
15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

Study Guide: Data Retrieval with SQL

Afshine Amidi and Shervine Amidi

August 21, 2020

General concepts

r Structured Query Language – Structured Query Language, abbreviated as SQL, is a
language that is largely used in the industry to query data from databases.

r Query structure – Queries are usually structured as follows:

SQL

-- Select fields.....................mandatory
SELECT
....col_1,
....col_2,
........ ,
....col_n

-- Source of data....................mandatory
FROM table t

-- Gather info from other sources....optional
JOIN other_table ot
..ON (t.key = ot.key)

-- Conditions........................optional
WHERE some_condition(s)

-- Aggregating.......................optional
GROUP BY column_group_list

-- Sorting values....................optional
ORDER BY column_order_list

-- Restricting aggregated values.....optional
HAVING some_condition(s)

-- Limiting number of rows...........optional
LIMIT some_value

Remark: the SELECT DISTINCT command can be used to ensure not having duplicate rows.

r Condition – A condition is of the following format:

SQL
some_col some_operator some_col_or_value

where some_operator can be among the following common operations:

Category Operator Command

General

Equality / non-equality = / !=, <>

Inequalities >=, >, <, <=

Belonging IN (val_1, ..., val_n)

And / or AND / OR

Check for missing value IS NULL

Between bounds BETWEEN val_1 AND val_2

Strings Pattern matching LIKE ’%val%’

r Joins – Two tables table_1 and table_2 can be joined in the following way:

SQL
...

FROM table_1 t1
type_of_join table_2 t2
..ON (t2.key = t1.key)

...

where the different type_of_join commands are summarized in the table below:

Type of join Illustration

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

Remark: joining every row of table 1 with every row of table 2 can be done with the CROSS JOIN
command, and is commonly known as the cartesian product.

Aggregations

r Grouping data – Aggregate metrics are computed on grouped data in the following way:

Massachusetts Institute of Technology 1 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi

15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

The SQL command is as follows:

SQL
SELECT
....col_1,
....agg_function(col_2)
FROM table
GROUP BY col_1

r Grouping sets – The GROUPING SETS command is useful when there is a need to compute
aggregations across different dimensions at a time. Below is an example of how all aggregations
across two dimensions are computed:

SQL
SELECT
....col_1,
....col_2,
....agg_function(col_3)
FROM table
GROUP BY (
..GROUPING SETS
....(col_1),
....(col_2),
....(col_1, col_2)
)

r Aggregation functions – The table below summarizes the main aggregate functions that
can be used in an aggregation query:

Category Operation Command

Values

Mean AVG(col)

Percentile PERCENTILE_APPROX(col, p)

Sum / # of instances SUM(col) / COUNT(col)

Max / min MAX(col) / MIN(col)

Variance / standard deviation VAR(col) / STDEV(col)

Arrays Concatenate into array collect_list(col)

Remark: the median can be computed using the PERCENTILE_APPROX function with p equal to 0.5.

r Filtering – The table below highlights the differences between the WHERE and HAVING com-
mands:

WHERE HAVING

- Filter condition applies to individual rows
- Statement placed right after FROM

- Filter condition applies to aggregates
- Statement placed right after GROUP BY

Remark: if WHERE and HAVING are both in the same query, WHERE will be executed first.

Window functions

r Definition – A window function computes a metric over groups and has the following struc-
ture:

The SQL command is as follows:

SQL

some_window_function() OVER(PARTITION BY some_col ORDER BY another_col)

Remark: window functions are only allowed in the SELECT clause.

r Row numbering – The table below summarizes the main commands that rank each row
across specified groups, ordered by a specific column:

Command Description Example

ROW_NUMBER() Ties are given different ranks 1, 2, 3, 4

RANK() Ties are given same rank and skip numbers 1, 2, 2, 4

DENSE_RANK() Ties are given same rank and don’t skip numbers 1, 2, 2, 3

r Values – The following window functions allow to keep track of specific types of values with
respect to the partition:

Command Description

FIRST_VALUE(col) Takes the first value of the column

LAST_VALUE(col) Takes the last value of the column

LAG(col, n) Takes the nth previous value of the column

LEAD(col, n) Takes the nth following value of the column

NTH_VALUE(col, n) Takes the nth value of the column

Massachusetts Institute of Technology 2 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi

15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

Advanced functions

r SQL tips – In order to keep the query in a clear and concise format, the following tricks are
often done:

Operation Command Description

Renaming
columns

SELECT operation_on_column AS col_name
New column names shown in
query results

Abbreviating
tables

FROM table_1 t1

Abbreviation used within
query for simplicity in
notations

Simplifying
group by GROUP BY col_number_list

Specify column position in
SELECT clause instead of
whole column names

Limiting
results

LIMIT n Display only n rows

r Sorting values – The query results can be sorted along a given set of columns using the
following command:

SQL
... [query] ...
ORDER BY col_list

Remark: by default, the command sorts in ascending order. If we want to sort it in descending
order, the DESC command needs to be used after the column.

r Column types – In order to ensure that a column or value is of one specific data type, the
following command is used:

SQL
CAST(some_col_or_value AS data_type)

where data_type is one of the following:

Data type Description Example

INT Integer 2

DOUBLE Numerical value 2.0

STRING
String ’teddy bear’

VARCHAR

DATE Date ’2020-01-01’

TIMESTAMP Timestamp ’2020-01-01 00:00:00.000’

Remark: if the column contains data of different types, the TRY_CAST() command will convert
unknown types to NULL instead of throwing an error.

r Column manipulation – The main functions used to manipulate columns are described in
the table below:

Category Operation Command

General
Take first non-NULL value COALESCE(col_1, col_2, ..., col_n)

Create a new column
combining existing ones CONCAT(col_1, ..., col_n)

Value Round value to n decimals ROUND(col, n)

String

Converts string column to
lower / upper case LOWER(col) / UPPER(col)

Replace occurrences of
old in col to new

REPLACE(col, old, new)

Take the substring of col,
with a given start and length

SUBSTR(col, start, length)

Remove spaces from the
left / right / both sides LTRIM(col) / RTRIM(col) / TRIM(col)

Length of the string LENGTH(col)

Date

Truncate at a given granularity
(year, month, week) DATE_TRUNC(time_dimension, col_date)

Transform date DATE_ADD(col_date, number_of_days)

r Conditional column – A column can take different values with respect to a particular set
of conditions with the CASE WHEN command as follows:

SQL
CASE WHEN some_condition THEN some_value
..................
.....WHEN some_other_condition THEN some_other_value
.....ELSE some_other_value_n END

r Combining results – The table below summarizes the main ways to combine results in
queries:

Category Command Remarks

Union
UNION Guarantees distinct rows

UNION ALL Potential newly-formed duplicates are kept

Intersection INTERSECT Keeps observations that are in all selected queries

r Common table expression – A common way of handling complex queries is to have tem-
porary result sets coming from intermediary queries, which are called common table expressions
(abbreviated CTE), that increase the readability of the overall query. It is done thanks to the
WITH ... AS ... command as follows:

SQL
WITH cte_1 AS (
SELECT ...
),

Massachusetts Institute of Technology 3 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi

15.003 Software Tools — Data Science Afshine Amidi & Shervine Amidi

...

cte_n AS (
SELECT ...
)

SELECT ...
FROM ...

Table manipulation

r Table creation – The creation of a table is done as follows:

SQL
CREATE [table_type] TABLE [creation_type] table_name(
..col_1 data_type_1,
...................,
..col_n data_type_n
)
[options];

where [table_type], [creation_type] and [options] are one of the following:

Category Command Description

Table type
Blank Default table

EXTERNAL TABLE External table

Creation type
Blank Creates table and overwrites current

one if it exists

IF NOT EXISTS Only creates table if it does not exist

Options
location ’path_to_hdfs_folder’

Populate table with data
from hdfs folder

stored as data_format
Stores the table in a specific data
format, e.g. parquet, orc or avro

r Data insertion – New data can either append or overwrite already existing data in a given
table as follows:

SQL
WITH-- optional

INSERT [insert_type] table_name....-- mandatory

SELECT ...;........................-- mandatory

where [insert_type] is among the following:

Command Description

OVERWRITE Overwrites existing data

INTO Appends to existing data

r Dropping table – Tables are dropped in the following way:

SQL
DROP TABLE table_name;

r View – Instead of using a complicated query, the latter can be saved as a view which can
then be used to get the data. A view is created with the following command:

SQL
CREATE VIEW view_name AS complicated_query;

Remark: a view does not create any physical table and is instead seen as a shortcut.

Massachusetts Institute of Technology 4 https://www.mit.edu/~amidi

https://www.mit.edu/~amidi

