
Numerical Algorithms 20 (1999) 117–137 117

Remarks around 50 lines of Matlab: short finite element
implementation

Jochen Alberty, Carsten Carstensen and Stefan A. Funken
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel,

Germany
E-mail: {ja;cc;saf}@numerik.uni-kiel.de

A short Matlab implementation for P1-Q1 finite elements on triangles and parallelograms
is provided for the numerical solution of elliptic problems with mixed boundary conditions
on unstructured grids. According to the shortness of the program and the given documenta-
tion, any adaptation from simple model examples to more complex problems can easily be
performed. Numerical examples prove the flexibility of the Matlab tool.

Keywords: Matlab program

AMS subject classification: 68N15, 65N30, 65M60

1. Introduction

Unlike complex black-box commercial computer codes, this paper provides a
simple and short open-box Matlab implementation of combined Courant’s P1 triangles
and Q1 elements on parallelograms for the numerical solutions of elliptic problems
with mixed Dirichlet and Neumann boundary conditions. Based on four or five data
files, arbitrary regular triangulations are determined. Instead of covering all kinds of
possible problems in one code, the proposed tool aims to be simple, easy to understand
and modify. Therefore, only simple model examples are included to be adapted to
whatever is needed. In further contributions we provide more complicated elements,
a posteriori error estimators and flexible adaptive mesh-refining algorithms.

Compared to the latest Matlab toolbox [3], our approach is shorter, allows more
elements, is easily adapted to modified problems like convection terms, and is open to
easy modifications for basically any type of finite element.

The rest of the paper is organised as follows. As a model problem, the Laplace
equation is described in section 2. The discretisation is sketched in a mathematical
language in section 3. The heart of this contribution is the data representation of the
triangulation, the Dirichlet and Neumann boundary as the three functions specifying
f , g and uD as described in section 4 together with the discrete space. The main steps
are the assembling procedures of the stiffness matrix in section 5 and of the right-
hand side in section 6 and the incorporation of the Dirichlet boundary conditions in
section 7. A post-processing to preview the numerical solution is provided in section 8.

 J.C. Baltzer AG, Science Publishers



118 J. Alberty et al. / Matlab program for FEM

(The main program is given partly in these sections and in its total one page length
in appendix A.) The applications follow in sections 9–11 and illustrate the tool in a
time-dependent heat equation, in a nonlinear and even in a 3-dimensional example.

Note that the given programs are written for Matlab 5. Though, in principle, it is
possible to modify the package to run the program under Matlab 4, the changes are too
many to state them here. The package in netlib provides both versions, for Unix-like
and Windows machines.

2. Model problem

The proposed Matlab program employs the finite element method to calculate
a numerical solution U which approximates the solution u to the two-dimensional
Laplace problem (P ) with mixed boundary conditions: Let Ω ⊂ R2 be a bounded Lip-
schitz domain with polygonal boundary Γ. On some closed subset ΓD of the boundary
with positive length, we assume Dirichlet conditions, while we have Neumann bound-
ary conditions on the remaining part ΓN := Γ \ ΓD. Given f ∈ L2(Ω), uD ∈ H1(Ω),
and g ∈ L2(ΓN), seek u ∈ H1(Ω) with

−∆u= f in Ω, (1)

u= uD on ΓD, (2)
∂u

∂n
= g on ΓN. (3)

According to the Lax–Milgram lemma, there always exists a weak solution to (1)–(3)
which enjoys inner regularity (i.e., u ∈ H2

loc(Ω)), and envies regularity conditions
owing to the smoothness of the boundary and the change of boundary conditions.

The inhomogeneous Dirichlet conditions (2) are incorporated through the decom-
position v = u− uD so that v = 0 on ΓD, i.e.,

v ∈ H1
D(Ω) :=

{
w ∈ H1(Ω) | w = 0 on ΓD

}
.

Then, the weak formulation of the boundary value problem (P ) reads: Seek
v ∈ H1

D(Ω), such that∫
Ω
∇v · ∇w dx =

∫
Ω
fw dx+

∫
ΓN

gw ds−
∫

Ω
∇uD · ∇w dx, w ∈ H1

D(Ω). (4)

3. Galerkin discretisation of the problem

For the implementation, problem (4) is discretised using the standard Galerkin
method, where H1(Ω) and H1

D(Ω) are replaced by finite dimensional subspaces S and
SD = S ∩H1

D, respectively. Let UD ∈ S be a function that approximates uD on ΓD.



J. Alberty et al. / Matlab program for FEM 119

(We define UD as the nodal interpolant of uD on ΓD.) Then, the discretised problem
(PS) reads: Find V ∈ SD such that∫

Ω
∇V · ∇W dx =

∫
Ω
fW dx+

∫
ΓN

gW ds−
∫

Ω
∇UD · ∇W dx, W ∈ SD. (5)

Let (η1, . . . , ηN) be a basis of the finite dimensional space S, and let (ηi1 , . . . , ηiM ) be
a basis of SD, where I = {i1, . . . , iM} ⊆ {1, . . . ,N} is an index set of cardinality
M 6 N − 2. Then, (5) is equivalent to∫

Ω
∇V · ∇ηj dx =

∫
Ω
fηj dx+

∫
ΓN

gηj ds−
∫

Ω
∇UD · ∇ηj dx, j ∈ I. (6)

Furthermore, let

V =
∑
k∈I

xkηk and UD =
N∑
k=1

Ukηk.

Then, equation (6) yields the linear system of equations

Ax = b. (7)

The coefficient matrix A = (Ajk)j,k∈I ∈ RM×M and the right-hand side b = (bj)j∈I ∈
RM are defined as

Ajk =

∫
Ω
∇ηj ·∇ηk dx and bj =

∫
Ω
fηj dx+

∫
ΓN

gηj ds−
N∑
k=1

Uk

∫
Ω
∇ηj ·∇ηk dx.

(8)
The coefficient matrix is sparse, symmetric and positive definite, so (7) has exactly
one solution x ∈ RM which determines the Galerkin solution

U = UD + V =
N∑
j=1

Ujηj +
∑
k∈I

xkηk.

4. Data-representation of the triangulation Ω

Suppose the domain Ω has a polygonal boundary Γ, we can cover Ω by a regular
triangulation T of triangles and quadrilaterals, i.e., Ω =

⋃
T∈T T and each T is either

a closed triangle or a closed quadrilateral.
Regular triangulation in the sense of Ciarlet [2] means that the nodes N of

the mesh lie on the vertices of the triangles or quadrilaterals, the elements of the
triangulation do not overlap, no node lies on an edge of a triangle or quadrilateral, and
each edge E ⊂ Γ of an element T ∈ T belongs either to ΓN or to ΓD.

Matlab supports reading data from files given in ascii format by .dat files.
Figure 1 shows the mesh which is described by the following data. The file



120 J. Alberty et al. / Matlab program for FEM

Figure 1. Example of a mesh.

coordinates.dat contains the coordinates of each node in the given mesh. Each
row has the form

node # x-coordinate y-coordinate.

In our code we allow subdivision of Ω into triangles and quadrilaterals. In both
cases the nodes are numbered anti-clockwise. elements3.dat contains for each
triangle the node numbers of the vertices. Each row has the form

element # node1 node2 node3.

Similarly, the data for the quadrilaterals are given in elements4.dat. Here,
we use the format

element # node1 node2 node3 node4.

elements3.dat
1 2 3 13
2 3 4 13
3 4 5 15
4 5 6 15

elements4.dat
1 1 2 13 12
2 12 13 14 11
3 13 4 15 14
4 11 14 9 10
5 14 15 8 9
6 15 6 7 8

neumann.dat and dirichlet.dat contain in each row the two node num-
bers which bound the corresponding edge on the boundary:

Neumann edge # node1 node2 resp. Dirichlet edge # node1 node2.



J. Alberty et al. / Matlab program for FEM 121

Figure 2. Hat functions.

neumann.dat
1 5 6
2 6 7
3 1 2
4 2 3

dirichlet.dat
1 3 4
2 4 5
3 7 8
4 8 9
5 9 10
6 10 11
7 11 12
8 12 1

The spline spaces S and SD are chosen globally continuous and affine on each
triangular element and bilinear isoparametric on each quadrilateral element. In figure 2
we display two typical hat functions ηj which are defined for every node (xj , yj) of
the mesh by

ηj(xk, yk) = δjk, j, k = 1, . . . ,N.

The subspace SD ⊂ S is the spline space which is spanned by all those ηj for
which (xj , yj) does not lie on ΓD. Then UD, defined as the nodal interpolant of uD,
lies in S.

With these spaces S and SD and their corresponding bases, the integrals in (8)
can be calculated as a sum over all elements and a sum over all edges on ΓN, i.e.,

Ajk =
∑
T∈T

∫
T
∇ηj · ∇ηk dx, (9)

bj =
∑
T∈T

∫
T
fηj dx+

∑
E⊂ΓN

∫
E
gηj ds−

N∑
k=1

Uk
∑
T∈T

∫
T
∇ηj · ∇ηk dx. (10)

5. Assembling the stiffness matrix

The local stiffness matrix is determined by the coordinates of the vertices of the
corresponding element and is calculated in the functions stima3.m and stima4.m.



122 J. Alberty et al. / Matlab program for FEM

For a triangular element T let (x1, y1), (x2, y2) and (x3, y3) be the vertices and
η1, η2 and η3 the corresponding basis functions in S, i.e.,

ηj(xk, yk) = δjk, j, k = 1, 2, 3.

A moment’s reflection reveals

ηj(x, y) = det

1 x y
1 xj+1 yj+1

1 xj+2 yj+2

/ det

1 xj yj
1 xj+1 yj+1

1 xj+2 yj+2

 , (11)

whence

∇ηj(x, y) =
1

2|T |

(
yj+1 − yj+2

xj+2 − xj+1

)
.

Here, the indices are to be understood modulo 3, and |T | is the area of T , i.e.,

2|T | = det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
.

The resulting entry of the stiffness matrix is

Mjk =

∫
T
∇ηj(∇ηk)T dx =

|T |
(2|T |)2 (yj+1 − yj+2, xj+2 − xj+1)

(
yk+1 − yk+2

xk+2 − xk+1

)
with indices modulo 3. This is written simultaneously for all indices as

M =
|T |
2
·GGT with G :=

 1 1 1
x1 x2 x3

y1 y2 y3

−10 0
1 0
0 1

 .

Since we obtain similar formulae for three dimensions (cf. section 11), the fol-
lowing Matlab routine works simultaneously for d = 2 and d = 3:

function M = stima3(vertices)
d = size(vertices,2);
G = [ones(1,d+1);vertices’] \ [zeros(1,d);eye(d)];
M = det([ones(1,d+1);vertices’]) * G * G’ / prod(1:d);

For a quadrilateral element T let (x1, y1), . . . , (x4, y4) denote the vertices with the
corresponding hat functions η1, . . . , η4. Since T is a parallelogram, there is an affine
mapping (

x
y

)
= ΦT (ξ, ζ) =

(
x2 − x1 x4 − x1

y2 − y1 y4 − y1

)(
ξ
ζ

)
+

(
x1

y1

)
,

which maps [0, 1]2 onto T . Then ηj(x, y) = ϕj(Φ−1
T (x, y)) with shape functions

ϕ1(ξ, ζ) := (1− ξ)(1− ζ), ϕ2(ξ, ζ) := ξ(1− ζ),

ϕ3(ξ, ζ) := ξζ , ϕ4(ξ, ζ) := (1− ξ)ζ.



J. Alberty et al. / Matlab program for FEM 123

From the substitution law it follows for the integrals of (9) that

Mjk :=
∫
T
∇ηj(x, y) · ∇ηk(x, y) d(x, y)

=

∫
(0,1)2
∇
(
ϕj ◦Φ−1

T

)(
ΦT (ξ, ζ)

)(
∇
(
ϕk ◦Φ−1

T

)(
ΦT (ξ, ζ)

))T| detDΦT | d(ξ, ζ)

= det(DΦT )
∫

(0,1)2
∇ϕj(ξ, ζ)

(
(DΦT )TDΦT

)−1(∇ϕk(ξ, ζ)
)T

d(ξ, ζ).

Solving these integrals the local stiffness matrix for a quadrilateral element results in

M =
det(DΦT )

6

 3b+ 2(a+ c) −2a+ c −3b− (a+ c) a− 2c
−2a+ c −3b+ 2(a+ c) a− 2c 3b− (a+ c)

−3b− (a+ c) a− 2c 3b+ 2(a+ c) −2a+ c
a− 2c 3b− (a+ c) −2a+ c −3b+ 2(a+ c)

 ,

where (
(DΦT )TDΦT

)−1
=

(
a b
b c

)
.

function M = stima4(vertices)
D_Phi = [vertices(2,:)-vertices(1,:); vertices(4,:)- ...

vertices(1,:)]’;
B = inv(D_Phi’*D_Phi);
C1 = [2,-2;-2,2]*B(1,1)+[3,0;0,-3]*B(1,2)+[2,1;1,2]*B(2,2);
C2 = [-1,1;1,-1]*B(1,1)+[-3,0;0,3]*B(1,2)+[-1,-2;-2,-1]*B(2,2);
M = det(D_Phi) * [C1 C2; C2 C1] / 6;

6. Assembling the right-hand side

The volume forces are used for assembling the right-hand side. Using the value
of f in the centre of gravity (xS , yS) of T the integral

∫
T fηj dx in (10) is approximated

by ∫
T
fηj dx ≈ 1

kT
det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
f (xS , yS),

where kT = 6 if T is a triangle and kT = 4 if T is a parallelogram.

% Volume Forces
for j = 1:size(elements3,1)

b(elements3(j,:)) = b(elements3(j,:)) + ...
det([1 1 1; coordinates(elements3(j,:),:)’]) * ...
f(sum(coordinates(elements3(j,:),:))/3)/6;

end
for j = 1:size(elements4,1)



124 J. Alberty et al. / Matlab program for FEM

b(elements4(j,:)) = b(elements4(j,:)) + ...
det([1 1 1; coordinates(elements4(j,1:3),:)’]) * ...
f(sum(coordinates(elements4(j,:),:))/4)/4;

end

The values of f are given by the function f.m which depends on the problem.
The function is called with the coordinates of points in Ω and it returns the volume
forces at these locations. For the numerical example shown in figure 3 we used

function VolumeForce = f(x);
VolumeForce = ones(size(x,1),1);

Likewise, the Neumann conditions contribute to the right-hand side. The integral∫
E gηj ds in (10) is approximated using the value of g in the centre (xM , yM ) of E

with length |E| by ∫
E
gηj ds ≈ |E|

2
g(xM , yM ).

% Neumann conditions
for j = 1 : size(neumann,1)

b(neumann(j,:))=b(neumann(j,:)) + ...
norm(coordinates(neumann(j,1),:) - ...
coordinates(neumann(j,2),:)) * ...
g(sum(coordinates(neumann(j,:),:))/2)/2;

end

We here use the fact that in Matlab the size of an empty matrix is set equal to
zero and that a loop of 1 through 0 is totally omitted. In that way, the question of the
existence of Neumann boundary data is to be renounced.

The values of g are given by the function g.m which again depends on the
problem. The function is called with the coordinates of points on ΓN and returns the
corresponding stresses. For the numerical example g.m was

function Stress = g(x)
Stress = zeros(size(x,1),1);

7. Incorporating Dirichlet conditions

With a suitable numbering of the nodes, the system of linear equations resulting
from the construction described in the previous section without incorporating Dirichlet
conditions can be written as follows:(

A11 A12

AT
12 A22

)
·
(
U
UD

)
=

(
b
bD

)
, (12)



J. Alberty et al. / Matlab program for FEM 125

with U ∈ RM , UD ∈ RN−M . Here, U are the values at the free nodes which are to be
determined, UD are the values at the nodes which are on the Dirichlet boundary and
thus are known a priori. Hence, the first block of equations can be rewritten as

A11 · U = b−A12 · UD.

In fact, this is the formulation of (6) with UD = 0 at non-Dirichlet nodes.
In the second block of equations in (12) the unknown is bD but since it is not of

interest to us it is omitted in the following.

% Dirichlet conditions
u = sparse(size(coordinates,1),1);
u(unique(dirichlet)) = u_d(coordinates(unique(dirichlet),:));
b = b - A * u;

The values uD at the nodes on ΓD are given by the function u d.m which depends
on the problem. The function is called with the coordinates of points in ΓD and returns
the values at the corresponding locations. For the numerical example u d.m was

function DirichletBoundaryValue = u_d(x)
DirichletBoundaryValue = zeros(size(x,1),1);

8. Computation and displaying the numerical solution

The rows of (7) corresponding to the first M rows of (12) form a reduced system
of equations with a symmetric, positive definite coefficient matrix A11. It is obtained
from the original system of equations by taking the rows and columns corresponding
to the free nodes of the problem. The restriction can be achieved in Matlab through
proper indexing.

The system of equations is solved by the binary operator \ installed in Matlab
which gives the left inverse of a matrix.

FreeNodes=setdiff(1:size(coordinates,1),unique(dirichlet));
u(FreeNodes)=A(FreeNodes,FreeNodes)\b(FreeNodes);

Matlab makes use of the properties of a symmetric, positive definite and sparse
matrix for solving the system of equations efficiently.

A graphical representation of the solution is given by the function show.m.

function show(elements3,elements4,coordinates,u)
trisurf(elements3,coordinates(:,1),coordinates(:,2),u’,...

’facecolor’,’interp’)
hold on
trisurf(elements4,coordinates(:,1),coordinates(:,2),u’,...

’facecolor’,’interp’)



126 J. Alberty et al. / Matlab program for FEM

Figure 3. Solution for the Laplace problem.

hold off
view(10,40);

title(’Solution of the Problem’)

Here, the Matlab routine trisurf(ELEMENTS,X,Y,U) is used to draw trian-
gulations for equal types of elements. Every row of the matrix ELEMENTS determines
one polygon where the x-, y-, and z-coordinate of each corner of this polygon is given
by the corresponding entry in X, Y and U, respectively. The colour of the polygons is
given by values of U. The additional parameters ,’facecolor’,’interp’, lead
to an interpolated colouring. Figure 3 shows the solution for the mesh defined in
section 4 and the data files f.m, g.m, and u d.m given in sections 6 and 7.

Summarising sections 4–8, the main program, which is listed in appendix A, is
structured as follows (the line references are according to the numbering in appen-
dix A):

• Lines 3–10: Loading of the mesh geometry and initialisation.

• Lines 11–19: Assembly of the stiffness matrix in two loops, first over the triangular
elements, then over the quadrilaterals.

• Lines 20–30: Incorporating the volume force in two loops, first over the triangular
elements, then over the quadrilaterals.

• Lines 31–35: Incorporating the Neumann condition.

• Lines 36–39: Incorporating the Dirichlet condition.

• Lines 40–41: Solving the reduced linear system.

• Lines 42–43: Graphical representation of the numerical solution.



J. Alberty et al. / Matlab program for FEM 127

9. The heat equation

For numerical simulations of the heat equation,

∂u/∂t = ∆u+ f in Ω× [0,T ],

with an implicit Euler scheme in time, we split the time interval [0,T ] into N equally
sized subintervals of size dt = T/N which leads to the equation

(id − dt∆)un = dtfn + un−1, (13)

where fn = f (x, tn) and un is the time discrete approximation of u at time tn = n dt.
The weak form of (13) is∫

Ω
unv dx+ dt

∫
Ω
∇un · ∇v dx = dt

(∫
Ω
fnv dx+

∫
ΓN

gnv dx

)
+

∫
Ω
un−1v dx

with gn = g(x, tn) and notation as in section 2. For each time step, this equation is
solved using finite elements which leads to the linear system

(dtA+B)Un = dtb+BUn−1.

The stiffness matrix A and right-hand side b are as before (see (8)). The mass matrix
B results from the terms

∫
Ω unv dx, i.e.,

Bjk =
∑
T∈T

∫
T
ηjηk dx.

For triangular, piecewise affine elements we obtain∫
T
ηjηk dx =

1
24

det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)2 1 1
1 2 1
1 1 2

 .

Appendix B shows the modified code for the heat equation. The numerical
example was again based on the domain in figure 1, this time with f ≡ 0 and uD = 1
on the outer boundary. The value on the (inner) circle is still uD = 0. On the Neumann
boundary we still have g ≡ 0. Figure 4 displays the solution the given code produced
for four different times T = 0.1, 0.2, 0.5 and T = 1. (Variable T in line 10 of the
main program.)

The main program, listed in appendix B, is structured as follows (the line refer-
ences are according to the numbering in appendix B):

• Lines 3–11: Loading of the mesh geometry and initialisation.

• Lines 12–16: Assembly of the stiffness matrix A in a loop over all triangular
elements.

• Lines 17–20: Assembly of the mass matrix B in a loop over all triangular elements.

• Lines 21–22: Defining initial condition of the discrete U.



128 J. Alberty et al. / Matlab program for FEM

Figure 4. Solution for the heat equation.

• Lines 23–48: Loop over the time-steps. In particular:

• Line 25: Clearing the vector of the right-hand side.

• Lines 26–31: Incorporating the volume force at time step n.

• Lines 32–37: Incorporating the Neumann condition at time step n.

• Lines 38–39: Incorporating the solution at the previous time step n− 1.

• Lines 40–43: Incorporating the Dirichlet condition at time step n.

• Lines 44–47: Solving the reduced linear system for the solution at time step n.

• Lines 49–50: Graphical representation of the numerical solution at the final time
step.

10. A nonlinear problem

As a simple application to non-convex variational problems, we consider the
Ginzburg–Landau equation

ε∆u = u3 − u in Ω, u = 0 on Γ (14)

for ε = 1/100. Its weak formulation, i.e.,

J(u, v) :=
∫

Ω
ε∇u · ∇v dx−

∫
Ω

(
u− u3)v dx = 0, v ∈ H1

0 (Ω), (15)



J. Alberty et al. / Matlab program for FEM 129

can also be regarded as the necessary condition for the minimiser in the variational
problem

min
∫

Ω

[
ε

2
|∇u|2 +

1
4

(
u2 − 1

)2
]

dx! (16)

We aim to solve (15) with Newton–Raphson’s method. Starting with some u0, in each
iteration step we compute un − un+1 ∈ H1

0 (Ω) satisfying

DJ
(
un, v;un − un+1) = J

(
un, v

)
, v ∈ H1

0 (Ω), (17)

where

DJ(u, v;w) =

∫
Ω
ε∇v · ∇w dx−

∫
Ω

(
vw − 3vu2w

)
dx. (18)

The integrals in J(U ,V ) and DJ(U ,V ;W ) are again calculated as a sum over
all elements. The resulting local integrals can be calculated analytically and are imple-
mented in localj.m, respectively localdj.m, as given in appendix C. The actual
Matlab code again only needs little modifications, shown in appendix C. Essentially,
one has to initialise the code (with a start vector that fulfils the Dirichlet boundary
condition (lines 9 and 10)), to add a loop (lines 12 and 45), to update the new Newton
approximation (line 41), and to supply a stopping criterion in case of convergence
(lines 42–44).

It is known that the solutions are not unique. Indeed, for any local minimiser
u, −u is also a minimiser and 0 solves the problem as well. The constant function
u = ±1 leads to zero energy, but violates the continuity or the boundary conditions.
Hence, boundary or internal layers are observed which separate large regions, where
u is almost constant ±1.

In the finite dimensional problem, different initial values u0 may lead to different
numerical approximations. Figure 5 displays two possible solutions found for two dif-
ferent starting values after about 20–30 iteration steps. The figure on the left is achieved
with the starting values as chosen in the program provided in appendix C. Changing
the statement in line 9 in appendix C to U = sign(coordinates(:,1)); leads
to the figure on the right.

The main program, which is listed in appendix C, is structured as follows (the
line references are according to the numbering in appendix C):

• Lines 3–7: Loading of the mesh geometry and initialisation.

• Lines 8–10: Setting the starting vector U for the iteration scheme, incorporating
the Dirichlet condition on the solution.

• Lines 11–45: Loop for the Newton–Raphson iteration. It ends after a maximum of
50 iteration steps (set in line 12) or in case of convergence (lines 42–44).

• Lines 13–18: Assembly of the matrix of the derivative of the functional J evaluated
at the current iteration step U .



130 J. Alberty et al. / Matlab program for FEM

Figure 5. Solutions for the non-linear equation.

• Lines 19–24: Assembly of the vector of the functional J evaluated at the current
iteration step U .

• Lines 25–30: Incorporating the volume force.

• Lines 31–35: Incorporating the Neumann condition.

• Lines 36–38: Incorporating the homogeneous Dirichlet conditions of the update
vector W .

• Lines 39–40: Solving the reduced linear system for the update vector W .

• Line 41: Updating U .

• Lines 42–44: Breaking out of the loop if the update vector W is sufficiently small
(its norm being smaller than 10−10).

• Lines 46–47: Graphical representation of the final iterate.

11. Three-dimensional problems

With a few modifications, the Matlab code for linear 2-dimensional problems
discussed in sections 5–8 can be extended to 3-dimensional problems. Tetraeders are
used as finite elements. The basis functions are defined corresponding to those in two
dimensions, e.g., for a tetraeder element T let (xj , yj , zj) (j = 1, . . . , 4) be the vertices
and ηj the corresponding basis functions, i.e.,

ηj(xk, yk, zk) = δjk, j, k = 1, . . . , 4.

Each of the *.dat files gets an additional entry per row. In coordinates.dat it is
the z-component of each node Pj = (xj , yj , zj). A typical entry in elements3.dat
now reads

j k ` m n,

where k, `, m, n are the numbers of vertices Pk, . . . ,Pn of the jth element.
elements4.dat is not used for 3-dimensional problems. The sequence of nodes is



J. Alberty et al. / Matlab program for FEM 131

organised such that the right-hand side of

6|T | = det


1 1 1 1
xk x` xm xn
yk y` ym yn
zk z` zm zn


is positive. The numbering of surface elements defined in neumann.dat and
dirichlet.dat is done with mathematical positive orientation viewing from out-
side Ω onto the surface.

Using the Matlab code in appendix A, cancellation of lines 5, 16–19 and 26–30
and substituting 22–24, 33–34, 43 by the following lines gives a short and flexible
tool for solving scalar, linear 3-dimensional problems:

b(elements3(j,:)) = b(elements3(j,:)) + ...
det([1,1,1,1;coordinates(elements3(j,:),:)’]) * ...
f(sum(coordinates(elements3(j,:),:))/4) / 24;

b(neumann(j,:)) = b(neumann(j,:)) + ...
norm(cross(coordinates(neumann(j,3),:) - ...
coordinates(neumann(j,1),:),coordinates(neumann(j,2),:) - ...
coordinates(neumann(j,1),:))) ...
* g(sum(coordinates(neumann(j,:),:))/3)/6;

showsurface([dirichlet;neumann],coordinates,full(u));

The graphical representation for 3-dimensional problems can be done by a short-
ened version of show.m from section 8.

function showsurface(surface,coordinates,u)
trisurf(surface,coordinates(:,1),coordinates(:,2),...

coordinates(:,3),u’, ’facecolor’,’interp’)
axis off
view(160,-30)

The temperature distribution of a simplified piston is presented in figure 6. Calcu-
lation of the temperature distribution with 3728 nodes and 15111 elements (including
the graphical output) takes a few minutes on a workstation.

Figure 6. Temperature distribution of a piston.



132 J. Alberty et al. / Matlab program for FEM

The main program, which is listed in appendix D, is structured as follows (the
line references are according to the numbering in appendix D):

• Lines 3–9: Loading of the mesh geometry and initialisation.

• Lines 11–14: Assembly of the stiffness matrix A in a loop over all tetraeders.

• Lines 16-20: Incorporating the volume force in a loop over all tetraeders.

• Lines 22–27: Incorporating the Neumann condition.

• Lines 29–31: Incorporating the Dirichlet condition.

• Line 33: Solving the reduced linear system.

• Line 35: Graphical representation of the numerical solution.

Appendix

A. The complete Matlab code for the 2-dimensional Laplace problem

The following program can be found in the package, under the path acf/fem2d.
It is called fem2d.m. The other files under that path are the fixed functions
stima3.m, stima4.m, and show.m as well as the functions and data files that
describe the discretisation and the data of the problem, namely coordinates.dat,
elements3.dat, elements4.dat, dirichlet.dat, neumann.dat, f.m,
g.m, and u d.m. Those problem-describing files must be adapted by the user for
other geometries, discretisations, and/or data.

1 % FEM2D two-dimensional finite element method for Laplacian.
2 % Initialisation
3 load coordinates.dat; coordinates(:,1)=[];
4 eval(’load elements3.dat; elements3(:,1)=[];’,’elements3=[];’);
5 eval(’load elements4.dat; elements4(:,1)=[];’,’elements4=[];’);
6 eval(’load neumann.dat; neumann(:,1) = [];’,’neumann=[];’);
7 load dirichlet.dat; dirichlet(:,1) = [];
8 FreeNodes=setdiff(1:size(coordinates,1),unique(dirichlet));
9 A = sparse(size(coordinates,1),size(coordinates,1));

10 b = sparse(size(coordinates,1),1);
11 % Assembly
12 for j = 1:size(elements3,1)
13 A(elements3(j,:),elements3(j,:)) = A(elements3(j,:), ...
14 elements3(j,:)) + stima3(coordinates(elements3(j,:),:));
15 end
16 for j = 1:size(elements4,1)
17 A(elements4(j,:),elements4(j,:)) = A(elements4(j,:), ...
18 elements4(j,:)) + stima4(coordinates(elements4(j,:),:));
19 end
20 % Volume Forces
21 for j = 1:size(elements3,1)
22 b(elements3(j,:)) = b(elements3(j,:)) + ...
23 det([1,1,1; coordinates(elements3(j,:),:)’]) * ...



J. Alberty et al. / Matlab program for FEM 133

24 f(sum(coordinates(elements3(j,:),:))/3)/6;
25 end
26 for j = 1:size(elements4,1)
27 b(elements4(j,:)) = b(elements4(j,:)) + ...
28 det([1,1,1; coordinates(elements4(j,1:3),:)’]) * ...
29 f(sum(coordinates(elements4(j,:),:))/4)/4;
30 end
31 % Neumann conditions
32 for j = 1 : size(neumann,1)
33 b(neumann(j,:))=b(neumann(j,:)) + ...
34 norm(coordinates(neumann(j,1),:)-coordinates(neumann(j,2),:))*...

g(sum(coordinates(neumann(j,:),:))/2)/2;
35 end
36 % Dirichlet conditions
37 u = sparse(size(coordinates,1),1);
38 u(unique(dirichlet)) = u_d(coordinates(unique(dirichlet),:));
39 b = b - A * u;
40 % Computation of the solution
41 u(FreeNodes) = A(FreeNodes,FreeNodes) \ b(FreeNodes);
42 % graphic representation
43 show(elements3,elements4,coordinates,full(u));

B. Matlab code for the heat equation

The following program can be found in the package, under the path acf/fem2d
heat. It is called fem2d heat.m. The other files under that path are the fixed
functions stima3.m and show.m as well as the functions and data files that de-
scribe the discretisation and the data of the problem, namely coordinates.dat,
elements3.dat, dirichlet.dat, neumann.dat, f.m, g.m, and u d.m.
Those problem-describing files must be adapted by the user for other geometries,
discretisations, and/or data.

1 %FEM2D_HEAT finite element method for two-dimensional heat equation.
2 %Initialisation
3 load coordinates.dat; coordinates(:,1)=[];
4 load elements3.dat; elements3(:,1)=[];
5 eval(’load neumann.dat; neumann(:,1) = [];’,’neumann=[];’);
6 load dirichlet.dat; dirichlet(:,1) = [];
7 FreeNodes=setdiff(1:size(coordinates,1),unique(dirichlet));
8 A = sparse(size(coordinates,1),size(coordinates,1));
9 B = sparse(size(coordinates,1),size(coordinates,1));

10 T = 1; dt = 0.01; N = T/dt;
11 U = zeros(size(coordinates,1),N+1);
12 % Assembly
13 for j = 1:size(elements3,1)
14 A(elements3(j,:),elements3(j,:)) = A(elements3(j,:), ...
15 elements3(j,:)) + stima3(coordinates(elements3(j,:),:));
16 end



134 J. Alberty et al. / Matlab program for FEM

17 for j = 1:size(elements3,1)
18 B(elements3(j,:),elements3(j,:)) = B(elements3(j,:), ...
19 elements3(j,:)) + det([1,1,1;coordinates(elements3(j,:),:)’])...

*[2,1,1;1,2,1;1,1,2]/24;
20 end
21 % Initial Condition
22 U(:,1) = zeros(size(coordinates,1),1);
23 % time steps
24 for n = 2:N+1
25 b = sparse(size(coordinates,1),1);
26 % Volume Forces
27 for j = 1:size(elements3,1)
28 b(elements3(j,:)) = b(elements3(j,:)) + ...
29 det([1,1,1; coordinates(elements3(j,:),:)’]) * ...
30 dt*f(sum(coordinates(elements3(j,:),:))/3,n*dt)/6;
31 end
32 % Neumann conditions
33 for j = 1 : size(neumann,1)
34 b(neumann(j,:)) = b(neumann(j,:)) + ...
35 norm(coordinates(neumann(j,1),:)-coordinates(neumann(j,2),:))*...
36 dt*g(sum(coordinates(neumann(j,:),:))/2,n*dt)/2;
37 end
38 % previous timestep
39 b = b + B * U(:,n-1);
40 % Dirichlet conditions
41 u = sparse(size(coordinates,1),1);
42 u(unique(dirichlet)) = u_d(coordinates(unique(dirichlet),:),n*dt);
43 b = b - (dt * A + B) * u;
44 % Computation of the solution
45 u(FreeNodes) = (dt*A(FreeNodes,FreeNodes)+ ...
46 B(FreeNodes,FreeNodes))\b(FreeNodes);
47 U(:,n) = u;
48 end
49 % graphic representation
50 show(elements3,[],coordinates,full(U(:,N+1)));

C. Matlab code for the nonlinear problem

The following program can be found in the package, under the path acf/fem2d
nonlinear. It is called fem2d nonlinear.m. The other files under that path
are the fixed function show.m as well as the functions and data files that describe
the functional J , its derivative DJ , the discretisation and the data of the prob-
lem, namely, localj.m, localdj.m, coordinates.dat, elements3.dat,
dirichlet.dat, f.m, and u d.m. Those problem-describing files must be adapted
by the user for other nonlinear problems, geometries, discretisations, and/or data (in-
cluding possibly adding appropriate files neumann.dat and g.m).

1 % FEM2D_NONLINEAR finite element method for two-dimensional
% nonlinear equation.



J. Alberty et al. / Matlab program for FEM 135

2 % Initialisation
3 load coordinates.dat; coordinates(:,1)=[];
4 load elements3.dat; elements3(:,1)=[];
5 eval(’load neumann.dat; neumann(:,1) = [];’,’neumann=[];’);
6 load dirichlet.dat; dirichlet(:,1) = [];
7 FreeNodes=setdiff(1:size(coordinates,1),unique(dirichlet));
8 % Initial value
9 U = -ones(size(coordinates,1),1);

10 U(unique(dirichlet)) = u_d(coordinates(unique(dirichlet),:));
11 % Newton-Raphson iteration
12 for i=1:50
13 % Assembly of DJ(U)
14 A = sparse(size(coordinates,1),size(coordinates,1));
15 for j = 1:size(elements3,1)
16 A(elements3(j,:),elements3(j,:)) = A(elements3(j,:), ...

elements3(j,:)) ...
17 + localdj(coordinates(elements3(j,:),:),U(elements3(j,:)));
18 end
19 % Assembly of J(U)
20 b = sparse(size(coordinates,1),1);
21 for j = 1:size(elements3,1);
22 b(elements3(j,:)) = b(elements3(j,:)) ...
23 + localj(coordinates(elements3(j,:),:),U(elements3(j,:)));
24 end
25 % Volume Forces
26 for j = 1:size(elements3,1)
27 b(elements3(j,:)) = b(elements3(j,:)) + ...
28 det([1 1 1; coordinates(elements3(j,:),:)’]) * ...
29 f(sum(coordinates(elements3(j,:),:))/3)/6;
30 end
31 % Neumann conditions
32 for j = 1 : size(neumann,1)
33 b(neumann(j,:))=b(neumann(j,:)) ...

- norm(coordinates(neumann(j,1),:)- ...
34 coordinates(neumann(j,2),:)) * ...

*g(sum(coordinates(neumann(j,:),:))/2)/2;
35 end
36 % Dirichlet conditions
37 W = zeros(size(coordinates,1),1);
38 W(unique(dirichlet)) = 0;
39 % Solving one Newton step
40 W(FreeNodes) = A(FreeNodes,FreeNodes)\b(FreeNodes);
41 U = U - W;
42 if norm(W) < 10ˆ(-10)
43 break
44 end
45 end
46 % graphic representation
47 show(elements3,[],coordinates,full(U));



136 J. Alberty et al. / Matlab program for FEM

function b = localj(vertices,U)
Eps = 1/100;
G = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];
Area = det([ones(1,3);vertices’]) / 2;
b=Area*((Eps*G*G’-[2,1,1;1,2,1;1,1,2]/12)*U+ ...

[4*U(1)ˆ3+ U(2)ˆ3+U(3)ˆ3+3*U(1)ˆ2*(U(2)+U(3))+2*U(1) ...
*(U(2)ˆ2+U(3)ˆ2)+U(2)*U(3)*(U(2)+U(3))+2*U(1)*U(2)*U(3);

4*U(2)ˆ3+ U(1)ˆ3+U(3)ˆ3+3*U(2)ˆ2*(U(1)+U(3))+2*U(2) ...
*(U(1)ˆ2+U(3)ˆ2)+U(1)*U(3)*(U(1)+U(3))+2*U(1)*U(2)*U(3);

4*U(3)ˆ3+ U(2)ˆ3+U(1)ˆ3+3*U(3)ˆ2*(U(2)+U(1))+2*U(3) ...
*(U(2)ˆ2+U(1)ˆ2)+U(2)*U(1)*(U(2)+U(1))+2*U(1)*U(2)*U(3)]/60);

function M = localdj(vertices,U)
Eps = 1/100;
G = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];
Area = det([ones(1,3);vertices’]) / 2;
M = Area*(Eps*G*G’-[2,1,1;1,2,1;1,1,2]/12 + ...

[12*U(1)ˆ2+2*(U(2)ˆ2+U(3)ˆ2+U(2)*U(3))+6*U(1)*(U(2)+U(3)),...
3*(U(1)ˆ2+U(2)ˆ2)+U(3)ˆ2+4*U(1)*U(2)+2*U(3)*(U(1)+U(2)),...
3*(U(1)ˆ2+U(3)ˆ2)+U(2)ˆ2+4*U(1)*U(3)+2*U(2)*(U(1)+U(3));

3*(U(1)ˆ2+U(2)ˆ2)+U(3)ˆ2+4*U(1)*U(2)+2*U(3)*(U(1)+U(2)),...
12*U(2)ˆ2+2*(U(1)ˆ2+U(3)ˆ2+U(1)*U(3))+6*U(2)*(U(1)+U(3)),...
3*(U(2)ˆ2+U(3)ˆ2)+U(1)ˆ2+4*U(2)*U(3)+2*U(1)*(U(2)+U(3));

3*(U(1)ˆ2+U(3)ˆ2)+U(2)ˆ2+4*U(1)*U(3)+2*U(2)*(U(1)+U(3)),...
3*(U(2)ˆ2+U(3)ˆ2)+U(1)ˆ2+4*U(2)*U(3)+2*U(1)*(U(2)+U(3)),...
12*U(3)ˆ2+2*(U(1)ˆ2+U(2)ˆ2+U(1)*U(2))+6*U(3)*(U(1)+U(2))]/60);

D. Matlab code for the 3-dimensional problem

The following program can be found in the package, under the path acf/fem3d.
It is called fem3d.m. The other files under that path are the fixed functions
stima3.m, and showsurface.m as well as the functions and data files that de-
scribe the discretisation and the data of the problem, namely coordinates.dat,
elements3.dat, dirichlet.dat, neumann.dat, f.m, g.m, and u d.m.
Those problem-describing files must be adapted by the user for other geometries,
discretisations, and/or data.

1 % FEM3D three-dimensional finite element method for Laplacian.
2 % Initialisation
3 load coordinates.dat; coordinates(:,1)=[];
4 load elements3.dat; elements3(:,1)=[];
5 eval(’load neumann.dat; neumann(:,1) = [];’,’neumann=[];’);
6 load dirichlet.dat; dirichlet(:,1) = [];
7 FreeNodes=setdiff(1:size(coordinates,1),unique(dirichlet));
8 A = sparse(size(coordinates,1),size(coordinates,1));
9 b = sparse(size(coordinates,1),1);

10 % Assembly
11 for j = 1:size(elements3,1)



J. Alberty et al. / Matlab program for FEM 137

12 A(elements3(j,:),elements3(j,:)) = A(elements3(j,:), ...
13 elements3(j,:)) + stima3(coordinates(elements3(j,:),:));
14 end
15 % Volume Forces
16 for j = 1:size(elements3,1)
17 b(elements3(j,:)) = b(elements3(j,:)) + ...
18 det([1,1,1,1;coordinates(elements3(j,:),:)’]) ...
19 * f(sum(coordinates(elements3(j,:),:))/4) / 24;
20 end
21 % Neumann conditions
22 for j = 1 : size(neumann,1)
23 b(neumann(j,:)) = b(neumann(j,:)) + ...
24 norm(cross(coordinates(neumann(j,3),:)- ...

coordinates(neumann(j,1),:), ...
25 coordinates(neumann(j,2),:)-coordinates(neumann(j,1),:))) ...
26 * g(sum(coordinates(neumann(j,:),:))/3)/6;
27 end
28 % Dirichlet conditions
29 u = sparse(size(coordinates,1),1);
30 u(unique(dirichlet)) = u_d(coordinates(unique(dirichlet),:));
31 b = b - A * u;
32 % Computation of the solution
33 u(FreeNodes) = A(FreeNodes,FreeNodes) \ b(FreeNodes);
34 % Graphic representation
35 showsurface([dirichlet;neumann],coordinates,full(u));

References

[1] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied
Mathematics, Vol. 15 (Springer, New York, 1994).

[2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).
[3] L. Langemyr et al., Partial Differential Equation Toolbox User’s Guide (The Math Works, Inc. 1995).
[4] H.R. Schwarz, Methode der Finiten Elemente (Teubner, Stuttgart, 1991).


