
Programing the Finite Element Method with
Matlab

Jack Chessa∗

3rd October 2002

1 Introduction

The goal of this document is to give a very brief overview and direction
in the writing of finite element code using Matlab. It is assumed that the
reader has a basic familiarity with the theory of the finite element method,
and our attention will be mostly on the implementation. An example finite
element code for analyzing static linear elastic problems written in Matlab
is presented to illustrate how to program the finite element method. The
example program and supporting files are available at
http://www.tam.northwestern.edu/jfc795/Matlab/

1.1 Notation

For clarity we adopt the following notation in this paper; the bold italics font
v denotes a vector quantity of dimension equal to the spacial dimension of the
problem i.e. the displacement or velocity at a point, the bold non-italicized
font d denotes a vector or matrix which is of dimension of the number of
unknowns in the discrete system i.e. a system matrix like the stiffness matrix,
an uppercase subscript denotes a node number whereas a lowercase subscript
in general denotes a vector component along a Cartesian unit vector. So, if d
is the system vector of nodal unknowns, uI is a displacement vector of node I
and uIi is the component of the displacement at node I in the i direction, or
uI · ei. Often Matlab syntax will be intermixed with mathematical notation

∗Graduate Research Assistant, Northwestern University (j-chessa@northwestern.edu)

1

which hopefully adds clarity to the explanation. The typewriter font, font,
is used to indicate that Matlab syntax is being employed.

2 A Few Words on Writing Matlab Programs

The Matlab programming language is useful in illustrating how to program
the finite element method due to the fact it allows one to very quickly code
numerical methods and has a vast predefined mathematical library. This is
also due to the fact that matrix (sparse and dense), vector and many linear
algebra tools are already defined and the developer can focus entirely on
the implementation of the algorithm not defining these data structures. The
extensive mathematics and graphics functions further free the developer from
the drudgery of developing these functions themselves or finding equivalent
pre-existing libraries. A simple two dimensional finite element program in
Matlab need only be a few hundred lines of code whereas in Fortran or C++
one might need a few thousand.

Although the Matlab programming language is very complete with re-
spect to it’s mathematical functions there are a few finite element specific
tasks that are helpful to develop as separate functions. These have been
programed and are available at the previously mentioned web site.

As usual there is a trade off to this ease of development. Since Matlab
is an interpretive language; each line of code is interpreted by the Matlab
command line interpreter and executed sequentially at run time, the run
times can be much greater than that of compiled programming languages
like Fortran or C++. It should be noted that the built-in Matlab functions
are already compiled and are extremely efficient and should be used as much
as possible. Keeping this slow down due to the interpretive nature of Matlab
in mind, one programming construct that should be avoided at all costs is the
for loop, especially nested for loops since these can make a Matlab programs
run time orders of magnitude longer than may be needed. Often for loops
can be eliminated using Matlab’s vectorized addressing. For example, the
following Matlab code which sets the row and column of a matrix A to zero
and puts one on the diagonal

for i=1:size(A,2)

A(n,i)=0;

end

for i=1:size(A,1)

A(i,n)=0;

end

2

A(n,n)=1;

should never be used since the following code

A(:,n)=0;

A(:,n)=0;

A(n,n)=0;

does that same in three interpreted lines as opposed to nr+nc+1 interpreted
lines, where A is a nr×nc dimensional matrix. One can easily see that this can
quickly add significant overhead when dealing with large systems (as is often
the case with finite element codes). Sometimes for loops are unavoidable,
but it is surprising how few times this is the case. It is suggested that after
developing a Matlab program, one go back and see how/if they can eliminate
any of the for loops. With practice this will become second nature.

3 Sections of a Typical Finite Element Pro-

gram

A typical finite element program consists of the following sections

1. Preprocessing section

2. Processing section

3. Post-processing section

In the preprocessing section the data and structures that define the particular
problem statement are defined. These include the finite element discretiza-
tion, material properties, solution parameters etc. . The processing section is
where the finite element objects i.e. stiffness matrices, force vectors etc. are
computed, boundary conditions are enforced and the system is solved. The
post-processing section is where the results from the processing section are
analyzed. Here stresses may be calculated and data might be visualized. In
this document we will be primarily concerned with the processing section.
Many pre and post-processing operations are already programmed in Matlab
and are included in the online reference; if interested one can either look di-
rectly at the Matlab script files or type help ’function name’ at the Matlab
command line to get further information on how to use these functions.

3

4 Finite Element Data Structures in Matlab

Here we discuss the data structures used in the finite element method and
specifically those that are implemented in the example code. These are some-
what arbitrary in that one can imagine numerous ways to store the data for
a finite element program, but we attempt to use structures that are the most
flexible and conducive to Matlab. The design of these data structures may be
depend on the programming language used, but usually are not significantly
different than those outlined here.

4.1 Nodal Coordinate Matrix

Since we are programming the finite element method it is not unexpected that
we need some way of representing the element discretization of the domain.
To do so we define a set of nodes and a set of elements that connect these
nodes in some way. The node coordinates are stored in the nodal coordinate
matrix. This is simply a matrix of the nodal coordinates (imagine that).
The dimension of this matrix is nn× sdim where nn is the number of nodes
and sdim is the number of spacial dimensions of the problem. So, if we
consider a nodal coordinate matrix nodes the y-coordinate of the nth node is
nodes(n,2). Figure 1 shows a simple finite element discretization. For this
simple mesh the nodal coordinate matrix would be as follows:

nodes =


0.0 0.0
2.0 0.0
0.0 3.0
2.0 3.0
0.0 6.0
2.0 6.0

 . (1)

4.2 Element Connectivity Matrix

The element definitions are stored in the element connectivity matrix. This
is a matrix of node numbers where each row of the matrix contains the con-
nectivity of an element. So if we consider the connectivity matrix elements

that describes a mesh of 4-node quadrilaterals the 36th element is defined
by the connectivity vector elements(36,:) which for example may be [36

42 13 14] or that the elements connects nodes 36→ 42→ 13→ 14. So for

4

the simple mesh in Figure 1 the element connectivity matrix is

elements =


1 2 3
2 4 3
4 5 2
6 5 4

 . (2)

Note that the elements connectivities are all ordered in a counter-clockwise
fashion; if this is not done so some Jacobian’s will be negative and thus can
cause the stiffnesses matrix to be singular (and obviously wrong!!!).

4.3 Definition of Boundaries

In the finite element method boundary conditions are used to either form
force vectors (natural or Neumann boundary conditions) or to specify the
value of the unknown field on a boundary (essential or Dirichlet boundary
conditions). In either case a definition of the boundary is needed. The most
versatile way of accomplishing this is to keep a finite element discretization
of the necessary boundaries. The dimension of this mesh will be one order
less that the spacial dimension of the problem (i.e. a 2D boundary mesh for
a 3D problem, 1D boundary mesh for a 2D problem etc.). Once again let’s
consider the simple mesh in Figure 1. Suppose we wish to apply a boundary
condition on the right edge of the mesh then the boundary mesh would be the
defined by the following element connectivity matrix of 2-node line elements

right Edge =

[
2 4
4 6

]
. (3)

Note that the numbers in the boundary connectivity matrix refer to the same
node coordinate matrix as do the numbers in the connectivity matrix of the
interior elements. If we wish to apply an essential boundary conditions on
this edge we need a list of the node numbers on the edge. This can be easily
done in Matlab with the unique function.
nodesOnBoundary = unique(rightEdge);

This will set the vector nodesOnBoundary equal to [2 4 6]. If we wish to
from a force vector from a natural boundary condition on this edge we simply
loop over the elements and integrate the force on the edge just as we would
integrate any finite element operators on the domain interior i.e. the stiffness
matrix K.

5

4.4 Dof Mapping

Ultimately for all finite element programs we solve a linear algebraic system
of the form

Kd = f (4)

for the vector d. The vector d contains the nodal unknowns for that define
the finite element approximation

uh(x) =
nn∑
I=1

NI(x)dI (5)

where NI(x) are the finite element shape functions, dI are the nodal un-
knowns for the node I which may be scalar or vector quantities (if uh(x) is
a scalar or vector) and nn is the number of nodes in the discretization. For
scalar fields the location of the nodal unknowns in d is most obviously as
follows

dI = d(I), (6)

but for vector fields the location of the nodal unknown dIi, where I refers to
the node number and i refers to the component of the vector nodal unknown
dI , there is some ambiguity. We need to define a mapping from the node
number and vector component to the index of the nodal unknown vector d.
This mapping can be written as

f : {I, i} → n (7)

where f is the mapping, I is the node number, i is the component and n is
the index in d. So the location of unknown uIi in d is as follows

uIi = df(I,i). (8)

There are two common mappings used. The first is to alternate between
each spacial component in the nodal unknown vector d. With this arrange-
ment the nodal unknown vector d is of the form

d =



u1x

u1y
...
u2x

u2y
...

unnx
unn y

...


(9)

6

where nn is again the number of nodes in the discretization. This mapping
is

n = sdim(I − 1) + i. (10)

With this mapping the i component of the displacement at node I is located
as follows in d

dIi = d(sdim*(I-1) + i). (11)

The other option is to group all the like components of the nodal un-
knowns in a contiguous portion of d or as follows

d =



u1x

u2x
...
unx
u1y

u2y
...


(12)

The mapping in this case is

n = (i− 1)nn+ I (13)

So for this structure the i component of the displacement at node I is located
at in d

dIi = d((i-1)*nn + I) (14)

For reasons that will be appreciated when we discuss the scattering of element
operators into system operators we will adopt the latter dof mapping. It is
important to be comfortable with these mappings since it is an operation
that is performed regularly in any finite element code. Of course which ever
mapping is chosen the stiffness matrix and force vectors should have the same
structure.

5 Computation of Finite Element Operators

At the heart of the finite element program is the computation of finite element
operators. For example in a linear static code they would be the stiffness
matrix

K =

∫
Ω

BT C B dΩ (15)

7

and the external force vector

f ext =

∫
Γt

Nt dΓ. (16)

The global operators are evaluated by looping over the elements in the dis-
cretization, integrating the operator over the element and then to scatter the
local element operator into the global operator. This procedure is written
mathematically with the Assembly operator A

K = Ae

∫
Ωe

BeT C Be dΩ (17)

5.1 Quadrature

The integration of an element operator is performed with an appropriate
quadrature rule which depends on the element and the function being inte-
grated. In general a quadrature rule is as follows∫ ξ=1

ξ=−1

f(ξ)dξ =
∑
q

f(ξq)Wq (18)

where f(ξ) is the function to be integrated, ξq are the quadrature points and
Wq the quadrature weights. The function quadrature generates a vector of
quadrature points and a vector of quadrature weights for a quadrature rule.
The syntax of this function is as follows

[quadWeights,quadPoints] = quadrature(integrationOrder,

elementType,dimensionOfQuadrature);

so an example quadrature loop to integrate the function f = x3 on a trian-
gular element would be as follows

[qPt,qWt]=quadrature(3,’TRIANGULAR’,2);

for q=1:length(qWt)

xi = qPt(q); % quadrature point

% get the global coordinte x at the quadrature point xi

% and the Jacobian at the quadrature point, jac

...

f_int = f_int + x^3 * jac*qWt(q);

end

8

5.2 Operator ”Scattering”

Once the element operator is computed it needs to be scattered into the
global operator. An illustration of the scattering of an element force vector
into a global force vector is shown in Figure 2. The scattering is dependent
on the element connectivity and the dof mapping chosen. The following code
performs the scatter indicated in Figure 2

elemConn = element(e,:); % element connectivity

enn = length(elemConn);

for I=1:enn; % loop over element nodes

for i=1:2 % loop over spacial dimensions

Ii=nn*(i-1)+sctr(I); % dof map

f(Ii) = f(Ii) + f((i-1)*enn+I);

end

end

but uses a nested for loop (bad bad bad). This is an even more egregious act
considering the fact that it occurs within an element loop so this can really
slow down the execution time of the program (by orders of magnitude in many
cases). And it gets even worse when scattering a matrix operator (stiffness
matrix) since we will have four nested for loops. Fortunately, Matlab allows
for an easy solution; the following code performs exactly the same scattering
as is done in the above code but with out any for loops, so the execution
time is much improved (not to mention that it is much more concise).

sctr = element(e,:); % element connectivity

sctrVct = [sctr sctr+nn]; % vector scatter

f(sctrVct) = f(sctrVct) + fe;

To scatter an element stiffness matrix into a global stiffness matrix the fol-
lowing line does the trick

K(sctrVct,sctrVct) = K(sctrVct,sctrVct) + ke;

This terse array indexing of Matlab is a bit confusing at first but if one
spends a bit of time getting used to it, it will become quite natural and
useful.

5.3 Enforcement of Essential Boundary Conditions

The final issue before solving the linear algebraic system of finite element
equations is the enforcement of the essential boundary conditions. Typically

9

this involves modifying the system

Kd = f (19)

so that the essential boundary condition

dn = d̄n (20)

is satisfied while retaining the original finite element equations on the un-
constrained dofs. In (20) the subscript n refers to the index of the vector d
not to a node number. An easy way to enforce (20) would be to modify nth

row of the K matrix so that

Knm = δnm ∀m ∈ {1, 2 . . . N} (21)

where N is the dimension of K and setting

fn = d̄n. (22)

This reduces the nth equation of (19) to (20). Unfortunately, this destroys
the symmetry of K which is a very important property for many efficient
linear solvers. By modifying the nth column of K as follows

Km,n = δnm ∀m ∈ {1, 2 . . . N}. (23)

We can make the system symmetric. Of course this will modify every equa-
tion in (19) unless we modify the force vector f

fm = Kmnd̄n. (24)

If we write the modified kth equation in (19)

Kk1d1 +Kk2d2 + . . . Kk(n−1)dn−1+

Kk(n+1)dn+1 + . . .+KkNdN = fk −Kknd̄n (25)

it can be seen that we have the same linear equations as in (19), but just
with the internal force from the constrained dof. This procedure in Matlab
i s as follows

f = f - K(:,fixedDofs)*fixedDofValues;

K(:,fixedDofs) = 0;

K(fixedDofs,:) = 0;

K(fixedDofs,fixedDofs) = bcwt*speye(length(fixedDofs));

f(fixedDofs) = bcwt*fixedDofValues;

where fixedDofs is a vector of the indicies in d that are fixed, fixedDofValues
is a vector of the values that fixedDofs are assigned to and bcwt is a
weighing factor to retain the conditioning of the stiffness matrix (typically
bcwt = trace(K)/N).

10

6 Where To Go Next

Hopefully this extremely brief overview of programming simple finite element
methods with Matlab has helped bridge the gap between reading the theory
of the finite element method and sitting down and writing ones own finite
element code. The examples in the Appendix should be looked at and run,
but also I would suggest trying to write a simple 1D or 2D finite element
code from scratch to really solidify the method in ones head. The examples
can then be used as a reference to diminish the struggle. Good Luck!

11

A Installation of Example Matlab Program

All the functions needed to run the example programs as well as the examples
themselves can be found at
http://www.tam.northwestern.edu/jfc795/Matlab/

I believe that the following files are required, but if one gets a run error about
function not found chances are that I forgot to list it here but it is in one of
the Matlab directories at the above web site.

• MeshGenerationsquare node array.m: generates an array of nodes in
2D

• MeshGenerationmake elem.m: generates elements on an array of nodes

• MeshGenerationmsh2mlab.m: reads in a Gmsh file

• MeshGenerationplot mesh.m: plots a finite element mesh

• PostProcessingplot field.m: plots a finite element field

• quadrature.m: returns various quadrature rules

• lagrange basis.m: return the shape functions and gradients of the shape
functions in the parent coordinate system for various elements

There are many additional files that one might find useful and an interested
individual can explore these on there own. These fies should be copied either
the directory which contains the example script file or into a directory that
is in the Matlab search path.

12

B Example: Beam Bending Problem

The first example program solves the static bending of a linear elastic beam.
The configuration of the problem is shown in Figure 3 and the program can
be found at
http://www.tam.northwestern.edu/jfc795/Matlab/

Examples/Static/beam.m

The exact solution for this problem is as follows

σ11 = −P (L− x)y

I
σ22 = 0

σ12 =
P

2I
(c2 − y2)

u1 = − Py

6EI

{
3
(
L2 − (L− x)2

)
+ (2 + ν)(y2 − c2))

}
u2 =

Py

6EI

{
3
(
(L− x)3 − L3

)
−
[
(4 + 5ν)c2 + 3L2

]
x+ 3ν(L− x)y2

}
This problem can be run with three element types; three node triangle

element, a four node quadrilateral element and a nine node quadrilateral ele-
ment. Also, one can choose between plane strain or plane stress assumption.

% beam.m

%

% Solves a linear elastic 2D beam problem (plane stress or strain)

% with several element types.

%

% ^ y

% |

% ---

% | |

% | |

% ---------> x | 2c

% | |

% | L |

% ---

%

% with the boundary following conditions:

%

% u_x = 0 at (0,0), (0,-c) and (0,c)

% u_y = 0 at (0,0)

%

% t_x = y along the edge x=0

% t_y = P*(x^2-c^2) along the edge x=L

%

% **

%

% This file and the supporting matlab files can be found at

% http://www.tam.northwestern.edu/jfc795/Matlab

%

% by Jack Chessa

% Northwestern University

13

%

% **

clear

colordef black

state = 0;

% **

% *** I N P U T ***

% **

tic;

disp(’**’)

disp(’*** S T A R T I N G R U N ***’)

disp(’**’)

disp([num2str(toc),’ START’])

% MATERIAL PROPERTIES

E0 = 10e7; % Young’s modulus

nu0 = 0.30; % Poisson’s ratio

% BEAM PROPERTIES

L = 16; % length of the beam

c = 2; % the distance of the outer fiber of the beam from the mid-line

% MESH PROPERTIES

elemType = ’Q9’; % the element type used in the FEM simulation; ’T3’ is for a

% three node constant strain triangular element, ’Q4’ is for

% a four node quadrilateral element, and ’Q9’ is for a nine

% node quadrilateral element.

numy = 4; % the number of elements in the x-direction (beam length)

numx = 18; % and in the y-direciton.

plotMesh = 1; % A flag that if set to 1 plots the initial mesh (to make sure

% that the mesh is correct)

% TIP LOAD

P = -1; % the peak magnitude of the traction at the right edge

% STRESS ASSUMPTION

stressState=’PLANE_STRESS’; % set to either ’PLANE_STRAIN’ or "PLANE_STRESS’

% nuff said.

% **

% *** P R E - P R O C E S S I N G ***

% **

I0=2*c^3/3; % the second polar moment of inertia of the beam cross-section.

%%%

% COMPUTE ELASTICITY MATRIX

if (strcmp(stressState,’PLANE_STRESS’)) % Plane Strain case

C=E0/(1-nu0^2)*[1 nu0 0;

nu0 1 0;

0 0 (1-nu0)/2];

else % Plane Strain case

C=E0/(1+nu0)/(1-2*nu0)*[1-nu0 nu0 0;

nu0 1-nu0 0;

0 0 1/2-nu0];

end

%%

% GENERATE FINITE ELEMENT MESH

%

14

% Here we gnerate the finte element mesh (using the approriate elements).

% I won’t go into too much detail about how to use these functions. If

% one is interested one can type - help ’function name’ at the matlab comand

% line to find out more about it.

%

% The folowing data structures are used to describe the finite element

% discretization:

%

% node - is a matrix of the node coordinates, i.e. node(I,j) -> x_Ij

% element - is a matrix of element connectivities, i.e. the connectivity

% of element e is given by > element(e,:) -> [n1 n2 n3 ...];

%

% To apply boundary conditions a description of the boundaries is needed. To

% accomplish this we use a separate finite element discretization for each

% boundary. For a 2D problem the boundary discretization is a set of 1D elements.

%

% rightEdge - a element connectivity matrix for the right edge

% leftEdge - I’ll give you three guesses

%

% These connectivity matricies refer to the node numbers defined in the

% coordinate matrix node.

disp([num2str(toc),’ GENERATING MESH’])

switch elemType

case ’Q4’ % here we generate the mesh of Q4 elements

nnx=numx+1;

nny=numy+1;

node=square_node_array([0 -c],[L -c],[L c],[0 c],nnx,nny);

inc_u=1;

inc_v=nnx;

node_pattern=[1 2 nnx+2 nnx+1];

element=make_elem(node_pattern,numx,numy,inc_u,inc_v);

case ’Q9’ % here we generate a mehs of Q9 elements

nnx=2*numx+1;

nny=2*numy+1;

node=square_node_array([0 -c],[L -c],[L c],[0 c],nnx,nny);

inc_u=2;

inc_v=2*nnx;

node_pattern=[1 3 2*nnx+3 2*nnx+1 2 nnx+3 2*nnx+2 nnx+1 nnx+2];

element=make_elem(node_pattern,numx,numy,inc_u,inc_v);

otherwise %’T3’ % and last but not least T3 elements

nnx=numx+1;

nny=numy+1;

node=square_node_array([0 -c],[L -c],[L c],[0 c],nnx,nny);

node_pattern1=[1 2 nnx+1];

node_pattern2=[2 nnx+2 nnx+1];

inc_u=1;

inc_v=nnx;

element=[make_elem(node_pattern1,numx,numy,inc_u,inc_v);

make_elem(node_pattern2,numx,numy,inc_u,inc_v)];

end

% DEFINE BOUNDARIES

15

% Here we define the boundary discretizations.

uln=nnx*(nny-1)+1; % upper left node number

urn=nnx*nny; % upper right node number

lrn=nnx; % lower right node number

lln=1; % lower left node number

cln=nnx*(nny-1)/2+1; % node number at (0,0)

switch elemType

case ’Q9’

rightEdge=[lrn:2*nnx:(uln-1); (lrn+2*nnx):2*nnx:urn; (lrn+nnx):2*nnx:urn]’;

leftEdge =[uln:-2*nnx:(lrn+1); (uln-2*nnx):-2*nnx:1; (uln-nnx):-2*nnx:1]’;

edgeElemType=’L3’;

otherwise % same discretizations for Q4 and T3 meshes

rightEdge=[lrn:nnx:(uln-1); (lrn+nnx):nnx:urn]’;

leftEdge =[uln:-nnx:(lrn+1); (uln-nnx):-nnx:1]’;

edgeElemType=’L2’;

end

% GET NODES ON DISPLACEMENT BOUNDARY

% Here we get the nodes on the essential boundaries

fixedNodeX=[uln lln cln]’; % a vector of the node numbers which are fixed in

% the x direction

fixedNodeY=[cln]’; % a vector of node numbers which are fixed in

% the y-direction

uFixed=zeros(size(fixedNodeX)); % a vector of the x-displacement for the nodes

% in fixedNodeX (in this case just zeros)

vFixed=zeros(size(fixedNodeY)); % and the y-displacements for fixedNodeY

numnode=size(node,1); % number of nodes

numelem=size(element,1); % number of elements

% PLOT MESH

if (plotMesh) % if plotMesh==1 we will plot the mesh

clf

plot_mesh(node,element,elemType,’g.-’);

hold on

plot_mesh(node,rightEdge,edgeElemType,’bo-’);

plot_mesh(node,leftEdge,edgeElemType,’bo-’);

plot(node(fixedNodeX,1),node(fixedNodeX,2),’r>’);

plot(node(fixedNodeY,1),node(fixedNodeY,2),’r^’);

axis off

axis([0 L -c c])

disp(’(paused)’)

pause

end

%%

% DEFINE SYSTEM DATA STRUCTURES

%

% Here we define the system data structures

% U - is vector of the nodal displacements it is of length 2*numnode. The

% displacements in the x-direction are in the top half of U and the

% y-displacements are in the lower half of U, for example the displacement

% in the y-direction for node number I is at U(I+numnode)

% f - is the nodal force vector. It’s structure is the same as U,

% i.e. f(I+numnode) is the force in the y direction at node I

% K - is the global stiffness matrix and is structured the same as with U and f

% so that K_IiJj is at K(I+(i-1)*numnode,J+(j-1)*numnode)

disp([num2str(toc),’ INITIALIZING DATA STRUCTURES’])

U=zeros(2*numnode,1); % nodal displacement vector

16

f=zeros(2*numnode,1); % external load vector

K=sparse(2*numnode,2*numnode); % stiffness matrix

% a vector of indicies that quickly address the x and y portions of the data

% strtuctures so U(xs) returns U_x the nodal x-displacements

xs=1:numnode; % x portion of u and v vectors

ys=(numnode+1):2*numnode; % y portion of u and v vectors

% **

% *** P R O C E S S I N G ***

% **

%%

% COMPUTE EXTERNAL FORCES

% integrate the tractions on the left and right edges

disp([num2str(toc),’ COMPUTING EXTERNAL LOADS’])

switch elemType % define quadrature rule

case ’Q9’

[W,Q]=quadrature(4, ’GAUSS’, 1); % four point quadrature

otherwise

[W,Q]=quadrature(3, ’GAUSS’, 1); % three point quadrature

end

% RIGHT EDGE

for e=1:size(rightEdge,1) % loop over the elements in the right edge

sctr=rightEdge(e,:); % scatter vector for the element

sctrx=sctr; % x scatter vector

sctry=sctrx+numnode; % y scatter vector

for q=1:size(W,1) % quadrature loop

pt=Q(q,:); % quadrature point

wt=W(q); % quadrature weight

[N,dNdxi]=lagrange_basis(edgeElemType,pt); % element shape functions

J0=dNdxi’*node(sctr,:); % element Jacobian

detJ0=norm(J0); % determiniat of jacobian

yPt=N’*node(sctr,2); % y coordinate at quadrature point

fyPt=P*(c^2-yPt^2)/(2*I0); % y traction at quadrature point

f(sctry)=f(sctry)+N*fyPt*detJ0*wt; % scatter force into global force vector

end % of quadrature loop

end % of element loop

% LEFT EDGE

for e=1:size(leftEdge,1) % loop over the elements in the left edge

sctr=rightEdge(e,:);

sctrx=sctr;

sctry=sctrx+numnode;

for q=1:size(W,1) % quadrature loop

pt=Q(q,:); % quadrature point

wt=W(q); % quadrature weight

[N,dNdxi]=lagrange_basis(edgeElemType,pt); % element shape functions

J0=dNdxi’*node(sctr,:); % element Jacobian

detJ0=norm(J0); % determiniat of jacobian

yPt=N’*node(sctr,2);

fyPt=-P*(c^2-yPt^2)/(2*I0); % y traction at quadrature point

fxPt=P*L*yPt/I0; % x traction at quadrature point

17

f(sctry)=f(sctry)+N*fyPt*detJ0*wt;

f(sctrx)=f(sctrx)+N*fxPt*detJ0*wt;

end % of quadrature loop

end % of element loop

% set the force at the nodes on the top and bottom edges to zero (traction free)

% TOP EDGE

topEdgeNodes = find(node(:,2)==c); % finds nodes on the top edge

f(topEdgeNodes)=0;

f(topEdgeNodes+numnode)=0;

% BOTTOM EDGE

bottomEdgeNodes = find(node(:,2)==-c); % finds nodes on the bottom edge

f(bottomEdgeNodes)=0;

f(bottomEdgeNodes+numnode)=0;

%%%%%%%%%%%%%%%%%%%%% COMPUTE STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp([num2str(toc),’ COMPUTING STIFFNESS MATRIX’])

switch elemType % define quadrature rule

case ’Q9’

[W,Q]=quadrature(4, ’GAUSS’, 2); % 4x4 Gaussian quadrature

case ’Q4’

[W,Q]=quadrature(2, ’GAUSS’, 2); % 2x2 Gaussian quadrature

otherwise

[W,Q]=quadrature(1, ’TRIANGULAR’, 2); % 1 point triangural quadrature

end

for e=1:numelem % start of element loop

sctr=element(e,:); % element scatter vector

sctrB=[sctr sctr+numnode]; % vector that scatters a B matrix

nn=length(sctr);

for q=1:size(W,1) % quadrature loop

pt=Q(q,:); % quadrature point

wt=W(q); % quadrature weight

[N,dNdxi]=lagrange_basis(elemType,pt); % element shape functions

J0=node(sctr,:)’*dNdxi; % element Jacobian matrix

invJ0=inv(J0);

dNdx=dNdxi*invJ0;

%%

% COMPUTE B MATRIX

% _ _

% | N_1,x N_2,x ... 0 0 ... |

% B = | 0 0 ... N_1,y N_2,y ... |

% | N_1,y N_2,y ... N_1,x N_2,x ... |

% - -

B=zeros(3,2*nn);

B(1,1:nn) = dNdx(:,1)’;

B(2,nn+1:2*nn) = dNdx(:,2)’;

B(3,1:nn) = dNdx(:,2)’;

B(3,nn+1:2*nn) = dNdx(:,1)’;

%%

% COMPUTE ELEMENT STIFFNESS AT QUADRATURE POINT

K(sctrB,sctrB)=K(sctrB,sctrB)+B’*C*B*W(q)*det(J0);

end % of quadrature loop

18

end % of element loop

%%%%%%%%%%%%%%%%%%% END OF STIFFNESS MATRIX COMPUTATION %%%%%%%%%%%%%%%%%%%%%%

% APPLY ESSENTIAL BOUNDARY CONDITIONS

disp([num2str(toc),’ APPLYING BOUNDARY CONDITIONS’])

bcwt=mean(diag(K)); % a measure of the average size of an element in K

% used to keep the conditioning of the K matrix

udofs=fixedNodeX; % global indecies of the fixed x displacements

vdofs=fixedNodeY+numnode; % global indecies of the fixed y displacements

f=f-K(:,udofs)*uFixed; % modify the force vector

f=f-K(:,vdofs)*vFixed;

f(udofs)=uFixed;

f(vdofs)=vFixed;

K(udofs,:)=0; % zero out the rows and columns of the K matrix

K(vdofs,:)=0;

K(:,udofs)=0;

K(:,vdofs)=0;

K(udofs,udofs)=bcwt*speye(length(udofs)); % put ones*bcwt on the diagonal

K(vdofs,vdofs)=bcwt*speye(length(vdofs));

% SOLVE SYSTEM

disp([num2str(toc),’ SOLVING SYSTEM’])

U=K\f;

%**

%*** P O S T - P R O C E S S I N G ***

%**

%

% Here we plot the stresses and displacements of the solution. As with the

% mesh generation section we don’t go into too much detail - use help

% ’function name’ to get more details.

disp([num2str(toc),’ POST-PROCESSING’])

dispNorm=L/max(sqrt(U(xs).^2+U(ys).^2));

scaleFact=0.1*dispNorm;

fn=1;

%%%

% PLOT DEFORMED DISPLACEMENT PLOT

figure(fn)

clf

plot_field(node+scaleFact*[U(xs) U(ys)],element,elemType,U(ys));

hold on

plot_mesh(node+scaleFact*[U(xs) U(ys)],element,elemType,’g.-’);

plot_mesh(node,element,elemType,’w--’);

colorbar

fn=fn+1;

title(’DEFORMED DISPLACEMENT IN Y-DIRECTION’)

%%%

% COMPUTE STRESS

stress=zeros(numelem,size(element,2),3);

switch elemType % define quadrature rule

case ’Q9’

stressPoints=[-1 -1;1 -1;1 1;-1 1;0 -1;1 0;0 1;-1 0;0 0];

case ’Q4’

stressPoints=[-1 -1;1 -1;1 1;-1 1];

otherwise

19

stressPoints=[0 0;1 0;0 1];

end

for e=1:numelem % start of element loop

sctr=element(e,:);

sctrB=[sctr sctr+numnode];

nn=length(sctr);

for q=1:nn

pt=stressPoints(q,:); % stress point

[N,dNdxi]=lagrange_basis(elemType,pt); % element shape functions

J0=node(sctr,:)’*dNdxi; % element Jacobian matrix

invJ0=inv(J0);

dNdx=dNdxi*invJ0;

%%

% COMPUTE B MATRIX

B=zeros(3,2*nn);

B(1,1:nn) = dNdx(:,1)’;

B(2,nn+1:2*nn) = dNdx(:,2)’;

B(3,1:nn) = dNdx(:,2)’;

B(3,nn+1:2*nn) = dNdx(:,1)’;

%%

% COMPUTE ELEMENT STRAIN AND STRESS AT STRESS POINT

strain=B*U(sctrB);

stress(e,q,:)=C*strain;

end

end % of element loop

stressComp=1;

figure(fn)

clf

plot_field(node+scaleFact*[U(xs) U(ys)],element,elemType,stress(:,:,stressComp));

hold on

plot_mesh(node+scaleFact*[U(xs) U(ys)],element,elemType,’g.-’);

plot_mesh(node,element,elemType,’w--’);

colorbar

fn=fn+1;

title(’DEFORMED STRESS PLOT, BENDING COMPONENT’)

%print(fn,’-djpeg90’,[’beam_’,elemType,’_sigma’,num2str(stressComp),’.jpg’])

disp([num2str(toc),’ RUN FINISHED’])

% ***

% *** E N D O F P R O G R A M ***

% ***

disp(’**’)

disp(’*** E N D O F R U N ***’)

disp(’**’)

20

C Example: Modal Analysis of an Atomic

Force Microscopy (AFM) Tip

The program presented here is found at
http://www.tam.northwestern.edu/jfc795/Matlab/Examples

/Static/modal afm.m

In addition the mesh file afm.msh is needed. This mesh file is produced using
the GPL program Gmsh which is available at
http://www.geuz.org/gmsh/

This program is not needed to run this program, only the *.msh file is needed,
but it is a very good program for generating finite element meshes. In this
example we perform a linear modal analysis of the AFM tip shown in Fig-
ure reffig:afm. This involves computing the mass and stiffness matrix and
solving the following Eigenvalue problem(

K− ω2
nM
)
an = 0 (26)

for the natural frequencies ωn and the corresponding mode shapes an. Here
the AFM tip is modeled with eight node brick elements and we assume that
the feet of the AFM tip are fixed.

% modal_afm.m

%

% by Jack Chessa

% Northwestern University

%

clear

colordef black

state = 0;

%**

%*** I N P U T ***

%**

tic;

disp(’**’)

disp(’*** S T A R T I N G R U N ***’)

disp(’**’)

disp([num2str(toc),’ START’])

% MATERIAL PROPERTIES

E0 = 160; % Youngs modulus in GPa

nu0 = 0.27; % Poisson ratio

rho = 2.330e-9; % density in 10e12 Kg/m^3

% MESH PARAMETERS

quadType=’GAUSS’;

quadOrder=2;

% GMSH PARAMETERS

fileName=’afm.msh’;

domainID=50;

21

fixedID=51;

topID=52;

% EIGENPROBELM SOLUTION PARAMETERS

numberOfModes=8; % number of modes to compute

consistentMass=0; % use a consistent mass matrix

fixedBC=1; % use fixed or free bcs

%**

%*** P R E - P R O C E S S I N G ***

%**

%%

% READ GMSH FILE

disp([num2str(toc),’ READING GMSH FILE’])

[node,elements,elemType]=msh2mlab(fileName);

[node,elements]=remove_free_nodes(node,elements);

element=elements{domainID};

element=brickcheck(node,element,1);

if (fixedBC)

fixedEdge=elements{fixedID};

else

fixedEdge=[];

end

topSurface=elements{topID};

plot_mesh(node,element,elemType{domainID},’r-’)

disp([num2str(toc),’ INITIALIZING DATA STRUCTURES’])

numnode=size(node,1); % number of nodes

numelem=size(element,1); % number of elements

% GET NODES ON DISPLACEMENT BOUNDARY

fixedNodeX=unique(fixedEdge);

fixedNodeY=fixedNodeX;

fixedNodeZ=fixedNodeX;

uFixed=zeros(size(fixedNodeX)); % displacement for fixed nodes

vFixed=zeros(size(fixedNodeY));

wFixed=zeros(size(fixedNodeZ));

%%

% COMPUTE COMPLIANCE MATRIX

C=zeros(6,6);

C(1:3,1:3)=E0/(1+nu0)/(1-2*nu0)*[1-nu0 nu0 nu0;

nu0 1-nu0 nu0;

nu0 nu0 1-nu0];

C(4:6,4:6)=E0/(1+nu0)*eye(3);

%%

% DEFINE SYSTEM DATA STRUCTURES

K=sparse(3*numnode,3*numnode); % stiffness matrix

if (consistentMass)

M=sparse(3*numnode,3*numnode); % mass matrix

else

M=zeros(3*numnode,1); % mass vector

end

%**

%*** P R O C E S S I N G ***

%**

22

%%%%%%%%%%%%%%%%%%%%% COMPUTE SYSTEM MATRICIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp([num2str(toc),’ COMPUTING STIFFNESS AND MASS MATRIX’])

[W,Q]=quadrature(quadOrder,quadType,3); % define quadrature rule

et=elemType{domainID};

nn=size(element,2);

for e=1:numelem % start of element loop

sctr=element(e,:); % element scatter vector

sctrB0=[sctr sctr+numnode sctr+2*numnode]; % scatters a B matrix

for q=1:size(W,1) % quadrature loop

pt=Q(q,:); % quadrature point

wt=W(q); % quadrature weight

[N,dNdxi]=lagrange_basis(et,pt); % element shape functions

J0=node(sctr,:)’*dNdxi; % element Jacobian matrix

invJ0=inv(J0);

dNdx=dNdxi*invJ0;

detJ0=det(J0);

if (detJ0 <= 0)

disp([’ERROR: NEGATIVE JACOBIAN IN ELEMENT ’,num2str(e)]);

end

%%

% COMPUTE B MATRIX

B0=zeros(6,3*nn);

B0(1,1:nn) = dNdx(:,1)’;

B0(2,nn+1:2*nn) = dNdx(:,2)’;

B0(3,2*nn+1:3*nn) = dNdx(:,3)’;

B0(4,2*nn+1:3*nn) = dNdx(:,2)’;

B0(4,nn+1:2*nn) = dNdx(:,3)’;

B0(5,1:nn) = dNdx(:,3)’;

B0(5,2*nn+1:3*nn) = dNdx(:,1)’;

B0(6,nn+1:2*nn) = dNdx(:,1)’;

B0(6,1:nn) = dNdx(:,2)’;

%%

% COMPUTE ELEMENT STIFFNESS AT QUADRATURE POINT

K(sctrB0,sctrB0)=K(sctrB0,sctrB0)+B0’*C*B0*wt*detJ0;

% COMPUTE ELEMENT MASS AT QUADRATURE POINT

mQPt=N*rho*N’*wt*detJ0;

if (~consistentMass)

mQPt=sum(mQPt)’;

M(sctr) = M(sctr)+mQPt;

M(sctr+numnode) = M(sctr+numnode)+mQPt;

M(sctr+2*numnode) = M(sctr+2*numnode)+mQPt;

else

M(sctr,sctr) = M(sctr,sctr)+mQPt;

M(sctr+numnode,sctr+numnode) = M(sctr+numnode,sctr+numnode)+mQPt;

M(sctr+2*numnode,sctr+2*numnode) = M(sctr+2*numnode,sctr+2*numnode)+mQPt;

end

end % of quadrature loop

end % of element loop

%%%%%%%%%%%%%%%%%%% END OF SYSTEM MATRIX COMPUTATION %%%%%%%%%%%%%%%%%%%%%%

% ELIMINATE FIXED DOFS FROM EIGENVALUE COMUTATION

disp([num2str(toc),’ FINDING ACTIVE DOFS’])

23

activeDof=setdiff([1:numnode]’,[fixedNodeX;fixedNodeY;fixedNodeZ]);

activeDof=[activeDof;activeDof+numnode;activeDof+2*numnode];

% SOLVE SYSTEM

disp([num2str(toc),’ SOLVING EIGEN PROBLEM’])

if (consistentMass)

[modeShape,freq]=eigs(K(activeDof,activeDof),M(activeDof,activeDof),...

numberOfModes,0);

else

Minv=spdiags(1./M,0,3*numnode,3*numnode);

K=Minv*K;

[modeShape,freq]=eigs(K(activeDof,activeDof),numberOfModes,0);

end

freq=diag(freq)/(2*pi); % frequency in kHz

%**

%*** P O S T - P R O C E S S I N G ***

%**

disp([num2str(toc),’ POST-PROCESSING’])

disp([’THE MODE FREQUENCIES ARE:’])

for m=1:length(freq)

disp([’ MODE: ’,num2str(m),’ ’,num2str(freq(m))])

% PLOT MODE SHAPE

figure(m); clf;

U=zeros(numnode,1);

U(activeDof)=modeShape(:,m);

scaleFactor=20/max(abs(U));

plot_field(node+[U(1:numnode) U(numnode+1:2*numnode)

U(2*numnode+1:3*numnode)]*scaleFactor,topSurface,elemType{topID},...

ones(3*numnode,1));

hold on

plot_mesh(node+[U(1:numnode) U(numnode+1:2*numnode)

U(2*numnode+1:3*numnode)]*scaleFactor,topSurface,elemType{topID},’k-’);

plot_mesh(node,topSurface,elemType{topID},’r-’);

title([’MODE ’,num2str(m),’, FREQUENCY = ’,num2str(freq(m)),’ [kHz]’])

view(37,36)

axis off

print(m, ’-djpeg90’, [’afm_mode_’,num2str(m),’.jpg’]);

end

% ANIMATE MODE

nCycles=5; % number of cycles to animate

fpc=10; % frames per cycle

fact=sin(linspace(0,2*pi,fpc));

m=input(’What mode would you like to animate (type 0 to exit) ’);

while (m~=0)

U=zeros(numnode,1);

U(activeDof)=modeShape(:,m);

wt=20/max(abs(U));

for i=1:fpc

scaleFactor=fact(i)*wt;

figure(length(freq+1));

clf;

plot_field(node+[U(1:numnode) U(numnode+1:2*numnode)

U(2*numnode+1:3*numnode)]*scaleFactor,topSurface,elemType{topID},...

ones(3*numnode,1));

hold on

plot_mesh(node+[U(1:numnode) U(numnode+1:2*numnode)

U(2*numnode+1:3*numnode)]*scaleFactor,topSurface,elemType{topID},’k-’);

24

plot_mesh(node,topSurface,elemType{topID},’w-’);

hold on

view(37,36)

axis([70 240 30 160 -10 10])

title([’MODE ’,num2str(m),’, FREQUENCY = ’,num2str(freq(m)),’ [kHz]’])

axis off

film(i)=getframe;

end

movie(film,nCycles);

m=input(’What mode would you like to animate (type 0 to exit) ’);

if (m > length(freq))

disp([’mode must be less than ’,num2str(length(freq))])

end

end

disp([num2str(toc),’ RUN FINISHED’])

% ***

% *** E N D O F P R O G R A M ***

% ***

disp(’**’)

disp(’*** E N D O F R U N ***’)

disp(’**’)

% compute uexact

25

D Common Matlab Functions

Here is a quick list of some built in Matlab functions. These discriptions are
availible by using the help function in Matlab.

>> help

HELP topics:

matlab/general - General purpose commands.

matlab/ops - Operators and special characters.

matlab/lang - Language constructs and debugging.

matlab/elmat - Elementary matrices and matrix manipulation.

matlab/specmat - Specialized matrices.

matlab/elfun - Elementary math functions.

matlab/specfun - Specialized math functions.

matlab/matfun - Matrix functions - numerical linear algebra.

matlab/datafun - Data analysis and Fourier transform functions.

matlab/polyfun - Polynomial and interpolation functions.

matlab/funfun - Function functions - nonlinear numerical methods.

matlab/sparfun - Sparse matrix functions.

matlab/plotxy - Two dimensional graphics.

matlab/plotxyz - Three dimensional graphics.

matlab/graphics - General purpose graphics functions.

matlab/color - Color control and lighting model functions.

matlab/sounds - Sound processing functions.

matlab/strfun - Character string functions.

matlab/iofun - Low-level file I/O functions.

matlab/demos - The MATLAB Expo and other demonstrations.

toolbox/chem - Chemometrics Toolbox

toolbox/control - Control System Toolbox.

fdident/fdident - Frequency Domain System Identification Toolbox

fdident/fddemos - Demonstrations for the FDIDENT Toolbox

toolbox/hispec - Hi-Spec Toolbox

toolbox/ident - System Identification Toolbox.

toolbox/images - Image Processing Toolbox.

toolbox/local - Local function library.

toolbox/mmle3 - MMLE3 Identification Toolbox.

mpc/mpccmds - Model Predictive Control Toolbox

mpc/mpcdemos - Model Predictive Control Toolbox

mutools/commands - Mu-Analysis and Synthesis Toolbox.: Commands directory

26

mutools/subs - Mu-Analysis and Synthesis Toolbox -- Supplement

toolbox/ncd - Nonlinear Control Design Toolbox.

nnet/nnet - Neural Network Toolbox.

nnet/nndemos - Neural Network Demonstrations and Applications.

toolbox/optim - Optimization Toolbox.

toolbox/robust - Robust Control Toolbox.

toolbox/signal - Signal Processing Toolbox.

toolbox/splines - Spline Toolbox.

toolbox/stats - Statistics Toolbox.

toolbox/symbolic - Symbolic Math Toolbox.

toolbox/wavbox - (No table of contents file)

simulink/simulink - SIMULINK model analysis and construction functions.

simulink/blocks - SIMULINK block library.

simulink/simdemos - SIMULINK demonstrations and samples.

toolbox/codegen - Real-Time Workshop

For more help on directory/topic, type "help topic".

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros matrix.

ones - Ones matrix.

eye - Identity matrix.

rand - Uniformly distributed random numbers.

randn - Normally distributed random numbers.

linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

meshgrid - X and Y arrays for 3-D plots.

: - Regularly spaced vector.

Special variables and constants.

ans - Most recent answer.

eps - Floating point relative accuracy.

realmax - Largest floating point number.

realmin - Smallest positive floating point number.

pi - 3.1415926535897....

i, j - Imaginary unit.

inf - Infinity.

27

NaN - Not-a-Number.

flops - Count of floating point operations.

nargin - Number of function input arguments.

nargout - Number of function output arguments.

computer - Computer type.

isieee - True for computers with IEEE arithmetic.

isstudent - True for the Student Edition.

why - Succinct answer.

version - MATLAB version number.

Time and dates.

clock - Wall clock.

cputime - Elapsed CPU time.

date - Calendar.

etime - Elapsed time function.

tic, toc - Stopwatch timer functions.

Matrix manipulation.

diag - Create or extract diagonals.

fliplr - Flip matrix in the left/right direction.

flipud - Flip matrix in the up/down direction.

reshape - Change size.

rot90 - Rotate matrix 90 degrees.

tril - Extract lower triangular part.

triu - Extract upper triangular part.

: - Index into matrix, rearrange matrix.

>> help specmat

Specialized matrices.

compan - Companion matrix.

gallery - Several small test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

kron - Kronecker tensor product.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.

28

toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

>> help elfun

Elementary math functions.

Trigonometric.

sin - Sine.

sinh - Hyperbolic sine.

asin - Inverse sine.

asinh - Inverse hyperbolic sine.

cos - Cosine.

cosh - Hyperbolic cosine.

acos - Inverse cosine.

acosh - Inverse hyperbolic cosine.

tan - Tangent.

tanh - Hyperbolic tangent.

atan - Inverse tangent.

atan2 - Four quadrant inverse tangent.

atanh - Inverse hyperbolic tangent.

sec - Secant.

sech - Hyperbolic secant.

asec - Inverse secant.

asech - Inverse hyperbolic secant.

csc - Cosecant.

csch - Hyperbolic cosecant.

acsc - Inverse cosecant.

acsch - Inverse hyperbolic cosecant.

cot - Cotangent.

coth - Hyperbolic cotangent.

acot - Inverse cotangent.

acoth - Inverse hyperbolic cotangent.

Exponential.

exp - Exponential.

log - Natural logarithm.

log10 - Common logarithm.

sqrt - Square root.

29

Complex.

abs - Absolute value.

angle - Phase angle.

conj - Complex conjugate.

imag - Complex imaginary part.

real - Complex real part.

Numeric.

fix - Round towards zero.

floor - Round towards minus infinity.

ceil - Round towards plus infinity.

round - Round towards nearest integer.

rem - Remainder after division.

sign - Signum function.

>> help specfun

Specialized math functions.

besselj - Bessel function of the first kind.

bessely - Bessel function of the second kind.

besseli - Modified Bessel function of the first kind.

besselk - Modified Bessel function of the second kind.

beta - Beta function.

betainc - Incomplete beta function.

betaln - Logarithm of beta function.

ellipj - Jacobi elliptic functions.

ellipke - Complete elliptic integral.

erf - Error function.

erfc - Complementary error function.

erfcx - Scaled complementary error function.

erfinv - Inverse error function.

expint - Exponential integral function.

gamma - Gamma function.

gcd - Greatest common divisor.

gammainc - Incomplete gamma function.

lcm - Least common multiple.

legendre - Associated Legendre function.

gammaln - Logarithm of gamma function.

log2 - Dissect floating point numbers.

pow2 - Scale floating point numbers.

30

rat - Rational approximation.

rats - Rational output.

cart2sph - Transform from Cartesian to spherical coordinates.

cart2pol - Transform from Cartesian to polar coordinates.

pol2cart - Transform from polar to Cartesian coordinates.

sph2cart - Transform from spherical to Cartesian coordinates.

>> help matfun

Matrix functions - numerical linear algebra.

Matrix analysis.

cond - Matrix condition number.

norm - Matrix or vector norm.

rcond - LINPACK reciprocal condition estimator.

rank - Number of linearly independent rows or columns.

det - Determinant.

trace - Sum of diagonal elements.

null - Null space.

orth - Orthogonalization.

rref - Reduced row echelon form.

Linear equations.

\ and / - Linear equation solution; use "help slash".

chol - Cholesky factorization.

lu - Factors from Gaussian elimination.

inv - Matrix inverse.

qr - Orthogonal-triangular decomposition.

qrdelete - Delete a column from the QR factorization.

qrinsert - Insert a column in the QR factorization.

nnls - Non-negative least-squares.

pinv - Pseudoinverse.

lscov - Least squares in the presence of known covariance.

Eigenvalues and singular values.

eig - Eigenvalues and eigenvectors.

poly - Characteristic polynomial.

polyeig - Polynomial eigenvalue problem.

hess - Hessenberg form.

qz - Generalized eigenvalues.

rsf2csf - Real block diagonal form to complex diagonal form.

31

cdf2rdf - Complex diagonal form to real block diagonal form.

schur - Schur decomposition.

balance - Diagonal scaling to improve eigenvalue accuracy.

svd - Singular value decomposition.

Matrix functions.

expm - Matrix exponential.

expm1 - M-file implementation of expm.

expm2 - Matrix exponential via Taylor series.

expm3 - Matrix exponential via eigenvalues and eigenvectors.

logm - Matrix logarithm.

sqrtm - Matrix square root.

funm - Evaluate general matrix function.

>> help general

General purpose commands.

MATLAB Toolbox Version 4.2a 25-Jul-94

Managing commands and functions.

help - On-line documentation.

doc - Load hypertext documentation.

what - Directory listing of M-, MAT- and MEX-files.

type - List M-file.

lookfor - Keyword search through the HELP entries.

which - Locate functions and files.

demo - Run demos.

path - Control MATLAB’s search path.

Managing variables and the workspace.

who - List current variables.

whos - List current variables, long form.

load - Retrieve variables from disk.

save - Save workspace variables to disk.

clear - Clear variables and functions from memory.

pack - Consolidate workspace memory.

size - Size of matrix.

length - Length of vector.

disp - Display matrix or text.

Working with files and the operating system.

32

cd - Change current working directory.

dir - Directory listing.

delete - Delete file.

getenv - Get environment value.

! - Execute operating system command.

unix - Execute operating system command & return result.

diary - Save text of MATLAB session.

Controlling the command window.

cedit - Set command line edit/recall facility parameters.

clc - Clear command window.

home - Send cursor home.

format - Set output format.

echo - Echo commands inside script files.

more - Control paged output in command window.

Starting and quitting from MATLAB.

quit - Terminate MATLAB.

startup - M-file executed when MATLAB is invoked.

matlabrc - Master startup M-file.

General information.

info - Information about MATLAB and The MathWorks, Inc.

subscribe - Become subscribing user of MATLAB.

hostid - MATLAB server host identification number.

whatsnew - Information about new features not yet documented.

ver - MATLAB, SIMULINK, and TOOLBOX version information.

>> help funfun

Function functions - nonlinear numerical methods.

ode23 - Solve differential equations, low order method.

ode23p - Solve and plot solutions.

ode45 - Solve differential equations, high order method.

quad - Numerically evaluate integral, low order method.

quad8 - Numerically evaluate integral, high order method.

fmin - Minimize function of one variable.

fmins - Minimize function of several variables.

fzero - Find zero of function of one variable.

fplot - Plot function.

33

See also The Optimization Toolbox, which has a comprehensive

set of function functions for optimizing and minimizing functions.

>> help polyfun

Polynomial and interpolation functions.

Polynomials.

roots - Find polynomial roots.

poly - Construct polynomial with specified roots.

polyval - Evaluate polynomial.

polyvalm - Evaluate polynomial with matrix argument.

residue - Partial-fraction expansion (residues).

polyfit - Fit polynomial to data.

polyder - Differentiate polynomial.

conv - Multiply polynomials.

deconv - Divide polynomials.

Data interpolation.

interp1 - 1-D interpolation (1-D table lookup).

interp2 - 2-D interpolation (2-D table lookup).

interpft - 1-D interpolation using FFT method.

griddata - Data gridding.

Spline interpolation.

spline - Cubic spline data interpolation.

ppval - Evaluate piecewise polynomial.

>> help ops

Operators and special characters.

Char Name HELP topic

+ Plus arith

- Minus arith

* Matrix multiplication arith

.* Array multiplication arith

^ Matrix power arith

.^ Array power arith

34

\ Backslash or left division slash

/ Slash or right division slash

./ Array division slash

kron Kronecker tensor product kron

: Colon colon

() Parentheses paren

[] Brackets paren

. Decimal point punct

.. Parent directory punct

... Continuation punct

, Comma punct

; Semicolon punct

% Comment punct

! Exclamation point punct

’ Transpose and quote punct

= Assignment punct

== Equality relop

<,> Relational operators relop

& Logical AND relop

| Logical OR relop

~ Logical NOT relop

xor Logical EXCLUSIVE OR xor

Logical characteristics.

exist - Check if variables or functions are defined.

any - True if any element of vector is true.

all - True if all elements of vector are true.

find - Find indices of non-zero elements.

isnan - True for Not-A-Number.

isinf - True for infinite elements.

finite - True for finite elements.

isempty - True for empty matrix.

isreal - True for real matrix.

issparse - True for sparse matrix.

isstr - True for text string.

isglobal - True for global variables.

35

>> help lang

Language constructs and debugging.

MATLAB as a programming language.

script - About MATLAB scripts and M-files.

function - Add new function.

eval - Execute string with MATLAB expression.

feval - Execute function specified by string.

global - Define global variable.

nargchk - Validate number of input arguments.

lasterr - Last error message.

Control flow.

if - Conditionally execute statements.

else - Used with IF.

elseif - Used with IF.

end - Terminate the scope of FOR, WHILE and IF statements.

for - Repeat statements a specific number of times.

while - Repeat statements an indefinite number of times.

break - Terminate execution of loop.

return - Return to invoking function.

error - Display message and abort function.

Interactive input.

input - Prompt for user input.

keyboard - Invoke keyboard as if it were a Script-file.

menu - Generate menu of choices for user input.

pause - Wait for user response.

uimenu - Create user interface menu.

uicontrol - Create user interface control.

Debugging commands.

dbstop - Set breakpoint.

dbclear - Remove breakpoint.

dbcont - Resume execution.

dbdown - Change local workspace context.

dbstack - List who called whom.

dbstatus - List all breakpoints.

dbstep - Execute one or more lines.

36

dbtype - List M-file with line numbers.

dbup - Change local workspace context.

dbquit - Quit debug mode.

mexdebug - Debug MEX-files.

>> help plotxy

Two dimensional graphics.

Elementary X-Y graphs.

plot - Linear plot.

loglog - Log-log scale plot.

semilogx - Semi-log scale plot.

semilogy - Semi-log scale plot.

fill - Draw filled 2-D polygons.

Specialized X-Y graphs.

polar - Polar coordinate plot.

bar - Bar graph.

stem - Discrete sequence or "stem" plot.

stairs - Stairstep plot.

errorbar - Error bar plot.

hist - Histogram plot.

rose - Angle histogram plot.

compass - Compass plot.

feather - Feather plot.

fplot - Plot function.

comet - Comet-like trajectory.

Graph annotation.

title - Graph title.

xlabel - X-axis label.

ylabel - Y-axis label.

text - Text annotation.

gtext - Mouse placement of text.

grid - Grid lines.

See also PLOTXYZ, GRAPHICS.

>> help plotxyz

Three dimensional graphics.

37

Line and area fill commands.

plot3 - Plot lines and points in 3-D space.

fill3 - Draw filled 3-D polygons in 3-D space.

comet3 - 3-D comet-like trajectories.

Contour and other 2-D plots of 3-D data.

contour - Contour plot.

contour3 - 3-D contour plot.

clabel - Contour plot elevation labels.

contourc - Contour plot computation (used by contour).

pcolor - Pseudocolor (checkerboard) plot.

quiver - Quiver plot.

Surface and mesh plots.

mesh - 3-D mesh surface.

meshc - Combination mesh/contour plot.

meshz - 3-D Mesh with zero plane.

surf - 3-D shaded surface.

surfc - Combination surf/contour plot.

surfl - 3-D shaded surface with lighting.

waterfall - Waterfall plot.

Volume visualization.

slice - Volumetric visualization plots.

Graph appearance.

view - 3-D graph viewpoint specification.

viewmtx - View transformation matrices.

hidden - Mesh hidden line removal mode.

shading - Color shading mode.

axis - Axis scaling and appearance.

caxis - Pseudocolor axis scaling.

colormap - Color look-up table.

Graph annotation.

title - Graph title.

xlabel - X-axis label.

ylabel - Y-axis label.

zlabel - Z-axis label for 3-D plots.

text - Text annotation.

38

gtext - Mouse placement of text.

grid - Grid lines.

3-D objects.

cylinder - Generate cylinder.

sphere - Generate sphere.

See also COLOR, PLOTXY, GRAPHICS.

>> help strfun

Character string functions.

General.

strings - About character strings in MATLAB.

abs - Convert string to numeric values.

setstr - Convert numeric values to string.

isstr - True for string.

blanks - String of blanks.

deblank - Remove trailing blanks.

str2mat - Form text matrix from individual strings.

eval - Execute string with MATLAB expression.

String comparison.

strcmp - Compare strings.

findstr - Find one string within another.

upper - Convert string to uppercase.

lower - Convert string to lowercase.

isletter - True for letters of the alphabet.

isspace - True for white space characters.

strrep - Replace a string with another.

strtok - Find a token in a string.

String to number conversion.

num2str - Convert number to string.

int2str - Convert integer to string.

str2num - Convert string to number.

mat2str - Convert matrix to string.

sprintf - Convert number to string under format control.

sscanf - Convert string to number under format control.

39

Hexadecimal to number conversion.

hex2num - Convert hex string to IEEE floating point number.

hex2dec - Convert hex string to decimal integer.

dec2hex - Convert decimal integer to hex string.

Also the MathWorks web site has a lot of good tutorials, examples and
reference documentation.

http://www.mathworks.com

A good tutorial is at

http://www.mathworks.com/access/helpdesk/help/techdoc/

learn_matlab/learn_matlab.shtml

40

List of Figures

1 A simple finite element mesh of triangular elements 42
2 An example of a element force vector f e scattered into a global

force vector f . 43
3 Diagram of beam used in beam bending example. The follow-

ing displacement boundary conditions are applied: ux = 0 at
the points (0,±c) and (0,0), uy = 0 at (0, 0). The following
traction boundary conditions are used tx = y on x = 0 and
ty = P (x2 − c2) on x = L. 44

4 AFM tip modeled in modal analysis example 45

41

(2,6)

(0,0) 1 2

4

65

3

1

2

3

4

Figure 1: A simple finite element mesh of triangular elements

42

1x

2x

1y

2y

e
f

e

1x

3x

5x

4x

2x

6x

1y

2y

3y

4y

5y

6y

f

2

4

Figure 2: An example of a element force vector f e scattered into a global
force vector f

43

x

y

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

2c

L

Figure 3: Diagram of beam used in beam bending example. The following
displacement boundary conditions are applied: ux = 0 at the points (0,±c)
and (0,0), uy = 0 at (0, 0). The following traction boundary conditions are
used tx = y on x = 0 and ty = P (x2 − c2) on x = L.

44

Figure 4: AFM tip modeled in modal analysis example

45

