Numerical Algorithms 20 (1999) 117137 117

Remarks around 50 lines of Matlab: short finite element
implementation

Jochen Alberty, Carsten Carstensen and Stefan A. Funken

Mathematisches Seminar, Christian-Albrechts-Universitat zu Kiel, Ludewig-Meyn-Sr. 4, D-24098 Kidl,
Germany
E-mail: {jacc;saf } @numerik.uni-kiel.de

A short Matlab implementation for P1-Q1 finite elements on triangles and parallelograms
is provided for the numerical solution of elliptic problems with mixed boundary conditions
on unstructured grids. According to the shortness of the program and the given documenta-
tion, any adaptation from simple model examples to more complex problems can easily be
performed. Numerical examples prove the flexibility of the Matlab tool.

Keywords: Matlab program

AMS subject classification: 68N15, 65N30, 656M60

1. Introduction

Unlike complex black-box commercial computer codes, this paper provides a
simple and short open-box Matlab implementation of combined Courant’s P; triangles
and Q; elements on paralelograms for the numerical solutions of éliptic problems
with mixed Dirichlet and Neumann boundary conditions. Based on four or five data
files, arbitrary regular triangulations are determined. Instead of covering al kinds of
possible problems in one code, the proposed tool aims to be simple, easy to understand
and modify. Therefore, only simple model examples are included to be adapted to
whatever is needed. In further contributions we provide more complicated elements,
a posteriori error estimators and flexible adaptive mesh-refining agorithms.

Compared to the latest Matlab toolbox [3], our approach is shorter, alows more
elements, is easily adapted to maodified problems like convection terms, and is open to
easy modifications for basically any type of finite element.

The rest of the paper is organised as follows. As a model problem, the Laplace
equation is described in section 2. The discretisation is sketched in a mathematical
language in section 3. The heart of this contribution is the data representation of the
triangulation, the Dirichlet and Neumann boundary as the three functions specifying
f, g and up as described in section 4 together with the discrete space. The main steps
are the assembling procedures of the stiffness matrix in section 5 and of the right-
hand side in section 6 and the incorporation of the Dirichlet boundary conditions in
section 7. A post-processing to preview the numerical solution is provided in section 8.

0 J.C. Baltzer AG, Science Publishers

118 J. Alberty et al. / Matlab program for FEM

(The main program is given partly in these sections and in its total one page length
in appendix A.) The applications follow in sections 9-11 and illustrate the tool in a
time-dependent heat equation, in a nonlinear and even in a 3-dimensional example.

Note that the given programs are written for Matlab 5. Though, in principle, it is
possible to modify the package to run the program under Matlab 4, the changes are too
many to state them here. The package in netlib provides both versions, for Unix-like
and Windows machines.

2. Mode problem

The proposed Matlab program employs the finite element method to calculate
a numerical solution U which approximates the solution « to the two-dimensional
L aplace problem (P) with mixed boundary conditions: Let Q ¢ R? be a bounded Lip-
schitz domain with polygona boundary I'. On some closed subset I'p of the boundary
with positive length, we assume Dirichlet conditions, while we have Neumann bound-
ary conditions on the remaining part 'y := I \ I'p. Given f € L*(Q), up € HY(Q),
and g € L3(Tn), seek v € HY(Q) with

—M=f inQ, €N

u=up ONIp, 2

8_u =g onry. (©))
on

According to the Lax—Milgram lemma, there always exists a weak solution to (1)—3)
which enjoys inner regularity (i.e, u € HZ.(Q)), and envies regularity conditions
owing to the smoothness of the boundary and the change of boundary conditions.

The inhomogeneous Dirichlet conditions (2) are incorporated through the decom-
position v = u —up sothat v =00nTIp, i.e,

v e HE(Q) = {we H(Q)|w=0o0nTp}.

Then, the weak formulation of the boundary value problem (P) reads. Seek
v € Hb(Q), such that

/VU-dex:/fwdx—i—/ gwds—/VuD-dex, wEHé(Q). 4
Q Q 'n Q

3. Galerkin discretisation of the problem

For the implementation, problem (4) is discretised using the standard Galerkin
method, where H(Q) and H3(Q) are replaced by finite dimensional subspaces S and
Sp = SN H, respectively. Let Up € S be a function that approximates up on p.

J. Alberty et al. / Matlab program for FEM 119

(We define Up as the nodal interpolant of up on IN'p.) Then, the discretised problem
(Ps) reads. Find V' € Sp such that

/VV-Vde:/dex—i—/ ngs—/VUD-Vde, W e Sp. (5
Q Q N Q
Let (171,...,nn) be abasis of the finite dimensiona space S, and let (1;,,...,7:,,) be
a basis of Sp, where I = {i1,...,im} € {1,...,N} is an index set of cardindity
M < N — 2. Then, (5) is equivalent to
/VV-andx:/fnjdx—i—/ gnjds—/VUD-andx, jel. (6
Q Q N Q

Furthermore, let

N
V= Zﬂfknk and Up = Z Urni.-
kel k=1
Then, equation (6) yields the linear system of equations
Az =b. (7)

The coefficient matrix A = (A;);xer € RM*M and the right-hand side b = (b;)es €
RM are defined as

N
Ajk:/an-Vnkdx and bj:/fnjdx—i—/ gnjds—ZUk/an-Vnkdx.
o Q N —1 Q
(8

The coefficient matrix is sparse, symmetric and positive definite, so (7) has exactly
one solution = € R which determines the Galerkin solution

N

U=Up+V = ZUj??j +Z$k"7k-
=1 kel

4. Data-representation of the triangulation Q

Suppose the domain Q has a polygonal boundary I, we can cover Q by aregular
triangulation 7" of triangles and quadrilaterals, i.e., Q = (Jp.; T and each T' is either
a closed triangle or a closed quadrilateral.

Regular triangulation in the sense of Ciarlet [2] means that the nodes N of
the mesh lie on the vertices of the triangles or quadrilaterals, the elements of the
triangulation do not overlap, no node lies on an edge of atriangle or quadrilateral, and
each edge E C I of an element T' € T belongs either to [y or to Ip.

Matlab supports reading data from files given in ascii format by .dat files.
Figure 1 shows the mesh which is described by the following data. The file

120 J. Alberty et al. / Matlab program for FEM

coordinates.dat

1 0 0
2 1 0 o Ip
3 1.59 0 10 9 8 7
4 2 1
11 14 15 6
5 3 141 @
6 3 9 O
12 13 5
7 3 3 - @ 4
8 2 3 © Ih
9 1 3 I 2 3
10 0 3
11 0 2
12 0 1
13 1 1
14 1 2
15 2 2

Figure 1. Example of a mesh.

coor di nat es. dat contains the coordinates of each node in the given mesh. Each
row has the form
node # x-coordinate y-coordinate.

In our code we alow subdivision of Q into triangles and quadrilaterals. In both
cases the nodes are numbered anti-clockwise. el enment s3. dat contains for each
triangle the node numbers of the vertices. Each row has the form

edement # nodel node2 node3.

Similarly, the data for the quadrilateras are given in el enent s4. dat . Here,
we use the format

element # nodel node2 node3 noded.

elements3.dat elements4.dat

1 2 3 13 1 1 2 13 12

2 3 4 13 2 12 13 14 11

3 45 15 3 13 4 15 14

4 5 6 15 4 11 14 9 10
5 14 15 8 9
6 15 6 7 8

neumann. dat and di ri chl et . dat contain in each row the two node num-
bers which bound the corresponding edge on the boundary:

Neumann edge # nodel node2 resp. Dirichlet edge# nodel node2.

J. Alberty et al. / Matlab program for FEM

Figure 2. Hat functions.

.dat dirichlet.dat
3 4

4 5
7 8
8 9
9 10
10 11
11 12
12 1

The spline spaces S and Sp are chosen globally continuous and affine on each
triangular element and bilinear isoparametric on each quadrilateral element. In figure 2
we display two typical hat functions n; which are defined for every node (x;,y;) of
the mesh by

O~NO O~ WNPRP

nj(®r, yx) = o1, J,k=1,...,N.

The subspace Sp C S is the spline space which is spanned by al those »; for
which (z;,y;) does not lie on 'p. Then Up, defined as the noda interpolant of up,
liesin S.

With these spaces S and Sp and their corresponding bases, the integrals in (8)
can be calculated as a sum over all elements and a sum over al edgeson Iy, i.e.,

Au=3 | va,- Ve ©
TeT
b= [smdes 3 /gmds—ZUkZ/w Vnedr. (10
TeT ECly = TeT

5. Assembling the stiffness matrix

The local stiffness matrix is determined by the coordinates of the vertices of the
corresponding element and is calculated in the functions st i ma3. mand sti na4. m

122 J. Alberty et al. / Matlab program for FEM

For a triangular element T let (x1,y1), (x2,y2) and (z3,y3) be the vertices and
n1, n2 and n3 the corresponding basis functions in S, i.e.,

’r]j(xk‘lyk): jk» j1k:11213-

A moment’s reflection reveals

1 = Y 1 Yj
ni(xz,y) =det | 1 zj11 yjp1 /det 1 zj41 yj+1 |, (11)

1 zj2 yjt2 1 zj2 yjt2

whence

1 Yj+1 — Yj+2
Vni(z,y) = J+ J+ .
(. 9) 2|T| <$j+2—$j+1

Here, the indices are to be understood modulo 3, and |T'| is the area of T, i.e.,
2T| =det 727" e
Y2—Yy1 Ys—Yyi)
The resulting entry of the stiffness matrix is

Ye+1 — yk+2>

T
M= [Vnj(Vie)' do = —— = (yj41— Yj+2, Tjpz — T
gk /T 77](M) dx (2‘T|)2(y]+1 Yj+2, Tj42 x]+1) Tt — Tpit

with indices modulo 3. This is written ssimultaneoudly for al indices as

o 1 1 1\ '/0 0
M=2S1.GG"T with G:=|z1 22 3 1 0].
2
Y1 Y2 Y3 01

Since we obtain similar formulae for three dimensions (cf. section 11), the fol-
lowing Matlab routine works simultaneoudly for d =2 and d = 3:

function M= stim3(vertices)

d = size(vertices,?2);

G = [ones(1,d+1);vertices’] \ [zeros(1,d);eye(d)];

M = det ([ones(1,d+1);vertices']) * G* G [/ prod(1:d);

For aquadrilateral element T let (z1, 1), .- -, (x4, y4) denote the vertices with the
corresponding hat functions 7y, ...,n4. Since T' is a paralelogram, there is an affine

mapping
AN _f(r2—m1 ma—m) (§ 1
<y>_¢T(€,C)—<y2—y1 y4—y1> <C>+<y1>’

which maps [0, 1]2 onto 7. Then 7;(z,y) = ¢;(®;*(x,y)) with shape functions

16, Q) =A==, 20 =& =0,
©3(&: €) := &¢, ©a(&:¢) == (1= &)¢.

J. Alberty et al. / Matlab program for FEM 123
From the substitution law it follows for the integrals of (9) that
M= [Fnian) - Vi) o)
= /(0’1)2 V(105 0 D7) (P2(6, Q) (V (100 0 PY) (Pr(€.))) | det DOr| d(E,)

= dnon) | Vei6 0@ Dor) (Ve 0) 660

Solving these integrals the local stiffness matrix for a quadrilateral element results in

3b+2(a+ c) —2a+c¢ —3b—(a+c¢) a—2c
M= det(D®dr) —2a+c —3b+2(a+c) a—2c 3b—(a+c)
B 6 —3b—(a+¢) a—2c 3b+ 2(a+ ¢) —2a+c ’
a—2c 3b—(a+c) —2a+c —3b+2(a+)
where

C

(Do7) DO7) ™ = <Z b) .

function M= stinma4(vertices)

D Phi = [vertices(2,:)-vertices(1,:); vertices(4,:)- ...
vertices(1,:)]";

B = inv(D_Phi’*D_Phi);

Cl =12,-2;-2,2]1*B(1,1)+[3,0;0,-3]*B(1,2)+ 2,1;1,2]*B(2,2);

C =10[-1,1;1,-11*B(1,1)+[-3,0;0,3]*B(1,2)+[-1,-2;-2,-1] *B(2, 2);

M= det(D Phi) * [C1 C2; C2 C1] / 6;

6. Assembling the right-hand side

The volume forces are used for assembling the right-hand side. Using the value
of f inthe centre of gravity (xg,ys) of T the integral fT fn; dx in (10) is approximated

by

1 To—T1 T3 — T1
(O ~ — det L US),
/Tfm T ey <yz—y1 va— g1) @51 99)

where kr = 6 if T isatriangle and kp = 4 if T is a paralelogram.

% Vol umre For ces
for j = 1:size(el enents3, 1)
b(el enents3(j,:)) = b(elenments3(j,:)) + ...
det([1 1 1; coordinates(elements3(j,:),:)’']) * ...
f (sun(coordi nates(el enents3(j,:),:))/3)/6;
end
for j = 1:size(el enents4, 1)

124 J. Alberty et al. / Matlab program for FEM

b(el ements4(j,:)) = b(elenments4(j,:)) + ..
det([1 1 1; coordinates(el ements4(j,1:3),:)’]) * ...
f (sunm(coordi nates(elenments4(j,:),:))/4)/4
end

The values of f are given by the function f . mwhich depends on the problem.
The function is called with the coordinates of points in Q and it returns the volume
forces at these locations. For the numerical example shown in figure 3 we used

function Vol uneForce = f(x);
Vol uneForce = ones(size(x,1),1);

Likewise, the Neumann conditions contribute to the right-hand side. The integral
S5 gn; ds in (10) is approximated using the value of g in the centre (za7, yas) of E
with length |E| by

E
/ gn; ds ~ %g(wM,yM)-
E

% Neumann condi ti ons
for j =1 : size(neumann, 1)
b(neumann(j,:))=b(neumann(j,:)) + ..
nor n(coor di nat es(neumann(j,1),:) -
coordi nates(neurmann(j,2),:)) * ...
g(sunm(coordi nates(neurmann(j,:),:))/2)/2;
end

We here use the fact that in Matlab the size of an empty matrix is set equa to
zero and that aloop of 1 through O is totally omitted. In that way, the question of the
existence of Neumann boundary data is to be renounced.

The values of g are given by the function g. m which again depends on the
problem. The function is called with the coordinates of points on Ny and returns the
corresponding stresses. For the numerical example g. mwas

function Stress = g(x)
Stress = zeros(size(x,1),1);

7. Incorporating Dirichlet conditions
With a suitable numbering of the nodes, the system of linear equations resulting

from the construction described in the previous section without incorporating Dirichlet
conditions can be written as follows:

A Ap U . b
<AIz A22> ' <UD> - <bD>’ (12

J. Alberty et al. / Matlab program for FEM 125

with U € RM | Up € RYN—M | Here, U are the values at the free nodes which are to be
determined, Up are the values a the nodes which are on the Dirichlet boundary and
thus are known a priori. Hence, the first block of equations can be rewritten as

All-U:b—A]_z-UD.

In fact, this is the formulation of (6) with Up = 0 at non-Dirichlet nodes.
In the second block of equations in (12) the unknown is bp but since it is not of
interest to us it is omitted in the following.

% Dirichlet conditions

u = sparse(size(coordinates, 1), 1);

u(uni que(dirichlet)) = u_d(coordinates(unique(dirichlet),:));
b=Db- A* u

Thevalues up at the nodes on I'p are given by the function u_d. mwhich depends
on the problem. The function is called with the coordinates of pointsin I'p and returns
the values at the corresponding locations. For the numerical example u_d. mwas

function Dirichl et BoundaryVal ue = u_d(x)
Dirichl et BoundaryVal ue = zeros(size(x,1),1);

8. Computation and displaying the numerical solution

The rows of (7) corresponding to the first M rows of (12) form a reduced system
of equations with a symmetric, positive definite coefficient matrix A1;. It is obtained
from the original system of equations by taking the rows and columns corresponding
to the free nodes of the problem. The restriction can be achieved in Matlab through
proper indexing.

The system of equations is solved by the binary operator \ installed in Matlab
which gives the left inverse of a matrix.

FreeNodes=setdi ff (1: si ze(coordi nates, 1), uni que(dirichlet));
u(Fr eeNodes) =A(Fr eeNodes, Fr eeNodes) \ b(Fr eeNodes) ;

Matlab makes use of the properties of a symmetric, positive definite and sparse
matrix for solving the system of equations efficiently.
A graphical representation of the solution is given by the function show. m

function show el ement s3, el enent s4, coor di nat es, u)

trisurf(elenents3, coordinates(:,1),coordinates(:,2),u ,...
"facecolor’,’ interp’)

hol d on

trisurf(el ements4, coordinates(:,1),coordinates(:,2),u,...
"facecolor’, interp’)

126 J. Alberty et al. / Matlab program for FEM

Solution of the Problem

2
25 3

Figure 3. Solution for the Laplace problem.

hol d of f
vi ew 10, 40) ;
title(’ Solution of the Problen)

Here, the Matlab routinet ri sur f (ELEMENTS, X, Y, U) isused to draw trian-
gulations for equal types of elements. Every row of the matrix ELEMENTS determines
one polygon where the -, y-, and z-coordinate of each corner of this polygon is given
by the corresponding entry in X, Y and U, respectively. The colour of the polygons is
given by values of U. The additional parameters , ' f acecolor’ ,’ interp’, lead
to an interpolated colouring. Figure 3 shows the solution for the mesh defined in
section 4 and the data filesf. m g. m and u_d. mgiven in sections 6 and 7.

Summarising sections 4-8, the main program, which is listed in appendix A, is
structured as follows (the line references are according to the numbering in appen-
dix A):

e Lines 3-10: Loading of the mesh geometry and initialisation.

e Lines 11-19: Assembly of the stiffness matrix in two loops, first over the triangular
elements, then over the quadrilaterals.

e Lines 20-30: Incorporating the volume force in two loops, first over the triangular
elements, then over the quadrilaterals.

e Lines 31-35: Incorporating the Neumann condition.

e Lines 36-39: Incorporating the Dirichlet condition.

e Lines 40-41: Solving the reduced linear system.

e Lines 42-43: Graphica representation of the numerical solution.

J. Alberty et al. / Matlab program for FEM 127

9. The heat equation

For numerical simulations of the heat equation,
ou/ot = Mu+ fin Q x [0,T7,

with an implicit Euler scheme in time, we split the time interval [0, T into N equally
sized subintervals of size dt = 7'/N which leads to the equation

(id — dtB)u, = dtfy + w1, (13)

where f,, = f(x,t,) and u, is the time discrete approximation of v at time t,, = n dt.
The weak form of (13) is

/unvdx—i—dt/Vun-Vvdx:dt(/fnvdx—f—/ gnvdx>+/un1vdx
Q Q Q M Q

with g, = g(z,t,) and notation as in section 2. For each time step, this equation is
solved using finite elements which leads to the linear system

(dtA + B)U, = dtb + BU,_1.

The stiffness matrix A and right-hand side b are as before (see (8)). The mass matrix
B results from the terms [, u,v dz, i€,

Bjr =Y /Tnjnk dz.

TeT

For triangular, piecewise affine elements we obtain

/ e = = det<“"2_'7”1 "]”3_3["1) i ; 1
o DR 5 =yt ws—w)\] 1 o)

Appendix B shows the modified code for the heat equation. The numerical
example was again based on the domain in figure 1, thistime with f =0and up = 1
on the outer boundary. The value on the (inner) circleis still up = 0. On the Neumann
boundary we still have g = 0. Figure 4 displays the solution the given code produced
for four different times 7" = 0.1, 0.2, 0.5 and T" = 1. (Variable T in line 10 of the
main program.)

The main program, listed in appendix B, is structured as follows (the line refer-
ences are according to the numbering in appendix B):

e Lines 3-11: Loading of the mesh geometry and initialisation.

e Lines 12-16: Assembly of the diffness matrix A in a loop over al triangular
elements.

e Lines 17-20: Assembly of the mass matrix B in aloop over al triangular elements.
e Lines 21-22: Defining initial condition of the discrete U.

J. Alberty et al. / Matlab program for FEM

MMW@%//«%///%#//J

a//%f//xﬁ,//?

B

e

s
e

=

TR
=
-

RIS e e
e e

e

S e
SR aRes
T

Fhy

e

S
S

S

- T
Sl
S e et ey

S

e

SR

SR e
S
,//////////////////4

i

o

R et
S o
e
T e
SR

e
e i aa
St e e
e

= S

L
SR
S

.
[y
-
<

o
&
e
Ry

San
S et e

Sy
T
S

i

Lo
-y
———

B
L
e

-
R
SN
S8

= o el

- -
,/////w//////////w/u///////ﬁ//;///,///, S

e

e
- fy//uwzjmw//?
SR

EoE R
e
e

i3

o
¢
o

=

Z

£

ey
T

S

=

e
S

Sy
Bl e
Ly

/
[
e

o
Vi
-
-
e

S

S
B

J
s

L
S

b

7

o

£

S

=

=

Ry
I

N
s

5

=

-

-

S5

S

i
7

.

.
i

.

iy

S
.
.

i

i

7

o

7

i

o

SRS
LR

ICU

steps. In part

the vector of the right-hand side.

e
-
el
L
b
Rt
e

Lty

o

Ime-

Figure 4. Solution for the heat equation.

SET

Loop over the t

lar

step n.

ime
the Neumann condition at time step n.

the volume force at ti

ing

ing

Incorporat

Clear

Ime

step n.
a the fina time

ion at t
ion

at the previous time step n — 1.
hlet condition at time step n.
stem for the soluti
ical solut

f the numer

ion
ion o

inear sy

iricl

ing
the solut
the Di
the reduced |
al representat

ing

ing

ing
iC

Incorporat
Incorporat
Incorporat
Graph

Solv

blem

, we consider the

al problems

1on

convex varl

to non-

1on

le appl

simp

(14)

u=0 onrl

in Q,

ehu=ud —u

e,
/Q

1on

(15

H5(Q),

NS

=0

v dz

u—u3)

(

/EVU-VUdI—
Q

v)

J(u,

128

e Lines 2348

e Lines 26-31
e Lines 32-37
e Lines 38-39

e Lines 4043

e Lines 4447

e Line 25

e Lines 49-50

step.

A nonlinear pro

10.

As a

Ginzburg-Landau equation

for ¢ = 1/100. Its weak formulat

J. Alberty et al. / Matlab program for FEM 129

can aso be regarded as the necessary condition for the minimiser in the variational
problem

min/ F]Vu\z + }(uz - 1)2 dz! (16)
al2 4

We aim to solve (15) with Newton-Raphson’s method. Starting with some «°, in each
iteration step we compute u" — vt € H3(Q) satisfying

DJ(u”,v; u" — u”*l) = J(u”,v), v E H&(Q), a7)
where
DJ(u,v;,w) = / eVuv - Vwdr — / (vw — 3vu2w) dz. (18)
Q Q

The integras in J(U,V) and DJ(U,V; W) are again calculated as a sum over
al elements. The resulting local integrals can be calculated analytically and are imple-
mented in | ocal j . m respectively | ocal dj . m as given in appendix C. The actual
Matlab code again only needs little modifications, shown in appendix C. Essentidly,
one has to initialise the code (with a start vector that fulfils the Dirichlet boundary
condition (lines 9 and 10)), to add aloop (lines 12 and 45), to update the new Newton
approximation (line 41), and to supply a stopping criterion in case of convergence
(lines 42-44).

It is known that the solutions are not unique. Indeed, for any loca minimiser
u, —u is aso aminimiser and O solves the problem as well. The constant function
u = +1 leads to zero energy, but violates the continuity or the boundary conditions.
Hence, boundary or internal layers are observed which separate large regions, where
u is amost constant +1.

In the finite dimensional problem, different initial values u° may lead to different
numerical approximations. Figure 5 displays two possible solutions found for two dif-
ferent starting values after about 20-30 iteration steps. The figure on the left is achieved
with the starting values as chosen in the program provided in appendix C. Changing
the statement in line 9 in appendix Cto U = si gn(coordi nates(:,1)); leads
to the figure on the right.

The main program, which is listed in appendix C, is structured as follows (the
line references are according to the numbering in appendix C):

e Lines 3—7. Loading of the mesh geometry and initialisation.

e Lines 8-10: Setting the starting vector U for the iteration scheme, incorporating
the Dirichlet condition on the solution.

e Lines 11-45; Loop for the Newton—Raphson iteration. It ends after a maximum of
50 iteration steps (set in line 12) or in case of convergence (lines 42—44).

e Lines13-18: Assembly of the matrix of the derivative of the functional J evaluated
at the current iteration step U.

130

el flEoZ o
S fOR.
Y i » AN AR

J. Alberty et al. / Matlab program for FEM

WO
i

o

M

Figure 5. Solutions for the non-linear equation.

Lines 19-24: Assembly of the vector of the functional J evaluated at the current
iteration step U.

Lines 25-30: Incorporating the volume force.

Lines 31-35: Incorporating the Neumann condition.

Lines 36-38: Incorporating the homogeneous Dirichlet conditions of the update
vector .

Lines 3940: Solving the reduced linear system for the update vector V.

Line 41: Updating U.

Lines 42-44: Breaking out of the loop if the update vector W is sufficiently small
(its norm being smaller than 10-1°),

Lines 46-47. Graphica representation of the final iterate.

11. Three-dimensional problems

With a few modifications, the Matlab code for linear 2-dimensional problems

discussed in sections 5-8 can be extended to 3-dimensiona problems. Tetragders are
used as finite elements. The basis functions are defined corresponding to those in two
dimensions, e.g., for atetraeder element 7' let (z;,y;,2;) (j = 1,...,4) bethe vertices
and 7; the corresponding basis functions, i.e.,

0 (ks Yrr 25) = Ojk, Jyk=1,...,4

Each of the* . dat files gets an additiona entry per row. Incoor di nat es. dat itis
the z-component of each node P; = (z;,y;, ;). A typica entry in el enment s3. dat
now reads

j k £ m n,

where k, ¢, m, n are the numbers of vertices P,..., P, of the jth eement.
el enent s4. dat is not used for 3-dimensiona problems. The sequence of nodes is

J. Alberty et al. / Matlab program for FEM 131

organised such that the right-hand side of
1 1 1 1

LTk Ty Tm Tp

Ye Yo Ym Yn
Zk 2 Zm 2n

6|7 = det

is positive. The numbering of surface elements defined in neumann. dat and
dirichl et. dat is done with mathematical positive orientation viewing from out-
side Q onto the surface.

Using the Matlab code in appendix A, cancellation of lines 5, 16-19 and 26-30
and subgtituting 22-24, 33-34, 43 by the following lines gives a short and flexible
tool for solving scaar, linear 3-dimensiona problems:

b(el enments3(j,:)) = b(elements3(j,:)) + ...
det([1,1,1,1;coordinates(el ements3(j,:),:)']) *
f(sum(coordinates(el enents3(j,:),:))/4) | 24;

b(neumann(j,:)) = b(neumann(j,:)) + ..
nor m(cross(coordi nat es(neunann(j,3),:) - ...
coordi nat es(neumann(j, 1), :), coordi nates(neumann(j,2),:) -
coordi nates(neumann(j,1),:))) ...
* g(sun(coordi nat es(neumann(j,:),:))/3)/6;

showsurface([dirichlet; neumann], coordi nates, full (u));

The graphical representation for 3-dimensional problems can be done by a short-
ened version of show. mfrom section 8.

function showsurface(surface, coordi nat es, u)

trisurf(surface, coordinates(:, 1), coordinates(:,2),...
coordinates(:,3),u, 'facecolor’,’ interp’)

axis off

vi ew(160, - 30)

The temperature distribution of asimplified piston is presented in figure 6. Calcu-
lation of the temperature distribution with 3728 nodes and 15111 elements (including
the graphical output) takes a few minutes on a workstation.

S

7

=

S
»‘,ﬁ-
TSEAT

AN
N

NS

N
Faravas

AN\

NS
SSSS
N
AN
S
=
APATN
RS
S
\
i’

L‘BL:
=
=
K
5
WS

R
i

-
v~y
NSE
<3
X AAV
i,
N
TANANAY
%)

IS

WY

e’ ,‘:’:5
S5

St

SSS,
IS
S

%
oz

i
Lo
Boi
(7

Figure 6. Temperature distribution of a piston.

132 J. Alberty et al. / Matlab program for FEM

The main program, which is listed in appendix D, is structured as follows (the
line references are according to the numbering in appendix D):

e Lines 3-9: Loading of the mesh geometry and initialisation.

e Lines 11-14: Assembly of the stiffness matrix A in aloop over al tetraeders.
e Lines 16-20: Incorporating the volume force in aloop over al tetraeders.

e Lines 22-27: Incorporating the Neumann condition.

e Lines 29-31: Incorporating the Dirichlet condition.

e Line 33: Solving the reduced linear system.

e Line 35: Graphica representation of the numerical solution.

Appendix
A. The complete Matlab code for the 2-dimensional Laplace problem

The following program can be found in the package, under the path acf / f end.
It is cdled fenRd. m The other files under that path are the fixed functions
stima3. mstim4. m and show. mas well as the functions and data files that
describe the discretisation and the data of the problem, namely coor di nat es. dat ,
el enent s3. dat, el ement s4. dat, diri chl et. dat, neumann. dat, f. m
g. m and u.d. m Those problem-describing files must be adapted by the user for
other geometries, discretisations, and/or data.

1 % FEMRD two-dinmensional finite el enent nethod for Laplacian.

load dirichlet.dat; dirichlet(:,1) =[];

FreeNodes=set di ff(1: size(coordi nates, 1), uni que(dirichlet));
A = sparse(size(coordi nates, 1), si ze(coordi nates, 1));

10 b = sparse(size(coordinates, 1),1);

11 % Assenbly

12 for j = 1:size(el enents3, 1)

13 A(el ements3(j,:),elements3(j,:)) = A(elements3(j,:), ...
14 el ements3(j,:)) + stima3(coordi nates(elements3(j,:),:));
15 end

16 for j = 1l:size(el ements4,1)

17 A(elements4(j,:),elements4(j,:)) = A(elements4(j,:),

18 el ements4(j,:)) + stima4(coordinates(elements4(j,:),:));
19 end

20 % Vol ume Forces

21 for j = 1:size(elenents3, 1)

22 b(elements3(j,:)) = b(elements3(j,:)) + ...

23 det([1,1,1; coordinates(elements3(j,:),:)"]) * ...

2 %lnitialisation

3 load coordi nates.dat; coordinates(:,1)=[];

4 eval ('l oad el ements3.dat; elenments3(:,1)=[];", elenments3=[];");
5 eval ('l oad el enents4.dat; elenments4(:,1)=[];’, elementsd=[];");
6 eval ('l oad neunmann. dat; neumann(:,1) = [];’, neumann=[];");

7

8

9

J. Alberty et al. / Matlab program for FEM 133

24 f(sun(coordi nates(el ements3(j,:),:))/3)/6;
25 end

26 for j = 1:size(el enents4, 1)

27 b(elements4(j,:)) = b(elements4(j,:)) + ...

28 det([1,1,1; coordinates(elements4(j,1:3),:)’']) * ...
29 f(sunm(coordi nates(elerments4(j,:),:))/4)/4;
30 end

31 % Neurmann conditions

32 for j =1 : size(neumann, 1)

33 b(neumann(j,:))=b(neumann(j,:)) + ...

34 nor n{ coor di nat es(neumann(j, 1), :)-coordi nates(neumann(j,2),:))*. ..
g(sum(coordi nates(neumann(j,:),:))/2)/2;

35 end

36 % Dirichlet conditions

37 u = sparse(size(coordinates, 1),1);

38 u(unique(dirichlet)) = u_d(coordi nates(unique(dirichlet),:));

39 b=Db - A* u

40 % Conput ati on of the solution

41 u(FreeNodes) = A(FreeNodes, FreeNodes) \ b(FreeNodes);

42 % graphi c representation

43 show el enent s3, el enent s4, coordi nates, full (u));

B. Matlab code for the heat equation

The following program can be found in the package, under the path acf / f end_
heat . It is caled f enRd_heat. m The other files under that path are the fixed
functions st i ma3. mand show. mas well as the functions and data files that de-
scribe the discretisation and the data of the problem, namely coor di nat es. dat
el ement s3. dat, dirichl et.dat, neumann.dat, f.m g.m and u.d. m
Those problem-describing files must be adapted by the user for other geometries,
discretisations, and/or data.

1 %-EM2D HEAT finite elenent method for two-di mensional heat equation.
2 %nitialisation
3 load coordinates. dat; coordinates(:,1)=[];
4 | oad el ements3.dat; elenments3(:,1)=[];
5 eval (' | oad neumann. dat; neumann(:,1) =[];’, neumann=[];"');
6 load dirichlet.dat; dirichlet(:,1) =1[];
7 FreeNodes=setdi ff(1l:size(coordinates,1),unique(dirichlet));
8 A = sparse(size(coordinates, 1), size(coordinates, 1));
9 B = sparse(size(coordinates, 1), size(coordi nates, 1));

10 T=1; dt = 0.01; N = T/dt;

11 U = zeros(size(coordinates, 1), N+1);

12 % Assenbly

13 for j = 1l:size(el ements3, 1)

14 A(elenments3(j,:),elenents3(j,:)) = A(elenments3(j,:),

[EY
&)

el ements3(j,:)) + stima3(coordi nates(el ements3(j,:),:));

[EY
(2]

end

134 J. Alberty et al. / Matlab program for FEM

17 for j = 1l:size(el ements3, 1)

18 B(el ements3(j,:),elements3(j,:)) = B(elements3(j,:), .

19 el ements3(j,:)) + det([1,1,1;coordinates(elenments3(j,:),:)'])...
*[2,1,1;1,2,1;1,1, 2]/ 24;

20 end

21 %Initial Condition

22 UY(:,1) = zeros(size(coordinates,1),1);

23 %time steps

24 for n = 2: N+l

25 b = sparse(size(coordinates, 1), 1);

26 % Vol une For ces

27 for j = 1l:size(elenents3, 1)

28 b(elements3(j,:)) = b(elements3(j,:)) + ...

29 det([1,1,1; coordinates(elements3(j,:),:)"]) * ...

30 dt *f (sum(coordi nates(el enents3(j,:),:))/3,n*dt)/ 6

31 end

32 % Neumann condi tions

33 for j =1 : size(neumann, 1)

34 b(neurmann(j,:)) = b(neumann(j,:)) + ...

35 nor n{ coor di nat es(neumann(j, 1), :)-coordi nat es(neumann(j,2),:))*...
36 dt *g(sum(coordi nat es(neunmann(j,:),:))/2,n*dt)/2

37 end

38 % previous tinestep

39 b=b+B* U:,n-1);

40 % Dirichlet conditions

41 u = sparse(size(coordinates, 1),1);

42 u(uni que(dirichlet)) = u_d(coordi nates(unique(dirichlet),:),n*dt);
43 b=Db- (dt * A+ B) * u;

44 % Conput ati on of the solution

45 u(FreeNodes) = (dt*A(FreeNodes, FreeNodes) + ..

46 B(Fr eeNodes, Fr eeNodes))\ b(Fr eeNodes) ;
47 U:,n) =u;
48 end

49 % graphi c representation
50 show(el ements3,[],coordinates, full (U(:, N+1)));

C. Matlab code for the nonlinear problem

Thefollowing program can be found in the package, under the path acf / f end_
nonl i near. It is called f em2d_nonl i near. m The other files under that path
are the fixed function show. mas well as the functions and data files that describe
the functional J, its derivative D.J, the discretisation and the data of the prob-
lem, namely, | ocal j . m | ocal dj . m coor di nat es. dat, el enrent s3. dat,
dirichlet.dat,f. mandu_d. m Those problem-describing files must be adapted
by the user for other nonlinear problems, geometries, discretisations, and/or data (in-
cluding possibly adding appropriate files neunann. dat and g. m).

1 % FEM2D_NONLINEAR finite el ement nethod for two-di mensiona
% nonl i near equati on.

J. Alberty et al. / Matlab program for FEM 135

2 %lnitialisation

3 load coordinates. dat; coordinates(:,1)=[];

4 | oad el ements3.dat; elements3(:,1)=[];

5 eval ('l oad neumann. dat; neumann(:,1) = [];’,’ neumann=[];");
6 load dirichlet.dat; dirichlet(:,1) =1[];

7 FreeNodes=setdiff(1l:size(coordinates,1),unique(dirichlet));
8 %lnitial value

9 U = -ones(size(coordinates, 1), 1);

10 UY(unique(dirichlet)) = u_d(coordi nates(unique(dirichlet),:));
11 % Newt on- Raphson iteration

12 for i=1:50

13 % Assenbly of DJ(U)

14 A = sparse(size(coordinates, 1), size(coordi nates, 1));

15 for j = 1:size(el ements3, 1)
16 A(el ements3(j,:),elements3(j,:)) = A(el ements3(j,:),
el ements3(j,:))
17 + |l ocal dj (coordi nates(el ements3(j,:),:),U(el enents3(j,:)));
18 end

19 % Assenbly of J(U)
20 b = sparse(size(coordinates, 1),1);
21 for j = 1l:size(elenments3, 1);

22 b(el ements3(j,:)) = b(elements3(j,:)) ...

23 + local j(coordi nates(el ements3(j,:),:), Uelements3(j,:)));
24 end

25 % Vol ume Forces

26 for j = 1:size(el ements3, 1)

27 b(el enents3(j,:)) = b(elenents3(j,:)) + ...

28 det([1 1 1; coordinates(elenments3(j,:),:)’]) * ...

29 f (sun{coordi nates(el ements3(j,:),:))/3)/6

30 end

31 % Neumann condi ti ons
32 for j =1 : size(neumann, 1)

33 b(neumann(j, :))=b(neumann(j,:))
- norm(coordi nat es(neumann(j,1),:)-
34 coordi nates(neurmann(j,2),:)) * ...

*g(sum(coordi nat es(neunmann(j,:),:))/2)/2
35 end
36 % Dirichlet conditions
37 W= zeros(size(coordinates, 1),1);
38 Wunique(dirichlet)) = 0;
39 % Sol vi ng one Newton step
40 WFreeNodes) = A(FreeNodes, FreeNodes)\ b(Fr eeNodes) ;
41 u=U- W
42 if norm(W < 107(-10)

43 br eak
44 end
45 end

46 % graphi ¢ representation
47 show el ements3,[], coordinates, full (U))

136 J. Alberty et al. / Matlab program for FEM

function b = localj(vertices, U

Eps = 1/100;

G = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];
Area = det([ones(1,3);vertices']) / 2;
b=Area*((Eps*G*G-[2,1,1;1,2,1;1,1,2]/12) * U+ ...

[4*U(1) "3+ U(2)"3+U(3)"3+3*U(1) " 2*(U(2)+U(3))+2*U(1) ...
“(U(2)"2+U(3) " 2) +U(2) *U(3) * (U(2) +1(3)) +2* U(1) *U(2) *) 3) ;
4*Y(2) "3+ U(1)"3+U(3)"3+3*U(2) " 2*(U(1) +U(3))+2*U(2) ...
*(U(1)72+U(3)"2) +U(1) *U(3) *(U(1) +U(3)) +2*U(1) *U(2) *U(3) ;
4*Y(3) "3+ U(2)"3+U(1)"3+3*Y(3)"2*(U(2)+U(1))+2*U(3) ...
“(U(2)"2+4U(1)"2) +U(2) *U(1) * (U(2) +U(1)) +2* (1) *U(2) *(3)] / 60) ;

function M = | ocal dj (vertices, U

Eps = 1/100;

G = [ones(1,3);vertices’] \ [zeros(1,2);eye(2)];
Area = det([ones(1,3);vertices']) / 2;

M= Area*(Eps*G*G-[2,1,1;1,2,1;1,1,2]/12 + ...

[12*U(1) " 2+42* (U(2) " 2+U(3) " 2+U(2) *Y(3)) +6*U(1) *(U(2) +U(3)), . ..
3*(U(1)"2+U(2)"2) +U(3) " 2+4*U(1) *U(2) +2* U(3) *(U(1) +U(2)), . ..
3*(U(1)"2+U(3) " 2) +U(2) " 2+4* (1) *(3) +2*U(2) * (U(1) +U(3)) ;
3*(U(1)"2+U(2) " 2) +U(3) " 2+4*U(1) *U(2) +2* U(3) *(U(1) +U(2)), . . .
12%U(2) " 2+2* (U(1) “2+U(3) "2+U(1) *UY(3)) +6*U(2) *(U(1) +U(3)), . ..
37(U(2)"2+U(3) " 2) +U(1) " 2+4*(2) *U(3) +2*U(1) * (U(2) +U(3)) ;
3*(U(1)"2+U(3) " 2) +U(2) " 2+4* (1) *U(3) +2*U(2) *(U(1) +U(3)), . . .
3*(U(2)"2+U(3)"2) +U(1) " 2+4*U(2) *U(3) +2* U(1) *(U(2) +U(3)), . ..
12*U(3) " 2+2* (U(1) " 2+U(2) " 2+U(1) *U(2)) +6* U(3) * (U(1) +U(2))]/ 60) ;

D. Matlab code for the 3-dimensional problem

The following program can be found in the package, under the path acf / f enBd.
It is caled fenBd. m The other files under that path are the fixed functions
stima3. m and showsur f ace. mas well as the functions and data files that de-
scribe the discretisation and the data of the problem, namely coor di nat es. dat ,
el ements3. dat, dirichl et.dat, neumann.dat, f.m g.m and u.d. m
Those problem-describing files must be adapted by the user for other geometries,
discretisations, and/or data.

1 % FEMBD three-dinensional finite el enent nethod for Laplacian.
2 %lInitialisation
3 load coordi nates.dat; coordinates(:,1)=[];
4 | oad el enents3.dat; elenents3(:,1)=[];
5 eval ('l oad neunmann. dat; neumann(:,1) = [];’, neumann=[];");
6 load dirichlet.dat; dirichlet(:,1) =1[];
7 FreeNodes=setdiff(1:size(coordinates, 1), unique(dirichlet));
8 A = sparse(size(coordi nates, 1), size(coordinates, 1));
9 b = sparse(size(coordi nates, 1),1);

10 % Assenbly

11 for j = 1:size(el enents3, 1)

J. Alberty et al. / Matlab program for FEM

12 A(elements3(j,:),elenents3(j,:)) = A(elements3(j,:),

13 el ements3(j,:)) + stima3(coordi nates(elements3(j,:),:));
14 end

15 % Vol une Forces

16 for j = 1:size(elenments3, 1)

17 b(el enents3(j,:)) = b(elenents3(j,:)) + ...
18 det([1,1,1,1;coordinates(el ements3(j,:),:)’']) ...
19 * f(sum(coordi nates(el ements3(j,:),:))/4) | 24;
20 end
21 % Neumann condi ti ons
22 for j =1 : size(neumann, 1)
23 b(neumann(j,:)) = b(neumann(j,:)) + ..
24 nor n(cr oss(coordi nat es(neumann(j,3),:)- ...
coor di nat es(neurmann(j,1),:),
25 coordi nat es(neunmann(j, 2),:)-coordi nates(neumann(j,1),:)))
26 * g(sumcoordi nat es(neumann(j,:),:))/3)/6
27 end
28 % Dirichlet conditions
29 u = sparse(size(coordinates, 1),1);

30 u(unique(dirichlet)) = u_d(coordi nates(unique(dirichlet),:));

31b=b- A* vy

32 % Conput ati on of the solution

33 u(FreeNodes) = A(FreeNodes, FreeNodes) \ b(FreeNodes);
34 % Graphic representation

35 showsurface([dirichlet; neumann], coordi nates,full (u));

References

137

[1] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied

Mathematics, Vol. 15 (Springer, New York, 1994).

[2] PG. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).
[3] L.Langemyr et al., Partial Differential Equation Toolbox User’s Guide (The Math Works, Inc. 1995).

[4] H.R. Schwarz, Methode der Finiten Elemente (Teubner, Stuttgart, 1991).

