
SuperLU
(Sparse Direct Solver)

Osni Marques
Lawrence Berkeley National Laboratory (LBNL)

oamarques@lbl.gov

SIAM Conference on Computational Science and Engineering
Short Course on the ACTS Collection:

Robust and High Performance Libraries for Computational Sciences

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

2

Outline

• Overview of the software
• Some background of the algorithms
• Sparse matrix distribution and user interface
• Example program (Fortran 90 interface)
• Applications

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

3

What is SuperLU

• Solve general sparse linear system A x = b.
• Example: A of dimension 105, only 10 ~ 100 nonzeros per row

• Algorithm: Gaussian elimination (LU factorization: A =
LU), followed by lower/upper triangular solutions.
• Store only nonzeros and perform operations only on nonzeros.

• Efficient and portable implementation for high-
performance architectures, flexible interface.

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

4

Software Status

• Friendly interface for Fortran users
• SuperLU_MT similar to SuperLU both numerically and in usage

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

5

Contents of the SuperLU Library

• LAPACK-style interface
• Simple and expert driver routines
• Computational routines
• Comprehensive testing routines and example programs

• Functionalities
• Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
• User-controllable pivoting

• Pre-assigned row and/or column permutations
• Partial pivoting with threshold

• Solving transposed system
• Equilibration
• Condition number estimation
• Iterative refinement
• Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

6

Fill-in in Sparse GE

• Original zero entry Aij becomes nonzero in L or U

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

7

Supernode

• Exploit dense submatrices in the L & U factors

• Why are they good?
• Permit use of Level 3 BLAS
• Reduce inefficient indirect addressing (scatter/gather)
• Reduce graph algorithms time by traversing a coarser graph

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

8

Overview of the Algorithms

• Sparse LU factorization: Pr A Pc
T = L U

• Choose permutations Pr and Pc for numerical stability, minimizing
fill-in, and maximizing parallelism.

• Phases for sparse direct solvers
1. Order equations and variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory
for L and U.

3. Numerical factorization – usually dominates total time.
� How to pivot?

4. Triangular solutions – usually less than 5% total time.

• In SuperLU_DIST, only numeric phases are parallel so far

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

9

Numerical Pivoting

• Goal of pivoting is to control element growth in L and U for stability
• For sparse factorizations, often relax the pivoting rule to trade with better

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

• Partial pivoting used in sequential SuperLU (GEPP)
• Can force diagonal pivoting (controlled by diagonal threshold)
• Hard to implement scalably for sparse factorization

• Static pivoting used in SuperLU_DIST (GESP)
• Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
• During factor A’ = LU, replace tiny pivots by , without changing

the data structures for L and U
• If needed, use a few steps of iterative refinement after the first solution

(quite stable in practice)

Aε

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

10

Ordering for LU (unsymmetric)

• Can use a symmetric ordering on a symmetrized matrix

• Case of partial pivoting (sequential SuperLU):
Use ordering based on ATA

• If RTR = ATA and PA = LU, then for any row permutation P,
struct(L+U) ⊆ struct(RT+R) [George/Ng `87]

• Making R sparse tends to make L and U sparse

• Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A

• If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
• Making R sparse tends to make L and U sparse . . .
• Can find better ordering based solely on A, without symmetrization

[Amestoy/Li/Ng `03]

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

11

Ordering Interface in SuperLU

• Library contains the following routines:
• Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
• Utilities: form AT+A , ATA

• Users may input any other permutation vector (e.g.,
using Metis, Chaco, etc.)

. . .
set_default_options_dist(&options);
options.ColPerm = MY_PERMC; /* modify default option */
ScalePermstructInit(m, n, &ScalePermstruct);
METIS (. . . , &ScalePermstruct.perm_c);
. . .
pdgssvx(&options, . . . , &ScalePermstruct, . . .);
. . .

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

12

Symbolic Factorization

• Cholesky [George/Liu `81]
• Use elimination graph of L and its transitive reduction

(elimination tree)
• Complexity linear in output: O(nnz(L))

• LU
• Use elimination graphs of L and U and their transitive

reductions (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu
`93, Gilbert `94]

• Improved by symmetric structure pruning [Eisenstat/Liu `92]
• Improved by supernodes
• Complexity greater than nnz(L+U), but much smaller than

flops(LU)

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

13

Numerical Factorization

• Sequential SuperLU
• Enhance data reuse in memory hierarchy by calling Level 3 BLAS

on the supernodes

• SuperLU_MT
• Exploit both coarse and fine grain parallelism
• Employ dynamic scheduling to minimize parallel runtime

• SuperLU_DIST
• Enhance scalability by static pivoting and 2D matrix distribution

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

14

How to distribute the matrices?

• Matrices involved:
• A, B (turned into X) – input, users manipulate them
• L, U – output, users do not need to see them

• A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

• Natural for users, and consistent with other popular packages: PETSc,
Aztec, etc.

x x x x
x x x

x x x

x x x

P0

P1

P2

A B

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

15

2D Block Cyclic Layout for L and U

• Better for GE scalability, load balance
• Library has a “re-distribution” phase to distribute the initial values of

A to the 2D block-cyclic data structure of L and U.
• All-to-all communication, entirely parallel
• < 10% of total time for most matrices

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

16

Scalability
• 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
• Achieved 12.5 and 21.2 Gflops on 128 processors
• Performance sensitive to communication latency

• Cray T3E latency: 3 microseconds (~ 2702 flops)
• IBM SP latency: 8 microseconds (~ 11940 flops)

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

17

SuperLU_DIST Example Program (C)

• SuperLU_DIST_2.0/EXAMPLE/pddrive.c

• Five basic steps
1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory, and terminate the

MPI environment

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

18

Pddrive.c (1/2)

#include "superlu_ddefs.h“

main(int argc, char *argv[])
{

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
SOLVEstruct_t SOLVEstruct;
gridinfo_t grid;
· · · · · ·

/* Initialize MPI environment */
MPI_Init(&argc, &argv);
· · · · · ·

/* Initialize the SuperLU process grid */
nprow = npcol = 2;
superlu_gridinit(MPI_COMM_WORLD,
nprow, npcol, &grid);

/* Read matrix A from file, distribute it, and
set up the right-hand side */
dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue,
&ldx, fp, &grid);

/* Set the options for the solver. Defaults are:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = MMD_AT_PLUS_A;
options.RowPerm = LargeDiag;
options.ReplaceTinyPivot = YES;
options.Trans = NOTRANS;
options.IterRefine = DOUBLE;
options.SolveInitialized = NO;
options.RefineInitialized = NO;
options.PrintStat = YES;

*/
set_default_options_dist(&options);

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

19

Pddrive.c (2/2)

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit(m, n,
&ScalePermstruct);
LUstructInit(m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx(&options, &A, &ScalePermstruct,
b, ldb, nrhs, &grid, &LUstruct,
&SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */
PStatPrint(&options, &stat, &grid);

/* Deallocate storage */
PStatFree(&stat);
Destroy_LU(n, &grid, &LUstruct);
LUstructFree(&LUstruct);

/* Release the SuperLU process grid */
superlu_gridexit(&grid);

/* Terminate the MPI execution
environment */
MPI_Finalize();

}

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

20

SuperLU_DIST Example Program (Fortran 90)

• SuperLU_DIST_2.0/FORTRAN/

• All SuperLU objects (e.g., LU structure) are opaque for F90
• They are allocated, deallocated and operated in the C side and not

directly accessible from Fortran side.

• C objects are accessed via handles that exist in Fortran’s
user space

• In Fortran, all handles are of type INTEGER

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

21

f_pddrive.f90 (1/2)

program f_pddrive
use superlu_mod
include 'mpif.h'

! Declarations
integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A
integer(superlu_ptr) :: stat

! Create Fortran handles for the C structures used in
SuperLU_DIST

call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize MPI environment
call mpi_init(ierr)

! Set up the distributed input matrix A
call f_dcreate_dist_matrix(A, m, n, nnz, values,

rowind, colptr, grid)

! Set the default solver options
call f_set_default_options(options)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix(A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n, ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b,

ldb, nrhs, grid, LUstruct, SOLVEstruct, berr,
stat, info)

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

22

f_pddrive.f90 (2/2)

! Deallocate SuperLU allocated storage
call f_PStatFree(stat)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

! Release the SuperLU process grid
call f_superlu_gridexit(grid)

! Destroy Fortran handles pointing to the C objects
call f_destroy_gridinfo(grid)
call f_destroy_options(options)
call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
call mpi_finalize(ierr)

stop
end

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

23

Applications

• Used to solve open Quantum Mechanics problem
(Science, 24 Dec 1999):

• n = 736 K on 64 PEs,
Cray T3E in 5.7 minutes

• n = 1.8 M on 24 PEs,
ASCI Blue Pacific in 24 minutes

• Eigenmodes of accelerator cavities:
• Quadratic Finite Element discretization (Omega3P)
• K x = λλλλ M x, with K and M large, sparse and symmetric.
• Parallel exact shift-invert eigensolver
• Problem of size 380698 with 15844364 nonzeros (npes =

8)
• Early tests show that the computation of ~100 eigenvalues

is faster than the current eigensolver in the electromagnetic
simulation code (which can compute only a few
eigenvalues at the moment)

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

24

Adoptions of SuperLU

• Industrial
• Mathematica
• FEMLAB
• Python
• HP Mathematical Library
• NAG (planned)

• Academic/Lab:
• In other ACTS Tools: PETSc, Hyper
• NIMROD (simulate fusion reactor plasmas)
• Omega3P (accelerator design, SLAC)
• OpenSees (earthquake simluation, UCB)
• DSpice (parallel circuit simulation, SNL)
• Trilinos (object-oriented framework encompassing various solvers, SNL)
• NIKE (finite element code for structural mechanics, LLNL)

Short Course on the DOE ACTS Collection - SIAM CSE05 Conference
Orlando, FL - February 11, 2005

25

Summary

• Efficient implementations of sparse LU on high-performance machines
• More sensitive to latency than dense case
• Continuing developments funded by DOE/SciDAC/TOPS

• Integrate into more applications
• Improve triangular solution
• Parallel ordering and symbolic factorization
• ILU preconditioner

• Survey of other sparse direct solvers in “Eigentemplates” book
(www.netlib.org/etemplates): LLT, LDLT, LU

• See also http://acts.nersc.gov/events/Workshop2004/slides/superlu.pdf
(by Sherry Li) for more details and applications

