
Is Parallelism for You?
Rules-of-Thumb for Computational Scientists

and Engineers

Cherri M. Pancake
Oregon State University

pancake@cs.orst.edu

Published in Computational Science and Engineering, Vol. 3, No. 2 (Summer,
1996), pp. 18-37.

Abstract

Parallel computing sounds straightforward: apply multiple CPUs in order to
solve bigger, more complex problems and get results faster. Unfortunately,
the experiences of computational scientists and engineers show that the
price-tag for parallelism is high. It is possible to spend months of effort,
only to find that the parallel program runs slower on six CPUs than the
original version did on one. Should you make the investment? This article
provides practical rules-of-thumb for predicting if parallelism is likely to be
worthwhile, given the nature of your application and the amount of effort
you want to invest.

Contents

Introduction
Pre-conditions for Parallelism
How Your Problem Affects Performance
How Your Machine Affects Performance:

SIMD multicomputers
Shared-memory multicomputers
Distributed-memory multicomputers
SMP's and SMP clusters
Matching problem to machine

How Your Language Affects Performance
Setting Realistic Expectations
References
Acknowledgments

Copyright 1996, Cherri M. Pancake

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

1 of 23 03/25/2017 11:56 AM



Introduction

Parallelism is an intuitive and appealing concept. Consider a computational
science or engineering problem you've been working on. If executing it on a
single CPU yields results in, say, 10 hours, why not use 10 CPUs and get the
results after just an hour?

In theory, parallelism is that simple-applying multiple CPUs to a single problem.
For the computational scientist, it overcomes some of the constraints imposed
by single-CPU computers. Besides offering faster solutions, applications that
have been parallelized-converted into parallel programs-can solve bigger, more
complex problems whose input data or intermediate results exceeded the
memory capacity of one CPU. Simulations can be run at finer resolution.
Physical phenomena can be modeled more realistically.

In practice, however, parallelism carries a high price tag. Parallel programming
involves a steep learning curve. It is also effort-intensive; the programmer must
think about the application in new ways and may end up rewriting virtually all of
the serial (single-CPU) code. What's more- whether "parallel" refers to a group
of workstations or to a top-of-the-line high-performance computing system, a
parallel computer's runtime environment is inherently unstable and
unpredictable. The techniques used for debugging and tuning the performance
of serial programs do not extend easily into the parallel world. It is perfectly
possible to work months on parallelizing an application, only to find that it yields
incorrect results or that it runs slower now than before.

How do you know whether or not to make the investment? The purpose and
nature of your application are the most important indicators of how successful
parallelization will be. Your choice of parallel computer and plan of attack will
have significant impact, too, not just on performance but also the level-of-effort
required to achieve it. This article is an informal introduction to the factors that
influence parallel performance. It offers practical, basic rules of thumb that can
help you predict if parallelism might be worthwhile, given your application and
the effort you want to invest. The techniques I present for estimating likely
performance gains are drawn from the experiences of hundreds of
computational scientists and engineers at national labs, universities, and
research facilities.[1] The information is more anecdotal than experimental, but
it reflects the very problems that must be overcome if parallel programming is
to yield useful benefits.

Pre-conditions for Parallelism

Basically, your application's purpose is a good indicator of how much effort
you're likely to invest in improviing its performance. Unless you have a burning
desire to learn parallel programming, your performance needs should be used

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

2 of 23 03/25/2017 11:56 AM



as a "precondition" test. Three factors establish an application's performance
objectives. As Figure 1 illustrates, these fall into a spectrum reflecting what you
might gain through parallelization.

 Figure 1. Precondition test: how much performance do
you need?

First, how frequently will the application be used before changes are needed? If
the answer is thousands of times between revisions, this is a highly productive
application that probably merits significant programmer effort to improve its
performance. A program that must change frequently, on the other hand, will
not let you amortize the time invested in those improvements.

The second factor is the time currently needed to execute the application. Let's
assume you now wait days to get your results. Reducing that time to a fraction
may improve your professional productivity significantly. In contrast, if you can
measure runtime in minutes, you are unlikely to be satisfied with the payoff in
terms of performance improvement versus effort required. Note that theses are
relative measures. If your application is a real-time emergency management
system, even a few seconds' improvement might be significant.

Third, to what extent are you satisfied with the current resolution or complexity
of your results? If the speed or memory capacity of serial computers constrains
you to a grid whose units are much coarser than you want-say, representing the
ocean surface in 10-degree units, when what you really need is a granularity of
2 degrees-parallelism may be the only feasible way to break that constraint.

According to the experiences of other scientists and engineers, your needs
should rate at least one "white" in Figure 1's spectrum before you even consider
investing the effort to parallelize your application. Conversely, even one "black"
factor should be interpreted as an indication that your performance needs
probably do not merit much parallelization effort. Further, note that even three
whites do not guarantee that parallelism will pay off; they simply indicate that
you need parallelism's potential power. Apply the rules of thumb described in
this article to determine if the effort you must invest will be small enough to
make the whole process worthwhile.

How Your Problem Affects Performance

The nature of the problem is the key contributor to ultimate success or failure in
parallel programming. In particular, data access patterns and associated
computation indicate how easy or difficult it will be. Geoffrey Fox was the first

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

3 of 23 03/25/2017 11:56 AM



researcher to study how the characteristics of applications constrain their
performance. He established that most technical applications fall into one of
three categories, which he called problem architectures, and that each is suited
to certain types of parallel computers.[1,2] Here, I extend Fox's concept to a
fourth category, pipeline parallelism, and describe how you can use problem
architecture to help determine how likely you are to achieve respectable
performance-and at what cost.

Consider a seismic imaging problem.[2,3] Data on responses to seismic shock
waves are gathered at field sites, then computed to derive contour plots of the
subsurface geological structure at each site. The computation can be a sequence
of serial jobs, each computing an image from one input data set; or parallelism
can be introduced by having multiple data sets processed at the same time, as
portrayed in Figure 2.

 Figure 2. An example of perfect parallelism: seismic
imaging.

From the parallel programmer's perspective, this is the simplest problem style,
referred to as perfect (or "job-level") parallelism. Fundamentally, the
calculations on each data set are wholly independent. That is, the images could
be computed on independent machines running copies of the application, as
long as the appropriate input data were available to each copy. It's easy to
achieve significant performance gains from applications fitting this style of
parallelism, so they are sometimes called "embarrassingly parallel" (but no
programmer should be embarrassed to have one).

Now suppose that the images are not completely independent; perhaps
substructure responses are being simulated in a series of time-step, as shown in
Figure 3. Data from different time steps are used to generate images showing
change over time. Data produced by the simulation must be rendered in a three-
dimensional volume, then formatted for graphical display. If this application
were carried out serially, the simulator's output data sets would serve as input
to the volume-rendering program, whose output would in turn serve as input to
the formatting application. Parallelism can be introduced by overlapping
processing, so that volume rendering begins as soon as the first time step's data
are available. Then, while the simulator produces the third data set, volume
rendering proceeds on the second data set, and the first is formatted and
displayed.

 Figure 3. Example of pipeline parallelism: simulation of
earth substructure.

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

4 of 23 03/25/2017 11:56 AM



This model is called pipeline parallelism, since data is effectively "piped" from
one computational stage to another. The key characteristic is that results are
passed just one way through the pipe (that is, the simulation of the next time
step does not require information from the volume-rendering or formatting
stages). Start-up is delayed initially as data become available at each stage, so
overall performance gains will depend on the relative number of time steps to be
processed once all points along the pipe are active. Pipeline parallelism also
introduces potential problems. If the stages are not all computationally
equivalent, faster stages will overtake the slower ones, finishing sooner. One
solution is to execute computationally intensive stages on faster CPUs,
balancing the work precisely can be quite difficult. Either way, the programmer
must accommodate a possibly unequal work load with tests to check when input
data are ready and to ensure that buffer or disk space can hold output data. For
this reason, pipeline parallelism is not as simple as perfect parallelism.

In many applications, results cannot be constrained to a one-way flow among
processing stages. Consider, for example, an atmospheric dynamics problem .[3,
4] The data represents a 3D model of the atmosphere, where an occurrence in
one region influences areas above and below the disturbance, and perhaps to a
lesser extent, those on either side. Over time, the effects propagate to an
ever-larger area extending in all directions; even the disturbance's source may
experience reverberations or other movements from neighboring regions. If this
application were executed serially, calculations would be performed across all
the data to obtain some intermediate atmospheric state, then a new iteration
would begin. Parallelism is introduced with multiple CPUs participating in one
iteration, each applying the calculations to a data subset (see Figure 4). Each
iteration is completed across all data before the next iteration begins.

 Figure 4. Example of fully synchronous parallelism:
simulation of atmospheric dynamics.

This is called fully synchronous parallelism, meaning that-at least
conceptually-each calculation is applied synchronously (or simultaneously) to all
data. The key here is that future computations or decisions depend on the
results of all preceding data calculations. Usually, there aren't enough CPUs to
apply a calculation to all data at the same time, so each CPU iterates through a
subset. If the subsets are not homogeneous, the computational intensity will
vary on different CPUs. For example, a disturbance in the uppermost stratum
starts by modifying data representing the upper layers, while lower layers are
unaffected. This spatial variation means that if each CPU applies calculations to
a subset representing a horizontal stratum, only one or two CPUs actually
perform intensive work at this point. Meanwhile, synchronicity demands that the
other CPUs cannot proceed to the next set of calculations, so they must wait

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

5 of 23 03/25/2017 11:56 AM



until the busy ones catch up.

Alternatively, if CPUs apply calculations to vertical regions, computational work
may be uniformly distributed of at this point in the program, but this will be
offset at later points when computation varies along the horizontal dimension
instead. Consequently, fully synchronous parallelism requires more programmer
effort than pipeline parallelism to achieve good performance.

The fourth style of parallelism is illustrated by a related application, which
models the diffusion of contaminants through groundwater (Figure 5). Initially,
only the groundwater partitions close to the contamination source are affected,
but over time the contaminants spread, building up irregular areas of
concentration. The amount of computation depends on the amount of
contaminant and the geophysical structure, so it varies dramatically from one
partition (and time step) to another. In a serial program, this means that time
step length will be irregular and perhaps unpredictable. Parallelism is
introduced by dividing the work among multiple CPUs at each time step. During
early time steps, each CPU may apply calculations to just a few partitions and
the computation's duration may be brief because concentrations are low; later,
as concentrations build up and progressively affect more partitions, a single
CPU may perform many more computations on many more partitions at each
step.

 Figure 5. Example of loosely synchronous parallelism:
contaminant flow through groundwater.

This is an example of loosely synchronous parallelism. When each time step
ends, CPUs that have finished their work must wait for the others to complete
before sharing intermediate results and going on to the next time step. Thus,
this style's key characteristic is that the CPUs each do parts of the problem,
exchanging information intermittently. Loosely synchronous parallelism,
combining the difficulties faced in pipeline and fully synchronous parallelism, is
the most difficult to program. The need to exchange information among CPUs
(here, at time step boundaries) requires tests so that one CPU can determine
when the others's data and ready and can avoid overwriting values not yet used.
These CPUs effectively proceed at their own rates between those exchanges.
With loosely synchronous parallelism, it's very difficult to distribute
computational work evenly among the CPUs, since the work load now varies
both temporally and spatially.

Analyzing your problem's architecture may seem an unnecessary exercise, but it
will help you to decide if parallelism is worth it. First, consider how your
application uses data. Classify your application as perfect, pipeline, fully
synchronous parallelism (the case studies present examples of how this is done.)
Then determine how the computational characteristics will influence effort-
to-parallelize by applying the following rules-of-thumb:

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

6 of 23 03/25/2017 11:56 AM



Rule of Thumb (1)
If your application fits the model of perfect parallelism, the

parallelization task is relatively straightforward and likely to achieve
respectable performance.

Rule of Thumb (2)

If your application is an example of pipeline parallelism, you have to
do more work; if you can't balance the computational intensity, it may not
prove worthwhile.

Rule of Thumb (3)

If your application is fully synchronous, a significant amount of effort
is required and payoff may be minimal; the decision to parallelize should be
based on how uniform computational intensity is likely to be.

Rule of Thumb (4)

 A loosely synchronous application is the most difficult to parallelize,
and probably is not worthwhile unless the points of CPU interaction are
very infrequent.

Note that you may need to analyze how computation (as well as data) is
dispersed over the lifetime of an execution. This information may be useful even
if you decide not to parallelize, since it provides valuable insight into serial
performance. For our purposes, a general understanding of problem
architecture is essential for determining if your application is likely to perform
well on the type(s) of parallel computer available to you.

How Your Machine Affects Performance

Generally, a parallel computer is any collection of processing elements
connected by some type of communication network. (Here, the processing
elements are referred to as CPUs for simplicity, but they involve memory as
well.) Also known as multicomputers, such systems encompass a range of sizes
and prices, from a group of workstations attached to the same LAN to an
expensive high-performance machine with hundreds or thousands of CPUs
connected by ultra high speed switches. Clearly, CPU speed, capacity, and
communication medium constrains the performance of any parallel application.
But from the programmer's perspective, the way in which multiple CPUs are
controlled and share information may have even more impact, influencing not
just the ultimate performance results but also the level of effort needed to
parallelize an application.

Figure 6 shows a basic "family tree" for parallel computer architectures. The

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

7 of 23 03/25/2017 11:56 AM



control model dictates how many different instructions can execute
simultaneously. The terms SIMD (single instruction, multiple data) and MIMD
(multiple instruction, multiple data) date from parallel computing's early days;
both are still in evidence, although no longer the only distinguishing feature of
parallel computers. Memory model indicates how many CPUs can directly
access a given memory location. All CPUs access a single memory in shared-
memory computers, whereas distributed-memory computers make use of a
separate memory for each CPU. Memory is shared among small groups of CPUs
in symmetric multiprocessor (SMP) computers, but when groups are clustered
to form larger systems each group's memory remains isolated. The
programming model refers to restrictions on the number of executables (object
images) that can participate in a parallel execution. In the multiple-program,
multiple-data model, the programmer creates a separate executable for each
CPU; for the single-program, multiple-data model, all intstructions to be carried
out by all the CPUs are combined into a single executable. Programming models
are discussed in more detail in a later section.

 Figure 6. "Genealogy" of parallel computing systems.

The interaction of control model and memory model results in four classes of
parallel computer architecture: SIMD, shared-memory, distributed-memory, and
SMP. Each of these is described individually below; Table 1 provides a summary
of that information.

 Table 1. Summary of parallel computer architectures.

SIMD Multicomputers

On a SIMD multicomputer, sometimes called a processor array, all CPUs execute
the same instruction in "lockstep" fashion- examples are MasPar's MP-2 and
Thinking Machines' Connection Machine (CM). Figure 7a illustrates the general
concept: a single control unit tracks the current instruction, which the CPUs
apply simultaneously to different operands.

 Figure 7a. Comparison of parallel computing
architectures: SIMD multicomputer.

The control unit is the programmer's key to both the benefits and the costs of

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

8 of 23 03/25/2017 11:56 AM



parallelization. SIMD machines are relatively easy to program and use memory
efficiently. Whenever the program uses Fortran90-style array operations or
makes calls to the array functions library, the compiler automatically generates
parallel code. The main programming hurdle is to cast basic calculations as
array operations. If your application doesn't fit the fully synchronous model, it
will be difficult or impossible to parallelize it for a SIMD architecture.

Achieving good performance can be quite difficult, even if the application
apparently fits the model. When an instruction involves arrays as operands (as
in Figure 7a), the control unit appears to cause all CPUs to execute the
instruction on the appropriate element pairs in one step. In actuality, however,
few operations involve arrays whose dimensions exactly match the number of
CPUs. Most instructions require that the CPUs iterate through groups of
elements. If the number of elements isn't an integral multiple of the number of
CPUs, the "extra" CPUs will effectively lose cycles while the last elements are
processed.

Other performance problems are tied to lost, or wasted, CPU effort. When an
operation is conditional (for example, dividing vector a by vector b only where
the element of b is nonzero), all CPUs actually perform the operation; the
results are simply discarded from any CPU where the condition proves false.
The worst case occurs for a scalar operation (such as the addition of two
floating-point numbers), since all CPUs redundantly perform the operation even
though only one copy of the result is needed. The condition represents a serial
bottleneck, since the machine's hundreds or thousands of CPUs are effectively
reduced to the power of a single CPU. Just a few of these can counteract all the
performance gains realized by array operations.

Shared-memory multicomputers

Unlike SIMD machines, MIMD multicomputers provide each CPU with its own
control unit. At any moment during execution, different CPUs may execute
different instructions. This lets CPUs proceed through calculations at different
rates, but it also means that the programmer cannot necessarily assume
anything about the relative order in which a given instruction is executed on two
different CPUs.

On a shared-memory multicomputer, the CPUs interact by accessing memory
locations in a single, shared memory, exemplified by traditional supercomputers
such as Cray Y/MP and C-90s, IBM ES/9000s, and Fujitsu VPs. They tend to be
the fastest, largest, and most expensive form of parallel computers. Although
more difficult to program than SIMD machines, shared-memory multicomputers
offer a more natural fit with a much larger range of applications.

As shown in Figure 7b, each CPU executes its own instruction, applied to
operands stored in the shared memory. Rather than specifying array operations-
though these may become more common as Fortran90 parallel compilers

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

9 of 23 03/25/2017 11:56 AM



become generally available-the programmer uses compiler directives on
computationally intensive loops. This process is similar to preparing programs
for vector processing and will be familiar to some computational scientists and
engineers. The basic idea is to take advantage of program loops that perform a
large number of calculations (typically applying the same calculations to
multiple elements of arrays). A parallel compiler converts the loop into
collection of loops that will be performed by multiple CPUs, each applying the
calculations to a subset of the data. At execution time, each CPU proceeds
through its instructions, accessing shared-memory locations without knowledge
of other CPU's activities.

 Figure 7b. Comparison of parallel computing: shared-
memory MIMD multicomputer

Shared-memory accesses can be a potential source of race
conditions, where program results are sensitive to specific
memory accesses ordering-in effect, it's a race to see
which CPU arrives first. Figure 7b indicates this, where
two CPUs each attempt to modify the current value of
B(2); the final value will depend on the relative order of
the two store operations. Since relative timing can vary
from subtle changes in the runtime environment, a
program with a race condition may appear to work normally, perhaps for
extended periods, then suddenly "blow up" or produce inconsistent results.[6] A
major part of the programmer's time is likely to be spent identifying potential
races and safeguarding shared data through a locking mechanism that excludes
other CPUs from access when a data value is being modified. Frequent locking
adversely affects performance as CPUs are forced to wait their access turn, so
the trick is to provide just the right amount of protection.

Shared data protection is not the only area requiring programmer effort. As with
vector computing, the performance of shared-memory parallelism largely
depends both on the size and of intensity computational loops (see Levesque[7]
for examples applying to both vector and shared-memory machines) and on the
compiler's analysis capabilities. The programmer may have to restructure loops
to help the compiler recognize potential parallel code. For some applications, it
is impossible to restructure calculations enough to achieve good performance.
This is particularly true of fully synchronous problems like the atmospheric
dynamics example, where data accesses are sporadic and highly
interdependent.

Distributed-memory multicomputers

On distributed-memory multicomputers, too, each CPU executes its own
instruction stream, but as the name implies, memory isn't shared. Instead, each
CPU is has a private memory. Most current high-performance parallel machines

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

10 of 23 03/25/2017 11:56 AM



have distributed memory: for example, Cray T3D, IBM SP-2, Intel Paragon, and
Meiko CS-2. Based on workstation microprocessor technology, these systems
are versatile and very cost-effective. Their major disadvantage is their inherent
difficulty in efficiently using resources.description of symmetric
multiprocessors.)

Figure 7c illustrates how distributed memories operate. To interact or to share
information, the CPUs send each other messages, typically over high-speed
switches. As shown, the vector A referenced by one CPU is not in the same
location as that referenced by other CPUs. If data are read-only, they can be
copied into all the CPUs' memories and accessed quickly, with no need to lock
out other CPUs. When there is no particular need to share, arrays can be split
up and stored across multiple memories so that, for example, each CPU's vector
A actually represents one column of a large array.

 Figure 7c. Comparison of parallel computing:
distributed-memory MIMD multicomputer

To share data, however, the program must explicitly send them back and forth
among the CPUs. This leads to potential race conditions, since it takes time to
propagate one CPU's updates to the copies stored at other CPUs. Distributed-
memory systems are also prone to livelock, where a CPU waits for data that
never arrive, or deadlock, where two or more CPUs are stuck waiting for each
other. Compilers can analyze a program to detect all possible locations where
races, livelock, or deadlock might occur, but they do so conservatively, typically
estimating a hundred or more "potential" problems for every real error.
Distributed-memory programs tend to be harder to debug and test than SIMD or
shared-memory programs.[8]

In terms of performance, the balance between CPU speed and communication
speed is critical, for reasons elaborated in "Setting Realistic Expectations,"
below. Current technology results in relatively fast CPUs being coupled with
relatively slow communications. (Note that the same model applies to
workstation clusters, which essentially are distributed-memory multicomputers
with ultra-slow communications.) The key to obtaining performance is thus the
programmer's ability both to minimize communication, in terms of interaction
points and the data transferred at each interaction, and to time them so that the
CPUs are kept busy. For a perfectly parallel application, this may be trivial. But
pipeline and loosely synchronous applications will achieve respectable
performance only if there is relatively little data to exchange and/or relatively
long time periods in which to effect the exchanges. Fully synchronous
applications are entirely unsuited to this type of system.

SMP's and SMP clusters

So-called symmetric multiprocessor machines recently joined the parallel

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

11 of 23 03/25/2017 11:56 AM



computing marketplace. They also use workstation microprocessor technology,
but couple several CPUs (typically four or eight) with a shared memory. The
word "symmetric" refers to the fact that each CPU can retrieve data stored at a
given memory location in the same amount of time. SMPs resemble shared-
memory multicomputers, but are slower and less expensive, with less CPU
power. Examples include SGI's PowerChallenge and Sun's Sparcserver product
lines.

It is also possible to cluster SMPs into larger groups with correspondingly more
CPU power, as shown in Figure 7d. The resulting configuration behaves much
like a distributed-memory multicomputer, except that each node actually has
multiple CPUs sharing a common memory (Convex's Exemplar best illustrates
this, since the cluster is connected by a high-performance switch; there also are
a growing number of SGI and Sun clusters).

To date, the major performance successes have been scored by programmers
who treat SMPs as a collection of distinct, small-scale shared-memory systems.
With the exception of the Exemplar, the performance of the networks/switches
connecting the SMPs has been disappointing. Parallelism involving even
moderate numbers of CPUs tends to be bounded in performance by the
communication speed (typically comparable to that of a workstation cluster).
When assessing an application's likely performance, SMP clusters should be
treated as shared-memory multicomputers if your entire application can fit on
one SMP node, or as distributed-memory multicomputers if it requires CPUs
distributed across the cluster.

 Figure 7d. Comparison of parallel computing: cluster of
symmetric multiprocessors (SMPs)

Matching problem to machine

In general, then, each type of parallel computer is appropriate for applications
with certain characteristics. If an inappropriate match is made, the programmer
will certainly be forced to expend excessive effort, with possibly disappointing
performance results. The following rules of thumb summarize the interaction
between application model and machine type:

Rule of Thumb (5)
A perfectly parallel application will probably perform reasonably well

on any MIMD architecture, but may be difficult to adapt to a SIMD
multicomputer.

Rule of Thumb (6)

A pipeline style application will probably perform best on a shared-

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

12 of 23 03/25/2017 11:56 AM



memory machine or clustered SMP (where a given stage fits on a single
SMP), although it should be adaptable to a distributed-memory system as
well, as long as the communication network is fast enough to pipe the data
sets from one stage to the next.

Rule of Thumb (7)

A fully synchronous application will perform best on a SIMD
multicomputer, if you can exploit array operations. If the computations are
relatively independent, you might achieve respectable performance on a
shared-memory system (or clustered SMP if a small number of CPUs is
sufficient). Any other match is probably unrealistic.

Rule of Thumb (8)

A loosely synchronous application will perform best on a shared-
memory system (or clustered SMP if a small number of CPUs is sufficient).
If there are many computations between CPU interactions (see "Setting
Realistic Expectations"), you can probably achieve good performance on a
distributed-memory system as well.

How Your Language Affects Performance

The programming language you use will obviously affect the effort required to
parallelize your application. What's more, extreme variation in compiler
capabilities and run-time support environments means that the language will
also constrain the performance you can hope to attain. The type of programming
model, shown as the lowest level in machine genealogy in Figure 6, is often a
key indicator of both effort and performance.

With a SPMD model, each CPU will execute the same object code. On a SIMD
multicomputer, exactly the same instructions will be executed in lockstep
synchrony. On MIMD systems, the CPUs have individual copies of the program
and proceed through it at differing rates, perhaps executing entirely different
instructions sequences (for example, subject to If conditions). Either way, the
programmer has only one program to track, which can be an advantage for
debugging. There may well be a performance cost, particularly on MIMD
systems. All data and all instructions to be accessed by any CPU effectively must
be accessible to all CPUs, increasing the memory required and often degrading
memory access time as well.

In contrast, the MPMD model lets each CPU to have a distinct executable. (Note
that since this conflicts with basic SIMD computing concepts, the model applies
only to MIMD machines). Many experienced parallel programmers prefer
MPMD for two reasons. First, it utilizes memory space more efficiently. Code
space requirements are reduced for pipeline and loosely synchronous

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

13 of 23 03/25/2017 11:56 AM



applications, where CPUs typically execute totally different code. Data space
can also be reduced for programs with large arrays, since the programmer can
subdivide them in portions accessible to just those CPUs that really need them.
Second, the programmer can split up the functionality of different computational
stages into separate programs, to be developed and debugged independently or
reused as components of other programs. But it becomes harder to deal with
some types of errors and performance problems, as it's difficult for
programmers to conceptualize how the activities of independent CPUs might
influence one another.

Strictly speaking, "programming model" is a feature of programming languages,
rather than parallel computers. Many machines described here, however,
impose the SPMD model on the programmer because their operating system
and tools view a parallel program as a single entity, and cannot report
information on multiple executables. While it may be possible to run multiple
executables in MPMD fashion on a predominantly SPMD system, the operating
system and tools will consider them as a collection of unrelated programs. The
programmer may have to forego many aspects of system support, including
consolidated I/O, use of debuggers, and access to program-wide timing
information.

Table 2 lists the parallel languages and libraries available (see the
literature[9,10] for surveys of language features). The programmer rarely has
much real choice, however. Except for the libraries, all languages enforce a
particular programming model. Most are also limited to particular machine
types (and perhaps manufacturers). Message-passing libraries are the most
broadly available, having been ported across all the MIMD architectures. This
means that message-passing applications are the most portable; on the other
hand, the programmer essentially sacrifices compiler error detection
capabilities and may inhibit compiler optimizations.[11]

Table 2. Varieties of parallel programming languages
available.

Once you determine your application and machine, you will probably be limited
to just a couple of parallel language/library choices. This will be further
constrained by such factors as your expertise in Fortran versus C, access to
colleagues who have used the parallel language, the ability to call other
scientific or math library routines you need, and the availability of public-
domain languages on your particular system (for example, PVM, MPI, p4, pC++,
Data Parallel C, Fortran M).[4]

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

14 of 23 03/25/2017 11:56 AM



The rule-of-thumb that applies to language selection, then, is quite simple:

Rule of Thumb (9)
With few exceptions, you don't pick the language; it picks you.

Setting Realistic Expectations

Computer scientists may find parallel programming to be interesting in itself,
but that's not the objective of most scientists and engineers. As Boeing's Ken
Neves said, "Nobody wants parallelism. What we want is performance".[12] If
applying 50 CPUs to a task doesn't yield results much sooner than a single CPU,
the computing resource is used inefficiently. Even more important, the fact that
an application can execute across 50 CPUs means that someone has expended
time and energy parallelizing it. Failure to attain reasonable performance with a
reasonable level of effort wastes human productivity, too.

To avoid that kind of failure, assess the application's potential before deciding
about parallelization. This assumes that your problem lends itself to parallelism,
that your machine offers a reasonably good fit to that problem, and that you
know what language will be used. It also presupposes that you have an existing
serial program that already implements your application; I will refer to this as
the baseline. Strict devotees of parallel programming claim that a new parallel
program should be built from scratch, but this is unrealistic for most users.
(Surveys of experienced parallel programmers show that 59 percent modify or
compose programs from existing code; the 31 percent who start from scratch
are typically computer scientists and applied mathematicians.[8]) Moreover, a
solid baseline program provides a built-in mechanism for checking the validity of
the parallel program's results (does it yield the same results as the serial code
does for all sets of inputs?), as well as the basis for measuring performance
improvements (how much faster is version X than the baseline?).

However, a sloppily implemented baseline must first be
cleaned up if it is to provide realistic estimates of future
performance. Although this may involve a significant
amount of work (for example, restructuring Common
blocks if a large application redefines them at many
points), the investment is guaranteed to pay off, since it
will improve the serial version's maintainability-and
perhaps its performance-even if you decide not to
parallelize. If you do proceed, a clear, robust code will be absolutely essential in
order to produce a reliable parallel implementation.

Performance estimates are based on timings of the baseline program. Insert
calls to the system library to obtain wall-clock readings just before and after the
portion(s) of the application with potential for parallelism (based on the
information in the preceding sections); collectively, these represent the

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

15 of 23 03/25/2017 11:56 AM



potentially parallel code. In addition, insert timing calls as the program's first
and last statements, so that you can also determine whole code time. Figure 8
shows where timing calls would be placed to measure a simple simulation
program. Exclude the input and output phases from the potentially parallel
portion, since they represent serial bottlenecks (I/O cannot be performed in
parallel on most machines). Identify other major operations that must be
executed serially and execute them, too.

 Figure 8. Timing the baseline program to estimate
likely parallel performance: whole-code versus potentially parallel timings.

The goal of parallelism, clearly, is to reduce the whole code time so that results
are produced faster. Equally clearly, performance gains can only be made by
reducing the amount of time spent in the potentially parallel portion, since this
is the only area where multiple CPUs can really be applied. Ideally, the entire
simulation portion of the example could execute in parallel.

The timing results obtained by executing the baseline program make it possible
to calculate the program's parallel content, p, defined as a proportion:

This indicates that 96.8 percent of the code is potentially parallelizable, while
only 3.2% is necessarily serial content. To understand the impact of those
figures, Amdahl's law is applied to calculate the theoretical speedup as a
function of the parallel content (p) and the number of CPUs that will be used
(N):

Figure 9a shows how this theoretical speedup changes for increasing numbers
of N. It is compared with ideal speedup, which reflects the ideal that applying N
CPUs to a program should cause it to complete N times faster. Obviously,

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

16 of 23 03/25/2017 11:56 AM



between ideal and theoretical speedup there is a gap that widens as N
increases. The gap size is solely a function of the program's serial content. This
suggests that for every program, it will not be worthwhile to go beyond some
number of CPUs. As Table 3 shows, even applying an infinite number of CPUs to
the example will achieve at most a 30-times speedup.

 Figure 9a. Estimating parallel performance: theoretical
speedup differs from ideal speedup as a function of the program's serial content

 Table 3. Theoretical speedup, assuming a parallel
content of 96.77 percent.

Note that the curves may change as the problem size increases (for example,
when the time steps in the simulation double). If increasing problem size is
essentially equivalent to increasing the amount of parallelizable computation,
the potential parallel content will increase. This, in turn, will improve the curve
for theoretical speedup, diminishing the gap from ideal speedup. However, if
increasing problem size also increases the length of the serial bottlenecks, the
gap may widen. You should consider how much size variation is likely for your
application, and estimate its effect on theoretical speedup.

Unfortunately, theoretical speedup is rarely achieved by a parallel application.
There will actually be an observed speedup curve that exhibits a widening gap
from theoretical speedup (Figure 9b), reflecting the external overhead's effect
on total execution time. This overhead comes from two sources, both essentially
beyond the programmer's control: the additional CPU cycles expended in simply
managing parallelism, and delays, or wasted time, spent waiting for I/O,
communications among CPUs, and competition from the operating system or
other users. Theoretical speedup does not consider these factors.

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

17 of 23 03/25/2017 11:56 AM



 Figure 9b. Estimating parallel performance: observed
speedup will fall well below theoretical speedup, due to environmental factors
and imperfect concurrency

Another lack of precision in theoretical speedup is that it assumes perfect
concurrency. Parallel code run on 5 CPUs will speed up 5 times only if all CPUs
simultaneously (a) start the parallel portion, (b) perform all coordination
activities (such as exchanging data), and (c) complete their calculations.
Combined, this is perfect concurrency, shown in Figure 10a. It assumes that
computational intensity is completely homogeneous, which may be almost true
for dense linear algebra, but certainly won't be for sparse or irregular problems.
It also assumes that the CPUs are identical and have identical access to all the
limiting resources, such as memory and the communication network.

 Figure 10a. Concurrency: perfect concurrency, where
all CPUs begin, interact, and complete at the same time

What actually happens is imperfect concurrency (Figure 10b), because CPUs
find it necessary to wait for access to each other or to resources. Some factors
responsible for poor concurrency are within the control of the programmer, but
some aren't:

Uneven computational intensity across CPUs: This can be improved by
careful programming, but the nature of the application itself may be the
source of the problem.
CPUs waiting for information controlled by other CPUs (such as
shared variables or messages): Experienced parallel programmers spend
most of their efforts ensuring that data are "produced early, consumed late"
to minimize this wait, but some applications simply require excessive
interaction.
Vagaries of the runtime environment (such as competition from other
users, system interrupts, I/O delays, network "hiccups"): The average user
can do little, other than schedule off-hour program runs.

 Figure 10b. Concurrency: slight variations in timing
affect concurrency and cause the program to fall short of theoretical speedup

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

18 of 23 03/25/2017 11:56 AM



Concurrency worsens as the number of CPU interaction points increases relative
to the amount of computation performed, which gives rise to program
granularity. A coarse-grained program requires many computations between
each point of CPU interaction, while a fine-grained one performs proportionately
few computations. Consider, for example, a loop or subroutine containing many
instructions. If the CPUs executing it reference and modify values scattered
through a single matrix, the program will be fine-grained, because the CPUs
must be notified whenever another CPU updates a value. If each CPU applies
the operations to a different matrix, the code will be coarse-grained. As the
number of instructions shrinks-or the need to share updated values increases
the granularity becomes finer.

On a shared-memory computer, it is difficult to calculate a priori the minimum
granularity to achieve acceptable performance. For distributed-memory
computers (including networks of workstations and, to a lesser extent, clustered
SMPs), however, you can get a crude approximation based on its published CPU
speed and communication properties. Most hardware vendors publicize two
measures message-passing performance. Latency is the time, typically measured
in microseconds, spent initiating a message transmission. Bandwidth is the
speed, typically in Mbytes per second, at which message data are transmitted.
Essentially, latency represents the fixed overhead of a message communication;
the same cost is incurred to set up any message, regardless of its length.
Bandwidth represents the variable overhead, because the cost incurred to
transmit a message is a function of message length. Nominally, then, the cost of
sending a message can be described as:

The real "cost" of sending a message, however, is the number of CPU cycles
wasted as a program waits to send/receive a message. Quite simply, a CPU that
is spending even a few cycles idling, rather than doing useful computation, will
not show good performance. By considering what each communication is
actually costing in terms of lost CPU power, you can predict the granularity level
necessary to achieve reasonable performance on a specific parallel computer. A
message-equivalent [13] measures the approximate number of floating-point
operations that could be executed in the time needed to send one message 1,024
bytes long:

where CPU speed is the so-called peak speed of a single CPU in Mflops, latency
is assumed to be in microseconds, and bandwidth in Mbytes per second. (Peak
CPU speed in an unrealistic measure but serves as a useful basis for calculating
this crude approximation of needed granularity.)

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

19 of 23 03/25/2017 11:56 AM



Table 4 shows the values calculated for five current parallel computers. It is
clear that system A (actually a collection of workstations connected by Ethernet)
will require an extremely coarse-grained program if the CPUs are to do anything
more useful than wait for communications. In contrast, system C (a parallel
computer highly tuned for fast communications) would tolerate almost a
hundred times as many points of communication. System B (a so-called general-
purpose parallel computer) falls between the two. Systems D (an SMP) and E (a
cluster of those SMPs connected by a high-speed switch) show just how much
impact the communication speed really has.

 Table 4. "Message-equivalent" approximations
calculated for five existing parallel computers, indicating how many
floating-point operations should occur between CPU interactions for good
performance.

Note that none of these systems would really tolerate a medium- or fine-grained
program. Good performance requires that computation exceed the message-
equivalent on a regular basis, so each CPU would need to perform tens (or
hundreds or millions) of thousands of operations between interaction points to
attain good performance.

What is the impact of all these factors on programmer effort? They should be
viewed as "warning signals" that alert you to potential problems you are unlikely
to overcome, regardless of the effort you are willing to invest. More rules of
thumb:

Rule of Thumb (10)
Timings measured on a baseline (serial) version of your application

provide a solid starting point for estimating potential payoffs and reliability.

Rule of Thumb (11)

The debilitating impact of serial content on theoretical speedup means
that you probably shouldn't consider parallelizing a program with less than
95% parallel content, unless you're already experienced in parallel
programming, or unless you will be able to replace a significant portion of
the serial version with parallel algorithms that have been proven to be good
performers.

Rule of Thumb (12)

Apply your knowledge of the program to estimate how varying
problem size will affect the theoretical speedup curve.

Rule of Thumb (13)

Theoretical speedup is only an upper bound on what is possible; the

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

20 of 23 03/25/2017 11:56 AM



attained performance will almost certainly be much lower.

Rule of Thumb (14)

Although you can improve concurrency to some extent, it will largely
be dependent on the application itself and the average load on the
computer.

Rule of Thumb (15)

A coarse-grained program will perform relatively well on any parallel
machine; a medium- or fine-grained one will probably be respectable only
on a SIMD multicomputer.

Rule of Thumb (16)

To understand the granularity requirements of a distributed-memory
computer, calculate its message-equivalent. To be worth parallelizing, your
program probably needs to perform many thousands of floating-point
operations between each CPU interaction point.

The three case studies show how applying these 16 rules of thumb can affect
your final decision.

How much performance can you really expect to get? Consider an analogy

with the physical world[14]: I can't ride my bicycle faster than 40 miles per
hour, so that is its peak performance. However, my average speed will depend
on environmental conditions, such as my current fitness level, road condition
and steepness, amount of traffic, and weather conditions. Some of these are
under my control, but most are not. Consequently, my sustained performance is
typically 15 miles per hour.

Wild claims about parallel performance abound, typically emanating from the
marketing departments of computer manufacturers. Such claims are hard even
for experienced parallel programmers to interpret; they often mislead
newcomers into unrealistic notions of performance.[15] A fanciful example
might be that X Corporation's HypoMetaStellar is a 400 Gigaflops machine. The
quoted figure will be aggregate peak performance (that is, the peak CPU speed
times the number of CPUs) and is almost worthless in estimating application

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

21 of 23 03/25/2017 11:56 AM



performance. The claim may also be substantiated by benchmark results proving
the HypoMetaStellar is 10 times faster than any supercomputer, but that too is
essentially meaningless for the parallel programmer. What counts is the fraction
of peak performance regularly sustained by your application. For most
applications, that fraction will probably be only 10-20 percent of peak
performance. After all, even highly tuned parallel programs rarely achieve more
than 20 percent.

Various other parallel performance metrics are also cited
to "prove" that a parallel machine will guarantee your
application good performance. As Sahni[16] demonstrates,
however, the only reliable performance metric is the
parallel runtime for your particular application. That
clearly cannot be known in advance. In particular, it
cannot be predicted accurately using statistics from any
other application, no matter how similar it is in purpose or
structure.

Is parallel performance achievable? Absolutely. But it is not easily achieved, nor
can it be achieved for every problem. Even more disturbingly, it may require an
enormous investment of human effort. Achieved performance depends on five
interdependent factors:

the degree of parallelism inherent in the application;1. 
the parallel computer architecture on which that application executes;2. 
how well the language and runtime system exploit that architecture;3. 
how effectively the program code exploits the language, runtime system,
and architecture; and

4. 

the runtime environment at the time of execution.5. 

Factor 1 should be considered a precondition for even entertaining the idea of
parallelization. Recall that an application's parallel content constrains even its
theoretical performance. If there's more than a tiny fraction of serial content,
parallelism almost certainly will not be worthwhile. Moreover, changing the
algorithm to reduce the application's serial content will have more impact than
whatever effort you are willing to invest in tuning. Factors 2 and 5 are probably
out of your control, unless you have access to a wide range of parallel
computing platforms. Factor 3 is definitely beyond any programmer's control.
That leaves factor 4, which essentially boils down to how much effort you're
willing to invest in learning and applying parallel skills.

Is parallelism for you? Consider what you hope to gain-quicker access to results,
ability to handle larger problem sizes, finer resolution, or increased complexity.
Think about how much that gain will buy you in time or quality and what it's
worth to you. Balance those considerations against the propensity your
application appears to have for parallelism. Factor in the extent to which you
think performance should pay off your programming efforts. Then take timings
on a cleaned-up version of your serial baseline and use them to estimate the

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

22 of 23 03/25/2017 11:56 AM



best performance that could be obtained through parallelization. Assuming
there are no counter-indications (such as a mismatch between your problem
architecture and the type of machine available to you), parallelism will probably
pay off if your upper-bound estimate on future performance is at least five to ten
times bigger than what would be minimally worthwhile. Then factor in the
extent to which you think performance should pay off your programming efforts.

Theoretically, any problem can be programmed in any language for execution on
any parallel computer. Realistically, recognize that if a problem does not lend
itself to parallelism, or if it doesn't match your computer's capabilities,
parallelization simply won't be worth the effort.

References

Acknowledgments

These guidelines could not have been arrived at without the hundreds of
experienced parallel programmers who collaborated in my surveys and
interviews at computational science and engineering sites across the US,
conducted on behalf of Intel Supercomputer Systems Division, IBM Corp.,
Convex Computer Corp., and the Parallel Tools Consortium, 1989-1994. Special
thanks to Hugh Caffey (formerly at BioNumerik Pharmaceuticals, Inc., and now
at Hewlett-Packard) and Rubin Landau (Department of Physics, Oregon State
University) for their help in formulating and reviewing the rules-of-thumb.

Back to Pancake home page

Comments to pancake@.cs.orst.edu, 15 October 1996

Is Parallelism for You? https://web.engr.oregonstate.edu/~pancake/paper...

23 of 23 03/25/2017 11:56 AM


