
SYSADMIN

www.linuxvoice.com62

While Linux containers have been
around for a while, they’ve
recently been gaining more

recognition as a lightweight alternative to
traditional virtualisation products like KVM
or VMWare. With the arrival of LXC, Docker,
and the next generation of distributions,
we’re all likely to see a lot more of them over
the coming decade.

As with all virtualisation, the idea of
containers is to make it easy to run multiple
applications on a single host, all the while
ensuring each remains separate. This
enables the administrator to carefully
manage the resources assigned to each
application and to ensure that they can’t
interfere with each other.

What makes containers different to
traditional products is that they don’t do any
hardware emulation. Instead, the
applications in question all run directly on
top of the host kernel, just like any other
process. Separation between the running
containers is achieved through the careful
use of a number of Linux kernel features.

Control Groups (cgroups) are the first of
these features, and are probably the best
known. They provide a means for

administrators to group processes, and all
their future children, into hierarchical groups.
Various subsystems can then be used to
strictly manage the processes and the
resources they interact with.

Control groups
If you have systemd installed, you can
quickly inspect what cgroup your processes
are running in with the ps command:
ps -aeo pid,cgroup,command

Running this, you should see that all
processes are running in cgroups that exist
in a hierarchy below the systemd cgroup.
You could use systemd unit files to manage
the resources assigned to a service (indeed,
if you’re using systemd, this is probably the
best way to use cgroups), as described in
the last issue, but you can also interact with
cgroups directly, too.

There are a collection of tools available in
the libcgroup-tools package, including
cgcreate, for example. You can use this tool
to create a new cgroup as follows:
cgcreate -g memory,cpu:mysql

This will create a new cgroup called mysql
which has been tied to the memory and cpu
subsystems. You can then take advantage

When new products are being developed,
one of the most important choices to be
made is which technologies you’re going
to build on top of. Obviously, the right tool
for the job is the correct answer, but how
you decide which tool is the right one is
less obvious.

As a sysadmin, my goal is to ensure that
our technologies are the most secure, the
most stable and the most familiar. All of
these characteristics will reduce the
chances of me being woken early in the
morning, and when I am inevitably woken
in the morning, I’ll at least have the
knowledge and experience to have half a
chance of fixing whatever went wrong.

For developers, however, operational
requirements often seem restrictive.
Enterprise distributions come with
technology that’s more than three years
old and requires the developers to write
far more lines of code. This means there’ll
be more bugs and they may well take
much longer to get the product to market.

During the two years I’ve worked as a
system administrator, I’ve seen this
conflict crop up several times, but never
seen any obvious solutions that make
both parties happy. I agree with the
‘DevOps’ crowd, who argue that part of the
solution is to ‘better align incentives’,
making operations more responsible for
delivering software and developers more
responsible for maintaining it.

We also need improvements from
distributions, providing more reliable
means for getting recent, but stable,
software packages on to well tested
platforms. The Fedora.next wheeze may
be going some way to address this, as do
PPAs in Ubuntu. Hopefully we’ll see this
mentality begin to translate to Debian and
RHEL in the coming years, too.

Linux containers
Enterprise-grade virtualisation on a real kernel.

The highlighted area shows the cgroup in which the different processes are running. As you can
see, all are either in the systemd defaults of systemd:/user.slice and systemd:/system.slice.

System administration technologies brought to you from the coalface of Linux.
SYSADMIN

Jonathan Roberts
dropped out of an MA
in Theology to work
with Linux. A Fedora
advocate and systems
administrator, we hear
his calming tones
whenever we’re stuck
with something hard.

SYSADMIN

www.linuxvoice.com 63

The output of this long listing in the /sys/fs/cgroup directory shows all the different subsystems
that are available for managing processes with cgroups on a default Fedora 20 installation.

of a command, such as cgset, or interact
directly with the virtual filesystem exposed
by cgroups, to manipulate the resource
limits of this newly created group:
cgset -r swappiness=xxx /sys/fs/cgroups/memory/
mysql

This command will set the swappiness
parameter of all processes running in the
mysql cgroup to xxx. To add a process to
the cgroup, all you need to do is echo its PID
to the tasks file in the cgroup’s filesystem or
use the cgclassify command.

Namespace isolation
Namespace isolation is the other key
technology that makes containers possible
on Linux. Each namespace wraps a
particular system resource, and makes
processes running inside that namespace
believe they have their own instance of that
resource. There are six namespaces in Linux:

mount Isolates the filesystems visible to a
group of processes, similar to the chroot
command.

UTS Isolates host and domain names so
that each namespace can have its own.

IPC Isolates System V and POSIX
message queue interprocess
communication channels.

PID Lets processes in different PID
namespaces have the same PID. This is
useful in containers, as it lets each container
have its own init (PID 1) and allows for easy
migration between systems.

network Enables each network
namespace to have its own view of the
network stack, including network devices, IP
addresses, routing tables etc.

user Allows a process to have a different
UID and GID inside a namespace to what it
has outside.

A quick way to experiment with
namespaces yourself is to use the unshare
command. This will run a particular
program, removing its connection to a
particular namespace of its parent:
sudo unshare -u /bin/bash

This will create a new bash process that
doesn’t share its parent UTS namespace. If
you now set the hostname to foo, you’ll then
be able to look, in another shell on the same
system, and see that the hostname in the
root (original) namespace hasn’t changed.

Linux containers
Now that you have an idea of what the
underlying technologies do, let’s take a look
at Linux Containers (LXC), a userspace
interface that brings them together. To
install the LXC userspace tools, you need to

install the lxc package on Ubuntu and
Fedora, but in the case of the latter, you
should also install lxc-templates and
lxc-extras for a better experience.

Once that’s done, creating a new container,
depending on your requirements, can be
simple. In the /usr/share/lxc/templates
directory, you’ll find a collection of scripts
that will create some default containers,
including Debian, Fedora and Ubuntu system
containers, and sshd, BusyBox and Alpine
application containers. To put one of these to
use, all you need to do is run lxc-create:

lxc-create -n linux-voice -t /usr/share/lxc/templates/
busybox --dir /home/jon/containers/linux-voice

-n sets the name of the container.
-t says which template you want to use.
--dir says where you want the rootfs for

the new container to be created.
This command creates a directory in

/var/lib/lxc with the name set by the -n flag.
The contents of this directory are populated
by the script specified with the -t flag. If you
look at, say, the BusyBox template, you’ll see
that this script sets up a filesystem
hierarchy, copies appropriate binaries and
installs important pieces of configuration
with heredoc statements.

Inside the created directory, you’ll also find
that a config file has been created. This
defines which system resources are to be
isolated and controlled by the container. The
man lxc.conf command goes in to detail on
what options can be put in this file, but a few
key examples will be helpful:

lxc.cgroup.cpu.shares = 1234 Sets the
share of CPU that the container has.

lxc.utsname = linux-voice Sets the
hostname of the container.

lxc.mount.entry = /lib /home/jon/
containers/busybox/lib Specifies directories
on the host filesystem that should be
mounted in the container.

This configuration file means you can
apply the existing templates in quite flexible
ways, but if you really want to create a
custom container, you’re going to have to set
to work creating your own template script.

As the LXC man page says, creating a
system container is paradoxically easier
than creating an application container. In the
latter case, you have to start by figuring out
which resources you want to isolate from
the rest of the system, and then figure out
how to populate the appropriate parts of the
file system etc. In the former case, you
simply isolate everything – much simpler.

Once you’ve created your container with
lxc-create and modified the config file as
you see fit, you can start it with the lxc-start
command, use lxc-console to get a console
in it, and shut it down with lxc-shutdown.

While cgroups and namespaces have
reached a degree of maturity in Linux, the
user experience still has some room for
improvement. If you found the lxc-
commands tricky to use, you might want to
install libvirt-sandbox, which will provide a
set of scripts and extensions for using LXC
through the familiar libvirt tools.

“Creating a Linux container is paradoxically easier
than creating an application container.”

