(S NCCsS.GoV

NATIONAL CENTER FOR COMPUTATIONAL SCIE

Introduction to
Parallel Programming
with MPI




NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outllne

Introduction
Message Passing Interface (MPI

Point to Point Communications




77$ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Qutline: Introduction

— What is Parallel Computing?

— Why go parallel?

— Types of Parallelism - Two Extremes.




NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

What Is Parallel Computing?

« Parallel computing - the use of multiple computers, processors
or cores working together on a common task.
— Each processor works on a section of the problem
— Processors are allowed to exchange information (data in
local memory) with other processors

Grid of Problem to be solved

CPU #1 works on this area CPU #2 works on this area
of the problem  exchange of the problem

i

. CPU #3 workson thisarea ~ CPU #4 workson thisarea =
of the problem  exchange  of the problem I

=




€ N |: = 5 G DV

AP NATIONAL CENTER FOR

Why go parallel?

 Limits of single CPU computing
— Available memory
— Performance

 Parallel computing allows:

— Solve problems that don’t fit on a single CPU
: can t4be s_Ivedl_ a reasgnable




7$ NCCS.GOV

Types of Parallelism - Two Extremes.

» Data parallel
— Each processor performs the same task on different
data
— Example - grid problems
o Task parallel
— Each processor performs a dlfferent task
— E.--ample S|g.; aI processing :




'$ NCCS.GOV

o NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Parallel Computer Architectures

e SIMD - Single Instruction/Multiple Data
e MIMD - Multiple Instructions/Multiple Data

Multiple Data
Parallel Computer Architectures

Hybrid
(SMP cluster)

Distributed




(G5 NCCS.GoV

: NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Parallel “Architectures”

e SPMD - Single Process/Multiple Data, or Single Program/Multiple Data
« MPMD - Multiple Process/Multiple Data, or Multiple Program/Multiple Data

Multiple Data
Parallel Computer Architectures

Control Mechanism: [ES]LYis] MIMD

Shared Hybrid N Distributed
(SMP cluster)




€ NCCS.GOV

.~ MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Parallel Programming Models

e There are several parallel programming models in common use:
— Shared Memory

Threads
Message Passing
Data Parallel
Hybrid

Other...

Parallel programming models exist as an abstraction above hardware
and memory architectures.

In hybrld model any tvvo or more parallel programmlng models are




€ NCCSs.GOV

#* NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outllne Message Passing Interface (MPI)

— What is MP1?

— MPI in Summary

— First MPI1 Program: Hello World!

— Four Major Benefits of MPI

— MPI Message Components

— Typical Message Passing Communication Components
— Message Passing Proqrammlnq Concept

— Essenﬂal&gf MPI Proqrams




(; NCCS.GOV
What is MP1?

* From a programming perspective, message passing implementations
commonly comprise a library of subroutines that are imbedded in a source
code. The programmer is responsible for determining all the parallelism.

« Historically, a variety of message passing libraries have been available
since the 1980s. These implementations differed substantially from each
other making it difficult for programmers to develop portable applications.

e 1n 1992, the MPI Forum, which had over 40 participating organizations,
Including vendors, researchers, software library developers, and users was
formed with the primary goal of establishing a portable, efficient, and
flexible standard specification for message passing implementations.

e As aresult of this forum Part 1 of the Message Passing Interface (MPI) was
released in 1994. Part 2 (MPI-2) was released in 1996.

 MPI is now the "de facto" industry standard for message passing
Implementations, replacing virtually all other implementations used for
production work.

Go to Menu



NCCS.GOV

A': - .'
'“'al NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI In Summary

MPI is dominant parallel programming approach in the USA.

By itself, MPI is NOT a library - but rather the specification of what such a
library should be.

MPI is not an IEEE or 1SO standard, but has in fact, become the "industry
standard" for message passing implementations.

As such, MPI is the first standardized vendor independent, message passing
specification.

— the syntax of MPI is standardlzedl

— the N ll nehe sior of MPI calls

AT F



http://www.mcs.anl.gov/research/projects/mpi/index.htm

7$ NCCS.GOV

p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Flrst MPI Program: Hello World!

#include <stdio.h>
#include “mpi.h”

int main(int argc, char** argv) {
MPI _Init(&argc, &argv);
printf(“Hello world \n’);
MPI_Finalize();

program Hello_World
include “mpif.h’
integer ierror

. . | call MPI_INIT(ierror)
FOF@EF_ :;gh_r_!t\-f:_, ‘ -Hel lo WOrId’




(; NCCS.GOV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Four Major Benefits of I\/IPI

Before the standard MPI specification appeared, message passing
development was based on the tradeoffs between portability,
performance and functionality.

Standardization - MPI is the only message passing specification
which can be considered a standard. It is supported on virtually all
HPC platforms. Practically, it has replaced all previous message
passing libraries.

Portability - Usually there is no need to modify your source code when
you port your application to a different platform that supports (and
Is compliant with) the MPI standard.

Functionality - Over 450 routines are defined in MPI-1 and MPI-2.

Availability - A variety of implementations are available on both
vendor and public domains.

Go to Menu



" NATIONAL CENTER FOR COMPUTATIONAL SCIE

MPI Message Components

e Envelope:
- sending processor (processor_i1d)
- source location (group_1d, tag)
- recelving processor (processor_id)
- destination location (group_id, tag)




G NCCS.GOV

2 MNATIONAL CENTER FOR COMPUTATIONAL SCIE

Typlcal Message Passing Communlcatlon Components

e Environment ldentifiers
processor_id, group_id, inttialization

e Point to Point Communications
— blockmg operatlons




6 NCCS.GO

A4

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES)
—

Message Passing Programming Concept

« Originally was used in distributed memory computing environment

e Can also be used in shared memory environment

* Since memory is local, any data stored in the memory of a remote processor
must be explicitly requested by a programmer. In MPI implementations for
systems which are collections of SM nodes the support for message passing

on a node is included.

» Usually each processor executes the SAME program using partitioned data

set (SPMD)

* Written in sequential language (FORTRAN, C, C++) plus MPI functions

‘ Single Program

Sum.exe (P0O) :
myid =0, N=10
Data A, B(1:10)

Do 1=1,N
AL(1:10)=A(my1d*N+(1:10))
BL(1:10)=B(my1d*N+(1:10))

CL=AL+BL
SUM CL (MPI_Alleduce, ©)

Print global _sum C

ﬂ Partitioned Data

=

N

Communications
MPI function

Sum.exe (Pl1) :
myid =1, N=10
Data A, B(11:20)
Do I=1,N

AL(1:10)=A(myid*N+(1:10))
BL(1:10)=B(myid*N+(1:10))

CL=AL+BL
SUM CL (MPI_Alleduce,
Print global _sum C

9)

Go to Menu



" NCCS.GOV

- NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Essentials of MPI Programs

Header files:
C: #include “mpi.h”
Fortran: include “mpif.h’
C++: #include “mpi.h”
Initializing MPI:
C: int MP1_Init(int argc, char**argv)
I MPI_INIT(IERROR) | .




29 NCCS.GOV
MNATIONAL CENTER FOR COMPUTATIONAL BEIENCEE!]

MPI Function Format

MPI format:
C: err = MPI_Xxxx(parameter,..)
Fortran. call MPI1_XXXX(parameter,.., 1error)
C++: void MPI: :Xxxx(parameter,..)
Errors:
C. Returned as err. MPI_SUCCESS if successful

Fortran: Returned as 1error parameter. MP1 _SUCCESS if successful

C++ functions do not return error codes. If the default error handler has been set to
MPI::ERRORS_THROW _ EXCEPTIONS, the C++ exception mechanism is used to
signal an error by throwing an MPI::Exception object.

It should be noted that the default error handler (i.e., MPI.:ERRORS _ARE_FATAL)on a
given type has not changed. User error handlers are also permitted.
MPI::ERRORS_RETURN simply returns control to the calling function; there is no
provision for the user to retrieve the error code.

User callback functions that return integer error codes should not throw exceptions; the
returned error will be handled by the MPI implementation by invoking the appropriate
error handler.

Go to Menu



(; NCCS.GOV

MPI Communicators and Groups

MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other.

All MPI communication calls require a communicator argument and
MPI processes can only communicate if they share a communicator.

Every communicator contains a group of tasks with a system
supplied identifier (for message context) as an extra match field.

The base group is the group that contains all processes, which are
associated with the MP1 _COMM_WORLD - predefined

communicator.
Communicators are used to create independent “message universe”
MP1 _Initinitializes all tasks with MP1 _COMM_WORLD

Communicators are particularly important for user supplied libraries

Go to Menu



'$ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

.

MPI Environment Management Routines

* MPI environment management routines are used for an assortment of
purposes, such as initializing and terminating the MPI environment,
querying the environment and identity, etc. Most of the commonly used

ONnes are.

MPI_Init
MP1_Comm_size
MP1_Comm_rank

W |




€ NCCS.GOV

. ATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI Process Identifiers

- MPI_COMM_RANK

Gets a process’s rank (ID) within a process group
C:int MP1_Comm_rank(MPI_Comm comm, int *rank)
Fortran : call MPI_COMM_RANK(mpi_comm, rank, ierror)

C++:1nt MPI::Comm: :Get _rank() const;

i

- MPI_COMM_SIZE

o




NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MP1_COMM_WORLD communicator

e MPI_COMM_WORLD is the default communicator setup by MP1_Init()

» It contains all the processes
» For simplicity just use it wherever a communicator is required!




NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

he 7

’fﬁ MPI_COMM_WORLD f3




, NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example “Hello From .

#include <stdio.h>
#include “mpi.h”
int main(int argc, char** argv)
{
int my PE num, err;
err = MPI_Init(&argc, &argv);
|f (err 1= MPI SUCCESS) {




, NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example “Hello From ...” — Fortran

program Hello From
include “mpif.h’
integer my PE num, ierror, rc
call MP1_INIT(ierror)
iIT (ierror .ne. MP1_SUCCESS) then
print *,"Error initializing MPI.’ |
call MP1 ABORT(MPI COMM_ WORLDq rc, ierror)




729 NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: “Hello From ...” — C++

#include "mpi.h"
#include <iostream>
int main(int argc, char** argv)
{
int my PE num;
MPI::Init(argc, argv);

my PE_num = MPI1::COMM_WORLD.Get_rank();

.ellogfrOmlzl&< my

=

.

PE_num << endl;

. - =




$ NCCS.GOV

o NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Qutline: Point to Point Communications

Overview

Buffering the Messaqges

Blocking Calls

Non-Blocking Calls

Order in MPI

Fairness in MPI

For a Communication to Succeed...
MPI Basic Datatypes
Communication Modes
Communication Modes: Blocking Behavior
Syntax of Blocking Send

Syntax of Blocking Receive
Examp_IF Passing a Messaqe




€ NCCS.GOV

i .
.: ’ ~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Overview

Point to point is sending a message from one process to another, I.e. source
process sends message to destination process

Communication takes place within a given communicator
MPI defines four communication modes for blocking and non-blocking send:
— synchronous mode ("'safest™)
— ready mode (lowest system overhead)
— buffered mode (decouples sender from receiver)
— standard m“ode (compromise)




6 NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES)

Buffering the Messages

 In a perfect world, every send operation would be perfectly
synchronized with its matching receive. And there are cases
when that may not be desirable. MPI implementation must be
able to deal with storing data when the two tasks are out of

sync.
e Consider the following two cases:
— A send operation occurs 5 seconds before the receive Is
ready - where Is the message while the receive is pending?
— Multiple sends arrive at the same receiving task which can
only accept one send at a time - what happens to the
messages that are "backing up"?

e The MPI implementation (not the MPI standard) decides what
happens to data in these two cases. Typically, a system buffer
area Is reserved to hold data in transit.

Go to Menu



y NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Bufferlng the Messages (2)

« System buffer space:
Memory in the processes
Opaque to the programmer and managed entirely by the MPI library
A finite resource that can be exhausted
May exist on a sending side, a receiving side, or both
May improve program performance because it allows send - receive
operations to be asynchronous.

Processor 1 Processor 2

network

application SEND application RECV

data |

data |
-




NCCS.GOV

Blockmg Calls

« A blocking send or receive call suspends execution of
user’s program until the message buffer being
sent/received Is safe to use.

n case of a blocking send, this means the data to be sent
nave been copied out of the send buffer, but these data
nave not necessarily been received in the receiving task.
The contents of the send buffer can be modlfled W|thout




".\.--'_ | NATIONAL CENTER FOR PUTATIONAL ScC

Blocking Send and Recelve

« A blocking MPI call means that the program execution will be
suspended until the message buffer is safe to use. The MPI
standards specify that a blocking SEND or RECV does not
return until the send buffer is safe to reuse (for MPI_SEND),
or the receive buffer is ready to use (for MP1_RECV).

User MPI User

User MPI User




(- 4 NCCS.GOV

TIONAL CENTER FOR PUTATIONAL SC

Non Blocking Calls

* Non-blocking calls return immediately after initiating the
communication.

 In order to reuse the send message buffer, the
programmer must check for its status.

e The programmer can choose to block before the message
buffer I E used or test for the status of the mess_ge buffer.

——_:—\_——-_._




F .-;-' > )
). | /
. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Non-Blocking Send and Receive

« Separate Non-Blocking communication into three phases:
— Initiate non-blocking communication.

— Do some work (perhaps involving other communications?)
— Wait for non-blocking communication to complete.

Non-Blocking Send Diagram:

Send User MPI User MPI User
User MPI User
User MPI User
User MPI User MPI User




7§ NCCS.GOV

~  NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Order in MPI

e Order:

— MPI guarantees that messages from same process will not
overtake each other.
o If a sender sends two messages (Message 1 and Message 2)
In succession to the same destination, and both match the
same receive, the receive operation will receive Message 1
before Message 2.

* It areceiver posts two receives (Receive 1 and Receive 2),




p NCCS.GOV

£ p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Fairness in MPI

e Fairness:
A parallel algorithm is fair if no process is effectively ignored

In the example below processes with low rank (like process zero) may be
the only one whose messages are received.

MPI does not guarantee fairness - it's up to the programmer to prevent
"operation starvation".

Another example: task 0 sends a message to task 2. However, task 1 sends
a competlng message that matches task 2 s receive. Only ne of the sends




7$ NCCS.GOV

TIONAL CENTER FOR COMPUTATIONAL SC

FOF a Communication to Succeed

Sender must specify a valid destination rank
Recelver must specify a valid source rank

— may use wildcard : MP1 _ANY_SOURCE
The communicator must be the same
Tags must match




€< NCCS.GOV

> " MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI Basic Datatypes for C

MPI Datatypes

C Datatypes

MP1_CHAR

signed char

MP1_INT

signed int

MP1_LONG

signed long iInt

MP1_FLOAT

float

MP1_DOUBLE

double

MP1_LONG_DOUBLE

long double

MP1_BYTE

MP1

| signed short int

SELCEER




NCCS.6GOV

® | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI Ba5|c Datatypes for Fortran

MPI Datatypes Fortran Datatypes
MP1 INTEGER integer
MP1 REAL real
MP1_ DOUBLE PRECISION double precision
MP1_COMPLEX complex
MP1_DOUBLE_COMPLEX double complex
MP1_LOGICAL




NCCS.GOV

<L | NATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

MPI Basic Datatypes for C++

MPI Datatypes

C++ Datatypes

MP1 - :CHAR

char

MP1 : :WCHAR

wchar_t

MP1 - :SHORT

signed short

MPIZ:ZINT

signed iInt

MPI : : LONG

signed long

MP1: :SIGNED_CHAR

signed char

MP1: :UNSIGNED_CHAR

unsigned char

MP1I - zUNSIGNED_SHORT

unsigned short

MP1I - zUNSIGNED

unsigned int

MP1: :UNSIGNED_LONG

unsigned long int

MPI - - FLOAT
¥rd

| float




79 NCCS.GOV

TIONAL CENTER FOR COMPUTATIONAL SC

Communication Modes

 MPI has 8 different types of Send
e The non-blocking send has an extra argument of request handle

Blocking Non-Blocking
Standard MP1_Send MP1 Isend

Synchronous |MPI_Ssend MP1_ Issend




7$ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Communication Modes: Blocking Behavior

Synchronous Send
MPI_SSEND

Return when the message buffer can be safely reused.
Can be started whether or not a matching receive was
posted. However, the send will complete successfully
only if a matching receive is posted.

Buffered Send
MPI_BSEND

Return when message is copied to the system buffer

Ready Send

_

MPI_RSEND "”*mplawng c.e-l-v is alrgady_.mng




p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Blocking Synchronous Send: MP1_SSEND

the sending task tells the receiver that a message is ready for it and
waits for the receiver to acknowledge

system overhead : buffer to network and vice versa
synchronization overhead : handshake + waiting
safest , most portable




NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Blocklng Ready Send: MP1 _RSEND

e requires a “ready to receive” notification, if not => error, exit
* sends message out over network
e minimize overhead




NI:E:S BI:IV

TIONAL CENTER FOR COMPUTATIONAL SC

Blocklng Buffered Send: MPI _ BSEND

« Blocking buffer send - user-supply buffer on send node

« Buffer can be statically or dynamically allocated
« Send : data copy to buffer and return
* Receive : when notify, data are copied from buffer

COPY

DONE

|

i



| NATIONAL CENTER FOR COMPUTATIONAL SC

Blocklng Standard Send: MPI _Send

Implemented by vendors to give good performance for most
programs.

Simple and easy to use
Either synchronous or buffered
CRAY XT :

— Based on MPICH2




§ NCCS.GOV

= NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Syntax of Blocking Send

C:
i

nt MPI_Send(&buf, count, datatype, dest, tag, comm)
&but : pointer of object to be sent
count: the number of items to be sent, e.g. 10
datatype : the type of object to be sent, e.g. MP1 _INT
dest: destination of message (rank of receiver), e.g. 6
tag: message tag, e.g. 78
comm : communicator, e.g. MP1 _COMM_WORLD

Fortran : —




 NCCSs.GOV

® | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Syntax of Blocking Receive

C:
i

nt MPI_Recv(&buf, count, datatype, source, tag, comm, &status)
source : the node to receive from, e.g. O

&status : astructure which contains three fields, the source, tag, and error code of
the incoming message.

Fortran :
call MPIL RECV(buf count dataqype source, tag comm,

Q] '.:.:I4 ()




Nccs GOV

. NATIONAL CENT FOR COMPUTATIONAL SC

Example: Passing a Message — Schematic

RANK ID Message Passing Done (exit)

Core O

—> message= —> message
Hello World Hello World

heIIowy
= @ B, B
Send

Core 1

i Gecv

ILE,'




$ NCCS.GOV

h, NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Passing a Message — Hello World Again!
C Example

#include <stdio.h>
#include "mpi.h"
int main(int argc, char ** argv)

{

int my PE num, ntag = 100;
char message[12] = ""Hello, world";

MP1_Status status;

MPI _Init(&argc, &argv);

MPI_Comm_rank(MP1_COMM_WORLD, &my_PE_num);
_— - R [ 4 Y

= .,\,_“‘




) NCCS.GOV

e p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Passing a Message — Hello World Again!

Fortran Example

program Hello World
include “mpif.h’
integer me, ierror, ntag, status(MPl_STATUS SIZE)
character(12) message
call MPI_INIT(ierror)
call MP1_COMM_RANK(MPI_COMM_WORLD, me, ierror)
ntag = 100
iIf ( me .eq . 0) then
- message = “Hello, World”
- MP1_S i-sage 12 MPI CHq




y NCCSs.GOV

. W aTionAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Passing a Message — Hello World Again!

C++ Example

#include "mpi.h"
#include <iostream>

#include <string>

int main(int argc, char ** argv)
{

int my PE num, ntag = 100;

char message[13] = "Hello, world";

MPI : :Status status;

MPI::Init(argc, argv);
~my_PE_num = MPI::COMM_WORLD.Get_rank();

—

= L

——




7$ NCCS.GOV

" | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Deadlock Situation

You should be careful with your communications pattern to
avolid getting into a deadlock. A deadlock is a situation that
arises when a process cannot proceed because it is waiting on
another process that is, in turn, waiting on the first process.

Deadlock

— All tasks are waiting for events that haven’t been initiated

— common to SPMD program with blocklng communlcatlon e.g. every
ta k sends, lbUt none recelv&s_ DR




s NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Deadlock — Fortran

Improper use of blocking calls results in deadlock run on two
nodes

author : Roslyn Leibensperger, (CTC)

program deadlock

implicit none

include “mpif.h’

integer MSGLEN, ITAG_ A, ITAG B

parameter (MSGLEN = 2048, ITAG_A = 100, ITAG_B = 200)
real rmsgl(MSGLEN) -~rm592(MS§LEN) .




€ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Deadlock — Fortran (Cont’d)

iIT ( 1rank .eqg. 0 ) then
idest = 1
isrc = 1
istag = ITAG A
iretag = ITAG B
iIf ( irank .eqg. 1 ) then
idest = O
Isrc =
istag = ITAG B
|retag ITAG_A
end if il




‘€ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Deadlock — Fortran (fixed)

c Solution program showing the use of a non-blocking send to
eliminate deadlock
c author : Roslyn Leibensperger (CTC)
program fixed
implicit none
include "mpif.h*
integer MSGLEN, ITAG_A, I1TAG_B
parameter (MSGLEN = 2048, ITAG_A = 100, ITAG_B = 200)
real rmsgl(MSGLEN), rmsg2(MSGLEN)
integer irank, i1dest, isrc, istag, iretag
integer ierr, 1, request, irstatus(MPI_STATUS SIZE)
|nteger |sstatus(MPI STATUS SIZE) .




NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Deadlock — C

#include <stdio.h>

#include "mpi.h*

int main(int argc, char *argv[])
{

#define MSGLEN 2048

int ITAG_A = 100,I1TAG_B = 200;
int irank, 1, idest, isrc, istag,
float rmsgl[MSGLEN];

float rmsg2[MSGLEN];

MP1 S_atus recv_status;




NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

it ( 1rank
{
idest
ISrc
iIstag
iretag

+
else 1f ( irank == 1)

ITAG A;
ITAG B;




/_{j NCCS.GOV

. MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Deadlock — C (fixed)

//Solution program showing the use of a non-blocking send to
eliminate deadlock
#include <stdio.h>
#include "mpi.h*
int main(int argc, char *argv[])
{
#define MSGLEN 2048
int ITAG_A = 100,I1TAG_B = 200;
int irank, 1, idest, isrc, istag, iretag;
float rmsgl[MSGLEN];
float rmsg2[MSGLEN];
MP1 Status |rstatus isstatus;




NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Deadlock — C++

#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])

{

#define MSGLEN 2048
int ITAG_A = 100,ITAG_B = 200;
int irank, 1, idest, isrc, istag, iretag;
float rmsgl[MSGLEN]; |
float rmsg2[MSGLEN];




"NCCS.GOvV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Deadlock — C++ (Cont’d)

iIf ( 1rank == 0 )
{
1dest
ISrc
istag
iretag
¥
else 1f ( irank == 1 )
{
idest
~isrc

1;
1;
ITAG A;
ITAG B;



L NCCS.GOV

£ p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Deadlock — C++ (fixed)

#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{
#define MSGLEN 2048
int ITAG_ A = 100,I1TAG_B = 200;
int irank, 1, idest, isrc, istag, iretag;
float rmsgl[MSGLEN];
float rmsg2[MSGLEN];
MP1::Status irstatus, isstatus;

MPI::Request request;




79 NCCS.GOV_

NATIONAL CENTER FOR COMPUTATIONAL SC

Communication Modes: Non-BIocking Behavior

« The non-blocking calls have the same syntax as the blocking
calls with two exceptions:

— Each call has an “I” immediately following the *“ ”

— The last argument is a handle to an opaque request object
that contains information about the message

e Non- blocklng caII returns |mmed|ately after |n|t|at|ng the




29 NCCS.GOV
MNATIONAL CENTER FOR COMPUTATIONAL BEIENCEE!]

Syntax of Non-Blocking Calls

Fortran :

call MP1_Isend(buf,count,datatype,dest,tag,comm,handle,ierr)
call MPI_Ilrecv(buff,count,datatype,src,tag,comm,handle,ierr)
call MPI_Test(handle, flag, status, ierr)

call MP1 _Wart(handle, status, 1err)

MP1_ Isend(&buf, count, datatype, dest, tag, comm, &handle)
MP1 lIrecv(&buff, count, datatype, src, tag, comm, &handle)
MP1_ Test(&handle, &flag, &status)

MPI Wait(&handle, &status)

C++:

MPI : :Request MPI::Comm::Isend(const void *buf, int count,
const MPI: :Datatype& datatype, int dest, int tag) const;

MPI: :Request MPI::Comm::lIrecv(void *buf, Int count, const
MPI: :Datatype& datatype, int source, iInt tag) const;

bool MPI::Request::Test(MPI::Status& status);
void MPI::Request: :Wait(MPI::Status& status);

Go to Menu



" NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Sendrecv

 useful for executing a shift operation across a chain of processes

« system takes care of possible deadlock due to blocking calls

MP1_Sendrecv(sbuf, scount, stype, dest, stag, rbuf,
rcount, rtype, source, rtag, comm, status)

sbuf (rbuf): initial address of send (receive)buffer
scount (rcount) number of elements in send (recelve) buffer




(; NCCS.GOV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ]

Testing Communications for Completion

 MPI_Wart(request, status)

— These routines block until the communication has
completed. They are useful when the data from the
communication buffer is about to be re-used

e MP1 _Test(request, flag, status)

— This routine blocks until the communication specified by
the handle request has completed. The request handle will
have been returned by an earlier call to a non-blocking
communication routine. The routine queries completion of

the communication and the result (TRUE of FALSE) is
returned in flag

Go to Menu



79 NCCS.GOoV

- NATIOMAL CENTER FOR PUTATIONAL ScC

Tlmer MPI1 Wtime

C: double MPI_Wtime(void)
Fortran : double precision MPI_Wtime()
C++: double MPI::Wtime();

e Timeis measured in seconds.




%$ NCCS.GOV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Example: Ring (Blocking Communication) — Schematic

ring

myrank=0
size=4
leftid=3
rightid=1
val=3,2,1,0

myrank=1
size=4
leftid=0
rightid=2
val=0,3,2,1

myrank=2
size=4
leftid=1
rightid=3
val=1,0,3,2

myrank=3
size=4

leftid=2
rightid
val=2,1,

=0

0,3

Go to Menu



€ NCCS.GOV

. " NATIONAL CENTER FOR COMPUTATIONAL SCIENCES:

Example: Ring (Blocking Communication) — C

#include <stdio.h>

#include “mpi.h”

int main(int argc, char *argv[]) {
int myrank, nprocs, leftid, rightid, val, sum, tmp;
MP1_ Status recv_status;
MP1_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
iIT((leftid=(myrank-1)) < 0) leftid = nprocs -1;
iIT((rightid=(myrank+1)) == nprocs) rightid = 0O;
val = myrank; . g |

Oz




y NCCS.GOV

= NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Ring (Blocking Communication) — Fortran

PROGRAM ring

IMPLICIT NONE

include "mpif.h*

INTEGER ®error, val, my rank, nprocs, rightid, leftid, tmp, sum, request
INTEGER send status(MP1_STATUS SIZE), recv_status(MPI_STATUS SIZE)
CALL MPI1_INIT(ierror)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierror)

CALL MPI_COMM_SI1ZE(MP1_COMM_WORLD, nprocs, ierror)

rightid = my_rank + 1

IF (rightid .EQ. nprocs) rightid = 0

leftid = my rank — 1

IF (leftid .EQ. -1) leftid = nprocs-1

sum = 0O

| = S —. N
VL ml;;a;gkﬁ =




%9 NCCS.GOV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Example: Ring (Non-blocking Communication) — Schematic

ring

myrank=0 myrank=1 myrank=2 myrank=3
size=4 size=4 size=4 size=4
leftid=3 leftid=0 leftid=1 leftid=2
rightid=1 rightid=2 rightid=3 rightid=0

Go to Menu




€ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Ring (Non-blocking Communication) — C

#include <stdio.h>

#include “mpi.h”

main(int argc, char *argv[]) {
int myrank, nprocs, leftid, rightid, val, sum, tmp;
MP1_Status recv_status, send status;
MPI_request send request;
MPI_Init(&argc, &argv);
MPI1_Comm_rank(MP1_COMM_WORLD, &myrank);
MPI1_Comm_size(MP1_COMM_WORLD, &nprocs);
iIf((leftid=(myrank-1)) < 0) leftid = nprocs -1;
iIT((rightid=(myrank+1) == nprocs) rightid = 0O;
val myrank

o;




€ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Ring (Non-blocking Communication) — Fortran

PROGRAM ring
IMPLICIT NONE
include "mpif.h*
INTEGER 1error, val, my rank, nprocs, rightid, leftid, tmp, sum
INTEGER send _status(MPI_STATUS SIZE), recv_status(MPl_STATUS SIZE)
INTEGER request
CALL MPI1_INIT(ierror)
CALL MPI_COMM_RANK(MPI1_COMM_WORLD, my_rank, ierror)
CALL MP1_COMM_SIZE(MP1_COMM_WORLD, nprocs, ierror)
rightid = my rank + 1
IF (rightid .EQ. nprocs) rightid = 0
leftid = my rank — 1
IF (leftid .EQ. -1) leftid = nprocs-1
sum = O
val = my_rank
100 CONTINUE




Example: Simple Array

e This Is a simple array assignment used to demonstrate the

distribution of data among multiple tasks and the
communications required to accomplish that distribution.

The master distributes an equal portion of the array to each
worker. Each worker receives its portion of the array and
performs a simple value assignment to each of its elements.
Each worker then sends its portion of the array back to the
master. As the master receives a portion of the array from each
worker, selected elements are displayed.

Note: For this example, the number of processes should be set
to an odd number, to ensure even distribution of the array to
numtasks-1 worker tasks.

Go to Menu



Example: MPI Communication Timing Test

« The objective of this exercise Is to investigate the amount of

time required for message passing between two processes, I.e.
an MPI communication timing test is performed.

In this exercise different size messages are sent back and forth
between two processes a number of times. Timings are made
for each message before it Is sent and after it has been
received. The difference is computed to obtain the actual
communication time. Finally, the average communication time
and the bandwidth are calculated and output to the screen.

For example, one can run this code on two nodes (one process
on each node) passing messages of length 1, 100, 10,000, and
1,000,000 and record the results in a table.

Go to Menu



729 NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: m -calculation

This program calculates m -number by integrating f(x) = 4 / (1+x?)

Area under the curve is divided into rectangles and the rectangles are
distributed to the processors.

Let f(x) =4/ (1+x?) then integrate f(x) fromx=0to 1




77$ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: n -calculation — Using Rectangles

» Method: Divide area under curve into rectangles and distribute the
rectangles to the processors

e Suppose there are 3 processors, how should the distribution be done?




E NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Simple Matrix Multiplication Algorithm

Matrix A is copied to every processor (FORTRAN)

Matrix B is divided into blocks and distributed among processors
Perform matrix multiplication simultaneously

Output solutions




" NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Example Parallel Processing, matrix dimension n=8

Obtain
A(1:8, 1-8)
—_— 2
7
;o mm A(1:8, 1-8)
/ master
ﬁA(l:S, 1-8)
A(18,1-8) )

B(1:8, 7-8) C(1:8, 7-8)
B(1:8, 5-6) C(1:8,5-6) | 1
B(1:8,3-4) | | C(1:8, 3-4)
B(L:8, 1-2) | | C(L:8, 1-2)
B(1:8, 1-2) || C=A*B
| B8, 1-2) [ | c=A*B
) 7] B




¢S NCCsS.GOoV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Matrix Multiplication, steps 1-2

step 1




¢S NCCsS.GOoV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Matrix Multiplication, steps 3-4

step 3

p2




7$ NCCS.GOV

" | NATIONAL CENTER FOR COMPUTATIONAL SC

Fox s Algorithm (1)

Broadcast the diagonal element of block A in rows, perform multiplication.

—

A(L,1) A1) AL,D) B(1,0) B(1,1) B(1,2)

A(2,2) IA2,2) IA2,2) B(2,0) B(2.1) B(2.2)

C(0,0) = A0.0)*B(0,0) + A(0L*B(L0) + A(0,2*B(20)
- C(0) = AQO"B(0.L) [ AQL*B(L.Y) + A 2)*5(2 1)
2(02) = A0,0)*B(0.2) 02)
A(1,1)*B(1,0)
A(L,1)*B(L,1)
A(1,1)*B(L2)
A(2,2)*B(2,0)
A(2,2)*B(2,1)
A(2,2)*B(2,2)




L NCCS.GOV

AP NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Fox s Algorithm (2)

Broadcast next element of block A in rows, shift Bij in column, perform multiplication

[ —
C(0,0)

A(0,1) [A(0,2) A0, 1) B(1,0) ||3(1,1) ||3(1,2)

A(1,2) Ia(L,2) IAL,2) B(2,0) B(2,1) B(2.2)

A(2,0) IA(2,0) IA(2,0) B(0,0) |B(0,1) |B(0,2)

C(0,0) = A(0,0)*B(0,0) + A(0,1)*B(1,0) + A(0,2)*B(2,0)
L COD S AORBOMEE AC.B(L.Y) + AQ, 282, 1)
: 0 2) + A(0,1)*B(1,2) + A(0,2*B(2,2).
ACL2B(2 0)
A(12)*B(2.1)
A(12)*B(2.2)
A(2,0)*B(0,0)
A(2,0)*B(0,1)
A(2,0*B(0,2)




L NCCS.GOV

AP NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Fox s Algorithm (3)

Broadcast next element of block A in rows, shift Bij in column, perform multiplication.

A(0,2) JA(0,2) JA(0,2) B(2,0) |B(2,l) |B(2,2) C(0,0)

A(1,0) |a(1,0) JA(L,0) B(0,0) [B(0,1) [B(0,2)

A2,1) AR, AR, B(1,0) [B(1,1) B(1,2)

C(0,0) = A(0,00*B(0,0) + A(0,1)*B(1,0) + A(0,2)*B(2,0)
- C(o, 1) = A0O*B(, 1) o A(Q,;)*B(l 1) + A(0,2)*B(2, o
= A0, 2) + A(02)"B(2,2) A
= A(1,0)*B(0,0)
A(L,0)*B(0,1)
A(L,0)*B(0,2)
A(2,1)*B(1,0)
A(2,1)*B(1,1)
A(2,1)*B(1,2)




> \NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outllne Collective Communications

— Overview

— Barrier Synchronization Routines

— Broadcast Routines

— MPI Scatterv and MP1 Gatherv




€ NCCS.GOV

. L ATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Overview

Substitutes for a more complex sequence of point-to-point
calls

Involve all the processes in a process group
Called by all processes in a communicator

All routines block until they are locally complete
Receive buffers musibe exactly the '

e




" NCCS.GOV

- NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Barrier Synchronization Routines

» To synchronize all processes within a communicator

* A node calling it will be blocked until all nodes within the
group have called it.

MEI_Barrier(comm)”

= ;! . #




p NCCS.GOV

s £ p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Broadcast Routines

» One processor sends some data to all processors in a group

C:
ierr = MPI_Bcast(buffer,count,datatype,root,comm)

Fortran:
call MPI_Bcast(buffer,count,datatype,root,comm,ierr)




p NCCS.GOV

s £ p NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Scatter

« Data are distributed into n equal segments, where the i segment is sent to
the i™" process in the group which has n processes.

C:
ierr = MPI_Scatter(&sbuff, scount, sdatatype,
&rbuf, rcount, rdatatype, root, comm)

Fortran : ' _
call MPI_Scatter(sbuff, scount, sdatatype, rbuf,




€ NCCS.GOV

" | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example : MP1_Scatter

ROOT PROCESSOR : 3




, NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

scatter

R

- 5gath§[ | :




< ERE=Y

. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Gather

o Data are collected into a specified process in the order of process rank,
reverse process of scatter.

C:
ierr = MPI_Gather(&sbuf, scount, sdtatatype,
&rbuf, rcount, rdatatype, root, comm)

Fortran :

call MPI Gather(sbuff scount, sdatatype
rbu =




$ NCCS.GOV

il
e | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example : MP1_Gather

PROCESSOR :




€ NCCS.GOV

. MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MP1_ Scatterv and MP1_Gatherv

« allow varying count of data and flexibility for data placement

e C:
ierr = MP1_Scatterv( &sbuf, &scount, &displace,
sdatatype, &rbuf, rcount, rdatatype, root, comm)

ierr = MPI1_Gatherv(&sbuf, scount, sdatatype, &rbuf,
&rcount, &displace, rdatatype, root, comm)

Fortran :
call MPI Scatterv(sbuf scount dlsplace sdatatype rbuf,




. NCCS.GG I:IV

2 MNATIONAL CENTER FOR COMPUTATIONAL SCIE

MPI _Allgather

ierr = MPI_Allgather(&sbuf, scount, stype, &rbuf,
rcount, rtype, comm)

DATA >

| aolBolcolpoleolFo  PEO
~ PE1




72$ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI1_ Alltoall

MP1_Alltoall (sbuf,scount,stype,rbuf,rcount, rtype,comm)

sbuft: starting address of send buffer (*)
number of elements sent to each process
data type of send buffer
aqlg.ress\_ of receive buffer (*)
" number of elements recei




NCCS.GOV o0 -

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

All to All

DATA > DATA >

PEO | a0l ALl A2l A3 A4l AB Ao|Bo|co|Do|E0|Fo| PEO

PE1 IBolB1|B2|B3|B4|BS5 A1llB1lci|D1|E1|F1| PE1
alltoall

PE2 |co|c1|c2|c3|c4|cs A2| B2l c2| D2| E2| F2| PE?2

PE3 |D0|D1|D2|D3|D4|D5 1» A3|B3|c3| D3| E3|F3| PE3




G5 NCCsS.GoV

NATIONAL CENTER FOR COMPUTATIONAL SCIE

Global Reduction Routmes

e The partial result in each process in the group is combined
together using some desired function.

» The operation function passed to a global computation

routine is either a predefined MPI function or a user supplied
function

 Examples:




7$ NCCS.GOV Page 100

. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Reduce and Allreduce

MP1_Reduce(sbuf, rbuf, count, stype, op, root, comm)
MP1_Allreduce(sbuf, rbuf, count, stype, op, comm)

sbuf:
rbuf:

count:

address of send buffer

address of receive buffer

the number of elements in the send buffer

the datatype of elements of send buffer

the reduce operatlon functlon predeflned or user- deflned




:$ NCCS.GOV e

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Predefined Reduce Operations

MPI NAME FUNCTION MPI NAME FUNCTION

MP1_MAX Maximum MPI_LOR Logical OR

MP1_MIN Minimum MP1_ BOR Bitwise OR

MP1_SUM Sl MPI1_LXOR Loglcaloeécluswe

| Bitwise exclusive
= "Q__: R

MP IEROD ' g : :--clgoduet._;é___:_ - MPI __)_(OR

o
)

—




< I =1=I=Kc]=\Y Page 102

NATIONAL CEMNTER FOR COMPUTATIONAL SCIENCES

Example: MPI Collective Communication Functions

 Collective communication routines are a group of MPI message passing
routines to perform one (processor)-to-many (processors) and many-to-one
communications.

 The first four columns on the left denote the contents of respective send
buffers (e.q., arrays) of four processes. The content of each buffer, shown
here as alphabets, is assigned a unique color to identify its origin. For
Instance, the alphabets in blue indicate that they originated from process 1.
The middle column shows the MPI routines with which the send buffers are
operated on. The four columns on the right represent the contents of the
processes' receive buffers resulting from the MPI operations.

Process Process Process Process - Process Process Process Process
0 2 3 Function Used 1 3

6 d MPI Gather .b.e.d
C d MPI Allgather Jb.c,d Jb.ed

MPI Scatter a b 5 d

m.1,0.p MPI Alltoall £ ., Lp

MPI Bcast b b b b

z> Receive Receive Receive Receive
Buffer Buffer Buffer

— - Goto Menu




S NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outllne Derived Datatypes

— Qverview

— Datatypes

— Defini_n_ Datatypes

e () M2

T
]

Page 103




N CCS.G DV Page 104

TIONAL CENTER FOR COMPUTATIONAL SC

Overview

To provide a portable and efficient way of communicating
mixed types, or non-contiguous types in a single message

— Datatypes are built from the basic MPI datatypes

— MPI datatypes are created at run-time through calls to MPI
library

Steps required




\ ; NCCS.IG DV Page 105

| NATIONAL CENTER FOR COMPUTATIONAL SC

Datatypes

« Basic datatypes :

MP1_INT, MPI_REAL, MPI1_DOUBLE, MPI_COMPLEX,
MP1_LOGICAL, MPI_CHARACTER, MPI_BYTE,..

MPI also supports array sections and structures through general
datatypes. A general datatypes is a sequence of basic datatypes and
mteger byte dlsplacements Thesg dlsplacements are taken to be




€ NCCS.GOV Page 106

NATIONAL CEMNTER FOR COMPUTATIONAL SCIENCES

Defining Datatypes

MPI_Type_contiguous(count,oldtype,newtype, ierr)
‘count’ copies of ‘oldtype’ are concatenated

MP1_Type vector(count,buffer,strides,oldtype,newtype,ierr)
‘count’ blocks with ‘blen’ elements of ‘oldtype’ spaced by ‘stride’

 H E N NN |

MP1_Type i1ndexed(count, buffer, strides, oldtype,newtype,ierr)
Extension of vector: varying ‘blens’ and ‘strides’

H B Bl = I

MP1_Type_struct(count,buffer, strides,oldtype,newtype,ierr)
extension of indexed: varying data types allowed

Go to Menu




; NCCS.GOV Page 107

& . NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI Type vector

» It replicates a datatype, taking blocks at fixed offsets.
MPI1_Type vector(count,blocklen,stride,oldtype, newtype)

» The new datatype consists of :
— count : number of blocks
— each block is a repetition of blocklen items of oldtype
— the start of successive blocks is offset by stride items of oldtype

If count = 2 stride =4, blocklen =3, oldtype = {(double,0),(char,8)}
“ [(double,0), (char,8), (double,16) , (char, 24).

ey




Page 108

NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example Datatypes

#include <mpi.h>

{
float mesh[10][20];

int dest, tag;
MPI_Datatype newtype;
/* Do this once */

MP1_Type vector( /* # column elements */

/* 1 column only */
~/* skip 20 elements *




4 NCCS.GOV Page 109

o NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

MPI _Type _struct

» To gather a mix of different datatypes scattered at many locations in space into one
datatype

MPI_Type struct(count, array of blocklength,

array of displacements, array of types, newtype, 1err)
count : number of blocks
array_of blocklength (B) : number of elements in each block
array_ of _displacements (1) : byte of displacement of each block
array of_type (T) type of elements in each block

S ——

_-—' ——
——— -
e




/j NCCS.GOV Page 110

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example

Struct{ char display[50];
int maxiter;
double xmin, ymin, xXmax, ymax;
int width, height; } cmdline;

/* set up 4 blocks */

int blockcounts[4] = {50, 1, 4, 2};
MPI_ Datatype  types|[4];

MPI_Aint displs[4];

MPI Datatype cmdtype;

/* initialize types and displacements with addresses of items */




' NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outline: Resources for Users

— Getting Started

— Advanced Topics

— More Information

Page 111




~4€ NCCS.GOV Page 112

o NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: Getting Started

e About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

* Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd craywkshp apr2008.pdf

* PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

= - |
——— A




~$ NCCS.GOV =

. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: Advanced Topics

» Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

» Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/




,' N B C s G DV Page 114

: NATIONAL CENTER FOR

Resources for Users: More Informatlon

e NCCS website

http://www.nccs.qgov/

e Cray Documentation




$ NCCS.GOV Page 115

: NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: man pages and MPI1 web-sites

» There are man pages available for MPI which should be installed in your
MANPATH. The following man pages have some introductory information
about MPI.

% man MPI

% man cc

% man ftn

% man qsub

% man MPI1_Init

% man MPI_Finalize
MPI man pages are also available online.
http://www.mcs.anl.gov/mpi/www/
Main MPI web page at Argonne National Laboratory
http: //WWW unlx mcs anI qov/mpl : p T



http://www.mcs.anl.gov/mpi/www/
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/

7$ NCCS.GOV e e

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: MPI Books

e Books on and about MPI

— Using MPI, 2nd Edition by William Gropp, Ewing Lusk, and Anthony Skjellum, published by MIT Press
ISBN 0-262-57132-3. The example programs from this book are available at
ftp://ftp.mcs.anl.gov/pub/mpi/using/UsingMPl.tar.gz.

The Table of Contents is also available. An errata for the book is available. Information on the first edition of
Using MPI is also available, including the errata. Also of interest may be The LAM companion to ""Using
MPL..." by Zdzislaw Meglicki (gustav@arp.anu.edu.au).

Designing and Building Parallel Programs is lan Foster's online book that includes a chapter on MPI. It
provides a succinct introduction to an MPI subset. (ISBN 0-201-57594-9; Published by Addison-Wesley>)

MPI: The Complete Reference, by Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra, The MIT Press .

MPI: The Complete Reference 2nd Edltlom Volume 2 - The MPI-2 Extensions, by William Gropp, Steven
€ : ing Lusk, Bill Nitzberg, William Saphlrandl arc Snir, The MIT

I J



http://mitpress.mit.edu/book-home.tcl?isbn=0262571323
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www.cs.usfca.edu/mpi/
http://www.mkp.com/
http://www.redbooks.ibm.com/abstracts/sg245380.html
http://www.supercomputingsimplified.com/

	Introduction to �Parallel Programming�with MPI
	Outline
	Outline: Introduction
	What is Parallel Computing?
	Why go parallel?
	Types of Parallelism - Two Extremes.
	Parallel Computer Architectures
	Parallel “Architectures”
	Parallel Programming Models 
	Outline: Message Passing Interface (MPI)
	What is MPI?
	MPI in Summary
	First MPI Program: Hello World!
	Four Major Benefits of MPI
	MPI Message Components
	Typical Message Passing Communication Components
	Message Passing Programming Concept
	Essentials of MPI Programs
	MPI Function Format
	MPI Communicators and Groups
	MPI Environment Management Routines 
	MPI Process Identifiers
	MPI_COMM_WORLD communicator
	MPI_COMM_WORLD example
	Example: “Hello From …” – C
	Example: “Hello From …” – Fortran
	Example: “Hello From …” – C++
	Outline: Point to Point Communications
	Overview
	Buffering the Messages
	Buffering the Messages (2)
	Blocking Calls
	Blocking Send and Receive
	Non-Blocking Calls
	Non-Blocking Send and Receive
	Order in MPI
	Fairness in MPI
	For a Communication to Succeed…
	MPI Basic Datatypes for C
	MPI Basic Datatypes for Fortran
	MPI Basic Datatypes for C++
	Communication Modes
	Communication Modes: Blocking Behavior
	Blocking Synchronous Send: MPI_SSEND
	Blocking Ready Send: MPI_RSEND
	Blocking Buffered Send: MPI_BSEND
	Blocking Standard Send: MPI_Send
	Syntax of Blocking Send
	Syntax of Blocking Receive
	Example: Passing a Message – Schematic
	 Example: Passing a Message – Hello World Again!
	 Example: Passing a Message – Hello World Again!
	 Example: Passing a Message – Hello World Again!
	Example: Deadlock Situation
	Example: Deadlock – Fortran
	Example: Deadlock – Fortran (Cont’d)
	Example: Deadlock – Fortran (fixed)
	Example: Deadlock – C
	Example: Deadlock – C (Cont’d)
	Example: Deadlock – C (fixed)
	Example: Deadlock – C++
	Example: Deadlock – C++ (Cont’d)
	Example: Deadlock – C++ (fixed)
	Communication Modes: Non-Blocking Behavior
	Syntax of Non-Blocking Calls
	Sendrecv
	Testing Communications for Completion
	Timer: MPI_Wtime
	Example: Ring (Blocking Communication) – Schematic
	Example: Ring (Blocking Communication) – C
	Example: Ring (Blocking Communication) – Fortran
	Example: Ring (Non-blocking Communication) – Schematic
	Example: Ring (Non-blocking Communication) – C
	Example: Ring (Non-blocking Communication) – Fortran
	Example: Simple Array
	Example: MPI Communication Timing Test
	Example: π-calculation
	Example: π-calculation – Using Rectangles
	Example: Simple Matrix Multiplication Algorithm
	Example: Parallel Processing, matrix dimension n=8 
	Example: Matrix Multiplication, steps 1-2
	Example: Matrix Multiplication, steps 3-4
	Fox’s Algorithm (1)
	Fox’s Algorithm (2)
	Fox’s Algorithm (3)
	Outline: Collective Communications
	Overview
	Barrier Synchronization Routines
	Broadcast Routines
	Scatter
	Example : MPI_Scatter
	Scatter and Gather
	Gather
	Example : MPI_Gather
	MPI_Scatterv and MPI_Gatherv
	MPI_Allgather
	MPI_Alltoall
	All to All
	Global Reduction Routines
	Reduce and Allreduce 
	Predefined Reduce Operations
	Example: MPI Collective Communication Functions
	Outline: Derived Datatypes
	Overview
	Datatypes
	Defining Datatypes
	MPI_Type_vector
	Example: Datatypes
	MPI_Type_struct
	Example
	Outline: Resources for Users
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information
	Resources for Users: man pages and MPI web-sites
	Resources for Users: MPI Books

