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Outline

• Overview of the software
• Some background of the algorithms
• Sparse matrix distribution and user interface
• Example program (Fortran 90 interface)
• Applications
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What is SuperLU

• Solve general sparse linear system A x = b.
• Example: A of dimension 105, only 10 ~ 100 nonzeros per row

• Algorithm: Gaussian elimination (LU factorization: A = 
LU), followed by lower/upper triangular solutions.
• Store only nonzeros and perform operations only on nonzeros.

• Efficient and portable implementation for high-
performance architectures, flexible interface.
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Software Status

• Friendly interface for Fortran users
• SuperLU_MT similar to SuperLU both numerically and in usage

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU
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Contents of the SuperLU Library

• LAPACK-style interface
• Simple and expert driver routines 
• Computational routines
• Comprehensive testing routines and example programs

• Functionalities
• Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
• User-controllable pivoting

• Pre-assigned row and/or column permutations
• Partial pivoting with threshold

• Solving transposed system
• Equilibration
• Condition number estimation
• Iterative refinement
• Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]
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Fill-in in Sparse GE

• Original zero entry Aij becomes nonzero in L or U

Natural order: nonzeros = 233               Min. Degree order: nonzeros = 207



Short Course on the DOE ACTS Collection - SIAM CSE05 Conference 
Orlando, FL - February 11, 2005

7

Supernode

• Exploit dense submatrices in the L & U factors

• Why are they good?
• Permit use of Level 3 BLAS
• Reduce inefficient indirect addressing (scatter/gather)
• Reduce graph algorithms time by traversing a coarser graph
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Overview of the Algorithms

• Sparse LU factorization: Pr A Pc
T = L U

• Choose permutations Pr and Pc for numerical stability, minimizing 
fill-in, and maximizing parallelism.

• Phases for sparse direct solvers
1. Order equations and variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory 
for L and U.

3. Numerical factorization – usually dominates total time.
� How to pivot?

4. Triangular solutions – usually less than 5% total time.

• In SuperLU_DIST, only numeric phases are parallel so far
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Numerical Pivoting

• Goal of pivoting is to control element growth in L and U for stability
• For sparse factorizations, often relax the pivoting rule to trade with better 

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

• Partial pivoting used in sequential SuperLU (GEPP) 
• Can force diagonal pivoting (controlled by diagonal threshold)
• Hard to implement scalably for sparse factorization

• Static pivoting used in SuperLU_DIST (GESP)
• Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
• During factor A’ = LU, replace tiny pivots by , without changing 

the data structures for L and U
• If needed, use a few steps of iterative refinement after the first solution

(quite stable in practice)

Aε
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Ordering for LU (unsymmetric)

• Can use a symmetric ordering on a symmetrized matrix

• Case of partial pivoting (sequential SuperLU):
Use ordering based on ATA

• If  RTR = ATA and PA = LU, then for any row permutation P, 
struct(L+U) ⊆ struct(RT+R)  [George/Ng `87]

• Making R sparse tends to make L and U sparse

• Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A

• If  RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
• Making R sparse tends to make L and U sparse . . .
• Can find better ordering based solely on A, without symmetrization

[Amestoy/Li/Ng `03]
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Ordering Interface in SuperLU

• Library contains the following routines:
• Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
• Utilities: form AT+A , ATA

• Users may input any other permutation vector (e.g., 
using Metis, Chaco, etc. )

. . .
set_default_options_dist( &options );
options.ColPerm = MY_PERMC;    /* modify default option */
ScalePermstructInit( m, n, &ScalePermstruct );
METIS ( . . . , &ScalePermstruct.perm_c);
. . .
pdgssvx( &options, . . . , &ScalePermstruct, . . . );
. . .
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Symbolic Factorization

• Cholesky [George/Liu `81]
• Use elimination graph of L and its transitive reduction 

(elimination tree)
• Complexity linear in output: O(nnz(L))

• LU
• Use elimination graphs of L and U and their transitive 

reductions (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu 
`93, Gilbert `94]

• Improved by symmetric structure pruning [Eisenstat/Liu `92]
• Improved by supernodes
• Complexity greater than nnz(L+U), but much smaller than 

flops(LU)
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Numerical Factorization

• Sequential SuperLU
• Enhance data reuse in memory hierarchy by calling Level 3 BLAS 

on the supernodes

• SuperLU_MT
• Exploit both coarse and fine grain parallelism
• Employ dynamic scheduling to minimize parallel runtime

• SuperLU_DIST
• Enhance scalability by static pivoting and 2D matrix distribution
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How to distribute the matrices?

• Matrices involved:
• A, B (turned into X) – input, users manipulate them
• L, U – output, users do not need to see them

• A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

• Natural for users, and consistent with other popular packages: PETSc, 
Aztec, etc.

x     x      x     x
x     x      x

x      x           x

x      x           x

P0

P1

P2

A B
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2D Block Cyclic Layout for L and U

• Better for GE scalability, load balance
• Library has a “re-distribution” phase to distribute the initial values of 

A to the 2D block-cyclic data structure of L and U.
• All-to-all communication, entirely parallel
• < 10% of total time for most matrices
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Scalability
• 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
• Achieved 12.5 and 21.2 Gflops on 128 processors
• Performance sensitive to communication latency

• Cray T3E latency: 3 microseconds ( ~ 2702 flops)
• IBM SP latency: 8 microseconds  ( ~ 11940 flops )
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SuperLU_DIST Example Program (C)

• SuperLU_DIST_2.0/EXAMPLE/pddrive.c

• Five basic steps
1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory,  and terminate the 

MPI environment
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Pddrive.c (1/2)

#include "superlu_ddefs.h“

main(int argc, char *argv[])
{

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
SOLVEstruct_t SOLVEstruct;
gridinfo_t grid;
· · · · · ·

/* Initialize MPI environment */
MPI_Init( &argc, &argv );
· · · · · ·

/* Initialize the SuperLU process grid */
nprow = npcol = 2;
superlu_gridinit(MPI_COMM_WORLD, 
nprow, npcol, &grid);

/* Read matrix A from file, distribute it, and 
set up the right-hand side  */
dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, 
&ldx, fp, &grid);

/* Set the options for the solver.  Defaults are:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = MMD_AT_PLUS_A;
options.RowPerm = LargeDiag;
options.ReplaceTinyPivot = YES;
options.Trans = NOTRANS;
options.IterRefine = DOUBLE;
options.SolveInitialized = NO;
options.RefineInitialized = NO;
options.PrintStat = YES;

*/
set_default_options_dist(&options);
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Pddrive.c (2/2)

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit(m, n, 
&ScalePermstruct);
LUstructInit(m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx(&options, &A, &ScalePermstruct, 
b, ldb, nrhs, &grid, &LUstruct, 
&SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */
PStatPrint(&options, &stat, &grid);        

/* Deallocate storage */
PStatFree(&stat);
Destroy_LU(n, &grid, &LUstruct);
LUstructFree(&LUstruct);

/* Release the SuperLU process grid */
superlu_gridexit(&grid);

/* Terminate the MPI execution 
environment */
MPI_Finalize();

}
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SuperLU_DIST Example Program (Fortran 90)

• SuperLU_DIST_2.0/FORTRAN/

• All SuperLU objects (e.g., LU structure) are opaque for F90
• They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.

• C objects are accessed via handles that exist in Fortran’s 
user space

• In Fortran, all handles are of type INTEGER
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f_pddrive.f90 (1/2)

program f_pddrive
use superlu_mod
include 'mpif.h'

! Declarations
integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A
integer(superlu_ptr) :: stat

! Create Fortran handles for the C structures used  in
SuperLU_DIST

call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize MPI environment
call mpi_init(ierr)

! Set up the distributed input matrix A
call f_dcreate_dist_matrix(A, m, n, nnz, values, 

rowind, colptr, grid)

! Set the default solver options
call f_set_default_options(options)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix(A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n, ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b, 

ldb, nrhs, grid, LUstruct, SOLVEstruct, berr,
stat, info)
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f_pddrive.f90 (2/2)

! Deallocate SuperLU allocated storage
call f_PStatFree(stat)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

! Release the SuperLU process grid
call f_superlu_gridexit(grid)

! Destroy Fortran handles pointing to the C objects
call f_destroy_gridinfo(grid)
call f_destroy_options(options)
call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
call mpi_finalize(ierr)

stop
end
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Applications

• Used to solve open Quantum Mechanics problem 
(Science, 24 Dec 1999):

• n = 736 K on 64 PEs, 
Cray T3E in 5.7 minutes

• n = 1.8 M on 24 PEs, 
ASCI Blue Pacific in 24 minutes

• Eigenmodes of accelerator cavities:
• Quadratic Finite Element discretization (Omega3P)
• K x =  λλλλ M x, with K and M large, sparse and symmetric.
• Parallel exact shift-invert eigensolver
• Problem of size 380698 with 15844364 nonzeros (npes = 

8)
• Early tests show that the computation of ~100 eigenvalues 

is faster than the current eigensolver in the electromagnetic 
simulation code (which can compute only a few 
eigenvalues at the moment)
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Adoptions of SuperLU

• Industrial
• Mathematica
• FEMLAB
• Python
• HP Mathematical Library
• NAG (planned)

• Academic/Lab:
• In other ACTS Tools: PETSc,  Hyper
• NIMROD (simulate fusion reactor plasmas)
• Omega3P (accelerator design, SLAC)
• OpenSees (earthquake simluation, UCB)
• DSpice (parallel circuit simulation, SNL)
• Trilinos (object-oriented framework encompassing various solvers, SNL)
• NIKE (finite element code for structural mechanics, LLNL)
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Summary

• Efficient implementations of sparse LU on high-performance machines
• More sensitive to latency than dense case
• Continuing developments funded by DOE/SciDAC/TOPS 

• Integrate into more applications 
• Improve triangular solution
• Parallel ordering and symbolic factorization
• ILU preconditioner

• Survey of other sparse direct solvers in “Eigentemplates” book 
(www.netlib.org/etemplates): LLT, LDLT, LU

• See also http://acts.nersc.gov/events/Workshop2004/slides/superlu.pdf
(by Sherry Li) for more details and applications


