
1

Improving I/O Resource Sharing of Linux Cgroup for

NVMe SSDs on Multi-core Systems

Sungyong Ahn, Kwanghyun La

Memory Division, Samsung Electronics Co.

Hwasung, Korea

{sungyong.ahn, nala.la}@samsung.com

 Jihong Kim

Dept. of CSE, Seoul National University

Seoul, Korea

jihong@davinci.snu.ac.kr

Abstract
In container-based virtualization where multiple isolat-
ed containers share I/O resources on top of a single
operating system, efficient and proportional I/O re-
source sharing is an important system requirement. Mo-
tivated by a lack of adequate support for I/O resource
sharing in Linux Cgroup for high-performance NVMe
SSDs, we developed a new weight-based dynamic
throttling technique which can provide proportional I/O
sharing for container-based virtualization solutions run-
ning on NUMA multi-core systems with NVMe SSDs.
By intelligently predicting the future I/O bandwidth
requirement of containers based on past I/O service
rates of I/O-active containers, and modifying the cur-
rent Linux Cgroup implementation for better NUMA-
scalable performance, our scheme achieves highly ac-
curate I/O resource sharing while reducing wasted I/O
bandwidth. Based on a Linux kernel 4.0.4 implementa-
tion running on a 4-node NUMA multi-core systems
with NVMe SSDs, our experimental results show that
the proposed technique can efficiently share the I/O
bandwidth of NVMe SSDs among multiple containers
according to given I/O weights.

1 Introduction
Container-based virtualization is emerging as a key

cloud computing platform for serving various cloud
services because it allows multiple isolated instances
(called containers) to share system resources more effi-
ciently over hypervisor-based virtualization. In contain-
er-based virtualization, since multiple containers run
independently on top of a single common operating
system, it is important for a kernel-level resource man-
ager to support resource isolation and sharing in an ef-
ficient and proportional fashion among multiple con-
tainers with different service requirements.

Linux Cgroup [1] is such a resource control frame-
work in Linux which supports many container-based
virtualization solutions such as Linux container (LXC),
Docker and libcontainer [2, 3]. Linux Cgroup manages,
for example, the I/O bandwidth of a storage system in a
proportional way so that the total I/O bandwidth of the
storage system can be properly shared among multiple
containers.

Although Linux Cgroup efficiently supports propor-
tional I/O sharing for SATA-based HDDs/SSDs inside
the CFQ I/O scheduler at the single-queue block layer,

the current Cgroup implementation does not adequately
support I/O resource sharing for recent high-
performance SSDs (such as NVMe SSDs). For exam-
ple, since these high-performance SSDs, which can
achieve more than 1 million IOPS, need to work with
the newly proposed multi-queue block layer [4] for
realizing its performance potential, the existing propor-
tional I/O sharing scheme, which was implemented at
the single-queue block layer, cannot be used. In this
paper, we propose a weight-based dynamic throttling
scheme for NVMe SSDs which can provide efficient
and proportional I/O sharing. Our proposed throttling
scheme is implemented as an extension to the existing
I/O throttling layer of Linux Cgroup.

While implementing the proposed scheme, we also
discovered that the current Linux Cgroup is not scalable
on NUMA multicore systems when it works with high-
performance NVMe SSDs. Since these NVMe SSDs
are expected to be shared in practice by a large number
of containers (because of their high bandwidth as well
as their high capacity), it is an important requirement
for Linux Cgroup to work in a scalable way as the
number of containers increases. Furthermore, since a
host system for these SSDs are likely to be based on
NUMA multi-core systems, Linux Cgroup should sup-
port NUMA-aware scalable I/O sharing as well. In or-
der to make the proposed scheme to be NUMA-scalable,
we modified Linux Cgroup to employ per-container
locks instead of sharing a single request-queue lock
among multiple containers.

In order to understand the effectiveness of our pro-
posed improvements to the current Cgroup implementa-
tion, we implemented the proposed scheme on Linux
kernel 4.0.4 running on a 4-node NUMA multi-core
system and evaluated it using Samsung XS1715 NVMe
SSDs [5]. The experimental results show that our
scheme can efficiently share the I/O bandwidth of
NVMe SSDs among multiple containers in proportion
to their I/O weights with scalable performance.

The remainder of this paper is organized as follows.
Sec. 2 explains the limitations of the current Linux
Cgroup when NVMe SSDs are shared among contain-
ers. Sec. 3 describes the proposed I/O resource sharing
scheme. Experimental results are presented in Sec. 4.
Sec. 5 summarizes related work. Sec. 6 concludes with
a summary and future work.

2

2 Limitations of Linux Cgroup for NVMe
SSDs

In this section, we evaluate how the existing I/O re-
source control mechanisms of Linux Cgroup work with
NVMe SSDs in sharing I/O resource among multiple
containers. As shown in Fig. 1, in Linux Cgroup, I/O
resource sharing can be supported at two layers, the
Cgroup I/O throttling layer and single-queue block lay-
er.

For SATA HDDs and SSDs, proportional I/O re-
source sharing has been supported inside the CFQ I/O
scheduler of the single-queue block layer [6]. However,
since Linux kernel 3.13, NVMe SSDs have been sup-
ported under the multi-queue block layer because the
single-queue block layer cannot achieve a high perfor-
mance potential of NVMe SSDs [4]. Therefore, the
existing CFQ-based proportional I/O policy cannot be
reused for NVMe SSDs.

Linux Cgroup also provides I/O throttling at the
Cgroup I/O throttling layer which can be used for I/O
resource sharing by limiting the maximum I/O band-
width or maximum IOPS available for each container.
As a simple proportional I/O sharing solution at the
Cgroup I/O throttling layer, we developed a static throt-
tling scheme, ST, which assigns different upper limits
on the read bandwidth and write bandwidth to contain-
ers according to their I/O weights.

In order to quantitatively evaluate the limitation of
the existing Cgroup resource sharing mechanisms (in-
cluding ST) for NVMe SSDs, we performed simple ex-
periments using four containers, , , , and ,
where the I/O weight ratios among four containers are
given as 10:5:2.5:1. For the experiments, a Dell R920
with 4 Samsung XS1715 NVMe SSDs was used. R920
has 4 NUMA nodes where each NUMA node supports
12 CPU cores. We created four containers using LXC
[2]. Each container ran the I/O workloads summarized
in Table 1

1
. As shown in Fig. 2, the default Cgroup

policy, BASELINE, has no support for proportional I/O

1 We used the block I/O trace replay tool [7] to generate I/O requests
from the workloads in Table 1. (These traces are from UMass [8] and
SNIA [9]). In our experiments, these workloads were executed by 12
concurrent threads with a queue depth of 32.

sharing for NVMe SSDs, thus producing meaningless
resource sharing result. Although ST, which assigns the
maximum bandwidth allowed for each container based
on the I/O weight of the container, works much better
than BASELINE, it still performs poorly for proportional
I/O sharing. For example, the required I/O weight ratio
of to is 2:1, but ST achieves the ratio of 9.9 to 2.2.

The poor performance of ST can be attributed to two
main factors. First, although the static throttling ap-
proach used in ST is effective in guaranteeing that no
container is allocated with the I/O bandwidth over the
specified maximum bandwidth, it is not useful to meet
required I/O weights of containers. Furthermore, ST is
likely to waste the I/O bandwidth allocated for a con-
tainer if the container is not I/O-intensive. For example,
Fig. 3 shows wastes a significant amount of the allo-
cated read bandwidth because its read request are not
intensive enough to fully consume the allocated read
bandwidth.

Second, ST separately manages read bandwidth and
write bandwidth (following the basic throttling mecha-
nism of the Cgroup I/O throttling layer), making it dif-
ficult to manage the I/O bandwidth in an integrated
fashion. For example, Fig. 4 shows that consumed
most of the allocated read bandwidth but it significantly
under-utilized the allocated write bandwidth. Since this
asymmetric I/O consumption pattern between reads and
writes is application specific (e.g., MSNMeta is read-
intensive of), ST cannot easily estimate the required
read bandwidth and write bandwidth in advance. There-
fore ST may waste a significant amount of the allocated
read / write bandwidth.

Our proposed scheme improves these two weakness-
es of ST by dynamically adjusting each container’s
maximum I/O bandwidth by predicting future I/O de-
mands and managing both the read bandwidth and write
bandwidth in a combined fashion.

3 Weight-based Dynamic Throttling Scheme
In this section, we describe our proposed weight-

based dynamic throttling scheme, WDT, for NVMe
SSDs.

Fig. 1: An overview of the I/O resource control in Linux Cgroup.

Table 1: Characteristics of I/O workloads in four containers.

Container Workload Request size (total / average) R : W

 Exchange 126.7GB / 9.3KB 0.34 : 1

 MSNMeta 71.5GB / 5.0KB 1.94 : 1

 MSNFS 56.0GB / 5.1KB 1.67 : 1

 Finance 28.2GB / 2.7KB 0.87 : 1

Fig. 2: Evaluation results of proportional I/O sharing in Linux

Cgroup.

Single-queue Block Layer Multi-queue Block Layer

Device Driver Layer

Proportional

I/O

(CFQ)

SATA HDD/SSD

Device Driver

NVMe SSD

Device Driver

...

Container

SATA HDDs / SSDs NVMe SSDs

Hardware

w1

w2

w3

Container Container

Cgroup I/O Throttling Layer

IOPS

throttling

Bandwidth

throttling

Operating System

Weight-based

throttling

I/O weight w1 I/O weight w2 I/O weight w3

1.5

9.9

1.1
2.2

0.5
1.2 1.0 1.0

0

2

4

6

8

10

12

BASELINE NAIVE

N
o

rm
a

li
ze

d
 I

/O
 b

a
n

d
w

id
th C1 C2

C3 C4
 : :

= 10 : 5 : 2.5 : 1

STBASELINE

3

3.1 Key Design Decisions

As the first design decision, we decided to implement
WDT at the Cgroup I/O throttling layer instead of at the
multi-queue block layer as shown in Fig. 1. Our deci-
sion is affected by three factors: 1) adding a new policy
at the I/O throttling layer is easier by reusing most of
the existing throttling layer code, 2) implementing a
CFQ-like I/O scheduler for the multi-queue block layer
can be quite expensive (because per-process I/O sched-
uling queues necessary in the CFQ I/O scheduler incurs
a large overhead in the multi-queue block layer), and 3)
employing an I/O scheduler is not recommended for
high-performance SSDs.

Another important decision we made in designing the
current WDT scheme was how to define I/O propor-
tionality. An ideal proportional I/O sharing technique
must satisfy the required I/O weight ratios among con-
tainers both locally and globally. By locally-
proportional I/O sharing, we mean that the I/O weight
ratios are satisfied among I/O-active containers for a
given short time interval. On the other hand, in a glob-
ally-proportional I/O sharing technique, the total I/O
resource usage of multiple containers (over entire exe-
cution times) should be proportionally maintained.
Since even formally defining the requirements of an
ideal proportional I/O sharing technique is challenging,
in the current version of WDT, we focus on locally-
proportional I/O sharing only.

3.2 Overview of WDT

In order to support locally-proportional I/O sharing
in WDT using dynamic throttling, we employ an inter-
val-based approach. A fixed-length interval , called
as the throttling window, is used as a basic unit of I/O
resource control in WDT. (We denote the size of the
throttling window as .) For the j-th throttling
window

, we associate the following three parame-

ters for a container :

,

,

. The credit budget

 of the container for

 indicates the total num-

ber of sectors that can request (either by reads or
writes) during the j-th throttling window

. The used

credit

 of the container represents the total num-

ber of credits consumed by during

. The residual
credit

 of the container indicates the remaining

credits not consumed during

.

 is carried over to

the next throttling window

. Whenever an I/O re-
quest of is serviced,

 is incremented by the num-

ber of sectors serviced.
In order to decide whether the current I/O request

should be issued or throttled under I/O proportionality

requirements, we check if

 is smaller than the sum of

 and

. If

 is smaller, that is, if there are remain-

ing credits available, the current I/O request is issued.
Otherwise, it is throttled until the next throttling win-
dow.

An overview of the proposed WDT scheme is shown
in Fig. 5. The WDT scheme consists of two main func-
tions. The future I/O demand predictor is responsible
for estimating a future I/O demand of the container .
WDT monitors the I/O service rate of for

, which

we denote as

 (Credits per Millisecond), and
computes the future I/O demand of based on the
cumulated past values. Once future I/O demands
of the containers are predicted for the next throttling
window

, the total amount of credits required for

the next throttling interval, TotalCredit, is computed.
The budget distributor then updates

 values for the

containers by distributing TotalCredit to each container
based on its I/O weight.

3.3 Future I/O Demand Predictor

The key step of WDT is to compute TotalCredit for
each throttling window. Since the budget distributor
simply divides TotalCredit based on I/O weights of con-
tainers, the efficiency of WDT largely depends on the
accuracy of predicting TotalCredit. If TotalCredit is
overestimated by a larger amount than an actual total
number of credits necessary for the next throttling win-
dow, it may be difficult to meet proportional I/O re-
quirements because some containers may consume too
many credits while others have no usable credits left.
On the other hand, if TotalCredit is underestimated, the
overall I/O performance may be degraded because it
may throttle I/O requests more than necessary. There-
fore, accurately predicting TotalCredit is important in
WDT. Furthermore, in order to reduce the overhead of
updating TotalCredit, WDT only updates TotalCredit
every N throttling windows (which we call the update
window of TotalCredit). We denote the length of this
update window as . Note that since we recom-
pute TotalCredit every update window,

’s are also

updated only once per update window. However,

’s

and

’s are still updated every throttling window.

Let TotalCreditp represent TotalCredit computed at
the p-th update window. In order to compute To-
talCreditp+1 close to an actual I/O demand, we first es-

Fig. 3: Under-utilized read

bandwidth in .
Fig. 4: Asymmetric I/O band-

width consumption between reads

and writes.

Fig. 5: An organizational overview of WDT.

100

200

300

400

500

600

0 10 20 30 40 50 60

I/
O

 b
a

n
d

w
id

th

(M

B
/s

)

Time (s)

Maximum read

bandwidth

0

200

400

600

800

1000

1200

1400

C1 C2 C3 C4

I/
O

 b
a

n
d

w
id

th

(M

B
/s

)

Max. read B/W

Read B/W used

Max. write B/W

Write B/W used

Container

Block Layer

Container Container

weight w1 weight w2 weight w3
Credit allocation

CPM Monitoring

Data flow

Future I/O Demand

Predictor

Budget Distributor

TotalCredit Updater

Residual Credits

Carryover

TotalCredit

Monitoring

Monitoring

Monitoring

4

timate the future credit budget

 of the container
 which had the highest I/O weight at the p-th up-
date window.

Assuming that is also the container with the
highest I/O weight at the (p+1)-th window

2
, we can

estimate TotalCreditp+1 as follows:

 can be conservatively estimated as follows:

 ×

where
 is the Nth percentile of a cumulative

distribution of values. In the current WDT
scheme, we used the 80th percentile value based on our
empirical evaluation

3
. Since maintaining an entire cu-

mulative distribution histogram incurs a large overhead
inside the kernel, we instead use the probit function
[10], a well-known quantile function associated with
the standard normal distribution. Using the probit func-
tion, the 80th percentile

 of can be cal-
culated as follows:

 () () ()

where () and () are the average
and standard deviation of a cumulative distribution of
 values.

3.4 Residual Credit Carryover

Although the current WDT scheme focuses on
achieving locally-proportional I/O sharing among local-
ly I/O-active containers, WDT tries to improve the over-
all I/O performance by reducing wasted credit budgets
of containers. In order to minimize wasted credits allo-
cated for a container for

, the container maintains

the residual credit

 for each

.

 is computed

as

. When the I/O behavior of sud-

denly changes (for example, almost no I/O requests for

), most of

 are wasted unless they are carried over

for future usage. By using

, WDT can use the unused

credits in a future throttling window when needs
higher I/O bandwidth.

3.5 Per-container Lock for Performance Scalability

2 In most cases, this assumption holds for our experiments. For a few
cases where changes at the next throttling window,

 values

may be inaccurate. However, WDT quickly catches up this mistake
within several subsequent throttling windows.
3 Choosing a right

 value is not trivial. Since we estimate the
future budget for using

 , the best
 is workload-

dependent. Designing a better solution (e.g., choosing
 val-

ues in a workload-adaptive fashion) is one of our future WDT exten-
sions.

While developing the WDT scheme, we discovered a
scalability problem of the current Cgroup throttling
layer implementation on a NUMA machine with high
performance NVMe SSDs. Fig. 6 illustrates the NUMA
scalability problem using a four-container example
where each container runs three FIO processes and each
FIO process intensively generates 4-KB random rad
requests. As shown in Fig. 6, the read bandwidth sharp-
ly drops when more than one NUMA nodes are used on
a Dell R920 machine (with four NUMA nodes).

The main source of this scalability problem is that a
single request-queue lock is shared among all contain-
ers (i.e., all FIO processes) whenever an I/O bandwidth
threshold is checked. Since multiple containers running
on different NUMA nodes will continuous incur expen-
sive cacheline invalidation operations when the shared
lock is updated, the read bandwidth is very quickly de-
graded as the number of containers running on different
NUMA nodes increases. Fig. 7 shows that CPU cache
miss ratio sharply increases when multiple containers
issue I/O requests from more than one NUMA node.
The performance impact of the increased cache misses,
however, depends on the performance level of a target
storage system. For example, in slower HDDs, the per-
formance penalty from the increased cache misses was
insignificant because HDDs performed slowly. On the
other hand, for NVMe SSDs, this penalty directly af-
fects the I/O throughput as shown in Fig. 6.

In order to solve the scalability problem, we adopted
per-container locks instead of a single request-queue
lock at the I/O throttling layer of Linux Cgroup. Since
WDT requires container-local information only, it is not
necessary to use a global lock shared by all the contain-
ers. Fine-grained per-container locks make the I/O
throttling layer operate independently from other con-
tainers. The experimental result (in Sec. 4) shows that
our simple modification significantly reduces perfor-
mance degradation from the I/O scalability problem.

4 Experiment Results
4.1 Experimental Setup

The proposed WDT scheme was implemented in
Linux kernel 4.0.4 and evaluated on a Dell R920 ma-
chine configuration described in Sec. 2. In evaluations,
four real-world workloads (described in Table 1) are
used as well as a synthetic workload (based on FIO
[11]). We set to be 100 ms (which is the throt-
tling window size used in the original Linux Cgroup).
Since

 tends to be changed slowly, we set
 to the 10 times of (i.e., 1 s).

We evaluate three schemes, ST, WDT, and WDT-,
where WDT- works in the same way as WDT except that
a single request-queue lock is used for all containers.

4.2 Results

Fig. 8 shows how WDT satisfies different I/O weight
combinations for four containers using read-world
workloads of Table 1. For four different cases, WDT
very accurately satisfies the proportional sharing re-
quirements.

Fig. 6: I/O throughput of con-

tainers with varying number of
NUMA nodes.

Fig. 7: CPU cache miss ratio

with varying number of NUMA
nodes.

0

100

200

300

400

500

600

1 node 2 nodes 3 nodes 4 nodes

K
IO

P
S

The number of NUMA nodes

C1 C2

C3 C4

0.6

21.8

31.7
38.2

0

10

20

30

40

50

1 node 2 nodes 3 nodes 4 nodesC
P

U
 c

a
c
h

e
 m

is
s

ra
ti

o
 (

%
)

The number of NUMA nodes

5

Fig. 9 compares ST, WDT- and WDT for their propor-
tional I/O support using synthetic workloads. In this
evaluation, each container generates 4-KB random read
and write requests intensively by using FIO processes.
A ratio of read to write in each container was set differ-
ently from 90% (in), 80% (in), 70% (in) and
60% (in). Both WDT and WDT- can meet the propor-
tional sharing requirement while ST cannot. It is be-
cause ST cannot properly handle asymmetric bandwidth
consumption behaviors.

Moreover, as shown in Fig. 9, WDT achieves much
higher I/O bandwidth for four containers over WDT-.
For example, achieves an I/O bandwidth of 176
MB/s under WDT while reaches only up to an I/O
bandwidth of 133 MB/s under WDT-. This difference in
the achieved I/O bandwidth between WDT and WDT-
shows that WDT significantly reduces the overhead of a
shared lock at the Cgroup throttling layer. The cache
miss ratio under WDT was 12.8 % only while that under
WDT- was 32.4%.

5 Related Work
Several research groups have proposed I/O resource

control schemes based on credit allocation and throt-
tling such as SLEDS [12], RW(D) [13] and SARC [14].
Unlike our scheme, SLEDS and RW(D) are not fully
work-conserving because they lack a mechanism for
utilizing spare bandwidth. Although SARC is work-
conserving, it is rather ineffective in meeting the I/O
proportionality because residual credits are not ac-
counted in future credit allocation. Our scheme, on the
other hand, is fully work-conserving while satisfying
the required I/O proportionality very accurately by up-
dating the total credit amounts depending on estimated
future I/O demands and fully accounting residual cred-
its for each throttling window.

6 Conclusions
We have presented an I/O resource management

technique, WDT, for supporting proportional I/O re-
source sharing in Linux Cgroup on NUMA multi-core
machines with NVMe SSDs. In order to overcome the
shortcomings of the existing throttling policy, WDT
employs a dynamic throttling approach by intelligently
predicting the future I/O demands of each container and
manages reads and writes in a combined fashion. Our
evaluation results show that the WDT technique
achieves very accurate proportional I/O resource shar-
ing. By employing per-container locks, WDT also
achieves NUMA-scalable high I/O performance as well.

The proposed WDT can be extended in several direc-
tions. For example, as described in [15,16], the problem
of proportional I/O sharing should be solved in a cross-
layer fashion. Although the current version of WDT has
focused on the block layer only, we plan to extend the
WDT scheme to consider multiple layers (e.g., a file
system and a page cache) in an integrated fashion.

7 Acknowledgments
We would like to thank, Vijay Chidambaram, our

shepherd, and anonymous reviewers for their valuable
suggestions. Jihong Kim was supported by the National
Research Foundation of Korea (NRF) grant funded by
the Ministry of Science, ICT and Future Planning
(MSIP) (NRF-2013R1A2A2A01068260), and the Next-
Generation Information Computing Development Pro-
gram through the NRF funded by the MSIP (NRF-
2015M3C4A70656 45).

References
[1] Cgroups, https://www.kernel.org/doc/Documentation/cgroup-v1

/cgroups.txt, 2016.
[2] LXC, https://linuxcontainers.org/lxc/introduction/, 2016.
[3] R. Rosen, “Linux containers and the future cloud,” Linux Jour-

nal, 2014.
[4] M. Bjørling et al., “Linux block IO: introducing multi-queue

SSD access on multi-core systems,” in Proc. of the 6th Int. Sys-
tems and Storage Conf., 2013.

[5] Samsung XS1715 NVMe PCIe SSD,
http://www.samsung.com/us/business/oem-solutions/pdfs/XS17
15_ProdOverview_2014_October_v1.pdf Oct, 2014.

[6] J. Axboe, “Linux block IO - present and future,” in Proc. of
Ottawa Linux Symp., 2004.

[7] Trace-replay, https://bitbucket.org/yongseokoh/trace-replay,
2016.

[8] UMass trace repository, http://skuld.cs.umass.edu/traces/storage
/SPC-Traces.pdf, 2002.

[9] D. Narayanan et al., “Migrating server storage to SSDs: analysis
of tradeoffs,” in Proc. of the 4th ACM European Conf. on Com-
puter Systems, 2009.

[10] C. I. Bliss, “The Method of probits,” Science, vol. 79, no. 2037,
pp. 38-39, 1934.

[11] FIO, http://freecode.com/projects/fio, 2016.
[12] D. D. Chambliss et al., “Performance virtualization for large-

scale storage systems,” In Proc. of the 22nd Int. Symp. on Reli-
able Distributed Systems, 2003.

[13] W. Jin et al., “Interposed proportional sharing for a storage
service utility,” in Proc. of Int. Conf. on Measurement and
Modeling of Computer Systems, 2004.

[14] J. Zhang et al., “Storage performance virtualization via through-
put and latency control,” in Proc. of 13th IEEE Int. Symp. on
Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems, 2005.

[15] J. Kim et al., “Towards SLO complying SSDs through OPS
isolation,” in Proc. of the 13th USENIX Conf. on File and Stor-
age Technologies, 2015.

[16] S. Yang et al., “Split-level I/O scheduling,” in Proc. of the 25th
Symp. on Operating Systems Principles, 2015.

Fig. 8: Evaluation results of proportional I/O sharing under WDT

with real-world workloads.

Fig. 9: Evaluation results of proportional I/O sharing in ST, WDT-

and WDT schemes with FIO processes.

0

2

4

6

8

10

12

10:5:2.5:1 1:10:5:2.5 2.5:1:10:5 5:2.5:1:10N
o

rm
a

li
ze

d
 I

/O
 b

a
n

d
w

id
th

I/O weight ratios among four containers

C1 C2

C3 C4

17.8

10.0 10.010.0

5.0 5.0
3.3

2.5 2.5
1.0 1.0 1.0

0

5

10

15

20

NAIVE WDT- WDT

N
o

rm
a

li
ze

d
 I

/O
 b

a
n

d
w

id
th C1 C2

C3 C4

I/O bandwidth

= 133 MB/s

I/O bandwidth

= 176 MB/s

I/O bandwidth

= 62 MB/s

ST WDT- WDT

 : :
= 10 : 5 : 2.5 : 1

