a dipole antenna at any arbitrary frequency. Then,
the method applied to the dipole antenna at band LTE13 which is very challenging for
reduction in size of mobile antennas. The total size of antenna is 62 � 115 � 1.6 mm3, which
is appropriate for handheld mobiles. The efficiency of antenna is greater than 79% with S11
better than –10 dB. The amount of efficiency is considerably higher than existing works.
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Family of Spacecraft for Needs of Space Industry
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Abstract

This paper deals with methods of fractal analysis, which allow creation of a line of space-
craft from different classes as addition to classical methods for needs of space industry. It is
shown that the fractal analysis thatwidens opportunities of classicalmethods can become a
base for solution of the modern problems of space technologies. Besides, the results of
fractal analysis in this chapter are practically valued recommendations for designing of the
line, algorithms of control over equipment to measure microaccelerations and of majority
control over measuring data. It clearly demonstrates potential and applicability of methods
of fractal analysis in practice.

Keywords: fractal analysis, fractal property, spacecraft, microaccelerations, majority
control

1. Introduction

Space technologies have given a lot of new materials and medicines with unique features. For
instance, semiconducting germanium for purposes of radio industry was firstly gotten under
space conditions. Its purity achieved 99.9999%. Ultrastrong and thermostable monocrystals for
development of blades of a turbine for aviation and rocket engines were also firstly grown in
space laboratories. The metal foam is of great interest for engineering industry. It has a weak
structure and combines high durability with lightness.

Such unique features can be achieved for materials, which are developed out of the field of
terrestrial gravity. The absence of the field allows thorough mixing of melted metal with air for
creation of foam metal with weak structure or exclusion of admixtures from the melt to
significant reduction of crystallization centers to get large monocrystals, etc. Such technologi-
cal processes, which require almost absolute absence of force action for their successful reali-
zation, are called as gravity-sensitive processes.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The best resources and significant funds were wasted for realization of ambitious space
projects. For instance, in USA, it was developed and realized grand project of space labora-
tory “Skylab.” The laboratory was placed into near-earth orbit by legendary carrier rocket
“Saturn-5” on 14 May 1973 for realization of more than 300 series of different experiments
connected with cross-cutting technologies [1]. There were realized growth of monocrystals,
experiments on directed crystallization and others among gravity-sensitive processes. The
project “Skylab” was unprecedented in the scales of funds—its budget is considered to be
2.5 bn of dollars.

The large numbers of gravity-sensitive processes in Russia were conducted during realization of
large-scale project of orbital complex “MIR.” This platformwas prepared better for technological
and biomedicine experiments than space laboratory “Skylab.” “Skylab” was the one big labora-
tory but “MIR” represented the complex of separated orbital modules with detail specialization
of experiments conducted in each module. During realization of the project “MIR,” the experi-
ence of “Skylab” was taken into account as well as finished by that moment Russian projects of
manned orbital stations of the “Salut” series. For providing the research part of the project, the
unique equipmentwas created such as the ovens “Krater-VM” and “Gallar,” the complex to control
conducting of experiments “Onyx,” glass oven “Optyzon” experimental devices “Katalyzator” and
“Titus,” gauges “Alice” and others.

Evidently that high pace of development of scientific-technical progress today and also signif-
icant changing of earth technologies are the results of large-scale space projects. It seemed like
space technologies would make a real revolution, but revolution was postponed due to small
knowledge of the new conditions which determined realization of technological processes.

Investigations showed that it is wrong to believe that there is absolute weightless into inner
environment of space laboratory. An influence of outer (gravitational field, aerodynamic drag,
light pressure, etc.) and inner (running of operating elements, proper oscillations of big elastic
elements, running of system of orientation, and control of spacecraft’s movement) disturbing
factors causes a microacceleration field in inner environment.

It influences the results of gravity-sensitive processes negatively. Today, the row of such
processes, which demand microacceleration level no higher than 10.7 g for their successful
realization, has been already developed. However, modern developmental stage of space
technic has not yet allowed realization of the processes on a board of space laboratory. It is
necessary to investigate the structure and nature of microaccelerations, to find out their new
features to provide the necessary level for successful realization of gravity-sensitive processes.
It is necessary to understand that requirements for microacceleration level will become
tougher to the extent of development of space technologies.

Investigations show that microacceleration field as the test subject has several features, which
significantly complicate its investigation. One of the features consists in overloads of micro-
accelerometers during launching of spacecraft/these overloads can achieve 10 g. It is approxi-
mately in 7–8 orders bigger than microacceleration values [2]. Such situation significantly
complicates getting the reliable experimental data using onboard gauges. The following situa-
tion [3] was registered when testing of Canadian vibration isolator MGIM (microgravity

Fractal Analysis - Applications in Physics, Engineering and Technology98



isolation mount) during 2 years in orbital complex “MIR” and also during the flight of space
shuttle STS-85 by gauges. In one series of experiments which were considered to be success-
fully realized, the oscillation amplitude inside was protected by the MGIM area that was
significantly lower than the outside area. However, in another series of experiments which
were marked as unsuccessful, the oscillation amplitude inside the protected area was higher
than the outside area. The values of amplitudes (in successful and unsuccessful series) differed
more than in 20 times. Later, during measurements of microaccelerations on the board of
specialized technological spacecraft “FOTON-11” by French equipment BETA, the situation
was similar [4]. Microaccelerometers, installed at different axes of bound coordinate system,
showed data that differed more than 20 times. Nevertheless, there were not any obvious
causes for it. Sazonov et al. [4] suppose that the software of BETA equipment was applied
incorrectly. However, failure of some microaccelerometers is quite possible too. It is also
remarkable that the equipment was not applied more on the spacecraft from “FOTON” series.
Thus, the reliable way to control adequacy of microaccelerometers on the operational stage of
spacecraft, after launching overloads, is required.

The second important feature of microacceleration field is impossibility to measure microacce-
lerations directly like temperature or angular velocity. That is why the measuring results are
indirect estimations based on different methods. The gauges created according to the methods
dive only qualitative-similar data. It significantly complicates the investigation of microacce-
leration field too. For instance, tested on orbital complex “MIR,” complex of gauges which
included “Alice-2” (MEMS-technologies) and “DACON” (convection sensor) showed that
“DACON” is insensitive to high-frequency microaccelerations. Although, “Alice-2” managed
to register it [5]. The changing of working body of modification of convection sensor
“DACON-M” allowed changing of characteristics of the device [6]. The equipment “GRAVI-
TON” based on measurement of magnetic field of the Earth and also row of other gauges were
developed [7]. All mentioned facts show that experimental data are the results of mathematical
modeling but not of the pure experiment. Thus, the role of mathematical modeling for inves-
tigation of microaccelerations is very important and stimulates application of new mathemat-
ical methods, particularly, of fractal analysis for investigation of microacceleration field.

2. Main part

There are a lot of different classifications of microaccelerations. For instance, microaccelerations
are divided into quasi-static (low-frequency) and vibrational (high-frequency) according to its
frequency. According to the nature of the source, they are divided into inner and outer. There is
offered the classification according to the method of their control [8] because it is important to
provide and control designed microacceleration level while creating new space technic.

Microaccelerations can be divided into three groups in accordance with the classification feature:

- Metastable component of microacceleration is caused by the influence of permanent factors
of cosmic space such as gravitational and electromagnetic fields, aerodynamic forces and
momentums, light pressure, etc.
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- Random component of microaccelerations is caused by multifocal uptake and oscillations of
gravitational and electromagnetic fields, changes in solar activity and also by influence of
random factors of space such as micrometeorites, multifocal uptake of the atmosphere, etc.
Extraordinary situations, connected with failure of equipment, are also in the list.

- Constructive component of microaccelerations is caused by inner disturbances such as orbit
correction of spacecraft, running of orientation engines, different operational elements,
equipment for passive and active orientation, vital activity of crew, etc.

The constructive component is of the greatest interest among the three components because it
is connected with construction of the spacecraft and the way of orbital control from the early
stages of designing and development.

In a way, the constructive component of microacceleration field of the inner environment of
spacecraft is formed while creating the constructional layout of space laboratory and develop-
ing the system of its orbital orientation in the early stages of designing.

Constructive component, which often mainly contribute to microacceleration field of inner
environment, should be controlled for achieving of favorable microacceleration level.

Investigations of constructive component of microacceleration field show [9] that it has the
feature which can be compared with fractal quality of scaling. For instance, the scaling of
cosine part of Weierstrass-Mandelbrot function (WMF):

ReWðtÞ ¼ CðtÞ ¼
X∞

n¼�∞

1� cosbnt

bð2�DÞn ð1Þ

where D is fractal dimension and b is scaling parameter of WMF by the replacement of t to b4t,
and C(t) to b4(2-D)C(t) does not change the form of function (Figure 1).

According to the scale invariance of differential equations which describe oscillations of big
elastic elements of spacecraft time-dependence of microaccelerations has the similar feature.
However, not graph of function but the spacecraft itself is scaled: its sizes and inertia-mass
parameters (Figure 2).

The results are described in detail below. For investigation of the fractal quality of constructive
component, the simple scheme of spacecraft was chosen with the purpose of qualitative
demonstration of the quality. The spacecraft represents the central absolutely rigid body that
is rigidly attached to its elastic elements (Figure 3).

The elastic elements are considered to be the Euler-Bernoulli beams to simplify the investiga-
tion process. The estimation of microaccelerations using such models gives a bit overevaluated
results [10].

The vibrations of elastic element are caused by inner and outer disturbing factors on spacecraft
(Figure 3). Just the vibrations make the most important contribution to constructive component
of microacceleration field. The impulse firing of engines of orientation and control of orbital
motion of spacecraft [11], permanent running of operational equipment [2, 12] or the other
factors, including the outer, can be considered to be the sources of vibrations.
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Proper frequency when cantilever attaching is performed by the following formula:

ωi ¼
η2i
l2

ffiffiffiffiffi
EI
μ

s
, ð2Þ

where ηi is i-equation root, cosηichηi þ 1 ¼ 0; i is number of oscillation mode; l is length; EI is
flexural rigidity; and µ is linear mass of elastic element.

Linear mass and rigidity are constant for the designed material. Roots ηi are also constant.
Thus, frequency is the function of beam’s length. So, double decrease of the length will lead to
fourfold increase of frequency or fourfold decrease of period of vibrations. At that, microacce-
leration’s amplitude will change. Beam with less length and mass will create less microacce-
lerations when central body of space laboratory will be permanent. Tangential inertia force
influences each point of a beam:

Figure 1. The self-affine property of the cosine part of Weierstrass-Mandelbrot function.
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dФτ ¼ μ
M
I
ðxþ sÞdx, ð3Þ

where M is moment of orientation engine, s is projection of radius vector of fixing point
of elastic element relatively to center of mass of space laboratory on x-axes (Figure 3)
and I ¼ I0 þ 1

3μι
3 þ μιs2

� �
—inertia moment of space laboratory. At that, beam is consid-

ered to be homogeneous. I0 is inertia moment of central body. Then, the general inertia
force of elastic element is:

Figure 2. The feature of constructive component of microacceleration field when scaling of inertia-mass parameters and
sizes of spacecraft.
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ФτðlÞ ¼ μ
M
2I

ðxþ sÞ2 ¼ μ
2

Mðlþ sÞ2
I0 þ 1

3μι
3 þ μιs2

� � : ð4Þ

When length of elastic element decreases in two times, this formula has the following appearance:

Фτ
l
2

� �
¼ μ

2
M l

2 þ s
� �2

I0 þ 1
24μι

3 þ μ ι
2 s

2
� � : ð5Þ

Equations (4) and (5) give more than double decrease of the real tangential inertia force of
spacecraft “NIKA-T” [13] after substitution of basic parameters of the spacecraft. At that,
energy losses are not taken into account there. It means the reduction of amplitude of reaction
force of embedding. The reaction force to the spacecraft’s body and causes microaccelerations
by its moment around the spacecraft’s center of mass.

Losses of energy in the attaching lug of elastic element are not taken into account. It means
reduction of the amplitude of reaction force of embedding. The reaction force transmits to the
body pf spacecraft and causes microaccelerations, because it creates momentum around center
of mass of spacecraft. Mass and size of spacecraft should be reduced so as angular accelera-
tions from tangential inertia forces are similar to get initial amplitude of microaccelerations.
It is considered to be a condition of constancy of the form of constructive component caused by
vibrations of elastic element (Figure 2). Thus:

εðlÞ ¼ M½ФτðlÞ�
I

¼ ФτðlÞs
I

¼ μ
2

Mðlþ sÞ2s
I0 þ 1

3μι
3 þ μιs2

� �2 , ð6Þ

ε
l
2

� �
¼ M½Фτ

l
2

� ��
I1

¼ ФτðlÞs1
I1

¼ μ
2

M l
2 þ s1
� �2s1

I10 þ 1
24μι

3 þ μ ι
2 s

2
1

� �2 : ð7Þ

Figure 3. Circuit of space laboratory.
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Inertia moment of central body is e according to the formula: Ii0 ¼ miR2
i

4 , where mi and Ri—mass
and radius of central body for i-iteration accordingly.

The initial spacecraft determined by scheme on Figure 3 is considered to be the zero iteration
(i ¼ 0). The spacecraft with elastic element length of which is less than two times the initial

length l1 ¼ ð0:5Þ1l0
� �

and inertia-mass parameters and sizes are matched so as angular accel-

erations in Eqs. (6) and (7) are equal (εðlÞ ¼ ε l
2

� �
) is considered to be the first iteration. The

spacecraft with length of elastic element which is more than two times the initial length

(l�1 ¼ ð0:5Þ�1l0) and inertia-mass parameters and sizes are matched so as angular accelerations
in Eqs. (6) and (7) are equal εðlÞ ¼ ε l

2

� �� �
is considered to be the minus first iteration. Thus,

there is view that the following change is lower than the elastic element while iterations:

li ¼ 1
2

� �i

l0: ð8Þ

Besides, the values of i can be positive (reduction of spacecraft’s sizes relatively to initial) as
well as negative (increase of spacecraft’s sizes relatively to initial).

It is necessary to question: Would inertia-mass parameters of spacecraft change as synchro-
nously so length of elastic element does? Is formulation of changing low of these parameters in
the form similar to Eq. (8) possible? If the answers to the questions are positive, there are
quality which is similar to the self-affine property of the cosine part Weierstrass-Mandelbrot
function Eq. (1). Oppositely, if parameters will change disproportionally and angular accelera-
tions would not be equal after each iteration, the analogy with fractal properties would be
inapplicable. So, it is impossible to apply fractal functions for study and modeling of microacce-
leration field.

To search answers for these questions, the generalized parameter that characterizes inertia-
mass features of spacecraft was formed [14]:

z ¼
XN

i¼1
mi

m0 þ
XN

i¼1
mi

, ð9Þ

where m0 is mass of central body; mi is mass of i-elastic element and N, is number of elastic
elements of spacecraft.

The generalized parameter in Eq. (9) has the following form for investigated situation:

z ¼ m1

m0 þm1
: ð10Þ

In fact, generalized parameter z characterizes mass percent of elastic elements to the total mass
of spacecraft. The equality of angular accelerations is the condition of constancy of appearance
of time-dependence of microaccelerations which correspond to Figure 2:

εðl�1Þ ¼ εðl0Þ ¼ … ¼ εðliÞ: ð11Þ
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The value l obeys the law in Eq. (8). It is necessary to provide equality of Eq. (11) without changing
of geometrical parameters of central body of spacecraft (radius and coordinates of fixing points of
elastic element). In fact, it means multiple changing of elastic element’s length and mass of central
body to provide in Eq. (11) independently from sizes of spacecraft’s body. Results of these actions
for basic parameters of spacecraft “NIKA-T” (l0¼ 2 m, µ¼ 10 kg/m,М¼ 1Нm,m0¼ 6000 kg) are
shown in Figure 4. The following equation plays the role of coefficient, which determines multi-
plicity of changing of generalized parameter z:

kzi ¼ zi�1

zi
: ð12Þ

According to Figure 4, kzi coefficients significantly differ for different iterations. However, it is
absolutely predictable, because changing of mass was conducted while permanent size of
spacecraft’s central body. Only length of elastic element was changed accordingly to the law
in Eq. (8). It is hard to imagine significant changing of mass of spacecraft without changing of
radius of central body. Thus, search of answers to be mentioned above questions after
conducted in which the analysis will be leaded to the following. Is it possible to realize such
changing law of central body’s radius to achieve the following:

- values of kzi do not significantly differ for different iterations;

- values of analogical coefficient for radius changing kRi ¼ Ri�1
Ri

do not significantly differ for

different iterations;

- changing of mass and radius are connected to each other, it means that they do not
contradict to each other (reduction of mass leads to reduction of radius and vice versa).

According to the investigations, conducted for spacecraft, shown in Figure 3, such law exists.
The sample dispersion of values kzi was analyzed for different values kRi ¼ Const, using the

Figure 4. Changing dynamic of spacecraft’s mass and generalized parameter if Eq. (11) is prominent for iterations �2 ≤ i ≤ 4.
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same quantitative data, which correspond to basic parameters of spacecraft “NIKA-T.” The
results of quantitative analysis are shown in Figure 5.

Minimum of the dispersion is achieved closely to the value kR ¼ 0:4. Thus, changing law of
radius of spacecraft’s central body, which is analogical to Eq. (8), has the following form:

Ri ¼ ð0:4ÞiR0: ð13Þ

At that, generalized parameter z changes accordingly to approximated law:

zi ¼ ð1:873Þiz0: ð14Þ

Then, changing dynamic of the parameters with taking into account radius’s changing, which
is analogical to Figure 4, has the form shown in Figure 6.

Figure 5. Sample dispersion of values kzi in dependence on kR.

Figure 6. Changing dynamic of spacecraft’s mass and generalized parameter when Eq. (11) is right taking into account
changing of spacecraft’s radius for iterations �2 ≤ i ≤ 4.
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Consequently, we can confirm that constant scaling coefficients of central body’s radius and
generalized parameter z are found for viewed example of spacecraft. These coefficients pro-
vide invariance of appearance of dependence of constructive component of microaccelerations
on time (Figure 2). The laws in Eqs. (8), (13) and (14) are realized simultaneously.

In this case, the fractal quality of constructive component of microaccelerations can be deter-
mined as invariance of the form of time-dependence of microaccelerations’ module whole scaling of
spacecraft on generalized parameter z.

Scaling coefficients among axes of graph of time-dependence of microaccelerations are equal to
0.25 among time-axis and one among microacceleration-axis. Thus, the graph does not change
its appearance as well as values of microaccelerations. It is very important for providing of
required microacceleration level in the area with technological equipment. Graph compression
among time-axis is explained by fourfold increase of frequency of proper oscillations of a beam
while double reduction of its length.

There is used the simple scheme of spacecraft to show scaling property without hard comput-
ing in mentioned case. The same situation would be for more complicated scheme which is
close to real spacecraft.

Scaling coefficients of mass km and radius kR are determined accordingly to the chosen scaling
coefficient of length kl ¼ 0.5 in such a way as generalized parameter z was changed according
to the law:

zi ¼ kzi�z0, ð15Þ

where z0 is value of spacecraft’s generalized parameter while i ¼ 0, i.e., for basic spacecraft,
which is the base for the future different types of spacecraft.

Application of another changing law of the length in place of Eq. (8) also does not change
anything fundamentally. In this case, scaling coefficient of time-dependence of microacce-
lerations among time-axis will differ from 0.25.

It is worth to mention that only constructive component of microacceleration field has this
property. Neither metastable even more nor random components according to classification [8]
meets the fractal property. Metastable component is determined by the sphere of cosmic space
where spacecraft operates. The component forms the part of microacceleration field, which is
caused by outer disturbing factors. This disturbance, such as aerodynamic drag and light
pressure, can change when spacecraft is scaled and can remain unchanged, such as magnetic
disturbance. That is why metastable component has no scaling property.

The same thing is for random component. Appearance of emergency situations, failure of
different equipment or random oscillations of basic parameters of outer disturbing impact on
spacecraft is not connected with its scaling. On the other hand, probability of hitting of
micrometeorite to spacecraft is connected with square of its outer surface and will change with
scaling. Thus, we can claim that random component has no scaling property.

However, the remarks relatively to metastable and random components do not reduce the
value of the found property of constructive component of microacceleration field. Actually, just
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constructive component is determined already in early developmental stages of spacecraft.
This component characterizes dynamical features of spacecraft’s constructional layout and
takes into account the algorithms and ways to orient its orbital motion. Only constructive
component can be influenced by using of the total power of different methods to provide and
control microacceleration level in the area with technological equipment. This power can be
significantly strengthened by application of fractal analysis as well as classical.

Scaling property of constructive component of microacceleration field allows application of
methods of fractal analysis for designing of technological spacecraft as well as for correct data
processing of microacceleration measurements, finding of failures of gauges and recovery
of lost measuring data. It is very hard to do all of these only on the base of classical methods
of analysis. The perspectives of addition of classical methods described by fractal property of
constructive component of microaccelerations are mentioned below.

The launchings of spacecraft with specialized technological purposes happen with big inter-
vals on the modern stage of space technologies’ development. For instance, spacecraft
“FOTON –M”No 3 was launched in 14 September 2007 and the following spacecraft “FOTON
– M” No 4—only after almost 7 years in 19 July 2014. Thus, it is evident that it is impossible to
arrange space experimental batch manufacturing only on the base of specialized space technic.
One of the perspective ways to solute the problem is the wide application of small spacecraft.
One start of carrier rocket of middle class is able to provide launching of tens small spacecraft
to their orbits. Series-produced homotypic spacecraft can provide meeting of similar condi-
tions for realization of concrete gravity-sensitive process. Continuous production can be orga-
nized using project launchings with small spacecraft as additional load. However, only
application of small spacecraft would significantly limit production value. Limits on mass
would not allow placement on spacecraft’s board more than 100 kg of technological equipment
and materials for production.

The approach, which includes advantages of spacecraft with specialized technological pur-
poses and small spacecraft, is necessary to meet requirements of experimental batch produc-
tion in space. This approach should integrate opportunities of these ways of space technic’s
development: regularity of launchings and significant scales of production while maintenance
of equal favorable conditions for realization of gravity-sensitive processes. It is evident that
such task statement leads to necessity to create line of spacecraft from different classes which
meet these equal conditions. The scaling property of constructive component of microacce-
lerations should be applied to solute this task. For this purpose, the mathematical model of
microaccelerations should be built using fractal function. Fractal model of microaccelerations
worked out in the articles [15, 16] on the basis of cosine part of Weierstrass-Mandelbrot
function in Eq. (1) can be example of such model. Behavior of an average value of microacce-
lerations as a random process was compared with behavior of cosine part of Weierstrass-Mandel-
brot function with usage of statistical analysis. At that parameters of the function were identified
with spacecraft’s characteristics. So, functional fractal dimension D is identified with moment from
orientation engine of spacecraft and scaling parameter b—with generalized parameter z.

Such line approximately can be presented in the form of scheme shown in Figure 7 [13], where
“NIKA-T” is the base spacecraft and actually created space objects are used.
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The line developed using fractal property would guarantee a correspondence of microacce-
leration levels on the spacecraft from different classes. It would allow conducting of the same
process on the spacecraft and taking a step toward full-scale experimental batch production in
space.

Described property also can be effectively applied for study of microacceleration field of inner
environment of spacecraft. Correctness of the gauges’ run after launching overloads can be
estimated by comparison of experimental data with results of on-board measurements. There
is worked out an algorithm of measuring equipment efficiency check on the basis of fractal
property of constructive component of microaccelerations in Ref. [13]. The algorithm is effec-
tive when constructive component dominates in microacceleration field of inner environment.
Significant differences between the fractal model and measuring data can be explained by
following factors:

- There is no dominance of constructive component in microacceleration field.

- An additional source of microaccelerations presents, for instance, as the result of emergency
situation.

- The gauge is failed.

Thus, checking of efficiency of all gauges after launching overloads is possible. It is unachievable
by classical methods of analysis.

Figure 7. Line of spacecraft from different classes, which realize equal microacceleration level in the area with technolog-
ical equipment.
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For instance, failed gauge was found in the result of such checking. It is possible to avoid
significant mistakes while forming of model of microacceleration field of inner environment of
spacecraft by neglect of measuring data from the gauge. However, accuracy would be reduced
along with loss of measurement channel from failed gauge. In this case accuracy can be raised
using fractal analysis. Well-known method of majority control [13] can be applied for replace-
ment of the measurement channel by fractal mathematical model of microaccelerations, which
was used for measuring equipment efficiency check. Undoubtedly, accuracy of such estimation
would be lower in comparison with valid effective measurement channel. On the other hand, it
would be higher than without application of majority control.

One of the possible algorithms of majority control with the aim to find out failed gauge and to
smooth results of measuring data processing is shown in Figure 8 [2].

At that, fractal mathematical model plays the role of additional measurement channel. The
presence of significant statistical differences between measurements with additional channel
and without ones can be evidence of failed gauge. If the differences will be considered to be
random, we can claim that all gauges run correctly. It increases the reliability of measuring
data which leave much to be desired on the present developmental stage.

Thus, invention of scaling property of constructive component of microacceleration field which
is similar to self-affine property of fractal functions allows application of methods of fractal
analysis for creation of a line of spacecraft from different classes. At that, these spacecraft should
realize the equal microacceleration level in the area with technological equipment.

The application of the scaling property of constructive component of microaccelerations gives
the ability to select the row of values of generalized parameter z, which provides invariance of
the form of time dependence of microaccelerations. The generalized parameter will allow a
choice of corresponding inertia-mass characteristics of spacecraft and creation of the family of
spacecraft (from orbital space stations to small spacecraft) which realize the identical microacce-
leration level.

Such result could not be achieved by classical methods because the fractal property is the base
of supposed approach to creation of line of spacecraft from different classes. At that, it is worth
to note that application of fractal analysis gives a significant practical result. Actually, creation
of spacecraft line which realizes equal microacceleration level will have to be allowed in the
beginning of pilot batch production in space already on the present developmental stage of
space-rocket technic. The potential and advantages of spacecraft from all classes included in
the line created on the base of scaling property of microaccelerations will be applied in the
production. It is a large step forward in comparison with separated irregular experimental
investigations with technological purposes, which are conducted in separated spacecraft
today. On the other hand, creation of line of spacecraft on the basis of scaling property of
microaccelerations is one of a few ways which lead to pilot batch-space-production on the
present stage.

In spite of the main aim of designing of the spacecraft line, fractal model of microaccelerations,
built, for example, on the basis of Weierstrass-Mandelbrot function, combined with classical
methods of analysis allows solution of other tasks. These tasks include increasing of reliability
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of data from on-board measuring equipment for microaccelerations; increasing of efficiency of
control over microaccelerations during conducting of gravity-sensitive technological processes
and also taking the decisions about possibility and advisability to realize some or another
gravity-sensitive process on the board of concrete spacecraft.

We can claim that fractal analysis significantly widens opportunities of classical methods for
conducting of majority control of microaccelerations, for recovering of lost measuring data and
also for taking the decisions about realization of active control over microaccelerations on the
exploitation stage of spacecraft.

Figure 8. Algorithm to realize majority control over gauges during exploitation stage.
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Evidently, significant complications of spacecraft’s model are necessary for effective applica-
tion of fractal analysis and achieving required accuracy of estimations. The model described in
the chapter was chosen only for approval of existence of scaling property of constructive
component of microacceleration field and its illustration.
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Abstract

If we take into consideration the fact that the radar signal recognition and identification
process is an integral part of contemporary combat operations, the importance of the
fractal analysis increases significantly. For this reason, the fractal analysis is used in the
process of radar sources identification on the contemporary battlefield. Radar Signal
Recognition (RSR) with the use of classical methods, that is based on statistical analysis
of basic measurable parameters of a radar signal, such as Radio Frequency (RF), Ampli-
tude (A), Pulse Width (PW) or Pulse Repetition Interval (PRI) is not enough to carry
out the distinction process of particular copies of the same radar type. Only by this
approach, the identification process of particular copies in a set of the same type emitters
can be carried out. As a result, it is possible to maximize Correct Identification Coeffi-
cient (CIC) in the final stage of the recognition process, which is realized in Electronic
Warfare (EW) systems. One of the most important elements of the whole recognition
and identification process, which is realized in ELectronic INTelligence (ELINT) battle-
field system, is building a measurement data vector, then a radar's metrics and the same
database. This approach is called Specific Emitter Identification (SEI).

Keywords: fractal feature, pattern of radar, Specific Emitter Identification (SEI), radar
vector parameters, ELINT system, Radar Signal Recognition (RSR), Correct Identifica-
tion Coefficient (CIC)

1. Introduction

Developing an innovative method for generating distinctive features extracted from radar
signals in order to achieve explicit identification is a main goal in the process of Specific
Emitter Identification (SEI). As a result, it is possible to maximize Correct Identification Coef-
ficient (CIC) and identify particular copies of radars of the same type in ELectronic INTelli-
gence (ELINT) system on the contemporary battlefield. The presented achievements in this

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



chapter concern methods and techniques adjusted to electromagnetic emitter source recogni-
tion and identification with particular reference to the systematic approach, that is, from the
acquisition process, through initial data transformation, main transformation, classification
and identification and building a model in the DataBase (DB). Only a comprehensive approach
can be coherently fitted into a harmonious whole of all the ELINT recognition systems’
processes on the contemporary battlefield. As a result, this approach may contribute to an
increase in effectiveness of activity by minimization of time, which is necessary for the decision
process realized in Electronic Warfare systems.

Generally, it is possible to distinguish the main task, which has a significant contribution to the
development of recognition and identification of radar signals, that is, developing innovative
methods for generating distinctive features of radar signals [1–5]. As mentioned above, the task
is connected with developing a method for setting the structure of basic measurable parameters
of a radar signal in the form of time-frequency-formalized Pulse Descriptive Word (PDW) [5, 6],
developing and implementing in SEI process, an advanced Hierarchical Agglomerative Cluster-
ing Algorithm (HACA) based on the 'bottom up' agglomerative formula, which makes it possi-
ble to receive dendrograms of hierarchical clustering for pulse repetition intervals and their
distinctive analysis [1], applying the inter-pulse modulation analysis to extract distinctive fea-
tures [7], developing an innovative histogram procedure to build PRI decomposition [2] and
finally developing an innovative method for defining a transformation attractor of radar signals
measurement clusters [3, 4]. This approach is called Specific Emitter Identification.

2. Classic recognition of radar signals

As a general rule, the systems aiming at acquisition, analysis and recognition of radar signals on
the contemporary battlefield are autonomous systems, which are made of electronic recognition
devices doing ELINT tasks. These systems accomplish complex procedures in the scope of
emission acquisition, analysis, transformation and radar emission recognition with the range of
wavelengths 0.5–18 GHz, long-term data archivization and full synthesis and fusion of informa-
tion. These systems, in most cases, are made of the following subsystems and modules, that is,
radar signal acquisition subsystem, radar signal processing and analysis subsystem, database
management subsystem and communication module1 between particular subsystems.

Accomplishing basic tasks in the designed systems of radar signal acquisition, analysis and
recognition on the contemporary battlefield is based on:

• automated searching for and detecting2 electromagnetic emitters (in the range of wave-
lengths 0.5–18 GHz);

1
Communication module between particular subsystems and components of acquisition system and radar signal analysis
on the contemporary battlefield is not the subject of this chapter.
2
In the aspect of tasks connected with searching for and detecting signals and measuring their parameters, the specialist
equipment of the radar signal acquisition, analysis and recognition system makes it possible to accomplish the tasks above
on the land, from the air or the sea and may be adjusted to a plane, helicopter, a ship or installed in a special container case.
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• automated parameter measurement of the detected emitters;

• analysis of measured signal parameters in a thick electromagnetic environment (a few
thousand or more pulses) and initial measurement data processing (initial parametric
selection and/or signal reduction);

• main signal processing (extraction of basic features and estimation of basic measurable
radar signal parameters i.e. signal radio frequency, amplitude, pulse width, pulse repeti-
tion interval) on the basis of statistical functions concerning estimating e.g. average values
of parameters, class models and hypothesis verification;

• radar signal archivization in files with measurement data in the DataBase and updating
procedure as well as DataBase structure modification;

• radar types recognition and classification on the basis of radar signals received from them
by comparing signal parameters with the model in BD in the shortest time possible and
using expert's knowledge in the process of emitter sources recognition, classification and
location;

• visualization of signals, measurement data clusters, results of recognition and other data
and distinctive information presented in a tabular and graphic form;

• depict results of recognition on a digital map and automatically adjusting a unit to the area;

• possibilities of import and analysis of measurement data from electronic recognition, which
is received from other sources and data measurement and recognition information fusion;

• creating a simulation software to generate warfare scenarios, test correctness of emission
sources classification, recognition and location procedures and to estimate the effective-
ness of the system and trainings for operators.

The analysis of radioelectronic situation on the contemporary battlefield and long-term radar
signal measurements makes it possible to admit that during the process of signal recognition
and classification, there is a phenomenon of penetrating ranges of radar parameters, many
ranges of particular parameters for single radars, different types of emissions (constant, pulse,
interrupting), complexity of sounding pulses and specific work properties (signal polarization
depending on the weather), decrease in frequency of repetition and top pulse as the beams go
above the horizon or the change of top power in case of e.g. weather condition changes. The
general block diagram of radar signal acquisition, analysis and recognition is presented in
Figure 1.

The radar recognition system (see Figure 1) is only able to recognize and classify particular
types of radars. A definitely more advanced one is the recognition process understood in a
‘narrow sense’. Its aim is to identify these signals, thus their emission sources as well. I deal
with the recognition understood in a ‘narrow sense’, which concerns identification of particu-
lar radar copies of the same type depending on the detail level.

The process of distinguishing the radar emission source even ‘a single copy’ is the exact identifica-
tion of radar signal source in the aspect of SEI. Thus, applying in the acquisition system, the
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analysis and recognition of radar signals, inter-pulse analysis of signal parameters (defining the
type of inter-pulse modulation and estimation of parameters’ modulation), intra-pulse analysis
(defining the type and parameters of intra-pulse modulation on the basis of a single pulse),
applying innovativemethods for generating distinctive features, using fast-decision identification
algorithm and advanced DataBases prepared as a result of modelling entity relationships and
using AI3 devices is an immanent specificity of ELINT systems and makes it possible to identify
particular copies of radar emitters with the use of the above dedicated methods for generating
distinctive features' signals in Electronic Warfare (EW) systems. As concerns contemporary used
ELINTclass systems, data classification and recognition techniques are currently developed fields
of science, it is not possible to formulate optimal model of their structure and maximize the
recognition and classification function aswell as the identification function.

In Figure 2, a block diagram of the acquisition, analysis and identification system, including
the subsystems that implement modern and advanced methods for generating distinctive
fractal features, is presented.

Figure 1. The process of information processing in the radar recognition system.

3
AI (Artificial Intelligence), a term of artificial intelligence, which in BD systems is realized on the basis of using artificial
neural networks (so-called AI bionic trend) and expert systems, based on predicate calculus (so-called AI pragmatic
trend).
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3. Innovative method for generating distinctive features based on fractal
analysis

RSRwith the use of classic techniques, which are based on the statistical analysis of basic measur-
able parameters, such as radio frequency, signal amplitude, pulse width, and pulse repetition
interval, is completely not sufficient for SEI process to carry out the process of distinguishing
particular radar copies of the same type.

For this reason, on the stage of initial data processing, a method for defining the structure of
basic measurable parameters of a radar signal in the form of formalized time-frequency Pulse
Description Word was developed. These vectors are input data into the further process of
generating distinctive features, in the main processing stage [3, 4]. As mentioned above, the
PDW vector is a formalized data structure of record type, where particular fields consist of
frequency parameters and time parameters of radar signal according to Eq. (1), where Nr(k) is
the number kth of the pulse, tp(k) is the time of appearing kth pulse in [µs], A(k) is the
amplitude of kth pulse, PW(k) is the width of kth pulse in [µs], PRI(k) is the Pulse Repetition
Interval of kth pulse in [µs], RF(k) is the Radio Frequency of kth pulse in [MHz], n is the
number of pulses in the record of these which are qualified to the analysis while k is the
number of pulses in the measured sample.

PDW ¼

Nrð1Þ tpð1Þ Að1Þ PWð1Þ PRIð1Þ RFð1Þ
Nrð2Þ tpð2Þ Að2Þ PWð2Þ PRIð2Þ RFð2Þ
… … … … … …

NrðkÞ tpðkÞ AðkÞ PWðkÞ PRIðkÞ RFðkÞ
… … … … … …

NrðnÞ tpðnÞ Að2Þ PWðnÞ PRIðnÞ RFðnÞ

2
6666664

3
7777775

ð1Þ

Figure 2. The process of distinctive fractal features generation in the RSR system.
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The effect of the further transformation of PDW vector is Basic Signal Vector VB, whose fields
are of particular signal frequency and time parameters, according to Eqs. (2)–(4). The time
parameters of the vector VPRI

B are as follows: minimum pulse repetition interval value PRImin,
average pulse repetition interval value PRIEV, maximum pulse repetition interval value
PRImax, the number of values of pulse repetition interval nPRI, the number of values of average
pulse repetition interval nPRIEV, the minimum value of pulse width PWmin, the average value
of pulse width PWEV and the maximum value of pulse width PWmax.

VPRI
B ¼ ½PRImin, PRIEV, PRImax , nPRI,nPRIEV , PWmin, PWEV , PWmax� ð2Þ

The frequency parameters of the signal vector VRF
B are defined according to Eq. (3) and are as

follows: the minimum value of the signal radio frequency RFmin, the average value of the radio
frequency for the periodRFEV, themaximumvalue of the radio frequency in the period of changes
RFmax, the number of values of the radio frequency nRF and the number of average radio frequen-
cies in the cycle of changes nRFEV.

VRF
B ¼ ½RFmin, RFEV, RFmax, nRF, nRFEV� ð3Þ

The vector VB of the final structure presented according to Eq. (4) consists of parameters
concerning information about the accuracymeasurements of: radio frequency sigRF, pulse repeti-
tion interval sigPRI and pulsewidth sigPW .

VB ¼ ½VPRI
B ,VRF

B , sigRF, sigPRI, sigPW� ð4Þ

These parameters are the base for defining the brackets of acceptable changes of radar signal, that
is, RF, PRI and PW are used in the estimation process of effectiveness of the Fast decision
Identification Algorithm (FdIA), described in [6]. The process of developing the signal vector VB

also undergoes the process of implementation and automation in the stage of initial data

Figure 3. PRI histogram for six copies of the same type of radars marked by colours.
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processing and the main data processing by ELINT system (see Figure 2). During the analysis, in
total hundreds of radar samples coming are carried out. The received record collections (e.g. six
copies of the same type of radars) with basic measurable parameters of PDWare presented in the
form of a graph with basic measurable parameters, that is, RF, PW and PRI in Figures 3 and 4.
Figure 3 presents the PRI histogram of six tested radar copies in an overall depiction. Figure 4
presents a 3D graph of RF, PRI andPWparameters from six copies, in an overall depiction aswell.

Figures 5 and 6 present 3D depicting of radio frequency and pulse width for three selected copies
of the same type of radars received with the use of 'mesh' function in the MatLab software.

Figure 4. 3D graphic depicting of PW, PRI and RF for six copies of the same type of radars.

Figure 5. 3D graphic depicting of PW for three selected copies of the same type of radars.
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On the basis of the recordings and initial analysis to further process of identification, only these
copies were admitted whose basic measurable parameters, that is, RF, PWand PRI were much
the same—see Figures 5–8. Figures 5–8 present the biggest similarity of the radar signal
parameters which those sources generated.

Figure 6. 3D graphic depicting of RF for three selected copies of the same type of radars.

Figure 7. 3D graphic depicting of RF, PRI and PW for three selected copies of the same type of radars marked by three
shades of gray.
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4. Defining the transformation attractor and distinctive features extraction

One of the ways to increase the number of details of definition is specific identification of
electromagnetic emitter sources SEI which extracts distinctive features in the process of signal
transformation. The distinctive features may be a result of the received transformations of
measurement data sets. New data sets will have fractal features which will make it possible
to define clearly the source of radar emission. The fractal features and the theory of fractals is
adopted by researchers, especially in the field of SAR (Synthetic Aperture Radar) image trans-
formation [8, 9], acoustic signal transformation and the analysis of radar signals. New possi-
bilities of Digital Signal Processing (DSP) in Frequency Modulated Continuous Wave (FMCW)
radar and fractal image compression is a promising brand new compression method [10, 11]. It
should be noted that the identification of emitter sources based on classical methods of the
analysis of basic parameters is currently inefficient. The methods of SEI [12, 13] should be used
in order to identify, more precisely, a radar copy of the same type.

4.1. An attractor of transformation

The easiest way to make fractals is by using a set of affine transformations, which are contrac-
tions or narrowing transformations. In this case, the set of affine transformations is Iterated
Function System (IFS). A recording of radar signal was made. Further frequency values, for
which the recording was made, correspond to particular measurement points. By transforming
the sets of measurement points in the scope of their symmetry or left-side/right-side asymme-
try, what was received was the attractor of transformation which can be a fractal in a special
case. As a result, the attractor of generalized measurement function appeared, which was the
result of the procedure of SEI described here. While doing the analytical procedure of defining
the attractor of measurement function, right-side measurement vectors pr and left-side ones pl

with the beginning in the particular point of reference f0, so that pr ¼ ½pr1, pr2,…, prN�T and

pl ¼ ½pl1, pl2,…, plM�T were assigned. In order to define the desirable selective features, the

Figure 8. 3D graphic depicting of PW, PRI and RF for three selected copies of the same type of radars marked by three
shades of gray.
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T : pr ! t transformation was done. In this transformation, t is the image of the pr vector in the
form of a vector with coordinates corresponding to the pl vector. For the transparent record of
the transformation above with the use of vectors pr and pl, the mapping was written in the

Euclidean plane, that is, T : E1 ! E2. In the issue, which is considered here, these transforma-
tions are linear mappings, so they can be written in the matrix form as t ¼ T ðpp,AÞ, in which
A is the matrix of a given transformation. Depending on the received symmetry or asymmetry
(right/left-hand) of measurement points, they will create different dispersion graphs. An
example of right-side and left-side asymmetry dispersion graph is presented in Figures 9 and
10 and precisely described in the work of Dudczyk [13]. The number of measurement points is
chosen empirically and is a double value of the maximum filter’s width of the IF frequency
from the superheterodyne receiver, which is used in the measurement procedure, that is,
40 MHz. As a result of this assumption, the critical original number of measurement points is
as follows N = M = 80.

Depending on the received symmetry or asymmetry (right/left-side) of measurement points, it is
possible to create dispersion graphs. Measurement points presented in Figure 11, transformed
and depicted together, form the so-called measurement function Kðf nÞ. Figure 11 shows the

Figure 9. Depiction of transformation of measurement points in a 2D Euclidean space for N > M, that is, the range of
right-hand asymmetry.

Figure 10. Depiction of transformation of measurement points in a 2D Euclidean space for N < M, that is, the range of left-
hand asymmetry.
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coordinate plane, where an abscissa (the value of x) is marked as a f xn and an ordinate (the value
of y) is marked as a f yn.

On the basis of distinctive streaks that were formed, such hypothesis can be proposed: func-
tions gAðf nÞ, gBðf nÞ, gCðf nÞ and gDðf nÞbelong to the class of linear functions, in whichgAðf nÞ,
gBðf nÞ, gCðf nÞand gDðf nÞ will be the regression lines for the streaks formed through the mea-
surement points [14]. Linear equation of regression for the presented case is defined with the

following equation gðf nÞ ¼ α � f n þ β, in which α can be expressed as a vector ½αA,αB,αC,αD�T
and β can be expressed as a vector ½βA,βB,βC,βD�T and gðf nÞ can be expressed as a vector

½gAðf nÞ, gBðf nÞ, gCðf nÞ, gDðf nÞ�T . To define the value of α and β, Eq. (5) should be minimalized.

E½f Yn � α � f n � β�2 ¼ min ð5Þ
∂
∂α

E½f Yn � α � f n � β�2 ¼ �2E½ðf Yn � α � f n � βÞf n�
∂
∂β

E½f Yn � α � f n � β�2 ¼ �2E½ðf Yn � α � f n � βÞ�

8>><
>>:

ð6Þ

After comparing the calculated derivatives Eq. (6) to zero, appears the system of normal
equations in which after replacing the expected values with particular moments of equation
systems, the following equation can be written:

α �m20 þ β �m10 ¼ m11
α �m10 þ β ¼ m01

�
ð7Þ

in which m10 and m01 are sample 1st moments, m20 is sample 2nd moment and m11 is mixed
sample 1st moment. After further transformations, the regression equation is as follows:

Figure 11. A graph of measurement points dispersion after transformation—attractor of transformation.
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gðf nÞ ¼
μ11

μ20
� f n þ m01 � μ11

μ20
m10

� �
¼ α21f n þ β ð8Þ

where

α21 ¼ μA
11

μA
20

,
μB
11

μB
20

,
μC
11

μC
20

,
μD
11

μD
20

" #T
¼ ½αA, αB, αC, αD� T ð9Þ

β ¼ mA
01 �

μA
11

μA
20

mA
10, m

B
01 �

μB
11

μB
20
mB

10 , m
C
01 �

μC
11

μC
20
mC

10, m
D
01 �

μD
11

μD
20
mD

10,

" #T
¼ ½βA, βB, βC, βD � T ð10Þ

and μ11 means mixed 2nd central moment and μ20 means 2nd central moment. As a result of
further transformations, four linear regression equations were given. The particular equation
system given by the regression equation allows to calculate characteristic points of coordi-
nates. Examples of four characteristic points presented in Figure 11 in the form of black points,
such as (PAB, PBC, PCD, PAD), were formed. Then, with the use of characteristic points of
coordinates, the measurement function Kðf nÞ was formed.

4.2. Distinctive fractal features extraction

As a result of further transformations, four equations of linear regression were received. Then, it
is possible to draw a measurement function Kðf nÞ in the form of a product k degree given k + 1
characteristic points, defined by the Lagrange’s polynomial formula in accordance with Eq. (11),
where ak, ak�1, …, a0 are characteristic parameters of measurement function Kðf nÞ, as shown in
Figure 12.

Figure 12. The image of measured function according to Lagrange polynomial and fractal features extraction.
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Kðf nÞ ¼ akf kn þ ak�1f k�1
n þ ak�2f k�2

n þ⋯þ a0 ð11Þ

The formalized notation of the measurement function Kðf nÞ allows to extract distinctive fea-
tures through defining the space area under the measurement function and the arc length of
the function, which appeared for the SEI process. The feature S is the value of the space area of
a closed surface expanding from the generalized measurement function Kðf nÞ in the bracket

〈fmin
n , fmax

n 〉, respecting Eq. (12).

S ¼
ðfmax

n

fmin
n

Kðf nÞdf n ¼
ðfmax

n

fmin
n

ðakf kn þ ak�1f k�1
n þ ak�2f k�2

n þ⋯þ a0Þdf n ð12Þ

Simultaneously, the arc length of the generalized measurement function Kðf nÞ as the second
distinction feature of the radar emission source will be represented through the arc length L of
the function Kðf nÞ in the brackets 〈fmin

n , fmax
n 〉, respecting Eq. (13).

L ¼
ðfmax

n

fmin
n

1þ ∂Kðf nÞ
∂f n

� �2
" #1

2

df n ¼
ðfmax
n

fmin
n

1þ
�
kakf k�1

n þ ðk� 1Þak�1f k�2 þ…þ a1
�2� �

1
2df n ð13Þ

According to Eqs. (12) and (13), it is possible to extract two additional distinctive features, that
is, the length of measurement function and the value of area which is included under this
function. The presented method of features extraction makes it possible to estimate numerical
surface areas under the measurement functions (feature S) and the distance of arc of these
functions (feature L). Then the vector of basic measurable parameters of radar signal was
extended with two additional features.

Given in that way, two additional features expand the VB vector of the basic features of radar
signal measurable parameters, such as PW, PRI and RF. And these features are a good separa-
tion measure in the SEI process. The way of defining these two additional features and using
them in the process of identification of the radar copies of the same type was presented in
further part of this chapter.

5. Fractal of generalized measurement function

Generalization of the method of radar signal identification on the basis of the transformation

fractal is defining the generalized measurement function K̂ðf nÞ going through all particular
characteristic points Pn, in which n = 0,1,…,kgr . Figure 13 presents the fractal character of the
measurement function received as a result of the transformation of the set of measurement
points.

The generalized measurement function K̂ðf nÞ preserves the character of not decreasing func-

tion in a particular bracket 〈fmin
n , fmax

n 〉 and out of definite character, it shows prediction
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features. Simultaneously, K̂ðf nÞ is located in an area that is mapped by the lower limiting
straight FLðf nÞ and upper limiting straight FUðf nÞ and is symmetric relatively to the symmet-
rical limiting straight FSðf nÞ according to Eqs. (14)–(16), in which f x2, f

x
3, f

x
gr are the abscissae of

characteristic points and f y2, f
y
3, f

y
gr are the ordinates of characteristic points. Figure 13 pre-

sents a fractal character of the generalized measurement function which has the form of a
contraction mapping.

FLðf nÞ ¼
f ygr � f y2
f xgr � f x2

" #
� ðf n � f x2Þ þ f y2 ð14Þ

FUðf nÞ ¼
f ygr � f y3
f xgr � f x3

" #
� ðf n � f x3Þ þ f y3 ð15Þ

FSðf nÞ ¼
f ygr
f xgr

" #
� f n ð16Þ

It should be mentioned that the received shape of the measurement function (according to
Figures 11 and 12) is an individual model of a radar emission source. ‘An individual model’
means ‘lines on the fingers’ of the radar which make a clear identification possible.

6. Results of analysis

To compare the received results with other RSR methods based on, for example, Fast decision
Identification Algorithm of emission source pattern described in Ref. [6], or out-of-band

Figure 13. The fractal character of generalized measurement function.
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radiation of radar devices described in Ref. [13], or inter-pulse modulation described in Ref. [7]
and intra-pulse analysis of a radar signal shown in Ref. [15] or method based on data modelling
presented in Ref. [16], Correct Identification Coefficient (CIC) is set according to Eq. (17), where
nB�P is the number of correct comparisons of basic features’ vectors VB (presented according to
Eq. (4)), to extended vectors VEXT (with two additional features L and S) in a particular class,
where N is the number of all comparisons divided by the number of test collections.

CIC ¼ nB�P

N
ð17Þ

The number of nB�P correct comparisons is set according to Eq. (18), where γj
i function assigns

to a pair of vectors ðVi
B,V

j
EXTÞ the value which equals ‘1’ if i = j, or the value which equals ‘0’ if

i 6¼ j. The example of CIC received values are presented in the following part of this chapter.

nB�P ¼
XI

i¼1

XJ

j¼1

γi j ð18Þ

The process of identification was made on the basis of length measurement and the decision
about the criterion of minimal distance classification. A correctness estimation of tests with
particular class were Mahalanobis, Euclidean and Hamming distances (metrics) [17, 18]. The
criterion of classification was the criterion of ‘the nearest neighbour’, which was used as one of
the basic threshold criteria [19]. In order to assess the quality of the classification/identification
process, the Correct Identification Coefficient was defined.

According to Eqs. (8) and (9), it was possible to extract two additional distinctive features, that
is, the length of measurement function and the value of area which is included under this
function. The results were presented in Figures 14–16.

Also, the received estimation results are presented in Figures 17–19. Appropriately crossed
columns and lines of each VB vector and extended vectors VEXT present the degree of their
similarity defined by the distance value. The less value of this distance means the bigger similar-
ity ofVB vector to the extended vectors. Also, in Figures 15–17, there are minimum values of the
distance marked with a red dotted ellipse.

Figure 14. An attractor of transformation for Copy of Radar No. 1.
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A correctness estimation of tests with particular class were Mahalanobis, Euclidean and Ham-
ming distances (metrics) [21]. The SEI estimation results are presented in Figures 20–22.

According to the SEI methods listed in this chapter, the received RER results are as follows: the
use of out-of-band radiation described in the work of Dudczyk [13] and the CIC value for RSR
is about 90%. The method based on fractal features described in the work of Dudczyk and
Kawalec [3], and the CIC value is 91.6% for Mahalanobis metric and 96.7% for Euclidean and
Hamming metrics. Very similar RER results are received in the work of Dudczyk and Kawalec

Figure 15. An attractor of transformation for Copy of Radar No. 2.

Figure 16. An attractor of transformation for Copy of Radar No. 3.

Figure 17. The values of Mahal distances for Radar Copy No. 1.
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Figure 19. The values of Mahal distances for Radar Copy No. 3.

Figure 18. The values of Mahal distances for Radar Copy No. 2.

Figure 20. The values of CIC for Radar Copy No. 1.

Figure 21. The values of CIC for Radar Copy No. 2.
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[4], where RSR is also based on the analysis of fractal features. The method based on inter-
pulse analysis described in the work of Dudczyk et al. [7] increases the CIC coefficient up to
70%, and the method based on intra-pulse analysis described in the work of Kawalec and
Owczarek [15] makes it possible to receive RSR results reaching 90% level. Data modelling
applied to RSR and identification is presented in the work of Kawalec and Owczarek [16]. In
this work, the value of CIC equals 98%. In the work of Dudczyk and Kawalec [6], the Fast
Identification Algorithm for RER is presented. This algorithm is parameterized in three stages
by implementation of three different ways to define the similarity degree of the signal vector to
the pattern in the database. Based on this algorithm, the CIC value is 63%. In order to depict it,
in Figure 23, there have been presented CIC values.

The presented method of features extraction makes it possible to estimate numerical surface
areas under the measurement functions (feature S) and the distance of arc of these functions
(feature L). Then, the vector of basic measurable parameters of radar signal was extended with
two additional features. Given in that way, two additional features expand the vector of the
basic features of radar signal measurable parameters, such as PW, PRI and RF, are a good
separation measure in the SEI process. The way of defining these two additional features and
using them in the process of identification of the radar copies of the same type was presented.
The features S and L are distinctive information for good separating measure in the SEI
process. Simultaneously, as a result of transformations in collections of measurement points,

Figure 22. The values of CIC for Radar Copy No. 3.

Figure 23. Graphic illustration of CIC values for other RER methods.
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the transformation attractor of the generalized measurement function is received. The received
attractor is used later on to optimize the SEI process.

It needs to be emphasized with full conviction that referring to the works above, during the SEI
procedure, the same recordings of a few hundred radar signals coming from the same type of
radars are used. Only by this approach, it is possible to compare the received results. It needs
to be emphasized that the RSRmethods listed in this chapter differ from each other as concerns
the test procedure, the compilation level, calculation time and algorithm complexity. However,
the main difference is that in the process of generating distinctive features, it is possible to
achieve different distinctive features from a radar signal. In that way, a quasi-optimum radar
signal pattern appeared.

7. Conclusion

Radar signal recognition with the use of classical methods, that is, based on statistical analysis
of basic measurable parameters of a radar signal, such as radio frequency, amplitude, pulse
width or pulse repetition interval, is not enough to carry out the distinction process of partic-
ular copies of the same radar type.

The received measurement data have a significant influence on the SEI process of radar, in
which it is aimed to receive very high level of radar signal identification. Ultimately, signal
source identification, which is 100%, should be characterized by the maximization of explicit-
ness of RER procedure. It is not a trivial matter to achieve such a result. It is also known that
stochastic context-free grammars (SCFG) appear promising for the recognition and threat
assessment of complex radar emitters in radar systems, but the computational requirements
for learning their production rule probabilities can be very onerous [20]. As shown in Ref. [21],
a self-organizing map and the maximum likelihood gamma mixture model classifier and
adopted Bayesian formalism are too complicated for direct analytical use in automatic radar
recognition. The presented SEI method based on fractal features is realized on the basis of
MatLab software package and received vectors are recorded in a dedicated database for
ELINT system. The received CIC value indicates that there has been a noticeable rise in the
radar signal correct identification. Comparing the received results of the identification process
with other methods, it may be admitted that the presented method makes it possible to
increase the value of CIC. In order to increase the CIC coefficient value, in further works on
RSR use in SEI process, a common similarity matrix should be defined. This matrix should
include the complexity of algorithms which are used in the RER method, estimation time, the
requirements of the equipment platform and other requirements, which are significant in the
process of quality estimation of a particular method. Thus, it will be possible to count auto-
matically the similarities between vectors of basic measurable parameters for different radar
copies of the same type. For ELINT systems working in real conditions, on a contemporary
battlefield, the automation of RSR process and explicit identification of every single emitter in
real time (with minimum time burden) are currently primary challenges for ELINT specialists

This chapter highlights the fact that the RSR process described here is a complex problem. It is
also generally known that a number of aspects such as defining the DataBase, the method
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which creates the pattern, classification process and identification process, the criteria which
are used and the method to calculate the correct identification coefficient, are currently a great
challenge for researchers and, for the time being, there are no optimal solutions to them. Many
solutions are still a mystery in this subject and because of the fact that they are a matter of
current EW field and specific programme-device applications, they cannot be published. All
attempts to implement such solutions to ELINT systems and electronic warfare should be
optimized to a particular device not to overload the SEI system.
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Chapter 7

Application of Fractal Dimension in Industry Practice

Vlastimil Hotař

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68276

Abstract

Today, industrial production lines commonly use off-line and automatic on-line quality
monitoring and control. Monitoring and control units analyse data from a production
process, and analysis should be able to obtain reliable information that correspond with
the character of the data obtained. The character of the data set obtained from produc-
tion processes or from products can be highly structured in all industrial areas. Struc-
tured surface, complex time series (topologically one dimensional signals), difficulty to
describe dividing curves are much more common than it can be expected. For this kind
of data set, a powerful tool for analysis of complexity —fractal geometry (especially a
fractal dimension) should be used. The fractal dimension with a combination of statisti-
cal tools is an interesting and powerful tool for complex data quantification, for tracing
the source of poor quality, production optimization and investigating the source of
instability of production process subsystems in industrial applications. The methodol-
ogy for evaluation of complex and irregular data was developed and applied in indus-
trial practice. This methodology searches appropriated parameters for a complex
evaluation of data. Only the chosen parameters are used for a complete analysis of the
data in order to reduce processing time.

Keywords: fractal geometry, fractal dimension, statistic tools, monitoring, control,
complex data

1. Introduction

A demand for objective measurement and control methods for materials, processes and pro-
duction processes stems from continuously increasing pressure from competitors to improve
the quality of products. However, description of many complex and irregular structures (e.g.
defects, surfaces, cracks, signals from dynamic processes) is almost impossible by conventional
methods. The application of fractal geometry, which is successfully used in science, appears to
be a powerful approach. The industrial application of the fractal dimension (FD) is generally

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



experimental [1, 2], but application to production is possible and brings benefits. Currently,
there are tools to monitor three basic data format types: topological one-dimensional signals
(analysis of time series for control systems, roughness from a surface roughness tester), divid-
ing curves (application for the corrugation test of flat glass and surface roughness—iron
aluminides in comparison with carbide-nickel steel in contact with molten glass), and digita-
lized photos (evaluation of 2D pictures of surface defects).

It is possible to compare statistical tools and FD, but the comparison should be done care-
fully. To claim that the FD is better than statistics and vice versa is impossible, because the
FD provides added information about the character of data set description and does not
substitute standard tools. Moreover, the FD should not be used separately for the reason that
the dimension does not give all the information about data set captures. FD using together
with added parameters (statistics, topology, spectral analysis, etc.) brings benefits and is
recommended.

2. Description of one-dimensional signals

Dynamic subsystems can be found in many production processes, and they have a strong
influence on the production. Data measured from production sensors contain mentioned
dynamic effect. Therefore, the time series are structured and the typical statistical data evalu-
ations are not often sufficient.

Also roughness from a surface roughness tester is in many cases complex, and using standard
roughness parameters may be not satisfactory.

To analyse one-dimensional signals, we use statistical methods, power spectral analysis, and
an estimate of the FD [3, 4]. The estimation of the FD is calculated using the rescaled range
method [5] and the box counting method from an “iso-set” [6], also compass counting and EEE
method can be used.

2.1. Rescaled range analysis

The rescaled range analysis (R/S) represents method for estimating the FD of self-affine fractals
and uses statistical tools. The method is based on an analysis of a changed interval of time series.
Consider an interval of time series, length w. Within this interval, one can define two quantities:

R(w), the range taken by the values of y in the interval (vector y—the vertical axis of the time
series—represent the time series without a sampling interval x—the horizontal axis of the time
series). The range is measured with respect to a trend in the interval, where the trend is
estimated simply as difference between maximum and minimum of the interval. This subtracts
the average trend in the interval.

S(w), the standard deviation of the first differences Δy of the values of ywithin the interval. The
first differences of the y's are defined as the differences between the values of y at some location
x and y at the previous location on the x axis:
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ΔyðxÞ ¼ yðxÞ � yðx� ΔxÞ ð1Þ

where Δx is the sampling interval, that is, the interval between two consecutive values of x.

The rescaled range R/S(wRS) is defined as follows:

R=SðwRSÞ ¼ 〈
RðwRSÞ
SðwRSÞ 〉 ð2Þ

where w is the interval length and the angled brackets <R(wRS)> represent the average of a R
(wRS) value numbers. The self-affinity incurs that one expects the range taken by the values of y
in an interval of length w to be proportional to the interval length to a power equal to the Hurst
exponent H, that is,

R=SðwRSÞ ¼ wH
RS ð3Þ

For a given window length wRS, the input series in a number of intervals of length wRS are then
subdivided, R(wRS) and S(wRS) in each interval are measured and R/S(wRS) is calculated as the
average ratio R(wRS)/S(wRS), see Eq. (1). Mentioned process is then reiterated for several
window lengths. Logarithms of R/S(wRS) are subsequently plotted versus the logarithms of
wRS. Considering the self-affine trace, this plot follows a straight line with a slope equals to the
Hurst exponent H. FD of the time series can be calculated from the relationship between the
Hurst exponent H and the FD:

DRS ¼ 2�H ð4Þ

where R/S dimension DRS denotes the FD estimated from the Rescaled Range analysis. The R/S
dimension has value from 1 to 2, and Hurst exponent has value from 0 to 1. More about the
method can be found in Ref. [5].

2.2. Box dimension from “Iso-set”

An “iso-set” is constructed from the time series as shown in Figure 1 that contains zeros and
ones, and the FD is estimated from this set. The “iso-set” (as time series) can be generated by
two basic ways, where the ones represent crossings of a pre-selected threshold. The “iso-set”
is generated by setting of suitable thresholds and marking the time at which the time series
cross these thresholds (Figure 1). The threshold values can be perceptually dependent on the
time series average (a floated threshold value, in Figure 1) or can be pre-selected fixed
values.

The FD of the “iso-set” is estimated by using box counting method that is described in Section
4.4. The principle of the box dimension method used for “iso-set” is given in Figure 1. (The box
size rB=ts.b.) Starting from box size rB = ts (ts is sampling time interval), the number of boxes
that contain a crossing is recorded. The box size is then increased by the factor b and the
procedure continues until the entire “iso-set” is contained in one single box. This is illustrated
for the factor b = 2. The box dimension DB is determined from the central slope of the
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regression line of the Richardson-Mandelbrot plot (logarithmic dependence between log2N(r)
and log2rB). For more information about the method, please see Refs. [6–8].

2.3. Compass counting

The estimated Compass Dimension expresses the degree of complexity of the profile. A
compass method [5, 9, 10] is based on measuring of the profile (curve) using different ruler
sizes (Figure 2A) according to the equation:

LiðriÞ ¼ NiðriÞ:ri ð5Þ

where Li is the length in i-step of the measurement, ri is the ruler size and Ni is the number of
steps needed for the measurement.

If the profile is fractal, and hence the estimated FD is larger than the topological dimension,
then the length measured increases as the ruler size is reduced. The logarithmic dependence
between log2N(ri) and log2ri (Richardson-Mandelbrot plot) is shown in Figure 2B. The Com-
pass Dimension is then determined from the slope s of the regression line:

DC ¼ 1� s ¼ 1� Δlog2LðrÞ
Δlog2r

ð6Þ

Figure 1. Construction of iso-set by marking each time at which trace crossed the chosen threshold values and a principle
of box dimension computing.
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2.4. Relative and proportional length

The rate of signal (profile) deformation might be evaluated by its relative length LR. This fast
and reliable method measures the ratio of the profile length lPIXEL (solid line in Figure 2A)
using the smallest ruler (1 pixel) rPIXEL and the length of the projection l (Figure 2A):

LR ¼ lPIXEL
l

ð7Þ

Another similar approach is to compute the proportional length of the profile LP. The propor-
tional length is the ratio of the profile length measured with a defined ruler lr (e.g. dashed line
in Figure 2A) and the length measured with the maximum ruler lr max (the length between the
first and the last point of the profile):

LP ¼ lr
lrmax

ð8Þ

2.5. EEE method

The method is based on length evaluation of a curve (signal). The curve is defined by mea-
sured values and they are isolated points x1, x2,…,xn in the range y(x1), y(x2),…, y(xn). The dots
represent local extremes (minima and maxima). Unnecessary extremes are classified with a

Figure 2. Estimation of the fractal dimension by the compass method.
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defined rule on the curve, and a new simplified function is defined by the remaining points.
For the next classification, the new function is used.

An example of a function defined by points and connected into the linear by parts function f is
in Figure 3. The function f is in the first step purged of points which are not local extremes
using the rule:

First, the difference proportion of the dependent variables y to the independent variables x
between neighbouring points xi, xi+1 is determined from function f:

Δf ðxi, xiþ1Þ ¼ ΔyðxiÞ
Δxi

¼ yðxiþ1Þ � yðxiÞ
xiþ1 � xi

ð9Þ

Second, irrelevant points, concretely points where the difference Δf has the same sign, are
eliminated. Remained points (marked by black dots in Figure 3) are considered as the local
extremes. Extremes are supplemented by first and last points. The prepared points form a
simplified function g, Figure 4. A relative length of the function g is computed, and the result is
saved. Based on the absolute length of the function the relative length, LR 1 (Section 2.4) is
evaluated from point to point and divided by the length of its x axis projection.

The elimination of insignificant extremes procedure is used to the simplified function g. The
procedure applies functions formed from function g minima and maxima, Figure 5, the
functions gmin and gmax are extended by the g function’s first and last points, as it was

Figure 3. Function f and its local extremes.
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mentioned above. The function gmax is formed by the g function’s maxima (dotted line in
Figure 5). There are local maxima presented in this function by black dots in Figure 5. The
definition of local maxima using above-mentioned rule, but only maxima are used (obtained
minima are forgotten). The function gmin is generated from function’s minima (dashed line).
Obtained local minima are presented as black dots using above-mentioned rule; however, only
minima are used (obtained maxima are forgotten).

The local minima and maxima of the functions gmax and gmin are used for the generation of the
function gred, Figure 6. In this function, again local minima and maxima are defined using the
rule (Figure 6, black dots). These final local extremes of the function g (Figure 4, black dots)
and the first and last points from the function g define the function h, Figure 7. The relative
length LR 2 of function h is computed, and the result is saved.

The similar procedure is subsequently used for the new simplified function h. Global extremes
and the first and last point (Figure 7, black dots) define the function k. The function is formed
from the global minimum and maximum of all functions (f, g, h), and therefore the analysis is
stopped. All functions are represented in Figure 8.

The analysis steps j are plotted versus g, h, k, function’s computed relative lengths LR j (Section 2.4.)
Figure 9. The dependence between the relative lengths LR j and steps of elimination j is computed
by a sufficient regression function. Concretely, it can be represented by a regression line (Figure 9),
a quadratic function or a hyperbolical function. Parameters of those regression functions are used
for the function f determination. (Logarithmic axis use is not beneficial.)

Figure 4. Simplified function g and its local extremes.
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Figure 5. Functions gmax and gmin generated from local extremes of function g.

Figure 6. Function gred generated from maxima of function gmax and from minima of function gmin.
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Figure 7. Simplified function h and its local extremes.

Figure 8. Function f and simplified functions g, h, k.
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Signal (time series) obtained from simulation of fractional Brownian motion using Cholesky-
Factorization of the related covariance matrix (FBM) was used to test the developed method.
An example of testing signal is generated using the input Hurst coefficientH = 0.4, in Figure 10.
The coefficient represents the character of signal and can achieve value 0 to 1 (lower coeffi-
cients generate more complex functions, and further information can be found in Refs. [5, 10]).
The dependence between relative lengths and elimination steps is shown in Figure 11.

A standard process to estimate the FD using the dependence between log2LR j and log2j was
tested. However, such representation was not beneficial as in this method the rulers are not
used with different lengths. For that reason, the length of rulers cannot be used in the plot.

The regression function, which fits the most to describe a relation of relative lengths LR j and
the number of steps j, is estimated by the hyperbolic regression model:

LR j ¼ d
jþ a

þ b ð10Þ

This might be calculated by parameters d and a. Parameter b is always set as b = 1. Parameter a
needs to be computed numerically with application of an error function.

For verification of the EEE method, over 900 simulated time series from FBM were used with
the Hurst coefficient between 0.1 and 0.95. The dependence between Hurst coefficients and the
average value of parameters a and d is shown in Figure 12.

Figure 9. Plot of the relation between steps of analysis and relative length, regression line.
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Figure 10. Simulation of the time series using fractional Brownian motion.

Figure 11. Relation between number of steps of analysis and relative length for the time series FBM, H=0.4.
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EEE dimension for self-affine fractals can be estimated on base of parameter d:

DEEE ¼ 1þ jdj ð11Þ

2.6. Example of time series results

There are numerous possible applications of a fast and accurate description of time series
(signals) from production process sensors using fractal geometry and statistical analyses.

Figure 13 represents results of three time series analysis from a glass tank: temperature of a
tank main arch. The time series are from one position of production processes in different
times. Box and R/S dimensions of the time series are written under the pictures. The complex-
ity is estimated by one number, larger number represents higher complexity. First time series
has relatively the largest complexity, and third is relatively the smoother (Figure 13).

Figure 14 shows results of a tank siege analysis, time series were obtained during defined time,
and whole signals were analyzed using the standard deviation, the R/S dimension, and the box
dimension. The average temperature indicates a temperature profile of the tank siege and an
implicit temperature profile of the molten glass in contact to the tank siege. The box dimen-
sions were computed for threshold values k = {0.2, 0.5,0.7}, see Figure 14. From positions 5 and
6, the FD decreases and between positions 6 and 8 rises. The large dimension indicates a
smoother time series, and the higher dimension represents a complex time series. Glass melt
is in permanent movement in the tank. This movement is important for a good quality of glass
melt in the end of the glass tank. However, this movement is impossible to monitor by

Figure 12. Hurst coefficient versus average value of parameters a and d of hyperbolic function.
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standard measurements. The character (complexity) of time series represents changes in tem-
perature. These changes are caused by the movement of molten glass. The decrease of the
complexity occurs where a change of longitudinal glass currents is expected. This shows that
fractal analysis can be used for the detection of molten glass currents [3, 8] (Figure 14).

Figure 13. Time series of glass tank main arch temperatures from a first sensor T1 and these box and R/S dimension in
different time.

Figure 14. Results of glass tank siege time series analysis.
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2.7. Examples of roughness analysis results

The raw data reading (unfiltered reading) from a surface roughness tester presented by a curve
is labelled as a profile. Obtained parameters can be divided into three groups:

• parameters of frequency describing surface profile spacing parameter and corrugation fre-
quency characterization (e.g. Sm—Mean Spacing),

• parameters of amplitude describing depth characterization (Ra—Average Roughness, Std—
Standard Deviation, Rz—Mean Roughness, Rt—Maximum Roughness, Depth, etc.).

• parameters of complexity and deformation describing FD estimation by Compass Dimension
(Dc), by Profile Proportional Length (LP), EEE method, or Profile Relative Length (LR).

Mentioned statistic parameters, amplitude, and frequency are widely used in industry. Surface
profile parameters, such as Maximum Roughness, Average Roughness, Mean Spacing, and
Mean Roughness Depth, are defined by ISO 4287-1997 [12] standard. Complexity and defor-
mation parameters were chosen on the basis of previous experiences.

For better result comparison, the dimension is multiplied by 1000 (DC1000).

We analysed 14 surfaces produced by five different processes and in different conditions,
Table 1. Figure 15 shows 28 samples (with 14 surfaces) [13]. The analysed structures were
chosen so as to be different and to cover the most common surfaces in industrial practice.
Chosen samples were made purposely from identical material. This allows us to subsequently
ignore material properties and to analyse the change of technological parameters and the
influence of used technology.

Sample Technology of surfaces production

1 Polished surface to maximum gloss

2 Ballotini (glass beads) blasting, grain size F120 (mean diameter 0.109 mm)

3 Corundum blasting, grain size F36 (mean diameter 0.525 mm)

4 Corundum blasting, grain size F12 (mean diameter 1.765 mm)

5 Electro-erosion machining 29A

6 Electro-erosion machining 42A

7 Electro-erosion machining 54A

8 Sandpaper, K400

9 Emery cloth, 120

10 Emery cloth, 80

11 Vertical milling machine, milling cutter 20 mm, 120 rpm, feed 30 mm/min

12 Grinding wheel, 98A 60 J 9 V C40

13 Grinding wheel, 96A 36P 5V

14 Vertical milling machine, milling cutter 20 mm, 120 rpm, feed 240 mm/min

Table 1. Correlation coefficients of selected parameters.
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Measurementwas realized on a surface roughness testerMitutoyo SV 2000. Parameterswere set as
follows: stylusmeasuring speed: 0.5mm/s; positioning: 2mm/s; traverse range: 50mm; linearity of
traverse: 0.3 µm/50mm. Standard type of stylus with a 60� angle with ameasuring force: 0.75 mN
was used. The length of measurement is 4800 µm, and the sampling interval is 0.5 µm.

All samples (two samples with the same surface) were measured in nine positions, each
position in three directions, x, y, and transversely. All data obtained in the form of unfiltered

Figure 15. Analysed samples with machined surfaces.

Figure 16. Results of Pa parameter.
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Figure 17. Results of Sm parameter.

Figure 18. Results of FD estimation, DC 1000.

Figure 19. Results of FD estimation, DEEE 1000.
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profiles were used for analyses. Matlab platform was used for a data evaluation, and necessary
software tools were developed.

Based on a linear correlation from obtained parameters (Section 3.1) and simplifying results,
we can specify suitable parameters for evaluation of these types of data: Average Roughness,
Pa (parameter of amplitude, Figure 16), Mean Spacing, Sm (parameter of frequency Figure 17),
Compass Dimension, DC 1000 (parameter of complexity and deformation, Figure 18). Diverse infor-
mation from data can be provided by these three parameters. EEE dimension (parameter of
complexity and deformation) is depicted in Figure 19. More information can be found in Ref. [13].

3. Classification of topological one-dimensional dividing curve

The research focuses on the application of the methodology for a quantification of metal surface
changes and on an objectification of corrugation test for flat glass. Tools for analysis (the estima-
tion of FD and statistical tools) are in the principle the same as for the topological one-dimensional
signals, described in Section 2. The following text shows examples of FD application in practice.

Figure 20. Image analysis of dividing curves between alloy and glass: A—gray scale image from light optical microscopy,
B—evaluated dividing curve between the alloy and glass (boundary curve), C—parameter of amplitude (Rt—maximum
roughness) and parameter of frequency (Sm—mean spacing), D—computing of compass dimension, E—compass dimen-
sion DC computed from slope.
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3.1. Example: surface roughness changes after corrosion tests

Quantification of metal surface changes after exposition on air or in a glass melt is important
for objective comparison of materials corrosion resistance. Example is showed in relatively new
materials: iron aluminides [14], compared with currently used chrome-nickel steels in contact
with molten glass. The sample roughness changed during an interaction of metal surface with
molten glass, and the effect of disruption can be evaluated after the end of the corrosion test.
The obtained roughness of metal surface was quantified using FD and statistical tools.

First, a digital camera (in a light optical microscope) takes a photograph of a metal surface
profile from metallographic sample (five photographs from one sample), Figure 20A.

Figure 21. Examples of dividing curves chrome-nickel steel material and iron aluminide, after static glass melt effects in
different temperatures and results of analyses (compass dimension multiplied by 1000, Dc 1000).
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Second, a dividing curve is generated from obtained images by a software tool. Software
exactly defines a curve between material alloys and its surrounding, Figure 20B. The gener-
ated dividing curve is evaluated by the FD (a compass dimension multiplied by 1000, DC 1000),
Figure 20D and E. The average standard deviation of all the curves (STD), average mean
spacing(Sm), Figure 20C, and the average maximum roughness of all the curves (Rt),
Figure 20C, are then described using statistics [15–17].

Examples of analysis are shown onmaterials: Fe-14Al-6Cr (iron aluminides) and EN X8CrNi25-21
(chrome-nickel steels). More information about tests and materials can be found in Ref. [17]. The
dividing curves are depicted in Figure 21.

The evaluation of roughness parameters was carried out on 10 places for each sample (each
alloy and time interval). The corrosion attack of the tested alloy may also be described by the
roughness of the surface. Many parameter types can be used for a quantification of the metal
roughness. Parameters can be divided into three groups: parameters of amplitude, parameters of
frequency, and parameters of complexity and deformation (described in Section 2.7). In this field of
research, a filtered profile is not being used. For this reason, the Average Roughness is called
Pa, maximum Roughness is denoted Pt etc.

Graphs in Figures 22–24 show the results of analysis for the dividing curves between alloys
and glass. Average values were used in order to compare results.

The analysis using the developed methodology has two steps. The first step is a specification of
appropriate parameters for fast and reliable analysis for data evaluation.Mentionedmethodology

Figure 22. The average value of maximum roughness of profile, Pt as a function of time for corrosion in molten soda-lime
glass.
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Figure 23. The average value of mean spacing of profile, Sm as a function of time for corrosion in molten soda-lime glass.

Figure 24. The average value of fractal dimension estimation, compass dimension of profile DC 1000 as a function of time
for corrosion in molten soda-lime glass.
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contains 22 parameters. However, only chosen parameters were used for a complete analysis in
order to simplify the analysis and to reduce the processing time.

Some parameters linearly correlate with the others (they provide similar information about the
data). To evaluate the parameters objectively, Pearson's correlation coefficients were computed,
see Table 2. A correlation between chosen parameters is clearly visible (Pa and Pt). The LR
parameter correlates less with the parameters Pa and Pt, but still significantly. The DC 1000

parameter correlates less with the parameters Pa and Pt, but correlates with the LR parameter.
The Sm parameter does not correlate with other parameters. On the base of a linear correlation
from obtained parameters and simplifying results, we can specify suitable parameters for
evaluation of these types of data: Maximum Roughness, Pt (parameter of amplitude), Mean
Spacing, Sm (parameter of frequency), Compass Dimension, DC 1000 (parameter of complexity and
deformation). Diverse information from data can be provided by these three parameters

Second, it is possible to objectively describe a character of metal structure after corrosion
attack. We are able to draw the conclusions:

Parameter of amplitude, Maximum Roughness Pt (Figure 22), shows deepness of corrosion
attack of metal surface by glass melt. The average dividing curve deepness of alloy Fe-14Al-
6Cr grows slowly up to 168 h because iron aluminide dissolved slowly and uniformly in the
molten glass than EN X8CrNi25-21 [17–19]. The average dividing curve deepness of austenitic
steel grows from raw state during attack to 48 h (Figure 21). After 48 h, it is apparent that
corrosion protrusions penetrate less deeply into the surface of steel. It does not mean any
increase of corrosion resistance, but probably a progress of corrosion attack is more uniform
in this time period. This should be analysed by other methods, for example, the measurement
of weight loss, chemical analyses, etc. The maximal deepness of corrosion attack is after 168 h.

Parameter of frequency, Mean Spacing Sm (Figure 23), shows surface profile spacing. The
parameter describes corrugation frequency of the dividing curve after corrosion attack, how
many wavelets can be observed on the surface. For both alloys grows the parameter up to 72 h,
where the maximum is. The frequency is connected to the corrosion mechanism.

Parameter of complexity and deformation, Compass Dimension DC 1000 (Figure 24), shows
level of dividing curve complexity. In case of alloy Fe-14Al-6Cr, the average complexity of

Relative
length, LR[-]

Compass
dimension,
DC 1000 [-]

Mean
spacing,
Sm [um]

Average
roughness,
Pa [um]

Maximum
roughness,
Pt [um]

Standard
deviation,
Std [um]

Standard deviation, Std [um] 0.90 0.83 0.50 0.99 0.98 1

Maximum roughness, Pt [um] 0.88 0.85 0.47 0.96 1

Average roughness, Pa [um] 0.91 0.82 0.49 1

Mean spacing, Sm [um] 0.33 0.30 1

Compass dimension, DC 1000 [-] 0.92 1

Relative length, LR[-] 1

Table 2. List of analysed samples with their production properties.
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surface expressed as Compass Dimension grows from 24 to 48 h and then slowly decreases. On
the other hand, the average surface complexity of alloy EN X8CrNi25-21 increases significantly
from raw state during attack up to 48 h, then falls down, and grows to the maximum after 72 h.
After 96 h, slight decrease of DC 1000 was observed. The significant decrease in value of DC 1000

after 48 h is probably related to more uniform a progress of corrosion. For understanding of
the steel corrosion mechanism, it is necessary to carry out further analysis.

It is obvious that dividing curves of alloy Fe-14Al-6Cr after corrosion attack are smoother and
less complex. It seems that the corrosion resistance of Fe-14Al-6Cr is higher than steel
EN X8CrNi25-21. Austenitic steel showed corrosion protrusions due to probably intergranular
corrosion (preferential attack of some phases at grain boundaries). However, this statement
should be supported by structural and phase analysis.

3.2. Example: corrugation test

The optical test using a zebra plate is widely used measurements for mass production. The test
is one of the many important measurements, and it is used in a wide range of situations: as a
production control by manufacturers of float glass; as a quality control by glass processors on
the glass they buy; as a production control of products (laminated glass, thermal treated glass,
etc.); as a quality control by the final customer on the glass they buy.

The corrugation test (Figure 25) is focused on the reflection while another type of tests special-
ize on the passage of light though the glass (test of distortion). The test is based on the
reflection of light off a glass sample sheet from a skew striped plate. The zebra plate is 1 � 2 m
with 25 mmwide black strips at an angle of 45�. Glass sheet is laid on a Table 4 m distanced from
zebra plate. An observer is distanced additional 4 m from the table. The observer subjectively
evaluated the corrugation of reflected light based on a comparison with etalons. The quality of
the sheet is classified using a rate dimensionless number from 1.5 to 3.5. The evaluation is carried
out off-line in a dark-room. Samples of flat glass are obtained from an on-line production
process, and they are cut from the whole width of production glass ribbon. Figure 26 shows
good and poor quality of glass sheets during the corrugation test. Using a small angle of
observation caused the relatively extreme “distortion”.

A measuring system, which consists of both hardware and software, has been developed
(Figure 27) according to executed experiments. The system is an important intermediate stage
for development of the on-line measurement and its calibration. It is also a suitable solution for
processors and customers, without an expensive on-line measurement. The hardware of the
system includes the zebra-pate (Figure 27A) and a table for the glass sheet sample (C) as in the
standard subjective test. The operator is replaced by a scanning unit (digital camera with
power adaptor, B), a control unit (PC, D), a connection between the digital camera and the
control unit (E), a ball head (F), a camera support system (placed on a top-wall, G), and a
system for gripping the table (H) to keep it in a defined place.

An operator lays a tested glass sheet on the table into the defined place, fills in a form in the
Corrugation software and by pressing a button he starts the evaluation. The software initiates
the communication with the camera and the image is captured. The image analysis starts after
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Figure 25. Scheme of corrugation test, A—zebra-plate, B—observer, C—table with window-glass sheet.

Figure 26. Good and poor quality of glass sheets with a specification of measured parts.
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downloading the image from the camera to the computer. In a while, the operator can read the
evaluated quality on the PC screen.

The analysis of a scanned image is used for the detection of a glass sheet position, for the
necessary rotation and shifting, and for the generation of curves from detected boundaries
between the light and dark areas of the sheet in the image. The curves are generated using a
thresholding and a detection of contours. They are converted into sequences of points, where
the axis X is defined from an ideal reflection, Figure 28. For curve obtaining, two thresholds are

Figure 27. Scheme of measuring system for objective monitoring.

Figure 28. Conversion of the curve to a sequence of points and its evaluation using range R and relative length LR.
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used, as two different types of defects on the surface of the bottom part glass sheet can be
found: a primary and a secondary corrugation Figure 29. (Different character of the reflected
image can be found on heat treated glass and also the top and bottom parts can differ.) The
methodology enables to describe both corrugations separately, and it evaluates the impact of
the technological production parts to the quality of the production. The obtained curves are
then evaluated by software tools: statistic; measuring the curve length; and estimating its FD.

Our research proved that only one parameter does not enable to describe all types of corruga-
tion. We had to collect limited number of adequate parameters that evaluate completely the
quality. An extensive analysis was performed to achieve the best conformity between a subjec-
tive evaluations and the evaluated quality using computed parameters. We used hundreds of
measurements from one experienced operator with his specification of quality in the current
scale. The results showed that three parameters (of the separated curves from the contours) are
important to reliably assess the quality of flat glass:

• complexity (smoothness, used the compass dimension mentioned in Section 2.3);

• range of waviness from an ideal line;

• rate of deformation (using the relative length of the curves, Section 2.4).

All parameters are measured in pixels, and the parameters for one sample are defined as
average values of all curves. Six quality parameters (the average values from two thresholds)
are obtained and used for the final evaluation of the quality. The six quality parameters for
each bottom part of a glass sheet obtained from the corrugation test were recalculated by
means of weighted coefficients in accordance with the results obtained previously by subjec-
tive methodology. Six coefficients of the obtained parameters were defined using the particu-
larly developed software for finding the smallest possible differences between the evaluated
quality by means of the image analysis and with use of subjective monitoring by an experi-
enced operator. An example of computed quality in relation to the quality of subjective
assessment is showed in Figure 30.

Described system has been successfully tested for two years on a production line with the
accuracy of 0.1–0.3 (in the used scale 1.5–3.5) in the latest version. Final results of over a
thousand measurements from a real production process show a very good potential for the
on-line application [3, 4, 8, 20]. The on-line corrugation test was implemented and showed

Figure 29. Primary and secondary corrugations of bottom part glass sheet.
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good stability of the evaluation methodology. Automatic measurement every few second is
one of the many advantages. The system has been tested in a trial run.

4. Evaluation of 2D pictures with structure and defects

The explicit, objective, and automatic description of image complexity can be achieved by
different methods, both statistical and using the FD. Only a few possibility examples are
presented below. The analysis is done by evaluation of 2D images of surface defects—struc-
tures of the hole cracks in costume jewellery.

A digital image is represented as a matrix of pixels (or matrices for colour image, Figure 31D).
Pixels can achieve different numbers, which depend on the format used for the digital images.
The pixels are represented by numbers between 0 (black) and 255 (white) for the grey 8-bit
palette bitmap, and the bitmap has only one matrix (brightness scale). Figure 31C shows two
typical, poor quality surfaces of costume jewellery fissures. The cutting C-1 represents deep
cracks, and C-2 represents a thin structure.

Matlab and HarFa software [7] were used for these experimental evaluations. A methodology
for analysis of the pictures was developed based on: histogram evaluation, percentage of black
pixels, percentage of large defects, the FD.

In practice, the methodology of surface structure description can be divided to five steps:

• Sample preparation—the costume jewellery is cut, as the structure must be visible, Figure 31A.

Figure 30. Relation between computed quality and the specification of quality by an experienced operator.
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• Image acquiring—cracks in costume jewellery hole. An electronic microscope was used,
Figure 31B.

• Software preparation, Figure 31C (separation of image parts needed for analysis)

• Image analyses.

• Evaluation of results.

4.1. Histogram

An evolution of a bitmap structure is possible by the histogram statistical description, Figure 32.
Modus, median, average, range, standard deviation, and other statistic tools can be used easily.
However, they are not applicable for surface structure of costume jewellery holes.

A potentially applicable method is the histogram cut off on 5% level. The image is described by a
single number. It computes a 90% width of all the histogram pixel values from an average image
value. However, this method is highly sensitive to shades that can possibly occur in the hole cracks.
This easy method allows describing of all the defects, shades, cracks and structure collectively.

4.2. Thresholding

Following analyses are dealing with thresholding procedure. Thresholding is a technique
that transforms grey or colour image into a binary one (black and white). For example, the
binary image can be determined from the grey 8-bit palette bitmap, where black are all pixels
which fulfil specific criteria, for example, 0 ≤ black ≤ 35 and all the other pixels become white

Figure 31. Preparation of samples, taking photographs, software preparation.
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(35 < white ≤ 255), Figure 33. It means, that all pixels lesser than or equal to the threshold 35
are black and greater than 35 are white. We used the threshold 35. (More than one threshold
can be used or the technique for matrixes of colour images can be used too.)

If the thresholding procedure is used for all thresholds of the grey 8-bit palette image, 256
binary images are obtained. Some of the image analyses can be done for all of obtained binary
images. If a single number classifies one binary image, a spectrum of dependence between
single number and threshold is given (e.g. Figure 33).

Figure 33. Binary images obtained by thresholding of grey images (8-bit palette bitmap).

Figure 32. Histogram cut off on 5% level.
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4.3. Percentage of deep cracks

The method uses binary image obtained by thresholding and computes percentage of pixels
with neighbouring pixels of the same value. The analysis searches black pixels (value 0) in a
binary image, which have five or more neighbouring black pixels. Figure 34 shows part of
boundary crack. Black pixel in Figure 34A has five neighbours, and in Figure 34B has 8. The
method is suitable for a detection of relatively large and single cracks and defects that are
represented by black pixels with five or more neighbouring pixels.

A spectrum of dependence between percentage of black pixels with five or more neighbouring
black pixels of binary images and thresholds is showed in Figure 35A. Thresholds from 10 to
50 are the most suitable for detection of large hole cracks in costume jewellery, Figure 35B. For
the threshold 50, the cutting C-1 has more single cracks and defects, numerically: T50 C-1=3.17%
than the cutting C-2, numerically: T50 C-2=0.8%.

4.4. Box dimension

The method again uses binary image obtained by thresholding. The box counting method
[5, 7, 9, 10] estimates FD of a structure in an image. This estimation is a single number called
the box dimension DB. The box counting method works by laying meshes of different sizes r
and then counting numbers of boxes N needed to cover a binary image (Figure 36A)
completely (Figure 36B, C). The power law allows us to determine a number of boxes N(r)
necessary to cover the structure:

Figure 34. Pixels on boundary crack.
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Figure 36. Box counting method.

Figure 35. Percentage of black pixels with five or more neighbouring black pixels spectrum.

Fractal Analysis - Applications in Physics, Engineering and Technology166



NðrÞ ¼ const: � r�DB ð12Þ

where DB is the box dimension. A relation between log2r and log2N(r) is known as Richardson-
Mandelbrot plot (Figure 36D). The box dimension can be determined by slope s of the regression
line in Figure 36D:

s ¼ DB ¼ �ΔlogNðrÞ
Δlogr

ð13Þ

The software HarFa [7] is used for the analysis and software tools developed in Matlab make
data evaluation. The box dimension is multiplied by 1000 for a better confrontation.

The fractal spectrum of the cuttings C-1 and C-2 is shown in Figure 37. The box dimensions
over threshold 150 are similar, as a shadow influence is significant over this value. Results of
analysis for threshold 120 are:DB_C-1=1429,6 (C-1) aDB_C-2=1562,4 (C-2), where the higher value
represents more complex structure in the image. The cutting C-2 is more structured than the C-
1 and box dimension quantifies the structures.

4.5. Example: detection of surface structure

The structures of the hole cracks in costume jewellery were analysed. Methodology of the
image analysis, mentioned in the previous chapter, analysis was developed based on: histo-
gram evaluation, percentage of black pixels, percentage of large defects, the FD. Only the last
two analyses are suitable for describing these kinds of structures.

The percentage of large defects is suitable for the detection of individual, relatively large cracks
and defects, Figure 38.

For this reason, many analyses for the FD estimation can be used. However, the most suitable
for these kinds of data and structures is the box counting method (in Figure 39). For research
purposes, the dimension was multiplied by 1000.Although an automatic classification of glass

Figure 37. Fractal spectrum.
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Figure 38. Computation of the percentage of pixels with neighbouring pixels of the same value—percentage of large
defects.

Figure 39. Description of glass defects using the box dimension DB 1000 (dimension multiplied by 1000), percentage of
large defects and automatic classification.
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Figure 40. Description of glass defects using the box dimension, percentage of large defects and automatic classification.
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defects is from the laboratory, presented example shows the possibilities of this method, its
sensitivity to the different shapes of glass defects.

4.6. Example: defects classification

Automatic defect classification is another example of the FD application. A classification
mark of obtained images can be done automatically and can be used for monitoring and
control of production system. Software HarFa [7] was used for these experimental evalua-
tions. The developed methodology was also based on: histogram evaluation, percentage of
black pixels, percentage of large defects, the estimating of FD. On the base of our research,
the last two analyses were chosen as suitable for describing these kinds of structures,
Figure 40.

An automatic classification of glass defects can most easily be realized by using the defined
boundaries for the analysis results. The simulated classification is on the right side of
Figure 40. Presented example shows possibilities of this method and its sensitivity to the
different shapes of glass defects. However, it does not solve problems with on-line obtaining
of the images.

5. Conclusion

The examples of used methods show possibilities of application in industry and production
laboratories. Structured surface, complex time series (topologically one dimensional signals),
difficulty to describe dividing curves are much more common than it can be expected. The FD
is then important for an objective quantification of complexity and should be use as an
additional tool for the overall analysis.

The FD is widely used in science; nevertheless, industrial applications are rather rare. Data
analysis using the FD has great potential in combination with statistical and other measure-
ments in industry. However, FD cannot substitute standard analysis tools.

Although the text is focusing to a glass industry, emphasis was put on general application
possibilities, where obtained knowledge, methodology and principles for product and indus-
trial data evaluation more widely in industry might be used [11].
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Abstract

The fractal dimensions of material surfaces are of interest because they can be related to
material performance. Such surfaces include the fracture surfaces of broken specimens,
surfaces abraded by airborne particles, and surfaces upon which coatings of another
material have been applied. Scientists who study the fracture surfaces of failed medical
implants stand to benefit greatly from fractal analysis. The origin of failure is often
damaged or lost during retrieval of a failed implant, and evaluation of the undamaged
portions of the fracture surface by relying on the self-similarity property of fractals may
allow one to deduce the conditions that were present at the failure origin at the moment
of failure. If the analysis of material surfaces will be used as an engineering tool, then it
is important to identify the analysis methods that yield the most precise and accurate
estimates of surface dimension. Eleven algorithms for calculating the surface dimension
are compared. A method for correcting the bias of dimension estimates is presented. The
sources of error involved in atomic force microscopy, optical microscopy, mechanical
sectioning, and fabrication of specimen replicas are discussed.

Keywords: fractal surfaces, surface analysis, accuracy, precision, technique sensitivity,
noise sensitivity, atomic force microscopy, confocal microscopy

1. Introduction

The fractal dimensions of material surfaces are of interest because they can be related to
material performance. Such surfaces include the fracture surfaces of broken specimens, sur-
faces abraded by airborne particles, and surfaces upon which coatings of another material
have been applied. In the case of fracture surfaces, the surface dimension is related to the
fracture resistance of materials from which those specimens were made [1], and it can be a
useful failure analysis tool. On abraded surfaces, such as a sandblasted surface, the surface

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



dimension is inversely correlated to the surface roughness [2], and hence it is related to the
strength with which an adhesive can be bonded to the surface [3]. In the case of a surface
coating, the surface dimension is related to wettability of the surface [4], which may influence
the way that the coating interacts with biological systems. There are many methods of profil-
ing surfaces and many algorithms for determining the fractal dimension of a surface profile. If
the analysis of fractal surfaces will be used as an engineering tool, then it is important to
identify the analysis methods that yield the most precise and accurate measurements and to
be aware of the possible sources of error.

2. Accuracy versus precision

The accuracy of a method of estimating the surface dimension refers to how small a difference
there is between the true dimension and the average estimate provided by that method. If a
perfectly accurate method is used many times to estimate the dimension of a fractal surface,
then there will be no difference between the surface dimension and mean of the many esti-
mates. The method would be unbiased. If the mean of the estimates is greater than the surface
dimension, then the method has a positive bias. A systematic error in the other direction would
indicate a negative bias. A method with larger bias (less accuracy) would provide a mean
estimate that lies farther from the true surface dimension.

The precision of a method of estimating the surface dimension describes how close repeated
measurements are to each other. A perfectly precise method would provide the same estimate
every time it is used on the same surface, regardless of whether the estimate is accurate or not.
Some measures that are used to rank the relative precision of different methods are standard
deviation (SD), coefficient of variation (CV), and confidence interval. Most readers are already
familiar with SD. The CV is the SD of a group of estimates divided by their mean. CV is considered
by many to be a better descriptor of precision than SD when the methods under comparison have
different levels of bias. The confidence interval spans a range of values, and researchers can be
confident to a certain degree (expressed as a percent chance of being correct) that the true surface
dimension lies somewhere between the lower and upper bounds of the interval. In situations
where either a large number of replicates (generally 30 or more) are being averaged or where the
estimates are assumed to follow a normal distribution (Gaussian distribution), the half-width of the
confidence interval can be calculated by dividing the SD of the estimates by the square-root of the
number of estimates (n) and multiplying by a factor from a statistical table (1.96 for 95% confi-
dence). Lower and upper bounds of the confidence interval are then, respectively, calculated by
subtracting and adding the interval half-width from themean [Eq. (1)]. A precise method of surface
analysis would exhibit a small SD, small CV, and narrow confidence interval.

95% confidence interval ¼ mean� 1:96
SDffiffiffi
n

p : ð1Þ

When comparing multiple methods of surface analysis, it is possible that the method with the
best accuracy will not be the same as the method with the best precision. In this case, one must
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decide which is more important—accuracy or precision. When a method is accurate but not
precise, the size of the confidence interval can be made smaller (improved) by increasing the
number of replicates, n [Eq. (1)]. When a method is precise but not accurate, it can be used to
test a series of calibration standards (surfaces with known fractal dimension) in order to
determine the bias of the method and to determine how that bias changes over a range of
surface dimensions. If a statistical model can be fit to describe the relationship between the
biased estimates and the calibration dimensions, then the analysis method can be corrected to
provide unbiased estimates. Then, it will be both accurate and precise. Therefore, precision is
more important than accuracy when calibration standards are available. Consider the case of a
biathlete firing a rifle at a target (Figure 1). The holes in the target on the lower left have good
accuracy but poor precision. Although the group is centered on the bullseye, none of the shots
were through the bullseye, and there is no calibration that can be performed to make the next
shot more likely to hit the bullseye. However, the holes in the target on the upper right have
poor accuracy and good precision. None of the shots hit the bullseye on the practice target, but
the biathlete can adjust the screws on his or her aperture sight to increase the likelihood of
hitting the target during the next practice session or during the upcoming competition.

Figure 1. Illustration of the comparative importance of accuracy and precision.
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3. Methods for profiling surfaces

Several types of methods (atomic force microscopy, optical scanning, and mechanical section-
ing) have been used to capture profiles of material surfaces. The most common method is
atomic force microscopy (AFM), which can be used either with (1) contact or tapping mode at
the microscopic scale to feel the topography of the surface with a stylus attached to the end of a
tiny cantilever beam, the deflections of which are magnified by observing the movements of a
laser reflecting off of the back of the beam or (2) with scanning tunneling mode at the nanoscale
to ‘feel’ the surface topography by recording fluctuations in the rate with which electrons tunnel
through space and onto the surface from an electrically charged stylus as it rasters. Both of these
mechanisms allow the construction of a virtual model of the surface, so unleveled surfaces can be
virtually leveled to some degree after capture, which helps to maintain both accuracy and
precision. AFM methods are moderately time consuming, but they offer fairly precise results
with noise becoming a significant source of error only at the smallest scales and slow scan
rates [5]. However, AFM is limited in the maximum amount of surface roughness (z-range) that
it can accommodate.

Optical methods involve using a laser scanning confocal microscope or interferometer to build
a virtual model of the surface. One advantage of the optical methods is that they have unlimited
z-range. Another advantage is that some of the systems are portable and relatively inexpensive.
The profiling can also be accomplished quite rapidly; however, there is a low signal-to-noise
ratio compared with AFM. Figure 2 shows a confocal microscope scan of a silicon nitride
ceramic fracture surface that was captured by the author’s research assistant (previously
unpublished). This scan yielded estimated surface dimensions of over 2.50 instead of the

Figure 2. Confocal microscope scan of a silicon nitride fracture surface.
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values produced by relatively noiseless AFM scans for the same material (2.12–2.14) (Figure 3).
Applying noise filters in ImageJ eliminated the fractal nature of the data. Multiple attempts
were made to improve signal-to-noise ratio by using different materials, different color lasers,
two different confocal microscopes, and one optical interferometer, but all of those trials
yielded similar results.

Mechanical sectioning requires coating either the specimen or an epoxy cast (replica) of the
specimen with a reflective material such as gold, casting additional epoxy on top of the gold
film, and cross-sectioning the resulting ‘sandwich specimen’ (usually by lapping/polishing
with abrasive particles) to reveal a zero set that can be magnified and profiled using a metallo-
graphic optical microscope [6]. This method has three disadvantages: (1) It is labor intensive;
(2) it relies on either the specimen being large enough or the technician being skilled enough to
cross-section the surface in a level manner; (3) it limits the researcher to only algorithms that
can be used on the zero sets of surfaces. Della Bona et al. studied the sensitivity of mechanical

Figure 3. Atomic force microscope scan of a silicon nitride fracture surface.
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sectioning to errors in leveling [7]. They analyzed the fracture surfaces of specimens made from
two types of ceramic materials (baria silicate glass-ceramic and zinc selenide). After abrasive
polishing of the epoxy replicas, Della Bona et al. estimated surface dimensions using the slit
island Richardson algorithm. The estimated surface dimensions decreased with increasing
error in leveling, and they decreased by 0.10–0.11 for only a seven-degree angle departure from
the level (Figure 4).

Drummond et al. compared confocal microscopy with mechanical sectioning in analyzing the
fractal dimensions of the fracture surfaces of three injection-molded dental ceramics [8]. They
used the slit island Richardson algorithm to estimate the surface dimensions. Slit islands
produced by mechanical sectioning yielded dimensions from 2.15 to 2.25, whereas confocal
microscopy of the same specimens yielded dimensions from 2.71 to 2.91. It is possible that
error in leveling the surfaces during sectioning was responsible for some of the discrepancy.
However, it seems likely that noise in the confocal scans was responsible for much of the
discrepancy. Artificial virtual surfaces that have been generated by fractal algorithms can have
dimensions as high as 2.91, but real-world surfaces that have been created by fracture are
limited by the physics of that process. They cannot have undercuts and have been reported to
have dimensions ranging from 2.00 to 2.40, so measurements that yield higher dimensions
should be viewed sceptically, and potential sources of the artifact should be identified.

A potential artifact in AFM and mechanical sectioning is the loss of microscopic details during
creation of a specimen replica. Replicas are used in mechanical sectioning so that the original
specimen need not be destroyed. Replicas are used for AFM because the original specimen is
often too large to fit under the microscope. In the case of fracture surfaces, the surface may also
be curved due to compression curl [9]. Even in cases when the entire fracture surface can be fit
under the microscope, it can be difficult to perform coarse leveling on a large and curved

Figure 4. Effect of angle of cross-section on measured fractal dimension of baria silicate and zinc selenide fracture
surfaces [7].
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specimen, and the resulting AFM scan will be too far from level for subsequent virtual leveling
to be of any use. In these cases, it is necessary to replicate only a small portion of the curved
surface and then to place the replica under the microscope. Joshi et al. used AFM to profile
yttria-stabilized zirconia fracture surfaces and epoxy replicas of those surfaces [10]. They
created a negative copy of each fracture surface using polyvinyl siloxane dental impression
material, and then they cast a low viscosity, low shrinkage, slow curing epoxy into the impres-
sion to make a positive replica. The mean dimension of the epoxy replicas (2.245 � 0.003) was
not significantly different from that of the original surfaces (2.246 � 0.007). However, a subse-
quent pilot study on using multiple generations of replicas has provided preliminary results
that suggest the surface dimension continues to decrease with each successive iteration [previ-
ously unpublished].

4. Algorithms for calculating dimension

McMurphy et al. compared the accuracy, precision, and sensitivity-to-leveling of six different
algorithms on virtual surfaces that were constructed by Brownian interpolation [11]. The
surfaces were generated with known fractal dimensions so that the degree of bias could be
assessed for each algorithm. Surfaces had dimensions of 2.10–2.40 to mimic ceramic fracture
surfaces. The surfaces were analyzed using Minkowski cover (MC), root mean square (RMS)
roughness versus area, Kolmogorov box (KB), Hurst exponent (HE), slit island box (SIB), and
slit island Richardson (SIR) algorithms. KB was the most accurate with only a slight positive
bias for surfaces having low dimension and a slight negative bias for surfaces having high
dimension. The other algorithms exhibited a large negative bias (Figure 5). Fortunately, the
bias of every algorithm was linearly related to the surface dimension, so all of these algorithms
could be corrected to produce accurate (unbiased) estimates [Table 1, Eq. (2)].

Dunbiased ¼ 2þmðDbiased � 2Þ þ b ð2Þ

MC exhibited the best precision (lowest CV) following bias correction. McMurphy et al.
observed a wide range in precision with the least precise algorithms having three times the
standard deviation compared to MC (Table 2). The surfaces were also analyzed at varying
angles of inclination (3-, 5-, and 7-degree angles). KB exhibited great sensitivity to the angle of
inclination, and SIB exhibited moderate sensitivity. The other algorithms were mostly insensi-
tive to angulation on the Brownian interpolation surfaces. However, Brownian interpolation
produces self-similar surfaces, and fracture surfaces are generally accepted to be self-affine.
Therefore, these algorithms might exhibit a greater degree of sensitivity to angulation when
used on fracture surfaces. Figures 6 and 7 show the results of using RMS and SIR to analyze an
AFM scan of a silica glass fracture surface (previously unpublished). Both algorithms show
some sensitivity to angulation. RMS is not sensitive to rotation in the x-y plane (parallel versus
perpendicular to the direction of crack propagation), but SIR is sensitive to rotation. RMS
analyses the original surface, but SIR only analyses a zero set of the surface, and the orientation
of cross-sectioning plane that produces the zero set has an influence on the result.
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Figure 5. Discrepancy between measured and actual fractal dimensions of calibration surfaces that were generated using
Brownian interpolation [11].

Algorithm R m b

KB 0.9923 1.1826 �0.0406

RMS 0.9986 2.1890 �0.1193

HE 0.9973 0.4858 0.3043

MC 0.9994 0.9756 0.2318

SIR 0.9971 1.3917 0.0051

SIB 0.9949 1.7361 0.1397

Table 1. The slope (m), intercept (b), and correlation coefficient (R) for linear models to correct bias according to Eq. (1).

Algorithm D = 2.1 D = 2.2 D = 2.3 D = 2.4

KB 2.1081 (0.0667) 2.2035 (0.0508) 2.2765 (0.0564) 2.4119 (0.0696)

RMS 2.1010 (0.0845) 2.1946 (0.0911) 2.3093 (0.1111) 2.3952 (0.0811)

HE 2.0918 (0.0951) 2.2123 (0.0702) 2.3026 (0.0874) 2.3933 (0.0716)

MC 2.0970 (0.0359) 2.2023 (0.0488) 2.3048 (0.0415) 2.3958 (0.0355)

SIR 2.1090 (0.0837) 2.1927 (0.1044) 2.2905 (0.0950) 2.4078 (0.0968)

SIB 2.1118 (0.0834) 2.1817 (0.0809) 2.3063 (0.1613) 2.4002 (0.1389)

Table 2. Mean (standard deviation) fractal dimension values after bias correction of six algorithms that were used for
analyzing calibration surfaces (n = 10) with known dimensions (D = 2.1–2.4).
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Mitchell & Bonnell investigated the accuracy and precision of a Fourier power spectrum algo-
rithm on AFM (scanning tunneling mode) scans of sputtered gold films that were deposited on
sodium silicate glass surfaces [5], and they generated model surfaces having dimensions of 2.4
and 2.7 to judge the degree of bias. The model surfaces were generated using both a Weierstrass-
Mandelbrot function and Brownianmotion. Only a linear trace along the surface was analyzed, so
sensitivity to angulation could not be studied. The Fourier algorithm exhibited a large negative

Figure 6. Comparison of sensitivity to angle of inclination for two algorithms used to estimate the fractal dimension of a
silica glass fracture surface when the direction of inclination is parallel to the direction of crack propagation.

Figure 7. Comparison of sensitivity to angle of inclination for two algorithms used to estimate the fractal dimension of a
silica glass fracture surface when the direction of inclination is perpendicular to the direction of crack propagation.
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bias when the number of points sampled along the line was less than 500, and it exhibited no bias
or a small positive bias for large numbers of points (in cases when the surface dimension was 2.4).
In cases where the surface dimension was 2.7, the bias was consistently negative. This may
explain why McMurphy et al. observed a negative bias for most algorithms as discussed above.
McMurphy et al. analyzed 65,536 points per area but only 256 points on each line. Mitchell &
Bonnell observed low precision (SD = 0.35) for samples of 100 points and high precision (SD
= 0.04) for samples of 1000 points.

Williams and Beebe compared the accuracy and precision of four algorithms by analyzing scan-
ning tunneling images of three material surfaces (highly oriented pyrolytic graphite, polished
copper, and gold film) [12]. The algorithms were multiple-image variogram, power spectrum, slit
island, and single-image variogram. Since surfaces with known dimensions were not analyzed,
Williams and Beebe were not able to assess absolute bias. However, they noted that the power
spectrum and single-image variogram algorithms consistently estimated much higher dimensions
than the multiple-image variogram and slit island algorithms (Table 3). The slit island algorithm
was not able to analyze the smoothest surface (graphite), and it exhibited a low precision for the
other two surfaces. Multiple-image variography was deemed to be most reliable algorithm.
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Algorithm Graphite Polished copper Gold film

Multiple-image variogram 2.00–2.10 2.09–2.15 2.34–2.44

Power spectrum 2.45–2.62 2.39–2.52 2.34–2.50

Slit island N/A 2.13–2.79 2.23–2.96

Single-image variogram 2.52–2.54 2.70–2.72 2.68–2.69

Table 3. Range of fractal dimension estimates produced by four algorithms that were used by Williams and Beebe to
analyze three material surfaces.
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Abstract

Millimeter and centimeter wave scattering from the random fractal anisotropic surface
has been theoretically investigated. Designing of such surfaces is based on the modifica-
tions of non-differentiable two-dimensional Weierstrass function. Wave scattering on a
random surface is interesting for many sections of physics, mathematics, biology, and so
on. Questions of a radar location and radio physics take the predominating position
here. There are many real surfaces and volumes in the nature that can be carried to
fractal objects. At the same time, the description of processes of waves scattering of
fractal objects differs from classical approaches markedly. There are many monographs
in the world on the topic of classical methods of wave scattering but the number of
books devoted to waves scattering on fractal stochastic surfaces is not enough. These
results of estimation of three-dimensional scattering functions are a priority in the world
and are important in radar of low-contrast targets near the surface of the earth and
the sea.

Keywords: fractal, fractal surfaces, Kirchhoff approach, radio waves scattering,
Weierstrass function, radar, low-contrast targets

1. Introduction

There are a lot of scientific and engineering problems, which can be successfully solved only
with deep understanding of wave-scattering characteristics for statistically rough surface (see,
e.g., [1–3] and references). In this section, we consider the main issues of theory of fractal wave
scattering on the statistically rough surface as applied to problems of image creation by radar
methods (RMs). These issues are crucial for radio location of low-contrast targets on the
background of earth and sea surface.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the general case, RM can be interpreted as a scattering specific effective squares (SESs), as a
σ* card (matrix) or as a signature (portrait) of object being sounded for the high angular
resolution. SES card with fuzzy bounds corresponds to real RM for the wide-probing beam.
RM resolution increase necessitates the use of complicated probing signals. Subject detail
digital radar maps (DDRM or etalons) are often results of current image processing [4–8].

Currently, there are two general approaches of scattering on the statistically rough surface:
method of small perturbation (SP) and Kirchhoff approach (tangent plane method (TPM)).
These methods relate to two extreme cases of very small flat irregularities or smooth and large
irregularities, respectively. Two-scale scattering model becomes a generalization of these
methods. The model is a combination of small ripple (computations using SP) and large
irregularities (computations using TPM). Review of these methods evolution is represented in
Refs. [1–3].

Thus, before the present diffraction problems for the statistically rough surfaces took into
account irregularities of only a single scale. Soon, it had been realized that multiscale surfaces
lead to better fitting. As we have found out [6, 7] fractality accounting makes theoretical and
experimental scattering patterns for earth cover in microwaves range closer. This fact is always
interpreted (and has been interpreted now) as results of pure instrumental errors.

The aim of this work is to report systematically and consistently about theoretical solution of
scattering problem for the random fractal anisotropic surface using Kirchhoff approach for the
first time, to calculate scattering indicatrixes for radio microwaves, and to analyze the ensem-
ble of indicatrixes obtained.

2. Formulation of the problem

Idea of fractal radio systems in the framework of fractal radio physics and radio electronics
that was proposed and now is being consistently developed in the Institute of Radio Engineer-
ing and Electronics of the RAS (see, e.g., [5–48] and references) allows us to look at conven-
tional radio physics methods in a new fashion. Currently, fractal radio physics and fractal
radio location are the very active investigation areas, where significant applications have been
obtained.

New problems that arise and being formulated are very important for every branch of science
in the sense of its evolution. During the last 35 years, we succeeded in developing a number of
important sections of fractal radio physics and fractal radio electronics that almost completes
its main structure [6–8]. At once, these results reveal perspective of its modern applications
and new relations between fractal physics and classical radio physics and electronics. It is
necessary to note that for this course several monographs and more than 800 studies and 23
monographs were published (e.g., look at Refs. [5–48] and references).

Figure 1 shows us the main courses of works that are being carried out in the Institute of Radio
Engineering and Electronics of the RAS and also information about the moment of its intensive
growth beginning is demonstrated (for details, see Refs. [6, 7]). For such a “fractal” approach, it
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is natural to focus on analysis and also on the processing of radio physical signals (fields) only
in space of fractional measuring using hypothesis of scaling and distributions with “heavy
tales” or stable distributions. Note that scale transformations using scaling effects are wide-
spread in up-to-date physics when different relations between thermodynamical values in
renormgroup theory of phase changes are setting up [49].

Fractals belong to sets, which have extremely branched and irregular structure. In December
2005 in the USA, Mandelbrot approved [34] fractal classification that was developed by the
author and is presented in Figure 2, where fractal features are characterized so long as there is
a fractal structure with fractal dimension D in the space with topological dimension. Physical
mathematical problems of the fractals theory and fractional measuring are represented in
monographs [6–8] in detail.

Figure 1. Sketch of development of a new information technology.
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In case of RM formation, the structure and parameters of wave field, which is generated by
remote random surface at the field analysis area, depend on receiving point location and surface
parameters. By taking into account these facts, we have to analyze the scattered field in a time-
spatial continuum [5]. Therefore in the late 1970s of the ХХ century, the author formulated the
problem of creating a theoretical modeling the band of millimeter and centimeter waves (MMW
and CMW, respectively) for radar time-spatial signal by taking into account radio channel
“antenna’s aperture–atmosphere–targets–chaotic covering without vegetation” and the problem
of creating of new features classes for radar targets recognition or radar signatures [5].

3. “Diffraction by fractals” 6¼ ”classical diffraction”

Effectiveness of radio physical investigations can be significantly improved by taking into
account fractality of wave phenomena that are progressing at every stage of wave radiation,
scattering, and propagation in different medium. In spite of pure scientific interest, there are
practical applications to the radar and telecommunications problems solution and also to
problems of mediums monitoring at different time-spatial scales.

Recently, interest to investigate wave scattering by rough surfaces that have non-Gaussian
statistics has also grown. They often argue that correlation spatial coefficient of dispersive
surface rðΔx ¼ x2 � x1,Δy ¼ y2 � y1Þ cannot be exponential due to non-differentiability of
respective random process. Sometimes in this case they use regularizing function about a zero

Figure 2. Classification and morphology of fractal sets and fractal set signatures.
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point. Fundamental physical foundation of non-differentiable functions application for wave-
scattering analysis was developed only after taking into account fractal theory, fractional-
measuring theory, operators of integro-differentiation, and scaling relations in radio physical
problems [6, 7, 20].

It is significant to note that Gaussian model is parabolic near the angle of incidence θ ≈ 0, while
the exponential model is linear near the same point. Below, we consider in detail the approach
to scattering of MMWand CMW by fractal random surface [5–7, 20, 39–44, 47].

At the present time, many works of foreign authors are related with wave interaction with
fractal structures (see, e.g., respective chapters in monographs [6, 7]). Fractal surface implies
the presence of irregularities of all scales with respect to scattered wavelength. Therefore,
fractal wave front being non-differentiable does not have normal. In that way, conceptions of
“ray trajectory” and “ray optics effects” are excluded. However, chords, which connect values
of typical irregularity heights at the certain horizontal distances, still have finite root-mean-
square slope. For this case, “topoteza” of fractal random surface is introduced; it is equal to the
length of surface slope closeness to the unity [6, 7, 20].

Subject to all features, there are scattering models in the west of author works: (1) model of
fractal heights and (2) model of fractal irregularities slopes. Thus, model No. 2 is once differ-
entiable and has a slope that is changing continuously from point to point. This model leads to
ray optics or to effects that are described using the conception of “ray.” Such a kind of
scattering was investigated together with radio waves propagation in the ionosphere [6, 7].

Electromagnetic waves scattering by fractal surfaces was investigated in detail in Refs. [50–58].
In Ref. [50], it was shown that diffraction by fractal surfaces fundamentally differs from
diffraction by conventional random surfaces and some of classical statistical parameters like
correlation length and root-mean-square deviation go to infinity. It is due to self-similarity of
fractal surface. In Ref. [52], band-limited Weierstrass function was used. Less restrictions were
imposed than the ones in Ref. [50]. The proposed function possesses both self-similarity
property and still finite number of derivatives over a certain range under consideration. This
relaxation of conditions of Weierstrass function allows performing analytical and numerical
calculations.

Though there are many works on the creation and analysis of chaotic surfaces with the fractal
structure [6, 7, 55–58], only few of them consider two-dimensional (2D) fractal surfaces.
Corrugated surfaces that possess fractal properties only for one dimension (1D) were charac-
terized in some works [52, 53, 59, 60]. In Refs. [39–44, 47, 61–63], modified Weierstrass function
was used for designing 2D fractal chaotic surface. This function was derived from band-
limited Weierstrass function. General solution for scattered field was obtained using Kirchhoff
theory [1–3, 5–7, 61–65]. On this basis, we will carry out further calculations.

4. Fractal model of 2D chaotic surface

Modified 2D band-limited Weierstrass function has the view [6, 7, 20, 39–44, 47, 61–63]
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Wðx, yÞ ¼ cw
XN�1

n¼0

qðD�3ÞnXM
m¼1

sin Kqn x � cos 2πm
M

� �
þ y � sin 2πm

M

� �� �
þ φnm

� �
, ð1Þ

where cw is the constant that provides unit normalization; q > 1- is the fundamental spatial
frequency; D is the fractal dimension (2<D<3); K is the fundamental wave number; N and M
are the number of tones; φnm- is an arbitrary phase that has a uniform distribution over the
interval [�π, π].

Eq. (1) is a combination of random structure and determined period. Function W(x, y) is
anisotropic in two directions if M and N are not very large. It has derivatives, and at the same
time, it is self-similar. Respective surface is multiscale and roughness can vary depending on
the scale being considered. Since the natural surfaces are neither purely random nor periodical
and are often anisotropic [5, 40], the function that was proposed above is a good candidate for
characterizing natural surfaces.

5. Relationships between statistical parameters of roughness
measurements and fractal surface parameters

Such parameters as correlation length Γ, mean-root-square deviation σ, and spatial autocorre-
lation coefficient r(τ) are conventionally used for numerical characterization of rough surface.
In this section of our work, these statistical parameters are introduced for the estimation of
fractal dimension D influence and other fractal parameters influence on the surface roughness.
Similar relationships are presented in Refs. [6, 7, 20] for 1D fractal surfaces. Derivations of σ
and r(τ) for 2D fractal surfaces are cumbersome and tedious [61], and so we present here only
some final results.

5.1. Mean square deviation

The mean-root-square deviation σ is determined as

σ ¼
�
〈W2ð r!Þ〉s

�1=2
ð2Þ

where Wð r!Þ ¼ W ðx, yÞ; r! ¼ x I
! þ yJ

!
. Angle bracket implies ensemble averaging.

From Eqs. (1) and (2), we have

σ ¼ сw
M
�
1� q2ðD�3ÞN

�

2
�
1� q2ðD�3Þ

�
2
4

3
5

1
2

: ð3Þ

If σ = 1, then Eq. (3) is as follows:
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сw ¼
2
�
1� q2ðD�3Þ

�

M
�
1� q2ðD�3ÞN

�
2
4

3
5

1
2

: ð4Þ

Thus, Eqs. (1) and (4) are as follows:

Wнðx, yÞ ¼ 2ð1� q2ðD�3ÞÞ
Mð1� q2ðD�3ÞNÞ
� �1=2 XN�1

n¼0

qðD�3ÞnXM
m¼1

sin Kqn x � cos 2πm
M

� �
þ y � sin 2πm

M

� �� �
þ φnm

� �
:

ð5Þ

Eq. (5) is normalized with σ = 1. A normalized function will be used in the following sections
for the analysis and modeling of wave field scattered by fractal surfaces. Surface becomes more
isotropic with the increase of N and M. It is important to notice that Wu(x, y) characterizes
mathematical fractals only if N ! ∞ и M ! ∞.

5.2. Coefficient of spatial autocorrelation and of correlation length

Now, let us turn to the consideration of spatial autocorrelation coefficient r(τ) and correlation
length Г. By definition

rðτÞ ¼ 〈Wнð r! þ τ
!ÞWнð r!Þ〉s
σ2 ð6Þ

where τ ¼ ðΔx2 þ Δy2Þ12: ð7Þ

From Eqs. (5) and (6), we have

rðτÞ ¼
�
1� q2ðD�3Þ

�

M
�
1� q2ðD�3ÞN

�
2
4

3
5X
N�1

n¼0

q2ðD�3ÞnXM
m¼1

cos Kqnτ � cos θ� 2π �m
M

� �� �
, ð8Þ

where sinθ ¼ Δy
τ

, cosθ ¼ Δx
τ
: ð9Þ

The average spatial autocorrelation coefficient

~rðτÞ ¼ 〈rðτÞ〉s ¼
�
1� q2ðD�3Þ

�
�
1� q2ðD�3ÞN

�
2
4

3
5X
N�1

n¼0

q2ðD�3ÞnJ0ðKqnτÞ, ð10Þ

where J0ðKqnτÞ is the zero-order Bessel function of the first kind.

Correlation length Г is defined as the first root of r(τ) = 1/e when τ increases from zero. From
relationship (8)
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ð1� q2ðD�3ÞÞ
Mð1� q2ðD�3ÞNÞ
� �XN�1

n¼0

q2ðD�3ÞnXM
m¼1

cos KqnΓ � cos θ� 2π �m
M

� �� �
¼ 1=e: ð11Þ

Similarly from Eq. (10), the average correlation length is defined �Γ:

ð1� q2ðD�3ÞÞ
Mð1� q2ðD�3ÞNÞ

XN�1

n¼0

q2ðD�3ÞnJ0ðKqn~ΓÞ ¼ 1=e: ð12Þ

From Eqs. (10)–(12), one can find relationships between average correlation length �Γ, fractal

dimension D, and also q. There are dependences �Γ on q and D shown in Figures 3 and 4,

respectively. It is shown that with an increased value of D, �Γ decreases more rapidly for the

same variation of q. It is shown in Figure 4 that the value of �Γreduces steadily with the increase

of D value. However, �Γ does not change when q = 1.01.

Consequently, the mean correlation length �Γ is sensitive to fractal dimension D with the
exception of cases when q is close to unity. These results imply that the value of fractal surface
irregularities is mainly determined by fractal parameter D.

Figure 3. Average correlation length ~Γ as function of q.
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6. Memoir about the basic foundation of wave-scattering theory by fractal
surfaces

As mentioned above, Kirchhoff approach has been already used for the analysis of wave
scattering by fractal surfaces [6, 7, 20, 39–44, 47, 50–63]. This theory will be used in our work
for numerical analysis of a field scattered by fractal chaotic surfaces. Conventional conditions
of Kirchhoff approach are the following: irregularities are large scale, irregularities are smooth
and flat. In the following calculations, we assume that observation is carried out from Fraun-
hofer zone, incident wave is plane and monochromatic, there are no points with infinite
gradient on the surface, Fresnel coefficient V0 is constant for this surface, and surface scales
are much greater than incident wavelength.

6.1. Scattered field

Scattering geometry is presented in Figure 5. Then, scattered field ψрð r
!Þ that interacts with

surface square S of 2Lx � 2Ly when �Lx ≤ x ≤Lx and �Ly ≤ y ≤Ly are equal to [1–3, 5–7, 20, 61]:

ψрð r
!Þ ¼ � ik � exp ðikrÞ

4π � r 2Fðθ1,θ2,θ3Þ
ð

S
exp½ikφðx0, y0Þ�dx0dy0 þ ψк: ð13Þ

In Eq. (13), we used the following notations:

Figure 4. Average correlation length ~Γ as function of D.
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Fðθ1,θ2,θ3Þ ¼ 1
2

Aa
C

þ Bb
C

þ c
� �

, ð14Þ

φðx0, y0Þ ¼ Ax0 þ By0 þ Chðx0, y0Þ, ð15Þ

hðx0, yÞ ¼ σ �Wнðx0, y0Þ, ð16Þ

a ¼ V0ðsinθ1 � sinθ2cosθ3Þ, ð17Þ
b ¼ V0ðsinθ2 � sinθ3Þ, ð18Þ
c ¼ V0ðcosθ1 þ cosθ2Þ, ð19Þ
A ¼ sinθ1 � sinθ2cosθ3, ð20Þ

B ¼ �sinθ2sinθ3, ð21Þ
C ¼ �ðcosθ1 þ cosθ2Þ, ð22Þ

ψк ¼ � ik � expðikrÞ
4π � r

(
ia
kc

ð
½expðikφðX, y0ÞÞ � expðikφð�X, y0ÞÞ� � dy0þ

þ ib
kc

ð
exp ikφ x0, Yð Þ� �� exp ikφ x0, � Yð Þ� �� � � dx0

)
:

ð23Þ

Component ψк relates to edge effect. From Eqs. (15) and (16), we have

exp½ikφðx0, y0Þ� ¼ exp ik½Ax0 þ By0 þ Cσ �Wuðx0, y0Þ�
� �

: ð24Þ

In Eq. (24), the third exponent is expressed as

Figure 5. Scattering geometry: θ1, incident angle; θ2– scattering angle; and θ3 azimuth angle.
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exp½ikCσ �Wuðx0, y0Þ� ¼ exp ikCσ
2

�
1�q2ðD�3Þ

�

M

�
1�q2ðD�3ÞN

�
2
4

3
5
1=2XN�1

n¼0

qðD�3ÞnXM
m¼1

�

8><
>:

�cos Kqn � x0 � cos 2π �m
M

� �
þ y0sin

2π �m
M

� �
þ φnm � π

2

� �� ��
¼

¼
YN�1

n¼1

YM
m¼1

exp

(
ikCσ

2
�
1� q2ðD�3Þ

�

M
�
1� q2ðD�3ÞN0

�
2
4

3
5
1=2

qðD�3Þn�

�cos x0 � cos 2π �m
M

� �
þ y0sin

2π �m
M

� �
þ φnm � π

2

� ��
:

ð25Þ

From expression (Eq. (25)) and by taking into account expansion (Eq. (26)) and relationship
(Eq. (27)):

expðizcosϕÞ ¼
Xþ∞

u¼�∞

iuJuðzÞexpðiuϕÞ, ð26Þ

cf ¼ kCσ
2
�
1� q2ðD�3Þ

�

M
�
1� q2ðD�3ÞN

�
2
4

3
5
1=2

: ð27Þ

we obtain

exp½ikCσ �Wuðx0, y0Þ� ¼
YN�1

n¼0

YM
m¼1

Xþ∞

u¼�∞

Junm
�
cf qðD�3Þn

�
�

�exp iu Kqn � x0 � cos 2π �m
M

� �
þ y0sin

2π �m
M

� �
þ φnm � π

2

� �� �� �
:

ð28Þ

Eq. (28) can be written as

exp½ikCσ �Wuðx0, y0Þ� ¼
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,0¼�∞

�

�
YN�1

n¼0

YM
m¼1

Junm
�
cf qðD�3Þn

�" #
� exp iK

XN�1

n¼0

qðD�3ÞnXM
m¼1

unmcos
2π �m
M

� �" #
x0

( )
�

�exp iK
XN�1

n¼0

qðD�3ÞnXM
m¼1

unmsin
2π �m
M

� �" #
y0

( )
�

� exp i
XN�1

n¼0

XM
m¼1

unmφnm

 !
:

ð29Þ

As result from Eqs. (13)–(23) and (29) field ψрð r
!Þ scattered from finite site S is
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ψрð r
!Þ ¼ � iLxLyk � expðikrÞ

πr
2Fðθ1,θ2,θ3Þ

�
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,N�1¼�∞

…
Xþ∞

u2,0¼�∞

…
Xþ∞

u2,N�1¼�∞

…
Xþ∞

uM,N�1¼�∞

�

�
YN�1

n¼0

YM
m¼1

Jumn
ðcjqðD�3ÞnÞ

" #
exp i

XN�1

n¼0

XM
m¼1

umnφmn

 !
�

�sincðϕcLxÞ � sincðϕsLyÞ þ ψк,

ð30Þ

sincðxÞ � sin ðxÞ
x

, ð31Þ

ϕc ¼ kAþ K
XN�1

n¼0

qn
XM
m¼1

unmcos
2π �m
M

� �
, ϕs ¼ kBþ K

XN�1

n¼0

qn
XM
m¼1

unmsin
2π �m
M

� �
: ð32Þ

6.2. Average-scattered field

A more convenient parameter for the characterization of scattered field properties is average-

scattered field ~ψрð r
!Þ:

~ψрð r
!Þ ¼ 〈ψрð r

!Þ〉s ð33Þ

Eqs. (32) and (33) are defined as follows:

~ψрð r
!Þ ¼ � iLxLyk � expðikrÞ

πr
2Fðθ1,θ2,θ3Þ

YN�1

n¼0

JM0 ðcf qðD�3ÞnÞ
" #

sincðkALxÞsincðkBLyÞ þ ψк ð34Þ

Assume that the outside area �Lx ≤ x0 ≤ Lxи �Ly ≤ y0 ≤Ly surface S is smooth, that is,

hð�X, � YÞ � 0, ð35Þ
where X > Lx, Y > Ly: ð36Þ

Then, Eq. (23) can be written as

ψк ¼ � ik � expðikrÞ
π � r

Aa
C

þ Bb
C

� �
lim
X!Lþx

X � sincðkAXÞ � lim
Y!Lþy

Y � sincðkBYÞ: ð37Þ

6.3. Scattering indicatrixes for field

Scattering indicatrixes for field rψ is defined as

rψ ¼
ψрð r

!Þ
ψр0ð r

!Þ, ð38Þ

where field scattered from perfectly smooth surface ψр0ð r
!Þ in a specular direction is expressed as
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ψр0ð r
!Þ ¼ � 2LxLyik � exp ðikrÞcosθ1

π � r : ð39Þ

Average-scattering indicatrix ~rψ can be obtained after normalization:

~rψ ¼
~ψscðrÞ
ψsc0ðrÞ

: ð40Þ

Assume that surface gradients much less than incident angle is θ1, then from Eqs. (30), (37)–
(39) we have

~rψ ¼ Fðθ1,θ2,θ3Þ
cosθ1

YN�1

n¼0

JM0 cf qðD�3Þn
� �" #

sincðkALxÞsincðkBLyÞþ

þ 1
2LxLycosθ1

Aa
C

þ Bb
C

� �
lim
X!Lþx

X � sincðkAXÞ � lim
Y!Lþy

Y � sincðkBYÞ:
ð41Þ

In specular direction θ1 ¼ θ2,θ3 ¼ 0 and coefficients are the A = 0, B = 0, a = 0, b = 0. Using
Eqs. (17)–(22), we can write average-scattering indicatrixes ~rψ, which was defined in Eq. (40),

as

~rψ ¼
YN�1

n¼0

JM0 ðcf qðD�3ÞnÞ
" #

, ð42Þ

where сf ¼ �2kσ � cosθ1

2
�
1� q2ðD�3Þ

�

M
�
1� q2ðD�3ÞN

�
2
4

3
5

1
2

: ð43Þ

Thus, ~rψ relates to parameters k, σ, θ1, q, D, N, M. If сf qðD�3Þn < 1, then in second

approximation~rψ we have

~rψ ¼ 1� 2ðkσ � cosθ1Þ2: ð44Þ

Eq. (44) shows that in specular direction ~rψ depends on the wavelength of incident radiation, σ

of rough surface, and incident angle θ1. This result coincides with conventional results for
Gaussian random surfaces [1]. Thus, fractal surfaces have diffraction properties that are similar
to the ones of Gaussian random surfaces in a specular direction. This result involves a previous
one [26], which was used as main assumption for mean-root-square scattering cross section
measurement on this surface with specular ray measurement.

6.4. Average field intensity

Now, let us find scattering indicatrixes for average field intensity ~rI. The intensity of scattered field
is defined as
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Ið r!Þ ¼ ψрð r
!Þψ�

рð r
!Þ: ð45Þ

The average intensity of scattered field is obtained by Eq. (45) averaging:

~Ið r!Þ ¼ 〈Ið r!Þ〉S: ð46Þ

From Eqs. (30), (45), and (46), we have

~Ið r!Þ ¼ LxLyk
π�r 2Fðθ1,θ2,θ3Þ

h i2
�

�
Xþ∞

u1,0¼�∞

…
Xþ∞

u1,N�1¼�∞

…
Xþ∞

u2,0¼�∞

…
Xþ∞

u2,N�1¼�∞

…
Xþ∞

uM,N�1¼�∞

�

�
YN�1

n¼0

YM
m¼1

Jumn
ðcjqðD�3ÞnÞ

" #2
�

sinc2ðϕcLxÞ � sinc2ðϕsLyÞ:

ð47Þ

6.5. Scattering indicatrix for average field intensity

In a similar manner as stated above, here we define scattering indicatrix for average field
intensity ~rI � g:

gð r!Þ � ~rI ¼
~Ið r!Þ
I0

, ð48Þ

where I0 ¼ ψр0ð r
!Þ � ψ�

р0ð r
!Þ: ð49Þ

Based on the assumptions that were proposed in the beginning of this section, we can write
Eq. (48) as

g ≈
F2ðθ1,θ2,θ3Þ

cos2θ1

(
1� 1

2
ðkCσÞ2

� �
� sinc2ðkALxÞsinc2ðkBLyÞ

þ 1
4
C2
f

XN�1

n¼0

XM
m¼1

q2ðD�3Þnsinc2 kAþ Kqncos
2π �m
M

� �
Lx

� �
þ

þsinc2 kBþ Kqnsin
2π �m
M

� �
Ly

� �)
,

ð50Þ

where values with the order higher than с2f q
2ðD�3Þn in Eqs. (48) and (49) are negligible.

Statistical parameter of scattered field σI is defined as

σI ¼ ~Ið r!Þ � ~ψ
2
рð r

!Þ
I0,

ð51Þ

that here corresponds to the mean-root-square value of average-scattered field.
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Let us compare the view of Eq. (34) with the first term in Eq. (50). It is obvious that the first

term in Eq. (50) is equal to the expression for ~ψ
2
рð r

!Þ that represents specular ray and side lobes.

Thus, δI is determined only by the second term in Eq. (50) that relates to scattering by surface
roughness. The second moment of scattered field σI can be useful for diffraction studying away
from specular direction and also for the determination of the influence of fractal parameters on
inverse-scattering pattern. The advantage of such a presentation is that in the consideration it
is sufficient to discount only average coefficients. Thus, it is necessary to measure phase
components that relate with scattered wave front.

6.6. Results clarification

In Ref. [52], approximate formula of average field intensity for the problem of scattering by fractal phase
screen was presented. As it is explained in Ref. [61], this formula includes some errors. Below,
details are explained and presented in Ref. [61]. Surface model in Ref. [52] is specified by
Weierstrass function (see also expression (6.77) in monograph [7]:

φðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σφ½1� bð2D�4Þ�1=2

q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2
XN2

n¼N1

bðD�2Þncosð2πsbnxþ φnÞ, ð52Þ

where b is the fundamental spatial frequency; D is the fractal dimension, which varies over
interval from 1 to 2; s is the scaling factor; φn is the phase that is distributed uniformly over the
[0, 2π]. Number of harmonics in function (Eq. (52)) is determined by N = N2 – N1 + 1.

Average-scattered field intensity is determined by Eq. (22) in Ref. [52] (or by Eq. (6.96) in
monograph [7] in the form of weighted array of Bessel functions):

〈IðxÞ〉 ¼ L4

λ2z2
X∞

q1¼�∞

X∞
q2¼�∞

…
X∞

qN¼�∞

J2q1ðCN1ÞJ2q2ðCN1þ1Þ…J2qN ðCN2Þ�

� sinc2 L
x
λz

� sq1b� sq2b
N1þ1 �…sqN2

� �� �
sinc2

Lx
λz

� �
,

ð53Þ

where Сn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σφ½1� bð2D�4ÞbðD�2Þn�1=2

q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2
ð54Þ

L is the phase screen size, x, y are the coordinate values in intensity observation plane at a
distance of z from the phase screen, and λ is the incident wavelength.

In Eqs. (B2) and (B3) in Ref. [52], typographical errors were made. In Eq. (53), term sq1b must be:
sq1b

N1 , which is clear from expression (6.95) inmonograph [7]. In line with Eq. (B2), Eq. (B3) must be

Cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σφ½1� bð2D�4Þ�1=2bðD�2Þn

q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2
: ð55Þ

Approximate expression for the average intensity is derived from Eq. (22) in Ref. [12] (see also
expression (6.97) in monograph [6]):
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〈IðxÞ〉 ¼ L4

λ2z2
ð1� σ2

φÞsinc2ðLx=λzÞ þ
Xþ∞

n¼�∞

ðC2
n=4Þsinc2½Lðx=λz� sbnÞ�

( )
sinc2ðLy=λzÞ: ð56Þ

After the correction, we have

〈IðxÞ〉 ¼ L4

λ2z2
ð1� σ2

φÞsinc2ðLx=λzÞ þ
XN2

n¼N1

ðC2
n=4Þsinc2½Lðx=λz� sbnÞ�

( )
sinc2ðLy=λzÞ: ð57Þ

Accurate derivation of Eq. (57) looks like this [61]:

JuiðCnÞ ¼ Cn
2

� �uX∞

j¼�∞

ð�1ÞjðCn=2Þ2j
j!ðuþ jÞ!

J2uiðCnÞ ¼ Cn
2

� �2u X∞

j¼�∞

ð�1ÞjðCn=2Þ2j
j!ðuþjÞ!

2
4

3
5
2

9>>>>>=
>>>>>;
, ð58Þ

where ui is the integer and ui ∈ ðq1,…, qNÞ.

Since terms with the order higher than C2
n are negligible, then ui ∈ f0, 1g,

X
ui ¼ 0 or 1.

Thus

J0ðCnÞ ¼ Cn
2

� �uX∞

j¼�∞

ð�1ÞjðCn=2Þ2j
j!ðuþ jÞ! ≈ 1� 1

4
С2

n

J20ðCnÞ ¼ 1� 1
2
С2

n

9>>>=
>>>;
, ð59Þ

J21ðCnÞ ≈ 1
4
C2
n: ð60Þ

From Eqs. (53), (59), and (60), we have

〈IðxÞ〉 ¼ L4

λ2z2
J20ðCN1Þ…J20ðCN2Þsinc2

Lx
λz

� �
þ

�

þJ21ðCnÞJ20ðCN1þ1Þ…J20ðCN2Þsinc2
Lx
λz

� sbN1

� �
þ

þ J20ðCN1 ÞJ21ðCN1þ1Þ…J20ðCN2Þsinc2
Lx
λz

� sbN1þ1
� �

þ

þ…þ J20ðCN1Þ…J21ðCN2Þsinc2
Lx
λz

� sbN2

� �#
sinc2

Ly
λz

� �
,

ð61Þ

where

J20ðCN1 Þ…J20ðCN2Þ ≈ 1� 1
2
C2
N1

� �
… 1� 1

2
C2
N2

� �
≈ 1� 1

2

XN2

n¼N1

C2
n ¼ 1� σ2

φ, ð62Þ
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J21ðCN1Þ…J20ðCN2Þ ≈
1
4
C2
N1

:
:
:

J20ðCN1Þ…J21ðCN2Þ ≈
1
4
C2
N2

9>>>>>>=
>>>>>>;

: ð63Þ

So, from Eqs. (61)–(63) finally we obtain the expression for average intensity in Fraunhofer zone:

〈IðxÞ〉 ¼ L4

λ2z2
1� σ2

φ

� �
sinc2 Lx=λzð Þ þ þ

XN2

n¼N1

C2
n=4

� �
sinc2 Lðx=λz� sbnð Þ½ �

( )
sinc2ðLy=λzÞ:

ð64Þ

7. Results of the theoretical investigations of scattering indicatrixes
in MW range

In Figures 6–80, we present a thorough array of typical kinds of dispersing fractal surfaces with
the basis of Weierstrass function, and also 3D-scattering indicatrixes and their cross sections that

Figure 6. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 7. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 8. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 9. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 10. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 11. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 12. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 13. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 14. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 15. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 16. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 17. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 18. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 19. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 20. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 21. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 22. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 23. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 24. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 25. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 26. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 27. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 28. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 29. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 30. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 31. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 32. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 33. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 34. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 35. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 36. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 37. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 38. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 39. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 40. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 41. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 42. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 43. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 44. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 45. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 46. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

On the Indicatrixes of Waves Scattering from the Random Fractal Anisotropic Surface
http://dx.doi.org/10.5772/intechopen.68187

223



Figure 48. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 47. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 50. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 49. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 52. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 51. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 54. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 53. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 56. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 55. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 58. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 57. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 60. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 59. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 62. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 61. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 64. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 63. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 66. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 65. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20�: (a) fractal surface for
D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 68. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 67. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 70. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 69. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 72. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 71. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 73. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 74. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 76. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 75. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20�: (a) fractal surface for
D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 77. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 78. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 80. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 79. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15�: (a) fractal surface for
D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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were calculated in the summer of 2006 for the wavelengths λ ¼ 2:2 mm, λ ¼ 8:6 mm and
λ ¼ 3:0 cm for the different values of fractal dimension D and different scattering geometry,
respectively. It is significant to note that in this work there is only part of all of our theoretical
results obtained for these courses. Some of results for this course that relates to “Fractal Electro-
dynamics” (this conception appeared for the first time in the USA in the monographs [66, 67];
see also native monographs [6, 7]) were published by us earlier in works [8, 15, 40].

8. Conclusion

Now on the basis of large scattering characteristics data array, we can arrive at some significant
conclusions. When D has small value, the main part of energy is scattered in the specular
direction. Side lobes appear due to Bragg scattering. The number of side lobes and their
intensity increases with an increased value of fractal dimension D of the dispersive surface.
Angular range of the side lobes also increases with an increase of D when higher spatial
frequencies become significant. Radio wave that interacts with a fractal can be viewed as a
yardstick to probe rough surfaces by means of spatial frequencies selection on the basis of
Bragg diffraction conditions [6, 7]. In the case of smallD values, classical and fractal approaches
for scattered field solution coincide with each other. In practice, sizes of illuminated area must
be at least two times greater than the main period of a surface structure in order to obtain
fractal parameters information from scattering patterns.

Undoubtedly, fractal describing of the wave-scattering process [5–10, 15, 63, 72, 73, 77] will
result in establishing new physical laws in the wave theory. Author is sure that the use of fractal
theory and determined chaos jointly with formalism of the apparatus of fractional operators in the just
considered problems allows to generate more valid radio physical and radar models that
decrease significantly discrepancies between theory and measurements.

This work reviews in detail a variety of modern wave-scattering problems that appear in
theoretical and applied areas of radio physics and radiolocation when the theory of integer
and fractional measuring is used in general case. In other words, the use of dissipative system
dynamics formalism (fractality, fractional operators, non-Gaussian statistics, distributions with
heavy tales, mode of determined chaos, existing of strange attractors in the phase space of
reflected signals, their topology, etc.) allows us to expect that classical problem of wave
scattering by random mediums will be area of productive investigations in the future as
before.

All results presented here are the priority ones in the world, and it is a basis material for the
further development and foundation of practical application of fractal approaches in radio
location, electronics, and radio physics and also for generating fundamentally new fractal
elements/devices and fractal radio systems [5–48, 62, 63, 68–83]. These results can be applied
widely for fractal antennas modeling, fractal frequency-selective structures modeling, solid-
state physics, physics of nanostructures, and for the synthesis of nano-materials.
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Abstract

A fractal is an object or a structure that is self-similar in all length scales. Fractal
geometry is an excellent mathematical tool used in the study of irregular geometric
objects. The concept of the fractal dimension, D, as a measure of complexity is defined.
The concept of fractal geometry is closely linked to scale invariance, and it provides a
framework for the analysis of natural phenomena in various scientific and engineering
domains. The relevance of the power law scaling relationships is discussed. Fractal
characteristics of porous media and the characteristic method of the porous media are
also discussed. Different methods of analysis on the permeability of porous media are
discussed in this chapter.

Keywords: fractal geometry, fractal structure, fractal dimension, porous media, perme-
ability

1. Introduction

Fractal is one of the subjects, which recently attracted attention in natural science and social
science. A fractal is defined as a geometric object whose fractal dimension is larger than its
topological dimension. Many fractals also have a property of self-similarity; within the fractal
lies another copy of the same fractal, smaller but complete. Mandelbrot [1] referred to fractals
as structures consisting of parts that, in some sense, are similar to integers; fractals are of a fine
(non-integer) dimension (D) that is always smaller than the topological dimension. In the past
40 decades, fractal theory has significantly contributed to the characterization of the distribu-
tion of physical or other quantities with a geometric support. In science and engineering,
fractal geometry provides a wide range and powerful theoretical framework that is used to
describe complex systems, which have been successfully applied to the quantitative descrip-
tion of microstructures such as surface roughness and amorphous metal structure [2].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Typically, microstructure elements can be explained using the Euclidean dimension (d). With
respect to point defects (e.g., vacancies and interstitial atoms), d¼ 0; with respect to linear defects
(dislocations), d ¼ 1; with respect to planar defects (twins), d ¼ 2; and with respect to three-
dimensional (3-D) formations, d ¼ 3. Nonetheless, the Euclidean dimension cannot be used to
illustrate structural elements differing from standard ones (e.g., points or straight lines). Thus, a
well-known grain boundary, being the most significant element of the microstructure, is curvi-
linear, and this form can be described by the fractal dimension (D) correlating to 1 ≤ D ≤ 2.
Surface defects may also be illustrated using the fine dimension that will commensurate to the
range 2 ≤ D ≤ 3 [3]. Therefore, fractal theory introduces a new quantitative parameter-fractal
dimension for illustrating structures, which, because of its universal nature, is appropriate for
illustrating structures in systems types. With a system such as a deformed solid, the fractal
concept provides the possibility of quantitatively illustrating the elements of the initial micro-
structure (e.g., phases, grain, boundaries, etc.) and the structures formed during deformation [3].
Fractal theory thus provides a new and effective method for characterizing complex structure of
the engineering materials. The theory of fractals is considered a basis for quantitative description
by means of the fractal dimension of various structures.

An extremely disordered morphology, such as surface roughness and porous media having the
self-similarity property, is scrutinized by fractal geometry. This implies that the morphology
stays similar in magnification over a broad range. Another significant attribute of natural
fracture is that their formation needs the supply of a large amount of energy externally [3]. If
microstructure formation is preferentially caused by a phenomena taking place outside of
thermodynamic equilibrium, they are also characterized by fractal property. This implies that
the description of highly disorderedmicrostructures on the basis of conventional approach is not
sufficient [3]. Thus, most of the objects that occur in nature are disordered and irregular, and
they do not follow the Euclidean illustration because of the scale-dependent measures of length,
area, and volume [4, 5]. Examples of such objects are the surfaces of mountains, coastlines,
microstructure of metals, and so on. These objects are termed fractals and are illustrated by a
non-integral dimension known as fractal dimension [1]. The fractal property is a physical
property expressed at the super-molecular level, at a microscopic scale, and at a macroscopic
scale.

The phenomenon of fractal is ubiquitous in a wide array of materials, such as the fracture of
nanoparticle composites [6–8], the growth of crystal [9–12], the quasicrystal structure [13], the
fracture of martensite morphology [14, 15], the porous materials [16–19], and the deposited
film [20–25]. These materials are of uncommon class of disordered materials and usually show
complex microstructures. Fractal theory has been widely used in many fields of modern
science since it was presented by Mandelbrot [1] in 1982. It has been used in studying perme-
ability of porous media [17, 26–28], dual-porosity medium [29, 30], evaluating dislocation
structure [31], simulating the failure of concrete [32–35], analyzing fracture surfaces or net-
work [36, 37], and thermal conductivity performance [38]. Fractal has also been used to
establish the morphology of highly irregular objects imbedded onto two- and three-dimen-
sional spaces and is defined as two- and three-dimensional fractal dimensions [39].
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2. Fractal structure

Fractal structure is a structure that is characterized with self-similarity, that is, it is composed of
such fragments whose structural motif is repeated if the scale changes. Fractal structure
outlined the degree of occupancy of a structure in a space (dimension), which is not an integer
value. Therefore, n-dimensional fractal occupies an intermediate position that lies between the
n-dimensional and (n þ 1)-dimensional objects. Recursive functions are used to construct a
fractal object. An important characteristic of fractal structure is the scale independence [40].
Thus, fractal structures do not have a single length scale, and fractal processes (e.g., time series)
cannot be characterized by a single time scale [41]. Fractal structures are associated to rough or
fragmented geometric structures [42]. The complexity of a fractal structure is described by its
fractal dimension; this is greater than the topological dimension. It is much easier to obtain
fractal dimension from datasets by using fractal analysis, for example, digital images, obtained
from the investigation of natural phenomena, and from theoretical models. Different tech-
niques to perform fractal analysis include box-counting, lacunarity analysis, multifractal anal-
ysis, and mass methods. An interesting application of fractal analysis is the description of
fractured surfaces [43]. Mandelbrot et al. [42] have shown that fractured surfaces are fractal.
Zhang [44] reported a quadratic polynomial relationship between the rock burst tendency and

fractal dimension of fracture surface. A fractal dimension threshold of d̂f was found, and there

was a positive correlativity between the rock burst tendency index and the fractal dimension

when df ≤ d̂f , an inverse correlativity when df ≤ d̂f . In the investigation of fractured surfaces,

Liang andWu investigated the relationship between the fracture surface fractal dimension and
the impact strength of polypropylene nanocomposites. A strong correlation was observed, and
it indicated that the fracture surface of the composites was fractal, and the relationship
between the impact strength and fractal dimension of the composites obeyed roughly expo-
nential function [7]. Lung et al. have also demonstrated that there is a relation between the
roughness and the fractal dimension of the surface [45].

3. Fractal analysis

Fractal analysis is defined as a contemporary method of applying non-traditional mathematics
to patterns that defy understanding with traditional Euclidean concepts. It means assessing the
fractal description of data, and it is a common technique to study a variety of problems. It
consists of different methods assigned to a fractal dimension and other fractal characteristics to
a dataset. It, in essence, measures complexity using fractal dimension. In fractal analysis, other
different parameters can also be assessed [43], for instance, lacunarity and succolarity, and can
be used to classify and segment images [46]. Whatever type of fractal analysis has to be done, it
always rests on some kind of fractal dimension. In fractal analysis, complexity is a change in
detail with change in scale. The simplest form of fractal dimension is described using the
relation in Eq. (1).
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N ¼ 1
SD

ð1Þ

where N is the number of self-similar “pieces,” S is the linear scaling factor (sizes) of the pieces
to the whole, D is the dimension that characterizes the (invariant) relationship between size
and number. Rearranging the elements in Eq. (1), one can solve for D.

D ¼ � logN
logS

� �
ð2Þ

D is an algebraic equation, that is, Eq. (1) can give a dimension, which is the concept of
geometry, not algebra. Let’s say, one-dimensional line is cut into pieces, each of which is a
fraction (S) of the original line, like making S ¼ 1/4. For example, one-dimensional line can be
cut into pieces such that each one-fourth will be the size of the original line, then N will be
equal to four little lines. Then one can say that Eq. (1) gives the line a fractal dimension D ¼ 1,

because N ¼ 1= 1
4

� �1. If a two-dimensional square area is cut into pieces, the side of which is
one-fourth the size of the original square, then N ¼ 16 little squares. Eq. (1) will then tell that

the area of the square has a fractal dimensionD¼ 2, becauseN ¼ 1= 1
4

� �2. If a three-dimensional
cube volume is cut into pieces, such that the side of which is one-fourth the size of the original
cube, then N will be equal to 64 little cubes. Eq. (1) then tells that the volume of the cube has a

fractal dimension of D ¼ 3, because N ¼ 1= 1
4

� �3. No matter the value of S, N will still be found

as 1=SDpieces when one-, two-, and three-dimensional objects have been cut into pieces. Thus,
Eq. (1) gives the correct fractal dimension for one-dimensional line, two-dimensional area, and
three-dimensional volume [47].

3.1. Concepts of the fractal dimension

The ratio that gives statistical index of intricacy and compares how detailed a shape (fractal
pattern) changes with the scale at which it is measured is called fractal dimension. It is
sometimes identified by a measure of the space filling volume of a pattern that states how a
fractal scale is different from the space it is rooted in; a fractal dimension is not always an
integer [48–50]. There are several different concepts of the fractal dimension of a geometrical
configuration [5].

There are several ways of measuring length-related fractal dimensions. Mandelbrot [51] first
proposed the concept of a fractal dimension to describe structures, which look the same at all
length scales. His concept takes into account the measuring of the perimeter of an object with
several lengths of rulers (spans or calipers) (using a trace method). For a fractal object, the plot
of the log of the perimeter against the log of the ruler lengths will give a straight line with a
negative slope S. This plot will then result to D ¼ 1 – S [52]. Although this is mainly mathe-
matical concept, many examples in nature that can be closely approximated to fractal objects
are available for only over a particular range of scale. The likes of these objects are generally
named self-similar in order to indicate their scale invariant structure. The common attribute of
such objects is that their length (for a curve object, otherwise it could be the area or volume)
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mainly rests on the length scale used for measuring it, and the fractal dimension provides the
exact nature of this reliance [53]. Fractal dimensions (D) are numbers used to quantify these
properties [5]. In fractal geometry [1], the fractal dimension, D, is given as:

D ¼ lim
r!0

logðNrÞ
logð1=rÞ ð3Þ

This is a statistical quantity that shows how a fractal totally fills the space when viewed at finer
scales.

The second concept was proven by Pentland on the basis that the image of a fractal object is also
a fractal [54], which has made scientific investigations on the methods of estimating the fractal
dimensions of images. Many researchers have put great efforts into this field of fractal geometry,
and manymethods for estimating fractal dimensions of certain objects have been proposed since
the establishment of fractal geometry theory. Typical methods of this concept involve the use of
spectral analysis and box-counting. Usually, spectral analysis method applies fast Fourier trans-
formation (FFT) to image in order to obtain the coefficients and mean spectral energy density.
The fractal dimension can be evaluated by analyzing the power law reliance of spectral energy
density and the square size [55]. The box-counting method is the widely used method for
calculating fractal dimensions in the natural sciences; this is called box-counting dimension. It is
a method based on the concept of “covering” the border, it is also known as the grid method.
Sets of square boxes (i.e., grids) are used here in order to cover the border. Each set is represented
by a box size. The number of boxes essential to cover the border is considered a function of the
box size. Figure 1 is an example of the log of the number of covering boxes of each size times the
length of a box edge plotted against the log of the length of a box edge. Furthermore, a straight
line with slope Swhich is equal to the dimension Dwill be obtained [52]. The slope is defined as
the amount of change along the Y-axis, divided by the amount of change along the X-axis. Any
result with a steeper slope shows that the object is more “fractal,” which means it gains in
complexity as the box size reduces. Any result with a lower-valued slope shows that the object
is closer to a straight line, less “fractal,” and that the amount of detail does not grow as quickly
with an increase in magnification. Again, the 3-D space containing a specific object, partitioned
into boxes of a certain size and how many boxes could fill up the object, is also accounted for.
With the use of ratio r in Eq. (1), in order to decide the box size, the box-counting method will
account for the total number of boxes (i.e., Nr of Eq. (1)) that are needed to form the object. The
fractal dimension D of Eq. (1) can then be estimated from the least square linear fit of log(Nr)
versus log(1/r) by counting Nr for different scaling ratio r [56].

Several traditional box-counting methods have been used for the calculation of the fractal
dimensions of images, this includes differential box-counting (DBC) method [57], Chen et al.’s
approach [58], the reticular cell counting method [59], Feng’s method [60], and so on. DBC
method has been proved to have better performance than other methods [61]. Many analyses
have been done in order to improve the DBC method [62–64].

A third concept was developed by Flook [65], and the method of this concept is called the
dilation method. Dilation, in this case, means a widening and smoothing of the border. This
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can be accomplished by convolution operation with a binary disk, that is, all the non-zero
components of all the convolution kernels have a (Boolean) unitary value. The result is a thick-
ened, but grey-scale border. All non-zero pixels are thresholded to a Boolean one when returning
this border to Boolean one values. The speed at which the total surface area of the border raises as
a function of the diameter of the convolution kernel relies on the dimension D. The log of each
resulting area, divided by the kernel diameter, is plotted against the log of the kernel diameter
[52]. A straight line results with a negative slope S, and D can be further estimated.

3.2. Power law scaling relationship

A functional relationship between two quantities is known as power law. This relationship takes
place when a relative change in one quantity results in a proportional change in the other
quantity and independent of the initial size of those quantities; thus, one quantity varies as
power law to another. The characteristic of fractals is known as power law scaling. Therefore, a
relationship, which yields a straight line on log-log coordinates, can often identify an object or
phenomena as fractal. Although not all power law relationships are due to fractals, an observer
needs to consider the existence of such relationship in order to know if the system is self-similar
[66]. Self-similarities indicate the existence of scaling relationship which implies the type of a
relationship called “power law.” Thus, self-similarities give rise to the power law scaling. The
power law scalings are shown as a straight line when the logarithm of the measurement is
plotted against the logarithm of the scale at which it is measured. Fractal dimension is based on
self-similarities; thus, power law scaling can be used to determine the fractal dimension. For a set
to achieve the complexity and irregularity of a fractal, the number of self-similar pieces must be
related to their size by power law [47]. The power law scaling describes how the property L(r) of
the system depends on the scale r at which it is measured using the relation in Eq. (4).

LðrÞ ¼ Arα ð4Þ

The fractal dimension describes how the number of pieces of a system depends on the scale r,
using the relation in Eq. (5).

Figure 1. Example of fractal dimension of a material.
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NðrÞ ¼ Br�D ð5Þ

where B is a constant. The similarity between Eqs. (4) and (5) means that one can determine the
fractal dimension D from the scaling exponent α if one knows how the measure property L(r)
depends on the number of pieces N(r). For example, for each little square of sides of an object
with two-dimensional area, the surface area is proportional to r2. Thus, one can determine the
fractal dimension of the exterior of such an object by showing that the scaling relationship of
the surface area depends on the scale r. For example, to determine the fractal dimension D
from the scaling exponent is to derive the function of the dimension f(D), such that the
property measured is proportional to rf(D) [66]. If the experimentally determined scaling of the
measured property is proportional to rα, then the power of the scale r can be equated to the
relation in Eq. (6):

f ðDÞ ¼ α ð6Þ

Then, one can solve for D.

4. Fractal characteristics of porous media

Porous media include many manmade as well as natural materials. All solid substances are in
fact porous either to some degree or at some length scale [67]. A porous medium is a randomly
multi-connected medium with channels randomly obstructed. The quantity that measures
how “holed” the medium is due to the presence of these channels, and it is called the porosity
of the medium. A pore network description can represent the porous medium as an ensemble
of pores and throats of different geometries and sizes that can take values from appropriate
distributions [68]. Therefore, fractal theory gives a favorable layer of structures of different
models that will address the complexity of the disordered, heterogeneous, and hierarchical
porous media like soil, materials with fracture networks. Theoretically, Yu et al. [69] provided
an overview of the physical properties of ideal fractal porous media and explained how
natural heterogeneous materials can exhibit both mass- and pore-fractal scaling. Cihan et al.
[70] reported new analytical models for predicting the saturated hydraulic conductivity based
on the Menger sponge mass fractal. They tested their model predictions against lattice
Boltzmann simulations of flow performed in different configurations of the Menger sponge.

Fractal models have been used to describe the solid volume, the pore volume, or the interface
between the two phases of porous media. In the past three decades, fractal models of pore space
were developed and used in the petroleum physics with application in hydraulic system and in
engineering communities with the application electrical conductivity [71, 72]. Turcotte [73]
proposed a fractal fragmentation model, which identified a physical basis for the existence of
fractal soils in the scale invariance of the fragmentation of soil particles. Hence, his model
elucidated a mechanism in which scale-independent fragmentation processes could form fractal
distribution of particles, giving theoretical legitimacy to the study of fractal models on porous
media. Fragmentation can be viewed as the chief mechanism of physical weathering [67].
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4.1. Characteristic method of porous media

Hunt [67] stated that model characteristics are defined so that the porosity and water retention
functions are identical to those of the discrete and explicit fractal model of Rieu and Sposito
[74] (called hereafter the RS model). They began with a description of virtual pore size frac-
tions in a porous medium that permits a facile foundation that conceptualized the fractal of
solid matrix and pore space. These concepts resulted in equations used in solving the porosity
and bulk density of both the size fractions and the porous medium in terms of a characteristic
fractal dimension, D.

A porous medium with a porosity from a broad range of pore sizes was considered,
the porosity decreases in mean (or median) diameter from p0 � pm�1ðm ≥ 1Þ. A bulk ele-
ment of the porous medium has the volume V0, massive enough to contain all sizes
of pore; it has porosity φ and the dry bulk density σ0. They divided the pore-volume
distribution of V0 mathematically into m virtual pore size fractions, with the ith virtual
size fraction defined by:

Pi � Vi � Viþ1 ði ¼ 0,…, m� 1Þ ð7Þ

where Pi represents the volume of pores entirely made of size pi contained in Vi which is the
ith partial volume of the porous medium, which itself has all pores of size ≤ pi. The partial
volume Viþ1 is therefore incorporated in Vi and the partial volume Vm�1 is then incorporated
in the smallest pore-size fraction Pm�1, together with the residual solid volume symbolized by
Vm. They stated that the solid material whose volume is Vm will not be chemically or mineral-
ogically homogeneous. Its mass density, symbolized by σm, represents an average “primary
particle” density. Eq. (7) gives the bulk volume of the porous medium which can mathemati-
cally be represented as the summation ofm increments of the basic pore-size fraction P0 � Pm�1

added to a residual solid volume Vm:

V0 ¼
Xm�1

i¼1

Pi þ Vm ð8Þ

The porosity of the medium can then be given as [74]:

φ � ðV0 �NmVmÞ
V0

ð9Þ

¼ 1� ð1� ΓÞm ð10Þ

Going by the fractal dimension of Eq. (3), proposed by Mandelbrot [1], the fractal dimension is
related closely to the pore coefficient, Γ [74].

Γ ¼ 1�Nr3 ð11Þ

which, with Eq. (3), results to:
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Γ ¼ 1� r3�D ðΓ < 1, r < 1Þ ð12Þ

It was shown from Eq. (12) that in a fractal porous medium where pore sizes are scaled by the
same ratio r < 1, the fractal dimension increases with the decrease in the magnitude of the pore
coefficient [74]. Thus, the relation between the porosity and the fractal dimension from Eqs. (10)
and (12) gives:

φ ¼ 1� ðr3�DÞm ð13Þ

For a given value of the exponent m, the porosity of a fractal porous medium decreases as the
fractal dimension increases. Further, Eq. (13) shows that the fractal dimension of a porous
medium must be < 3.

Moreover, integration over the continuous pore size distribution between qr and r, where q is
the ratio of radii of successive pore classes in fractal soil, r is the pore radius, q < 1 is an
arbitrary factor, yields the contribution to the porosity from each size class obtained by
RS model. The distribution of pore sizes is defined by the following probability density
function [75]:

WðrÞ ¼ 3�Dp

r3�Dp
m

r�1�Dpr0 ≤ r ≤ rm ð14Þ

where r0 and rm refer explicitly to the minimum and maximum pore radii, respectively. The
power law distribution of pore sizes is bounded by a maximum radius, rm, and truncated at
the minimum radius, r0. Eq. (14), as written, is compatible with a volume, r3, for a pore of
radius r and Dp describes the pore space. The result for the total porosity derived from Eq. (14)
is given in [75] as:

φ ¼ 3�Dp

r3�Dp
m

ðrm
r0
r3r�1�Dpdr ¼ 1� r0

rm

� �3�Dp

ð15Þ

Eq. (15) is exactly as in RS (Eq. (13)). If a particular geometry for the pore shape is envisioned, it
is possible to change the normalization factor to maintain the result for the porosity and also
maintain the correspondence to RS [67].

4.2. Fractal analysis on the permeability of porous media

The fluid flow through porous media is governed by geometrical properties, such as porosity,
properties of the flowing fluid, the connection and the tortuosity of the pore space.

The transport phenomena in porous media, that include single-phase and multiphase fluid
flow through porous media, electrical and acoustical transport in porous media, and heat
transfer in porous media, are focused on common interests and have emerged as a separate
field of study [76–79]. A matrix of a porous medium combined with fractured networks is
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called the dual-porosity medium. In the dual-porosity media, fracture and matrix are generally
considered as different media, each with its own property. Thus, gas flow through these dual-
porosity media could consist of two physically distinguished migration processes: one is
associated to the movement of gas through the larger-scale fractures, that is, a permeability
flow, which can be described by Darcy law, the other is related to the movement of gas inside
matrix blocks, that is, diffusion processes, which may be involved in several different mecha-
nisms, subject to the pore size [30, 74, 80].

In reality, surfaces of capillaries are rough and have great impact on fluid flow behavior and
permeability of a porous medium. Analytically, permeability expression is a function of the
relative roughness, the tortuosity fractal dimensions, capillaries sizes, and surface roughness,
together with the microstructural parameters (such as the characteristic length, the maximum
and minimum pore diameters, and the fractal dimensions) [19].

4.3. Methods of fractal analysis on the permeability of porous media

Fractal, multifractal, Gaussian, and log-normal models have been initiated, perhaps in all scale
range. The validation of unchanging theoretical framework used in calculating transport
properties, at least at some scales, has the capacity of eliminating much confusion regarding
the appropriate theoretical approaches used and the appropriate model to choose [67]. Inves-
tigation on gas flow through a dual-porosity medium, for example, a flow domain made up of
matrix blocks (with low permeability) implanted in a network of fractures, is not common.
Physical and computer modeling are commonly used for permeability of porous media.
Different methods of analysis on the permeability of porous media will be discussed in
this section.

Zheng and Yu [30] studied the permeability of a gas with the use of matrix porous media
embedded with randomly distributed fractal-like tree networks. The scientific expression for
gas permeability in dual-porosity media was obtained based on the pore size of matrix and the
mother channel diameter of embedded fractal-like tree networks having fractal distribution. It
was discovered that gas permeability was a function of structural parameters, which includes
the fractal dimensions for pore area and tortuous capillaries, porosity and the maximum
diameter of matrix, the length ratio, the diameter ratio, the branching levels, and angle of the
embedded networks used for dual-porosity media. The model that was initiated does not
contain any empirical constant. The model predictions were validated with the available
experimental data and simulating results, a fair agreement among them was found. An analy-
sis of the influences of geometrical parameters on the gas permeability in the media was done.

Khlaifat et al. [80] experimentally studied a single-phase gas flow through fractured porous
media of tight sand formation of Travis Peak Formation under different operation conditions.
Their study enhanced gas recovery from low permeability reservoirs by the creation of a single
fracture perpendicular to the flow direction. The porous medium sample that was taken into
account was a slot-pore-type tight sand from the Travis Peak Formation with permeability in
the microdarcy range and a porosity of 7%. A number of single-phase experiments that include
water and gas were performed at different pressure drops conditions ranging from 100 to 600
psig and at overburden pressures of 2000, 3000, and 4000 psig, respectively. It was shown from
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their results that the sample used was very sensitive to overburden pressure. Again, it was
shown from the experimental data that the presence of a fracture in a low permeability porous
media is the main factor responsible for reinforcing the gas recovery from tight gas reservoirs.
The presence of a fracture reinforces the gas flow, due to the increase in overall permeability
and the creation of different flow patterns, which locally shifted the two-phase flow away from
capillary force domination region. Furthermore, the fracture aperture played a significant role
in enhancing flow due to both reconfigurations of connecting pores and joining of the non-
connecting pores to the flow network.

A well-testing technique for Devonian shale gas reservoirs characterized by a low storage and
high flow-capacity natural fractures fed by a high storage, low flow-capacity rock matrix was
developed by Kucuk and Sawye [81] by using analytical methods and numerical simulator. They
developed analytical solutions in order to analyze the basic fractured reservoir measurable
factors that influence well productivity. These measurable factors are fracture system porosity
and permeability, matrix porosity and permeability, and matrix size. They found that the tradi-
tional way of testing the well does not usually work for fractured Devonian shale gas reservoirs.
Most of the time, the two parallel straight lines with a vertical separation are not shown in the
semi-log plot of the drawdown and build-up data. They further found that the inter-porosity flow
parameter is not the only parameter, which characterizes the nature of semi-log straight line.

A permeability model assumed to be comprised of a bundle of tortuous capillaries whose size
distribution and roughness of surfaces follow the fractal scaling laws has been derived for
porous media [19]. The proposed model includes the effects of the fractal dimensions for size
distributions of capillaries, for tortuosity of tortuous capillaries, and for roughness of surfaces
on the permeability. The proposed model is given by Eq. (16):

KR ¼ πL1�DT
0 Dfλ

3þDT
max

128Að3þDT �Df Þ ð1� εÞ4 ð16Þ

where KR denotes the permeability for flow in porous media with roughened surfaces. Eq. (16)
indicates that the permeability is a function of the relative roughness ε, the fractal dimensions
DT (the fractal dimension for tortuosity of tortuous capillaries) and Df (the fractal dimension
for pore space), as well as the structural parameters A (cross-sectional area), L0 (the represen-
tative length or straight line along the flow direction of a capillary), and λmax (maximum
capillary diameter). Eq. (16) also shows that the higher the relative roughness, the lower the
permeability value; this can be explained by saying that the flow resistance is increased with
the increase in roughness. This is consistent with a physical situation [19].

The proposed Eq. (16) was found to be a function of the relative roughness ε, the fractal
dimension DT for tortuosity of tortuous capillaries, and structural parameters A, L0, and λmax.
The ratio of the permeability for rough capillaries to that for smooth capillaries follows the
quadruplicate power law of (1 � ε) given by Eq. (17). That is, Eq. (17) indicated that
the decrease of permeability for porous media with roughened surfaces in capillaries follows
the quadruplicate power law of (1 � ε). The authors concluded that the permeability of porous
media with roughened capillaries will be drastically decreased with the increase in relative
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roughness, and the proposed model can reveal more mechanisms that affect the flow resis-
tance in porous media than conventional models [19]. K in Eq. (17) is the permeability of
porous media with smooth capillaries.

η ¼ KR=K ¼ ð1� εÞ4 ð17Þ

Zinovik and Poulikakos [82] evaluated the relationships between porosity and permeability for
a set of fractal models with porosity approaching unity and a finite permeability. Prefractal
tube bundles generated by finite iterations of the corresponding geometric fractals can be used
as a model porous medium where permeability-porosity relationships are derived analytically
as explicit algebraic equations. Their investigation showed that the tube bundles generated by
finite iterations of the corresponding geometric fractals can be used to model porous media
where the permeability-porosity relationships are derived analytically. It was further shown
that the model of prefractal tube bundles can be used to obtain fitting curves of the permeabil-
ity of high porosity metal foams and to provide insight on permeability-porosity correlations
of the capillary model of porous media.

All the methods discussed here have shown that the permeability of a porous media is strongly
affected by its local geometry and connectivity, the matrix size of the material, and the pores
available for flow. All the methods gave concept and knowledge of fractal geometry in relation to
the characterization of the porous structure with respect to the permeability of the porous media.

5. Conclusion

Fractal is considered a self-similar system. It has been confirmed that the fractal technique is a
powerful technique that has been successfully used in the characterization of the geometric
and structural properties of fractal surfaces and pore structures of porous materials. It gives an
understanding on how the geometry affects the physical and chemical properties of systems
since their complex patterns are better described in terms of fractal geometry if the self-
similarity is satisfied. It also builds a bridge between micro-morphology and macro perfor-
mance. This chapter shows that the structural and functional characters of porous materials
depend on the pore structure, which can be described effectively by the fractal theory.
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Abstract

In this paper, we address high‐Schmidt‐number (Sc) scalar turbulent mixing that results 
from grid‐generated turbulence using the initial fractal geometry of the velocity pro‐
file. More specifically, as was proposed in our recent study, we adopt an initial flow 
field generated by a fractal grid and apply it to a water channel experiment based on a 
high‐Sc‐number scalar‐mixing layer in order to create grid‐generated turbulence, and 
thus solve our current research problem. The high‐Sc‐number scalar and velocity fields 
of the grid‐generated turbulence are then measured using planar laser‐induced fluo‐
rescence (PLIF) and particle image velocimetry (PIV), respectively. By means of fractal 
analysis, this study specifically addresses the turbulent mixing phenomena in which the 
fractal dimension of the mixing interface of an observed high‐Sc‐number scalar field is 
calculated. Additionally, we discuss the efficiency of using fractal grids as devices for 
enhancing high‐Sc‐number scalar turbulent mixing by observing turbulent intensities 
and dissipation by PIV.

Keywords: fractal analysis, fractal dimension, turbulent mixing, grid‐generated 
turbulence, initial value problem

1. Introduction

Fractals are widely found in nature. In fluid mechanics, the fractals found in turbulence have 
been investigated as a means of understanding and modeling fundamental phenomena, one 
of which is the non‐Gaussian nature found in small‐scale fluctuations [1]. For instance, since 
the skewness factor of a longitudinal velocity derivative that relates to turbulence vortex 
stretching is approximately −1 to −0.2 rather than zero, small‐scale turbulence fields, in which 
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the probability density distribution of fluctuations is described by a non‐Gaussian function, 
have been discussed from the perspective of fractals. In such turbulent flows, kinetic energy 
is first injected into a large‐scale region, after which it is transferred to a smaller‐scale region, 
before dissipating into the smallest‐scale region. In such cases, it is possible to formulate the 
transfer of kinetic energy in the inertial subrange. For structure function modeling, which also 
characterizes the nature of turbulent flows in physical space, the fractal perspective, in which 
the fractal dimension is a characteristic quantity, is applied [2]. In engineering applications, 
turbulent flows are often considered to be mixers, and the flows produced are thus referred 
to as turbulent mixing [3]. The characteristics of the mixing interface between two mixtures, 
which increases in area with time due to turbulent mixing, can also be quantified by using the 
fractal method.

Turbulence decays temporally when the mean flow does not provide kinetic energy to the 
turbulence. In decaying turbulence, kinetic energy follows the decay law (the parameters 
of which are the decay coefficient and decay exponent) and has been examined in previ‐
ous studies (e.g., [4–6]). The decay coefficient magnitude relates to the drag coefficient of 
a turbulence‐generating grid, while the decay exponent magnitude is of the order of unity 
and could be used to characterize the decay characteristics of decaying homogeneous tur‐
bulence. Recent studies (e.g., [7, 8]) have examined the effects of the initial conditions on 
the turbulence decay characteristics. Specifically, it has been determined that, within the 
range of moderate Reynolds numbers, decay exponent values depend on the initial turbu‐
lence decay conditions. Additionally, since the initial fractal geometry of the velocity profile 
may affect grid‐generated turbulence decay characteristics, thereby resulting in turbulence 
decay, the effects of the initial velocity profile fractal geometry on decaying turbulence have 
also been investigated in several previous studies (e.g., [9–23]). These studies investigated 
turbulence produced by a fractal geometry turbulence‐generating grid (referred to hereafter 
as a fractal grid (FG)) and most such studies used turbulence created by a square‐type fractal 
grid (referred to hereafter as fractal grid turbulence) when conducting wind tunnel experi‐
ments (e.g., [10–14]), water channel experiments (e.g., [15–17]), and numerical simulations 
(e.g., [18–23]).

Since the observed diffusion resulting from turbulence has been determined to be much larger 
than that which can be produced by viscous diffusion, one of the engineering applications of 
turbulence is turbulent mixing. In addition, since rapid turbulence mixing of heat and mass 
due to turbulence has obvious engineering applications, there have been previous studies 
that have attempted to enhance such mixing (e.g., [24, 25]). However, few works have applied 
water channel experiments to the study of high‐Schmidt‐number (Sc) scalar mixing caused 
by fractal grid turbulence [26]. Since the diffusion coefficient of a high‐Sc‐number scalar is 
significantly smaller than that of heat in air and water, the contribution of turbulent diffusion 
is dominant in high‐Sc‐number scalar turbulent mixing. Therefore, this study will address 
turbulent mixing by focusing on the fractal geometry of the initial velocity profile, which is 
set using a fractal grid. More specifically, high‐Sc‐number scalar turbulent mixing resulting 
from turbulent diffusion in fractal grid turbulence will be examined, and mixing interfaces 
will be discussed in terms of fractals to clarify the effects of turbulent mixing resulting from 
fractal grid turbulence.
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In this section, the effects of the initial fractal geometry of the velocity profile on the turbulent 
mixing characteristics, and the high‐Sc‐number scalar‐mixing layer in grid‐generated turbulence, 
are presented. As in our previous study, a flow with an initial fractal geometry is generated using 
a fractal grid, but the present experiment is based on a water channel experiment and utilizes 
both planar laser‐induced fluorescence (PLIF) (e.g., [27, 28]) and particle image velocimetry (PIV) 
(e.g., [29]) to investigate the high‐Sc and fluctuating velocity fields. Note that the PLIF and PIV 
apparatuses used herein were constructed in‐house and are validated in the present work.

The fractal dimensions of the mixing interface (e.g., [30, 31]) as well as the turbulent statistics 
in the high‐Sc‐number scalar‐mixing layer, where the fractal dimension is calculated using the 
box counting method, are shown. Additionally, we discuss the efficiency of fractal grids as 
devices for enhancing turbulent mixing by using the turbulent intensities and viscous dissipa‐
tions measured via PIV, and then show a periodic box approach to further address the effects 
of the initial fractal geometry of the velocity profile on the decay characteristics and turbulent 
mixing. The Fourier spectral method used for the periodic box approach simulations is also 
described and verified.

2. Experimental analysis

2.1. Flow and mass transfer fields

In this section, we discuss flow and mass transfer fields in regular grid and fractal grid tur‐
bulences. Figure 1 shows schematic diagrams of the experimental apparatus used. The size 
of the test section in the present water channel experiment is 1500 × 100 × 100 [mm3] for the 
streamwise (x), transverse (y), and span‐wise (z) directions, respectively. The coordinate sys‐
tem origin is set at the center of the turbulence‐generating grid. A head tank is used to provide 
the free stream, and a splitter plate is placed in the contraction upstream of the test section to 
produce the scalar‐mixing layer.

Figure 1. Water‐channel experiment schematics. The origin of the coordinate system is placed at the center of the 
turbulence‐generating grid. In this experiment, a biplane square grid or a square fractal grid is set at the entrance of the 
test section.
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An aqueous solution of Rhodamine B, which is considered to be a high‐Sc‐number scalar, is 
set in the lower layer of the flow leading into the test section. Here, the flow of the upper layer 
does not include fluorescent dye because the concentration field of a high‐Sc‐number scalar is 
measured via the PLIF technique. Since PIV is used to measure the grid‐generated turbulence 
flow field in this experiment, the laser system and high‐speed camera used for PLIF and PIV 
observations were also employed in the present experimental apparatus.

The present study used both square grids and a fractal grid [10] for turbulence generation. In 
the first experiment, two square grids were used to produce grid‐generated turbulence. The 
first square grid (SG1), which generates conventional grid turbulence (CGT) and was used to 
validate the PIV and PLIF experiments, consisted of round bars and was the same one used 
in our previous water‐channel experiment [2, 4]. The second square grid (SG2) also generates 
conventional grid turbulence of which the characteristics were compared with those of fractal 
grid turbulence. The present fractal grid was based on that proposed by that used in the wind 
tunnel experiment conducted in the previous studies.

The fractal dimensions Df of all grids were set at two. The thickness ratio tr, which is defined 
as the ratio of thickness between the largest and smallest bars of the grid [10], was set at 
1, 1, and 9.76 for SG1, SG2, and FG1, respectively. The grid mesh size Meff was defined as  
Meff = (4D2/PM) (1 –σ)1/2, where D2 is the cross‐sectional area of the channel, PM is the fractal 
perimeter length of the grid [10], and ReM = UoMeff/ν is the mesh Reynolds number, where 
Uo and ν are the cross‐sectionally averaged mean velocity and kinematic viscosity, respec‐
tively. The mesh sizes of SG1, SG2, and FG1 are 20, 10, and 5.68 [mm], respectively. The mesh 
Reynolds number Re is defined as Re = UoMeff/ν is 2500 for the three turbulence‐generating 
grids. This Reynolds number value is comparable to those used in our previous experiment 
[15, 24]. Values of Uo for SG1, SG2, and FG1, which are set by using electromagnetic flow 
meters, are 0.126, 0.251, and 0.442 [m/s], respectively.

2.2. PLIF technique

In the present experiment, the PLIF technique is used to measure the high‐Sc‐number scalar 
field. Here, it should be noted that PLIF does not affect the flow field of grid‐generated turbu‐
lence, and that the spatial resolution of PLIF is sufficiently accurate for scalar field measure‐
ments. Therefore, we are confident that the high‐Sc‐number scalar field in the grid‐generated 
turbulence could be determined accurately.

Rhodamine B was used in the PLIF experiment because it is considered to be a high‐Sc‐num‐
ber scalar. The fluorescent dye contained in this solution is excited by a 532‐nm continuous 
wave (CW) laser with a maximum power of approximately 4 W. The measurement region  
Lx × Ly is 50 × 100 [mm2], where Lx and Ly are the width of the measurement region for x and 
y directions, respectively. The number of grid points Nx × Ny is 1800 × 3600, where Nx and Ny 
are the number of pixel points for the x and y directions, respectively.

In this study, the magnitude of fluorescence in the observed high‐Sc‐number scalar was mea‐
sured using a Nikon D700 single‐lens reflex (SLR) camera, which was deemed suitable for 
PLIF due to its large pixel number and high sensitivity. Furthermore, the 36.0 × 23.9 [mm2] 
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solid‐state image‐sensing area of the camera corresponds roughly to the image area of a  
35‐mm film camera. The camera was equipped with a Nikkor 50 mm F/1.2S lens with an opti‐
cal filter mounted to cutoff dye fluorescence at wavelengths above 540 nm. The F‐stop set was 
set to 2.0, the ISO sensitivity was set to 400, and the depth of bit in the captured RAW images 
was set to 14 because those settings were deemed appropriate for our PLIF measurements.

In PLIF experiments, a reference image that is captured with a constant concentration under 
pre‐experiment conditions is often used. However, PLIF experiments contained sources 
of error that could not be eliminated using a reference image alone [27]. Specifically, the 
observed fluorescence intensity depends on the experimental conditions, which varies con‐
tinuously even if the dye concentration is constant because the quantum yield of the dye is a 
function of time. Additionally, since camera gain also depends on time, the excitation laser 
intensity may experience temporary fluctuations that affect the observed fluorescence inten‐
sity. Furthermore, the intensity of the excitation laser is reduced by the presence of fluorescent 
dye along the laser path, which may produce spatial variations in the fluorescence intensity 
even if the dye concentration is spatially constant. Accordingly, in this experiment, a post‐
processing scheme was used to correct for these sources of error. Specifically, the following 
processing equations were applied: β Ij+1 ϕ = β Ij ϕ exp[ε C’ref (1 – Cj) dyj] and Vj +1/Cj+1 = (Vj/Cj) exp 
[ε C’ref (1 – Cj) dyj], where a value in the initial state, j = 0, is given as follows: C0 = V0/(β I0 ϕ). 
Here, the factors, C, V, β, ϕ, and I, are dye concentration, brightness value, camera gain, quan‐
tum yield, and laser intensity for a measured image of fluorescence intensity, respectively, 
which are normalized by those of the reference image. Also, ε and C’ref are the absorption 
coefficient and the actual concentration for a reference image. Figure 2 presents schematic 
diagrams showing our correction method.

Figure 2. Schematics of observed and reference scalar fields, shown by (a) and (b), used for the present data‐processing 
method in the PLIF. Laser attenuation could also be corrected via the present processing method.
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We validated our PLIF technique and examined the effectiveness of the above correction 
method under the three experimental conditions. In Case 1, the influences of the factors that 
vary and fluctuate with time and absorption of the excitation laser were reduced; in Case 
2, only the influence of the varying factors was reduced; in Case 3, neither the influence of 
the varying factors nor the laser excitation was reduced. In the validation and examination 
stage, a scalar‐mixing layer in the grid‐generated turbulence produced by SG1 was measured. 
Figure 3(a) shows transverse profiles of the mean concentration used for validation and exam‐
ination. As can be seen in the figure, correcting for factor variations produced a significant 
influence. By contrast, laser absorption had little effect on the mean concentration profile. The 
mean concentration profiles of Cases 1 and 2 agree with our previous experiment [24], which 
used the same experimental conditions as the current experiment. Figure 3(b) shows trans‐
verse profiles of the variance of concentration fluctuations. As can be seen in the figure, the 
observed variance of concentration fluctuations is affected by the absorption of the excitation 
laser as well as the temporally varying/fluctuating factors.

2.3. PIV

In this experiment, PIV was applied to flow field measurements. However, in order to visu‐
alize a flow field for measurement, fine polyester particles, the diameter and specific grav‐
ity of which were 50 μm and 1.03, respectively, were added to the solution. These particles 
provided sufficiently high response to flow field fluctuations. In these experiments, particle 
response to flow field fluctuations was examined using the classical theoretical formula, in 
which the frequency response and phase lag were calculated. For frequencies up to 1 kHz, the 
magnitude of both frequency response and phase lag was found to be smaller than 1%. For 
PIV visualization, we employed the same CW laser that was used in the PLIF experiment, and 
the high‐speed camera was used to capture brightness values for the particles illuminated by 
the laser. Here, the measurement area Lx × Ly was 7.5 × 40 [mm2].

Figure 3. Validation of the present PLIF measurement for mean scalar (a) and scalar fluctuation variance (b). Red‐solid, 
blue‐dashed, and black‐dotted lines show results of 〈C〉 and 〈kc〉 for Cases 1, 2, and 3, respectively. In the mean scalar, the 
results of Case 3, in which neither the influence of the factors nor laser attenuation is corrected, are shown. In the scalar 
fluctuation variance results, laser attenuation affects may be significant.
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In this experiment, custom‐designed software that calculates instantaneous velocity vectors 
from the set of brightness values for the illuminated fine particles [15] was used. The specific 
process was as follows. First, the temporal field of brightness value was calculated from the 
captured images by using Open Source Computer Vision (Open CV), which eliminated the 
need to conduct preprocedures. The main framework of our PIV is based on the recursive 
local‐correlation method with a 50% overlap. Here, the interrogation windows with the off‐
set determined were applied to the PIV software using the iterative procedure. For subpixel 
analysis, the gradient method was used instead of Gaussian fitting because the latter requires 
large interrogation windows to reduce the PIV experimental uncertainty, and because the 
spatial resolution of the PIV could be improved sufficiently via the gradient method.

We validated our PIV using grid‐generated turbulence measurements that were conducted 
before the PIV measurement results were obtained. The grid‐generated turbulence used for 
the validation of the present PIV was the same as that used for PLIF measurements. Figure 4(a) 
shows the intensity of streamwise velocity fluctuations along the centerline. As shown in the 
figure, the streamwise profile of the velocity intensity could be approximated by a power law. 
The agreement of the intensity of the velocity fluctuations with the power law validates the 
PIV measurement. In the present study, the decay exponent of the power law, where the decay 
exponent magnitude is on the order of unity, was also measured. As shown in our previous 
works, decay exponent values can be larger than unity. The decay exponent value measured in 
this study was 1.2, which agrees with the result of previous experiments (e.g., [4–6]). The power 
spectrum of the streamwise velocity fluctuations was also used for PIV validation. As shown 
in Figure 4, the power spectrum observed by our PIV technique agrees well with the laser‐
Doppler velocimetry measurements of our previous experiment [24], thereby indicating that 
the present PIV could accurately measure velocity fluctuations in grid‐generated turbulence.

Figure 4. Validation of the present PIV measurement in grid‐generated turbulence, where (a) and (b) show the 
normalized intensity of streamwise velocity fluctuation and power spectra of the streamwise velocity fluctuation at 
x/M = 18, where the laser‐Doppler anemometer data are measured by Ito et al. (2002) [24]. The agreement shown here 
validates our current PIV measurements.
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3. Results and discussion

3.1. Turbulent mixing and fractal dimensions

Here, we address the turbulent mixing of the high‐Sc‐number scalar in the grid‐generated 
turbulence of SG2 and FG. Figure 5(a) and (c) shows the instantaneous scalar of the fractal 
grid turbulence and classical grid turbulence in which the instantaneous scalar is normal‐
ized by the initial scalar difference. As can be seen in the figure, the high‐Sc‐number scalar is 
mixed by the grid‐generated turbulence. Furthermore, as also shown in the figure, the yellow 
region in the fractal grid turbulence is wider than that in the grid‐generated turbulence. Note 
that the yellow color indicates a scalar value at the mixing interface, the normalized value of 
which is 0.5.

Figure 5(b) shows a transverse profile of the mean scalar at this streamwise distance. As can be 
seen in the figure, the magnitude of the transverse gradient at the centerline of the fractal grid 
turbulence is smaller than that in the grid‐generated turbulence. Figure 6(a) and (c) shows 
instantaneous scalar fluctuations of the scalar‐mixing layer around x/Meff = 80. As can be seen 
in the figure, similar to the instantaneous scalar results, the wider region in which the scalar 
fluctuation exists is also found in the case of the fractal grid turbulence. Figure 6(b) shows 
transverse profiles of the scalar fluctuation intensity. Here, it can be seen that the intensity 
profile width in the fractal grid turbulence is larger than that in the grid‐generated turbulence.

Since enhancing scalar turbulent mixing increases the scalar‐mixing layer width in grid‐gen‐
erated turbulence, the intensity of turbulent mixing is quantified by using a length scale that 
characterizes scalar‐mixing layer width. Figure 7 shows streamwise profiles of the mean scalar 

Figure 5. Instantaneous scalar field in the fractal‐grid turbulence (FGT) (a) and conventional‐grid turbulence (CGT) (c) 
around x/Meff = 80. The mean scalar profile at x/Meff = 80 is also shown in (b). Here red, yellow, and blue indicate C = 1, 
C = 0.5, and C = 0, respectively.
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profile half width. As can be seen in the figure, the mean scalar profile half widths in grid‐gener‐
ated turbulence follow a function of the square root of x/U, where x/U [s] is the time dimension 
and is referred to as convection time. In fractal grid turbulence, the half‐width streamwise profile 
includes the mean scalar half‐width profile, which is also characterized by the square root of 
x/U. Note that fractal grid turbulence half‐width values are larger than those in grid‐generated 
turbulence, thereby indicating that turbulent mixing is enhanced by using the fractal grid. The 
scalar fluctuation intensity width is also characterized by its half width. As with the mean scalar 

Figure 6. Instantaneous scalar fluctuation in the fractal‐grid turbulence (FGT) (a) and conventional‐grid turbulence 
(CGT) (c) around x/Meff = 80. Scalar fluctuation intensity profiles at x/Meff = 80 are also shown in (b).

Figure 7. Profiles of the mean scalar half width and scalar variance as functions of the convection time x/U [s]. Here 
profiles of mean scalar half width and scalar variance half width are shown in (a) and (b), respectively. In the mean 
scalar and scalar variance results, the half width for the fractal‐grid turbulence is larger than that for the conventional‐
grid turbulence.

Analysis and Application of Decaying Turbulence with Initial Fractal Geometry
http://dx.doi.org/10.5772/67942

275



half‐width results, the larger half width of the scalar fluctuation intensity is found in the scalar‐
mixing layer due to fractal grid turbulence. These larger half‐width values confirm the high‐Sc‐
number scalar‐mixing enhancement achieved by fractal grid application.

Next, we discuss the enhanced turbulent mixing of the high‐Sc‐number scalar in the fractal grid 
turbulence by calculating the fractal dimension using a box‐counting method (e.g., [30, 31]). In 
the box‐counting method, boxes that follow the relationship are counted: |C – Cth| ≈ 0. Here, C 
and Cth are a value of the normalized scalar in the mixing layer and a threshold, respectively. 
The counted boxes satisfy the following relation: N(δ) = α δ–D, where δ is the characteristic 
length of the counted boxes and the area of the counted box is equal to δ 2.

Figure 8(a) shows a counted box value, which is a function of the scale δ, for the scalar‐mix‐
ing layer in the fractal grid turbulence, where x/Meff = 40 and Cth = 0.5. As shown in the figure, 
the counted box values decrease as the scale δ increases. Furthermore, the observed counted 
box value follows the basic relationship of the box‐counting method, N(δ) = α δ–D. It should 
be noted that the value of D also depends on the scale δ, and that the scales δ in the large and 
small values of d show large‐ and small‐scale scalar fractal dimension values. A value of D 
for the large δ, which is found to be constant, is different from that for the small δ. Here, the 
large‐ and small‐scale fractal dimension values are within the range of 1–2.

A fractal dimension value, which is considered to differ between larger and smaller scales, is 
calculated for the fractal grid and classical grid turbulence. Figure 8(b) shows the observed 
values of the fractal dimension, where the convection time for the fractal grid turbulence is 
nearly equal to that for the classical grid turbulence. As the figure shows, scalar field fractal 
dimension values in fractal grid turbulence are larger than those found in the classical grid 
turbulence. These larger fractal dimension values are found in both large‐ and small‐scale 
scalar fields. A large‐scale fractal dimension value does not depend on the threshold value, 

Figure 8. Counted boxes of the scalar field in the fractal‐grid turbulence around x/Meff = 40 and Cth = 0.5 (a), which are 
given by the box‐counting method. Profiles of the counted boxes satisfy N(δ) ~ δ−D. In (b), fractal dimension of the large‐ 
and small‐scale scalar fields in fractal‐grid and conventional‐grid turbulence around x/U = 1.25 [s] are shown. The fractal 
dimension for the fractal‐grid turbulence is larger than that for the conventional‐grid turbulence.
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although a small‐scale fractal dimension value in the scalar field may depend slightly on 
the threshold value. The fractal dimension of a scalar field for which turbulent mixing does 
not occur is unity. Fractal dimension values approach two as turbulent mixing is enhanced 
because our PLIF measurement technique uses a two‐dimensional measurement for the scalar 
field. The larger fractal dimension value found in turbulent mixing due to fractal grid turbu‐
lence indicates the enhancement of turbulent mixing achieved by using a fractal grid.

Figure 9 shows streamwise fractal dimension evolution as a function of convection time. Here, 
it can be seen that the fractal dimension of large‐scale turbulent mixing resulting from fractal 
grid turbulence increases with convection time. The fractal dimension of the small‐scale field 
for fractal grid turbulence is also larger than that for the classical grid turbulence, thereby 
indicating that fractal grid application could enhance both small‐ and large‐scale turbulent 
mixing. Since the small‐scale fractal dimension difference found between the two turbulence‐
generating grids would not be large, further experiments may be needed to determine the 
incremental fractal dimension increase achieved by applying the fractal grid.

3.2. Turbulent mixing device efficiency

Next, we discuss the enhancement of turbulent mixing achieved via fractal grid using PIV 
measurement results, starting by examining velocity fluctuation intensity. Figure 10(a) shows 
streamwise profiles of (3/2) 〈u2〉/(1/2) Uo

2, referred to hereafter as turbulence intensity. In 
the classical and fractal grid turbulence, the large‐scale anisotropy is constant for time and 
approximates unity. Therefore, the quantity of the turbulence intensity (3/2) 〈u2〉/(1/2) Uo

2 
would correspond to turbulent kinetic energy. The longitudinal direction is the convection 
time, which is normalized by the unit time [s].

Figure 9. Streamwise profile of the fractal dimensions. The square and circle denote fractal dimension for large‐ and small‐
scale scalar fields, respectively. The fractal dimension for fractal‐grid turbulence is larger than that for conventional‐grid 
turbulence in large‐ and small‐scale scalar fields.
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As shown in the figure, the classical and fractal grid turbulence intensities decrease as the 
convection time increases. Also, the fractal grid could be considered to generate decaying tur‐
bulence with a turbulence intensity that is larger in the same bulk energy magnitude because 
it is normalized by the bulk flow kinetic energy. The figure also shows that the classical grid 
turbulence intensity satisfies the following power law: (3/2) 〈u2〉/(1/2) Uo

2 = Ak (t/to)–nk, where 
Ak and nk are the decay coefficient and decay exponent, respectively. Fractal grid turbulence 
intensity also follows a power law with the different parameter values.

Viscous dissipation is also examined in this study because the measurement allows poten‐
tially serious result uncertainties. Accordingly, observed viscous dissipation ε, which is 
referred to as dissipation, is calculated and defined as follows: ε = [〈u2〉/Uo

2]3/2/(L/D). Here, L is 
the integral scale of the streamwise velocity fluctuation. As shown in Figure 10(b), streamwise 
dissipation profiles in the classical and fractal grid turbulence also follow each power law: 
[〈u2〉/Uo

2]3/2/(L/D) = Aε (t/to)–nε. Here, Aε and nε are the decay coefficient and decay exponent of 
the dissipation, respectively.

Next, the decay exponents and decay coefficients of the fractal and classical grid turbulence 
are measured. Figure 11(a) shows the classical and fractal grid turbulence intensity decay 
exponents. As can be seen in the figure, the turbulence intensity decay exponents are mea‐
sured as 2.1 for fractal grid turbulence and 1.1 for the classical grid, and the fractal grid turbu‐
lence decay exponent is larger than that for conventional grid turbulence. This larger fractal 
grid turbulence value implies that it includes dynamics other than the viscous dissipation, 
such as turbulent diffusion (e.g., [12]). Figure 11(b) shows the decay coefficients of fractal grid 
turbulence normalized by that of conventional grid turbulence, where the turbulence inten‐
sity decay coefficients and dissipation are shown.

As shown in the figure, the normalized decay coefficient value for fractal grid turbulence 
intensity is about two. Since a decay coefficient is directly related to the drag coefficient of a 

Figure 10. Streamwise profiles of the turbulent intensity (a) and the dissipation (b) for fractal‐grid turbulence and 
conventional‐grid turbulence, where the longitudinal direction is the normalized convection velocity. These profiles 
satisfy each power law with different decay exponent and decay coefficient values.
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turbulence‐generating grid, a larger decay coefficient value for turbulence intensity would 
have a larger drag coefficient in the grid. Furthermore, since fractal grid turbulence size char‐
acteristics depend primarily on the largest and smallest grids, larger grids can be expected 
to produce larger grid drag coefficients. The dissipation decay coefficient of fractal grid tur‐
bulence normalized by the conventional grid turbulence is also shown in the figure, and is 
about 3.5. In turbulent diffusion, which is modeled by two‐particle diffusion, the turbulent 
diffusion coefficient is proportional to viscous dissipation. Therefore, the decay coefficient 
increment of the dissipation indicates that of the turbulent diffusion coefficient. However, it 
should be noted that the dissipation decay coefficient increment is considerably larger than 
that of the turbulence intensity. Qualitatively, turbulent‐mixing enhancement increases as the 
drag coefficient is increased. As can be seen in the figure, applying the fractal grid produces a 
drag coefficient‐related dissipation increment that is related to turbulent diffusion coefficient 
and is larger than the turbulence intensity increment. Therefore, Figure 11(b) confirms the 
efficiency of a fractal grid as a device for enhancing turbulence mixing.

4. Conclusion

This study has addressed high‐Sc‐number scalar turbulent mixing in decaying turbulence 
through experiments in which decaying turbulence was generated using a grid placed inside 
a uniform flow. In recent years, fractal grids, which are new turbulence‐generating grids with 
shape‐based fractal perspectives, have been proposed, and high‐magnitude turbulent intensi‐
ties have been found in the decaying turbulence produced by such grids. The present study 
applies the decaying turbulence produced by a fractal grid to high‐Sc‐number scalar turbu‐
lent mixing in a water channel experiment measured by PLIF and PIV in order to clarify 
fractal grid turbulence mixing. Conventional grid turbulence, which is produced via a biplane 

Figure 11. Decay exponents of the turbulent intensity (a) and the ratio of the decay coefficients between fractal‐grid and 
conventional‐grid turbulence (b). The dissipation decay coefficient increase, which relates to the turbulent diffusion 
coefficient, is larger than that of the turbulent intensity, which relates to the grid‐drag coefficient.
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conventional grid, was also measured. Fractal dimensions, which were calculated using the 
box‐counting method as well as relevant statistics, were used to clarify high‐Sc‐number scalar 
turbulent mixing in the grid turbulences examined.

We started by validating the PLIF and PIV measurement techniques used and showed that 
our correction for laser attenuation effects caused by the dye used definitely improved scalar 
fluctuation measurement accuracy. Next, the PIV was validated by using the decay character‐
istics and spectra of conventional grid turbulence. As shown in the PLIF visualization results 
provided herein, the use of a fractal grid increased the scalar‐mixing layer width, and the 
scalar‐mixing layer width increment could be quantitatively observed by using the character‐
istics length of the mean scalar profile and scalar fluctuation intensity.

Our fractal dimension investigation, which was calculated in order to discuss high‐Sc‐number sca‐
lar turbulent mixing in fractal grid turbulence, showed that the use of a fractal grid could enhance 
both large‐ and small‐scale turbulent mixing. The decay exponent, turbulence intensity decay 
coefficient, and dissipation were then calculated from PIV measurements, the results of which 
showed a larger decay exponent magnitude in fractal grid turbulence. Next, we discussed using 
the decay coefficient to quantify the efficiency of a fractal grid as a device for enhancing turbulent 
mixing. The results showed that when utilizing a fractal grid, the turbulent diffusion coefficient 
increase in the generated grid turbulence was found to be larger than the grid drag coefficient.

In our future works, the dynamics that are expected to be found in enhanced turbulent mixing 
due to fractal grid turbulence will be studied. By further investigating the phenomena from 
the perspective of dynamics, a new turbulent‐mixing device may further be developed. 
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