
THE PARALLEL
UNIVERSEIssue 5

November 2010

by Sanjay Goil and John McHugh

Simplifying High Performance with

INTEL® PARALLEL STUDIO XE
AND INTEL® CLUSTER STUDIO TOOL SUITES

Letter from the

EDITOR
by James Reinders

INTEL® PARALLEL
BUILDING BLOCKS

The Answer(s) to Cracking
the Parallelism Puzzle

by David Sekowski

PREVIOUS PRODUCT NAMES NEW PRODUCT NAMES
Intel® Parallel Studio XE

Intel® C++ Studio XE

Intel® Cluster Toolkit Compiler Edition Intel® Cluster Studio

Intel® Compiler Suite Professional Edition Intel® Composer XE

Intel® C++ Compiler Professional Edition Intel® C++ Composer XE

Intel® Visual Fortran Compiler Professional Edition Intel® Visual Fortran Composer XE

Intel® Fortran Compiler Professional Edition Intel® Fortran Composer XE

Intel® VTune™ Performance Analyzer (including Intel® Thread Profiler) Intel® VTune™ Amplifier XE

Intel® Thread Checker Intel® Inspector XE

INTEL® PARALLEL
STUDIO HAS
GONE EXTREME.
FROM THE MAKERS OF
Intel® VTune™ Performance Analyzer
and Intel® Visual Fortran Compiler
comes the ultimate all-in-one
performance toolkit:

INTRODUCING
INTEL® PARALLEL STUDIO XE

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

The ultimate all-in-one performance toolkit
Intel Parallel Studio XE combines Intel’s industry-leading C/C++ and Fortran compilers, performance
and parallel libraries, correctness analyzers, code-quality tools, and performance profilers with ease-of-use
innovations to create an integrated tool suite that helps high-performance computing and enterprise
developers boost application performance, reliability, and security.

Advanced compilers
and libraries

Intel® Composer XE

Advanced memory,
threading, and
security analyzer

Intel® Inspector XE

Advanced
performance profiler

Intel® VTune™ Amplifier XE

Rock your code. Rock your world.
Get a free 30-day trial of Intel Parallel Studio XE today at http://software.intel.com/en-us/articles/intel-parallel-studio-xe/.

‡ Intel Parallel Studio XE also supports Windows and Mac OS X.

Intel Parallel Studio XE for Linux‡

Purchase the tools individually or get the complete suite and save. See the table for important name change information.

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

THE PARALLEL UNIVERSE

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, and Intel VTune are trademarks of Intel Corporation
in the U.S. and other countries. *Other names and brands may be
claimed as the property of others.

CONTENTS
Letter from the Editor
High Performance Options Have Never Been Greater
BY JAMES REINDERS 4
James Reinders focuses on the latest Intel® software developer tools designed to tap into
the performance offered by today’s computers.

Simplifying High Performance with
Intel® Parallel Studio XE and Intel® Cluster Studio Tool Suites
BY SANJAY GOIL AND JOHN MCHUGH 6
With the introduction of Intel® Parallel Studio XE and Intel® Cluster Studio, Intel extends the reach
of next-generation development tools to Windows* and Linux* C/C++ and Fortran developers.

Intel® Parallel Building Blocks:
The Answer(s) to Cracking the Parallelism Puzzle
BY DAVID SEKOWSKI 18
Examine three models for parallelism—Intel® Threading Building Blocks (Intel® TBB), Intel®
Cilk Plus, and Intel® Array Building Blocks (Intel® ArBB)—which together form a single
comprehensive solution for task parallelism, data parallelism, and vectorization.

Intel® Array Building Blocks
BY MICHAEL MCCOOL 24
Intel® Array Building Blocks (Intel® ArBB) is the answer to the following question: How can
parallelism mechanisms in modern processor hardware, including vector SIMD instructions,
be targeted in a portable, general way within existing programming languages?

Automatic Parallelism with
the Intel® Math Kernel Library (Intel® MKL)
BY GREG HENRY AND SHANE STORY 30
Explore the techniques Intel® Math Kernel Library (Intel® MKL) uses to achieve the highest
level of parallelism, as well as the hooks and knobs useful for getting the most from these
threaded hotspots.

When Print Statements and Timer are Not Enough:
Making the Parallelism Investment More Effective
BY DON GUNNING, NICK MENG, AND PAUL BESL 32
See how real-world developers are applying Intel® Trace Analyzer and Collector to find
issues that would be undetectable with print statements and a timer, correct those issues,
and deliver scaling performance.

http://swdevtoolsmag.makebettercode.com

LETTER FROM
THE EDITOR

James Reinders is Chief Software Evangelist and Director of
Software Development Products at Intel Corporation. His articles
and books on parallelism include Intel Threading Building Blocks:
Outfitting C++ for Multicore Processor Parallelism.

THE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

High
Performance
Options
Have Never
Been Greater

This issue of The Parallel Universe magazine
focuses on the latest Intel® software developer tools that help us tap
into the performance offered by today’s computers.

From a technology standpoint, the hardware has never been
more complex. Even a single feature such as parallelism is present
at every level of the computer architecture: superscalar processors
with expanding issue rates, SIMD instructions with expanding widths,
processors with expanding numbers of cores, and systems with
expanding numbers of processors.

As systems become more complex, our tools for software developers
have evolved to help software developers. Your feedback has been
most helpful. Over the past year we’ve taken major strides in delivering
developer tools for existing and emerging hardware, while simplifying
the tools you need for high performance. Our focus has been to offer
choice, protect your software investments, and help you scale forward
to emerging and future hardware.

THE PARALLEL UNIVERSE

High
Performance
Options
Have Never
Been Greater

On November 9 we introduced the latest installments in our most
popular software developer tools. These numerous tools come
together to form two comprehensive studios: Intel® Parallel Studio
XE and Intel® Cluster Studio. Intel Parallel Studio XE addresses the
advanced performance challenges of today’s machines for C, C++, and
Fortran developers. Intel Cluster Studio offers tools uniquely tailored
for distributed computing, specifically helping with programs using
MPI, C, C++, and Fortran.

There are a lot of new features to be excited about, including
version 12.0 Intel® compilers, a new version of Intel® VTune™
Performance Analyzer, new concurrency-compatible memory checking
capabilities, code analysis for security and robustness, advanced MPI
support, Intel® Parallel Building Blocks for C/C++, co-array Fortran
support, and new threading error detection that handles not only
compiled languages, but also .NET code.

Intel Parallel Studio XE, is available for Linux* and Windows*
developers. It includes Intel® Composer XE (compilers and libraries),
Intel® VTune Amplifier XE, and Intel® Inspector XE.

Intel Cluster Studio, is available for Linux and Windows developers.
It includes Intel Composer XE, Intel® MPI Library and MPI Benchmarks,
and the Intel® Trace Analyzer and Collector.

Our tools offer a rich selection of parallel programming methods
to meet the numerous needs of different applications. They have
no equal providing robust ways to express parallelism: OpenMP*,
MPI, co-array Fortran, Intel® Math Kernel Library (Intel® MKL), Intel®
Integrated Performance Primitives (Intel® IPP), and Intel® Parallel
Building Blocks (Intel® PBB) which includes Intel® Threading
Building Blocks (Intel® TBB), Intel® Cilk Plus, and Intel® Array Building
Blocks (Intel® ArBB).

To explore the advantages of these innovative tools, you’ll find
articles on Intel Parallel Building Blocks and the parts that make it up,
“what’s new and exciting in Fortran after all these years,” and Intel MKL.

Eliminating defects is an important topic that gets attention in our
tools as well, and in a way that’s easy to utilize in your build environ-
ment. Our tools offer solutions for code quality, security, and applica-
tion robustness, all applicable to parallel programs. The next-gener-
ation correctness analyzers combine memory, threading, and code
analysis for security. The article “Intel® Inspector XE: An essential tool
during development along with Intel® Composer XE” advocates this
tool as an essential and regular part of your development cycle. The
case for it seems clear.

Performance profiling is essential for high performance in detecting
hotspots, and helping you alleviate them with additional insight into
what is actually happening on your system. Our next-generation
profiler, the Intel VTune Amplifier XE, provides easy-to-use, yet
detailed, insight into the most pressing performance issues.
For the cluster developer, we have our highly scalable implementa-
tion of MPI, in the Intel MPI library, architected to scale to the largest
systems. The article “On a path to petascale with commodity clusters
and Intel MPI” highlights Intel MPI library advancements in our cluster
tools for HPC.

Continuous development of software for high performance is a
complex undertaking. Intel® software development tools work with
existing and emerging Intel architecture, extending Intel leadership in
processor technology, and in multicore and manycore processors. As
customers, you look for predictability in your software development,
and an assurance that the software investments you make today will
continue to reap benefits in years to come. Our mission in the software
tools group is to simplify the tools—and the way you purchase, install,
develop, and support them.

Our Beta customers said very nice things about our new tools
prior to release. I believe you will find Intel Parallel Studio XE and Intel
Cluster Studio taking significant strides in advancing the innova-
tion bar for programming, productivity, and programmability for high
performance.

Enjoy!

JAMES REINDERS
Portland, Oregon
November 2010

http://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

6 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

INTEL® PARALLEL
STUDIOXE
By Sanjay Goil, Product Marketing Manager
John McHugh, Marketing Communication Manager
Intel® Software Development Products

AND INTEL® CLUSTER STUDIO TOOL SUITES

Simplifying High
Performance with

Performance
Optimize/Tune

Correctness
Quality & Robustness

Assist
Architectural Analysis

Code
Add Parallelism

In September, Intel introduced Intel® Parallel Studio 2011,
a tool suite for Microsoft* Windows* Visual Studio* C++ developers,
with the singular objective of providing the essential performance
tools for application development on Intel® Architecture. These tools
provide significant innovation, and enable unprecedented developer
productivity when building, debugging, and tuning parallel applications
for multicore. With the introduction of Intel® Parallel Building Blocks
(Intel® PBB), developers have methods to introduce and extend paral-
lelism in C/C++ applications for higher performance and efficiencies.

This month Intel is extending the reach of next-generation Intel
tools to developers of applications on both Windows and Linux in
C/C++ and Fortran who need advanced performance for multicore
today and forward scaling to manycore. Intel Parallel Studio XE 2011
contains C/C++ and Fortran Compilers, Intel® Math Kernel Library
(Intel® MKL) and Intel® Integrated Performance Primitives (Intel® IPP)
performance libraries, Intel PBB libraries, Intel® Threading Building
Blocks (Intel® TBB), Intel® Cilk™ Plus, and Intel® Array Building Blocks
(Intel® ArBB), Intel® Inspector XE correctness analyzer, and Intel®
VTune™ Amplifier XE performance profiler.

HPC programmers have traditionally been able to use all the
compute power made available to them. Even with the performance
leaps that Moore’s law has allowed Intel architecture to deliver over
the past decade, the hunger for additional performance continues to
thrive. There are big unsolved problems in science and engineering,
physical simulations at higher granularities, and problems where the
economically viable compute power provides lower resolution or
piecemeal simulation of smaller portions of the larger problem.
This is what makes serving the HPC market so exciting for Intel, and
it is a significant driver for innovation in both hardware and software
methodologies for parallelism and performance.

Intel® Cluster Studio introduces tools for HPC cluster development
with MPI, including the scalable Intel® MPI Library and Intel® Trace
Analyzer and Collector performance profiler, with the industry-leading
C/C++ and Fortran compilers for a complete cluster development tool
suite. This is combined with the ease of deployment offered by
the Intel® Cluster Ready program, making deployment of cluster
applications highly efficient.

Introducing New Tool Suites
Software developers of high performance applications require a
complete set of development tools. While traditionally these tools
include compilers, debuggers, and performance and parallel libraries,
more often the issues in development come in error correctness and
performance profiling. The code doesn’t run correctly, or exhibits
error-prone behavior on some runs, pointing to data races, deadlocks,
or performance bottlenecks in locks for synchronization, or exposes
security risks at runtime. To this end, Intel’s correctness analyzers
and performance profilers are a great addition to the development
environment for highly robust and secure code development.
Figure 1.

For advanced and distributed performance, Intel is simplifying
the procurement, deployment, and use of HPC tools on IA-32 and
Intel® Architecture and compatible platforms, and HPC clusters
programmed with the Message Passing Interface (MPI). Figure 2.

Intel® Parallel Studio XE 2011

Intel® Composer XE Intel® Inspector XE Intel® VTune™Amplifier XE

OPTIMIZING COMPILER
AND LIBRARIES

MEMORY, THREAD, AND
SECURITY ANALYZER

PERFORMANCE
PROFILER

Boost Performance. Code Reliably. Scale Forward.

Figure 1

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Highlights of Intel® Parallel Studio XE 2011

 > Available for Multiple Operating Systems: Intel® Parallel Studio
XE provides the same set of tools to aid development for both
Windows* and Linux* platforms. C/C++, Fortran compilers, and
performance and parallelism libraries bring advanced optimizations
to Mac OS*X.

 > Robustness: Intel® Inspector XE’s memory and thread analyzer
finds and pinpoints memory and threading errors before they
happen.

 > Code Quality: Intel Parallel Studio XE enables developers to
effectively find software security vulnerabilities through static
security analysis.

 > Advanced Optimization: The compilers and libraries in Intel®
Composer XE offer advanced vectorization support, including
support for Intel® AVX. The C/C++ optimizing compiler now includes
Intel® PBB library, expanding the types of problems that can be

solved more easily in parallelism with increased scalability and
reliability. For Fortran developers, it now offers co-array Fortran and
additional support for the Fortran 2008 standard.

 > Performance: Intel® VTune™ Amplifier XE performance profiler
finds bottlenecks in serial and parallel code that limit performance.
Improvements include a more intuitive interface, fast statistical call
graph, and timeline view. Intel® MKL and Intel® IPP performance libraries
provide robust multicore performance for commonly used math and
data processing routines. A simple linking of the application with these
libraries is an easy first step for multicore parallelism.

 > Compatibility and Support: Intel Parallel Studio XE excels at
compatibility with leading development environments and compilers.
Intel offers broad support with forums and Intel® Premier Support, which
provides fast answers and covers all software updates for one year.

Phase Productivity Tool Feature Benefit

Advanced
Code

Intel® Composer XE
C/C++ and Fortran compilers,
performance libraries, and
parallel models

 > Drives application performance and
scalability benefits of multicore and
forward scales to manycore. Additionally,
provides code robustness and security.

Advanced
Correctness Intel® Inspector XE

Memory and threading error
checking tool for higher code
reliability and quality

 > Increases productivity and lowers cost
by catching memory and threading
defects early

Advanced
Performance Intel® VTune™

Amplifier XE

Performance profiler to optimize
performance and scalability

 > Removes guesswork, saves time, and
makes it easier to find performance and
scalability bottlenecks. Combines ease of
use with deeper insights.

A software development project goes through several steps to get optimal performance on
the target platform. Most often, the developer gets a rudimentary performance profile of the
application run to show hotspots. Once opportunities for optimization are identified, the coding
aspects are handled by the compilers and performance and parallel libraries to add parallelism,
presenting task level, data level, and vectorization opportunities. Finally, the correctness tools
make robust code possible by checking for threading and memory errors, and identifying secu-
rity vulnerabilities. This cycle typically repeats itself to find higher application efficiencies.

Figure 2

THE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 3

Old Name New Name

Intel® Compiler Suite Professional Edition Intel® Composer XE

Intel® C++ Compiler Professional Edition Intel® C++ Composer XE

Intel® Visual Fortran Compiler
Professional Edition

Intel® Visual Fortran
Composer XE

Intel® Visual Fortran Compiler
Professional Edition with IMSL

Intel® Visual Fortran
Composer XE with IMSL

Intel® VTune™ Performance Analyzer
(including Intel® Thread Profiler)

Intel® VTune™ Amplifier XE

Intel® Thread Checker Intel® Inspector XE

Intel® Cluster Toolkit Compiler Edition Intel® Cluster Studio

The tools introduced in Intel Parallel Studio XE 2011 are next-generation revisions of
industry-leading tools for C/C++ and Fortran developers seeking cross-platform capabilities
for the latest x86 processors on Windows* and Linux* platforms. Those familiar with Intel’s
industry-leading tools will see that the product names have transitioned in this new release—in
all cases with significant additional capabilities, other names remain the same. Figure 3.

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

“Intel® Parallel Studio XE 2011 is a great
software development tool for perfor-
mance-oriented Windows*-based C++
software developers. I achieved an
astonishing boost in performance by
using Intel® Cilk Plus and Array features
in my code. If you need performance,
try Intel Parallel Studio XE 2011.”

Jorge Martinis
Research and Development
Engineer, BR&E Inc.

Figure 4

Figure 5

THE PARALLEL UNIVERSE

10 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Introducing SIMD pragmas for vectorization

What’s New in Intel® Composer XE
Intel Composer XE contains next-generation C/C++ and Fortran compilers (v12.0) and
performance and parallel libraries: Intel MKL 10.3, Intel IPP 7.0, and Intel TBB 3.0. Figure 2.

The latest Intel C/C++ compiler, Intel® C++ Compiler XE 12.0, is optimized for the latest
Intel architecture processor (code-named Sandy Bridge) with Intel AVX support. The product
contains Intel PBB, which includes advances in mixing and matching task, vector, and data
parallelism in applications to better map to the multicore optimization opportunities; Intel Cilk
Plus; Intel TBB; and Intel ArBB (in beta, available separately). Figure 4. There are vector
optimizations with Intel AVX with SIMD pragmas, in addition to GAP, an array notation tool to
help in auto-parallelization for the highest performance and parallelism on the latest genera-
tion of x86 multicore CPUs. For Windows users, support for Visual Studio 2010* is included.

Intel® Fortran Compiler XE 12.0 includes several advances in more complete support for
Fortran 2003 standard and some support for Fortran 2008 standards, including Co-array
Fortran, vector optimizations with AVX, and help with auto-parallelization for the highest
performance and parallelism on the latest x86 multicore CPUs. Figure 5.

The performance libraries continue to provide an easy way to include highly optimized and
automatically parallel math and scientific functions, and data processing routines for high
performance users. The math library, Intel MKL 10.3, includes enhancements such as better
Intel AVX support, summary statistics library, and enhanced C language support for LAPACK.
The data processing library, Intel IPP 7.0, includes improved data compression and codecs, and
support for Intel AVX and AES instructions, continuing to excel at data processing intensive
application domains.

“BlueJeans Network is working on
the next-generation video cloud-
processing solution. We process large
volumes of audio, video, and data
content, and these processes are
highly CPU intensive. Intel® IPP 7.0
worked great for us. Its comprehensive
set of audio and video processing
functionality was the perfect solution
for our needs. It was a tremendous
timesaver for us—as building these
from scratch would have taken us
forever! I definitely recommend
Intel IPP 7.0.”

Emmanuel Weber
Software Architect
BlueJeans Network

Figure 6

THE PARALLEL UNIVERSE

Hotspots in the application

Thread Based CPU usage

http://swdevtoolsmag.makebettercode.com

New capabilities in the Intel® Inspector XE correctness analyzer include:

 > Simplified configuration and run analysis

 > Finds coding defects quickly, such as:

• Memory leaks and memory corruption

• Threading data races and deadlocks

 > Supports native threads, understands any parallel model built on top of threads

 > Dynamic instrumentation works on standard builds and binaries

 > Timeline view to explore context of the respective threads

 > Intuitive standalone GUI and command line interface for Windows and Linux

 > Advanced command line reporting

Intel® Inspector XE
Memory, Threading, and Security Checker

 > Increase application
reliability and security

Enhanced Developer Productivity with Correctness Analyzers
and Performance Profilers
Intel Parallel Studio XE 2011 combines ease-of-use innovations, introduced in Intel Parallel
Studio, with advanced functionality for high performance, scalability and code robustness for
Linux and Windows. Intel has traditionally offered developer tools on both Windows and Linux,
and strives to offer the same functionality across both platforms, especially important for
developing applications to run on both operating systems. Figure 6.

With the capabilities in the correctness analyzer, Intel Inspector XE, Figure 7, the
product helps C/C++ and Fortran developer with static and dynamic code analysis
through threading and memory analysis tools to develop highly robust, secure, and highly
optimized applications.

“It was an easy and fast ramp to
start using the Intel® Inspector XE
2011 tool. We were able to set the
analysis level, obtain a visual interpre-
tation of the collected data, and get
helpful information on hidden data
races in the code quickly.”

Alex Migdalski
CEO and CTO
OTRADA Inc.

Figure 7

THE PARALLEL UNIVERSE

12 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

“Intel VTune
Amplifier XE
2011is the next
generation of
the Intel VTune
Analyzer…”

Intel VTune Amplifier XE 2011 is the next generation of the Intel VTune Performance
Analyzer, which is a powerful tool to quickly find and provide greater insights into multicore
performance bottlenecks. It removes the guesswork and analyzes performance behavior in
Windows* and Linux* applications, providing quick access to scalability bottlenecks for faster
and improved decision making. Figures 8,9.

Intel® VTune™ Amplifier XE - Hotspot
Performance Profiler

 > Find performance bottlenecks

 > Functions sorted by amount
of CPU time

 > Easy, predefined analyses

 > Fast hotspot analysis (hot functions and
call stack)

 > Powerful filtering

 > Threading timeline

 > Frame analysis

 > Attach to a running process (Windows)

 > Event multiplexing

 > Simplified remote collection

 > Improved compare results

 > Tight Visual Studio* integration

 > Non-root Linux* install

 > Only EBS driver install needs root

Intel® VTune™ Amplifier XE - Concurrency
Performance Profiler

 > Color shows # of cores
utilized

 > Click {+} to view call stacks

The next-generation Intel® VTune™ performance profiler
has new features, including:

Figure 8

Figure 9

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Figure 10

Intel’s static security analysis (SSA), included in the Intel® Parallel
Studio XE bundle, provides unique advantages for robust code
development:

 > Easier, faster setup and ramp to get static analysis results

 > Simple approach to configure and run static analysis

 > Discovers and fixes defects at any phase of the development cycle

 > Finds more than 250 security errors, such as:

• Buffer overruns and uninitialized variables

• Unsafe library usage and arithmetic overflow

• Unchecked input and heap corruption

 > Tracks state associated with issues, even as source evolves and line numbers change

 > Displays problem sets and location of source

 > Provides filters, assignment of priority, and maintenance of problem set state

 > Intuitive standalone GUI and command line interface for Windows and Linux

Software security starts very early in the development phase, and Intel Parallel Studio XE 2011
makes it faster to identify, locate, and fix software issues prior to software deployment. This
helps identify and prevent critical software security vulnerabilities early in the development
cycle, where the cost of finding and fixing errors is the lowest. Figure 10,11.

“Intel® static security analysis (SSA)
allowed us to easily find lots of poten-
tial flaws, thus preventing future bugs
or misuse to occur. Ultimately, we
expect the SSA to help us not repro-
duce typical security flaws.”

Mikael Le Guerroue
Senior Architecture Engineer
Envivio

Intel® Inspector XE - Security Checker
Memory, Threading, & Security Checker

When used with Intel® Parallel Studio XE

 > Improve code security with
static analysis

 > Find buffer overruns, unsafe
library usage, uninitialized
variables, bad pointers

THE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 11

Increase Performance and Scalability
of HPC Cluster Computing
Intel® Cluster Studio 2011 sets a new standard in distributed paral-
lelism on Intel architecture-based clusters. This premier tool suite
provides development flexibility for enabling MPI-based application
performance for highly parallel shared-memory and cluster systems
based on 32 and 64 Intel architectures. The newly architected Intel
MPI library 4.0 is key to achieving these advantages by providing new
levels of cluster scalability, improved interconnect support across
many fabrics, faster on-node messaging, support for hybrid paralleliza-
tion, and an application tuning capability that adjusts to the cluster
and application structure. For the developer, the Intel Trace Analyzer
and Collector 8.0 is enhanced with new features that accelerate the

Feature Benefit

Support for both Linux* and
Windows* platforms

Development capability with the same set of tools on both Windows* and Linux* platforms; enhanced
performance, productivity, and programmability

C/C++ Compilers with Intel®
Parallel Building Blocks

Breakthrough in providing choice of parallelism for applications— task, data, vector— with mix and match for
optimizing application performance. C/C++ standards support

Fortran Compilers with key
Fortran 2008 standards
support including
Co-Array Fortran (CAF)

Advances in the industry-leading Fortran Compilers with new support for scalable parallelism on nodes and
clusters (cluster support available separately with Intel® Cluster Studio 2011); Fortran standards support

Memory, threading, and
security analysis tools
in one package

Enhances developer productivity and efficiencies by simplifying and speeding the process of detecting
difficult-to-find coding errors

Updated performance
libraries

Multicore performance for common math and data processing tasks, with a simple linking
with these automatically parallel libraries

Updated performance
profiler

Several ease-of-use enhancements, deeper microarchitectural insights, enhanced GUI, and
quicker, more robust performance

analysis and tuning cycle of MPI-based cluster applications. The latest
Intel C/C++ and Fortran compiler technology, along with Intel MKL 10.3,
Intel IPP 7.0, and Intel PBB (also sold as Intel® Composer XE), comple-
ments the suite to further optimize and parallelize application execu-
tion on each computing node. Co-array Fortran is supported on clusters
in this package.

Along with Intel Cluster Ready (ICR), a program to define cluster
architectures for increasing uptime, increasing productivity, and
reducing total cost of ownership (TCO) for IA-based HPC clusters,
Intel Cluster Studio 2011 makes it easy to code, debug, and optimize
to gain higher scalability for MPI-based cluster applications, up to
petascale, and also is the premier suite for developing and tuning
hybrid-parallel codes that can mix MPI with multithreading paradigms
such as OpenMP or Intel PBB.

Intel Cluster Studio 2011 provides an extensive software package
containing Intel C/C++ Compilers and Intel® Fortran Compilers for
all Intel architectures, plus all the Intel® Cluster Tools that help you
develop, analyze, and optimize performance of parallel applications on
Linux or Windows. By combining all the compilers and tools into one
license package, Intel can provide single installation, interoperability,
and support for the best-in-class cluster software tools.

Intel® Cluster Studio
Distributed Performance

Contains:
 > Intel® Composer XE Compiler and Libraries

 > Intel® MPI Library

 > Intel® Trace Analyzer and Collector

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Figure 12

Highlights of Intel® Cluster Studio 2011

 > Scalability and High Performance: The interconnect-
tuned and multicore-optimized Intel® MPI Library delivers
application performance on thousands of Intel Architec-
ture and compatible multicore processors.

 > Built-in Optimization: Utilize optimizing compilers and
libraries in Intel® Composer XE to get the most out of
advanced processor technologies. The C/C++ optimizing
compiler now includes Intel PBB, which expands the types
of problems that can be solved more easily in parallel, and
with increased reliability. For Fortran developers, it now
offers Co-array Fortran (CAF) and additional support for
the Fortran 2008 standard. Intel® compilers also deliver
advanced vectorization support with SIMD pragmas.

 > Ease of MPI Tuning: Intel® Trace Analyzer and Collector
has been enhanced with new features that accelerate
the analysis and tuning cycle of MPI-based cluster
applications.

 > Target Applications to Multiple Operating Systems:
Leverage the same source code in Intel® compilers and
libraries, which bring advanced optimizations to Windows
and Linux.

 > Intel® Cluster Ready Qualified: This program defines
cluster architectures to increase uptime and productivity
and reduce total cost of ownership (TCO) for IA-based
HPC clusters.

 > Compatibility and Support: Intel Cluster Studio offers
excellent compatibility with leading development environ-
ments and compilers , while providing optimal support for
multiple generations of Intel processors and compatibles.
Intel offers broad support through its forums and Intel®
Premier Support, which provides fast answers and covers
all software updates for one year.

Intel® Trace Analyzer and Collector

 > Visualize and understand parallel application behavior

 > Evaluate profiling statistics and load balancing

 > Analyze performance of subroutines or code blocks

 > Identify communication hotspots

THE PARALLEL UNIVERSE

16 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

PO is the source of the problem now.

Figure 13

Summary
With the introduction of Intel Parallel Studio XE and Intel Cluster Studio, Intel is extending the
reach of the next-generation Intel tools to Windows and Linux C/C++ and Fortran developers
needing advanced performance for multicore today and forward scaling to manycore.

The Intel Parallel Studio XE 2011 bundle contains the latest versions of Intel C/C++ and
Fortran compilers, Intel MKL and Intel IPP performance libraries, Intel PBB libraries, (Intel TBB,
Intel ArBB [in beta], and Intel Cilk Plus), Intel Inspector XE correctness analyzer, and Intel VTune
Amplifier XE performance profiler.

Intel Cluster Studio 2011 bundle contains the latest versions of Intel MPI Library, Intel Trace
Analyzer and Collector, Intel C/C++ and Fortran compilers, Intel MKL and Intel IPP performance
libraries, and Intel PBB libraries (Intel TBB, Intel ArBB [in beta], and Intel Cilk Plus).

For more information, please visit http://www.intel.com/software/products. o

Feature Benefit

Analysis tools for MPI
developers load imbalance
diagram; ideal Interconnect
simulator

Enhanced developer productivity and efficiencies by simplifying and speeding the detection of
errors and offering performance profiling of MPI messages.

Scalable Intel MPI Library
with multirail IB support and
Application Tuner

Scale to tens of thousands of cores with one of the most scalable and robust commercial MPI libraries in the
industry. Ease-of-use with dynamic and configurable support across multiple cluster fabrics and multi-rail IB
support

C/C++ Compilers with Intel®
Parallel Building Blocks

Breakthrough in providing choice of parallelism for applications— process, task, data, vector— with mix
and match for optimizing application performance on clusters of SMP nodes. C/C++ standards support

Fortran compilers with key
Fortran 2008 standards
support including co-array
Fortran (CAF) on clusters
(available on Linux now and
Windows later)

Advances in the industry-leading Fortran compilers with new support for scalable parallelism
on nodes and clusters. Fortran standards supported include key features in Fortran 2008,
more complete Fortran 2003 support.

Updated performance
libraries, Intel® MKL and
Intel IPP

Multicore performance for common math and data processing tasks, with a simple linking with these
automatically parallel libraries

Support for both Linux* and
Windows* platforms

Development capability with the same set of tools on both Windows and Linux platforms for enhanced
performance, productivity, and programmability

THE PARALLEL UNIVERSE

http://www.intel.com/software/products
http://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

18 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

THE ANSWER(S) TO CRACKING
THE PARALLELISM
PUZZLE By David Sekowski

Program Manager
Intel® Corporation

INTEL® PARALLEL BUILDING BLOCKS

Figure 1

Editor’s note:
Intel® Threading Building Blocks (Intel® TBB) has grown
fantastically popular with C++ developers over the past
five years. It has been ported to many platforms and used in
many applications, including recently in well-known Adobe*
products. This article introduces an expanded family of
parallel models, with Intel TBB at the very center. The author
introduces the complementary models that expand upon
what Intel TBB can do in a compatible and complementary
manner that makes Intel® Parallel Building Blocks (Intel® PBB)
well worth understanding and using.

Motivation
As microprocessors transition from clock speed as the primary vehicle
for performance gains to features such as multiple cores, it is increas-
ingly important for developers to optimize their applications to take
advantage of these platform capabilities. In the past, the same
application would automatically perform better on a newer CPU due
to increasingly higher clock speeds. However, when customers buy
computers with the latest CPUs, they may not see a corresponding
increase in applications that are written in serial or designed to take
advantage of only one processing element. Therefore, hardware
designers have to find other ways to deliver superior application
performance, and they’re turning to an old standby from high perfor-
mance computing: parallel hardware platforms. This represents a
new challenge for most software developers who haven’t had much
experience with writing parallel software.

Since Amdahl’s Law was originally coined in 1967, high-perfor-
mance computing experts have known a thing or two about the
answer to this problem. Namely, that by putting more processors
on the job we can reduce total application runtime through soft-
ware parallelism. With the addition of Gustafson’s Law in 1988, the
upper limits on scalability implied by Amdahl’s Law were effectively
removed. Taken together these principles opened an alternative
path to improving software performance in mainstream applications
without increasing clock speed. Welcome to the era of multicore
processors.

Today and in the future, cutting-edge applications will turn to
parallelism to harness the profound power of dual-, quad-, and even-
more-core processors found in most common mainstream computers.
In his book Only the Paranoid Survive, Andy Grove talks about
how strategic inflection points happen in business when a new
technology has the ability to improve performance by an order of
magnitude. It is at these inflection points that there is a possibility
to revolutionize instead of “evolutionize” an industry. Multicore, and
soon manycore, processors represent just such an opportunity to
mainstream software application developers, if they can harness the
added performance and functionality potential.

Multiple-Node Systems

Single-Node Systems

Single CPU or Core

Clusters

Single-Cluster Nodes Desktops/Workstations

Laptops/Netbooks

Scalar Processors
Vector Arithmetic

 Units

> Systems are extensible to any number
 of single-node systems

> Distributed memory structures

> Motherboards are single-, dual-,
 or quad-socketed

> CPUs are single, multi-, or manycore

> Shared memory structures

> Cores contain both scalar processors
 and vector arithmetic units

> Scalar processors handle single, often
 complex, operations on single data items

> Vector arithmetic units handle single,
 often simple operations on multiple
 data items

> Shared cache structures

Apply lessons learned from HPC
into mainstream computing

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Task parallelism is the highest level of software parallelism.
Tasking is generally needed for problems with irregular control
structures that operate on irregular data sets. It allows a developer
to break their application into logically distinct pieces, such as the
render pipeline, AI, physics, and network I/O modules in a game
engine. Each of these logical elements is assigned to a task or
group of tasks to be completed concurrently. Other, more general
forms of task parallelism patterns include message passing, tasking,
eventing, and pipelining. However, these types of parallel code
generally do not scale well with additional processing elements,
since the number of logical parts of an application rarely grow
over time, such that it is not possible to exploit Gustafson’s Law.
Nevertheless, task parallelism is still a vital first step to creating
scalable software by reducing the serial portions of code in a
given application.

Data parallelism is complementary to task parallelism. In fact,
some of the most well-known and successful solutions for data
parallel patterns are implemented using task parallel programming
models. Data parallelism uses algorithms with regular control
structures to operate on concurrent containers and other regular
data structures. Much of the potential scalability of today’s applica-
tions exists in such regular forms; examples include encoding audio
or video. In addition, it is often easier to begin parallelizing a serial
application by taking a serial control flow construct, such as a “for”
loop, and turning it into a parallel for loop, before investigating the
benefits that can be offered by rearranging the logical elements of
the application with task parallelism. Examples of data parallelism
patterns and algorithms include parallel “loops” (also known as

“maps”), sorts, reductions, and scans.
Vectorization: Both task and data parallelism are ways a

developer can spread application work across multiple processing
elements like multiple cores or processors. Vectorization is a subset
of data parallelism that allows you to take advantage of the vector

Distributed and Shared Memory Systems
It is useful when talking about software parallelism to begin by
talking about hardware platforms from the highest to the lowest
performance. Figure 1. This is because we can apply lessons learned
from the high end to the mainstream. High-performance computing
uses massively parallel hardware and software platforms to solve
some of the world’s largest problems from climate change to decoding
the human genome. These systems range from grid computers using
idle cycles on widely dispersed systems over the Internet to clusters
using message passing to communicate across various nodes located
relatively close to each other (e.g., using the Intel® Message Passing
Interface library (Intel® MPI) to synchronize information across cluster
nodes). Both of these types of computing systems utilize distributed
memory as compared to shared memory like that found in a single
node within a distributed system, a workstation, a netbook, etc.
With distributed-memory systems, there is a need for high-level
coordination across nodes as well as parallelism within nodes.
Normally an explicit message-passing model is used to coordinate
multiple nodes. As those nodes have become more powerful, with
multiple processors—each with multiple cores, multiple scalar
processors, and vector arithmetic units—there has been a need
to mix message passing across nodes with parallel software
within each node.

Task Parallelism, Data Parallelism,
and Vectorization
The widely accepted industry terms for node-level parallelism can be
quite confusing, and often have different meanings depending on a
variety of factors. For the sake of discussing how Intel is providing
solutions for software parallelism, this article will define three key
types of parallelism. Figure 2.

Parallelism Types Memory Structure Control Structure Algorithm Types

Task Parallelism Distributed
Shared

Irregular
Message
Passing Tasks

Events
Pipelines

Data Parallelism Shared Regular
Loops
Sorts
Reductions

Trees
Graphs
Lists

Vectorization Shared (Cache) Regular
Simple Array &
Vector Operations

Elemental Functions
SIMD

Figure 2

THE PARALLEL UNIVERSE

20 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

arithmetic units within most modern microprocessors. Vectorization,
or Single Instruction Multiple Data (SIMD) as it is sometimes called,
allows a developer to perform a simple operation on multiple pieces of
data at the same time. Adding multiple arrays of vectors, for instance,
can be easily and quickly performed by a vector arithmetic unit. When
some published results show performance of math kernels in scientific,
financial, and other computations, they are highlighting the use of
such vector arithmetic units by mathematical libraries. Applications
that spend much of their runtime performing relatively simple data
parallel operations can usually benefit greatly from vectorization.

Compilers & Libraries
There are a number of ways that computer science researchers have
found to make implementing software parallelism easier. There are
entirely new languages, extensions for current languages, auto-
matic compiler features, and runtime libraries comprised of low-level
constructs in current languages and operating systems. Intel is a
leader in researching and providing software products supporting
each of these methods. Today, Intel uses two primary methods to
help developers write parallel code: (1) through the use of compiler
features and language extensions, and (2) through libraries. Figure 3.

When considering whether to use a language extension or a library
implementation for the user’s specific application, it is important to
consider the potential benefits of each solution. Language extensions
are enabled by compilers that can offer many benefits like lighter
weight scheduling, and, therefore, better performance for fine-grain
parallelism. Compilers also offer greater levels of abstraction that can
make it easier to implement parallelism. These benefits may come
at the cost of control, generality, and applicability. Depending on the
exact design of the language extensions, the developer may not be
able to explicitly control the implementation of parallelism in their
code because they are only providing hints via keywords or
pragmas to the compiler.

In contrast, libraries can work with existing compilers and infrastruc-
ture, but may have to use a less standard and less compact syntax
to expose their features. Library-based solutions may offer greater
control, more comprehensive feature sets, and better performance
for coarse-grain parallelism, although they generally introduce addi-
tional overhead compared to compiler-based solutions. However, both
compilers and libraries are effective and symbiotic in accessing and
expressing parallelism.

Finally, the implementation of parallelism in both compiler
extensions and libraries utilize low-level constructs available in the
operating system like OS threads and locking mechanisms. Therefore,
it should be obvious that on any particular machine, a savvy developer
can always match or exceed the per-thread performance and
system-level scalability offered by these abstractions given the time,
expertise, and inclination. On the other hand, coding directly to
low-level mechanisms instead of high-level abstractions may limit
the portability and future scaling of an application. Intel offers a
host of high-level abstractions that help developers overcome
these limitations.

Parallelism Model Implementations

Comparisons Language
Extensions Libraries

Compiler Dependent Independent

Standards
Compliance

Can be
published

as Standards

Generally
adhere to
Standards

Portability Less More

Ease of Use More Less

User Control Less More

Parallelism
Grain Size Fine Coarse

Figure 3

Pragma
A pragma is a compiler directive, essentially a “hint” embedded
in the source code to indicate some direction to the compiler.
If the compiler understands the hint, it can perform a special
compilation. If it doesn’t, it simply ignores it and does not
generate a warning.

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Intel’s Family of Parallel Models
Understanding the different types of parallelism available to a
developer and the ways in which they can utilize abstractions to
create parallel applications lays a framework for evaluating parallel
models. Intel’s family of parallel models supports a smorgasbord of
options for developers. These include native threads, auto-vectoriza-
tion, auto-parallelization, OpenMP, OpenCL, and many others. However,
there is no universal solution. Each of these solutions has drawbacks
or does not address all of the types of parallelism that developers
need to be successful.

For example, OpenMP is ideal for Fortran and C applications that are
meant to fully utilize a hardware system, complete some work, and
return the answer. But because of this behavior of assuming control
over the entire hardware system, OpenMP does not compose well
with itself nor interoperate with other parallelism methods by default.
In high-performance computing, OpenMP is a great solution for
problems that are so large they can use all available resources fully
to solve a problem, but has limited applicability in common applications
running on a personal laptop such as Web browsers, media players,
and email clients. That being said, Intel has been and will continue to
provide industry-leading support for OpenMP in our compilers.

Intel® Parallel Building Blocks

Selection Criteria Value Propositions

Abstract - models must reduce the need
to write parallelism using OS-dependent
threads and synchronization primitives

Supported - models must work with
Intel tools like Parallel Amplifier for
performance tuning and Parallel Inspector
for debugging

Usable - models provide easy to implement and
test abstractions to utilize all available hardware
parallelism

Interoperable - models must be able to
coexist within an application andreliably
exchange data

Composable - models must be able to
be nested and otherwise combined with
reliable and performant behaviors

Reliable - models are not prone to common multi-
threading errors and they can be mixed and matched
in interesting and useful ways

Performant - models must provide
sufficient per-thread performance to
productivity

Scalable - models must provide
additional performance scaling when
adding processing elements

Future-Proof - models provide automatic forward
scaling to more processing elements along with
sufficient per-thread performance

Open - models should work on multiple
platforms where applicable so developers
can use them anywhere

Standard - models should provide
published standards where applicable
so others can interoperate

Portable - models can be used on multiple OS, HW,
IDE, and compiler platforms with flexible licensing

Figure 4

Intel® Parallel Building Blocks
In response to these concerns when applying parallelism to the
average application, Intel has made it easier to utilize task and data
parallelism through Intel TBB. Intel TBB is a C++ template library with
a broad range of features to specify and execute both task and data
parallelism. It uses dynamic task scheduling, scalable memory alloca-
tion, parallel algorithms and data structures, synchronization primi-
tives, and portable threads to offer a composable and interoperable
solution for node-level parallelism. This generality is afforded by addi-
tional overhead compared to compiler-based models and sufficiently
complex APIs. There are some capabilities that Intel TBB does not
support by design: (1) utilizing vector arithmetic units within modern
processors and (2) automatically target Intel’s manycore co-processors.

These technical limitations motivated creation of the two newest
members of Intel’s family of parallel models: Intel® Cilk Plus and Intel®
Array Building Blocks (Intel® ArBB). Figure 5.

Intel Cilk Plus is comprised of C and C++ language extensions imple-
mented in the Intel® C/C++ Compiler. If you are new to parallel program-
ming, this is the easiest way to get started. The extensions include
three simple keywords to expose both task and data parallelism, as well
as an easy syntax to explicitly vectorize portions of an application. It has
the additional benefits of serial semantics and deterministic output.

THE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

“Intel ArBB, formerly Intel®
Ct Technology, is a C++
library like Intel TBB, which
offers highly performant
and scalable data parallelism
and vectorization. ”

Intel® TBB

Free open source version www.threadingbuildingblocks.org

Paid commercial version www.threadingbuildingblocks.com

Intel® Cilk™ Plus

General information http://cilk.com

Intel® Cilk++ SDK for Microsoft C++ compiler users on
Windows* and GCC compiler users on Linux*

http://software.intel.com/en-us/articles/intel-cilk/)

Intel® ArBB

General information http://intel.com/go/ArBB

Beta download http://software.intel.com/en-us/articles/
intel-array-building-blocks

Intel ArBB, formerly Intel® Ct Technology, is a C++ library like Intel
TBB, which offers highly performant and scalable data parallelism
and vectorization. It utilizes a JIT, or just-in-time, compiler to dynami-
cally optimize for any given target heterogeneous hardware platform,
including both manycore processors and vector arithmetic units.
It can generate highly optimized machine code on the fly to take best
advantage of the multiple processors, cores, and vector arithmetic
units available on both CPUs and accelerators, which may comprise
a distributed memory system. By using dynamic code generation, it
can also overcome modularity overhead of C++. For instance, it can
support virtual functions without their runtime cost. To learn more
about Intel ArBB, refer to the next article. These three models for

parallelism (Intel TBB, Intel Cilk Plus, and Intel ArBB) all share a common
infrastructure. Each individual model also adheres to strict selection
criteria that guarantee a number of compelling value propositions
by default. Figure 5. These models are complementary and each
provides unique value in particular application contexts. In combination,
they form a single comprehensive solution for task parallelism, data
parallelism, and vectorization, with interfaces implemented using both
language extensions and libraries. Together, they provide a unified
solution to parallelism and are available as part of Intel® Parallel
Studio 2011 as Intel® Parallel Building Blocks (Intel® PBB). Interested
developers can get started with Intel PBB today by referring to
the above links. o

Figure 5

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/forums/
http://software.intel.com/en-us/articles/tools/

INTEL®
ARRAY
BUILDING
BLOCKS

By Michael McCool
Software Architect
Intel® Corporation

THE PARALLEL UNIVERSE

Intel® Array Building Blocks
(Intel® ArBB) is a sophisticated
and powerful platform for
portable data-parallel software
development. Intel ArBB will
be available as a component
of Intel® Parallel Building
Blocks, along with several
other tools and libraries
for parallel programming.

Intel ArBB can be used to parallelize compute-intensive applications within
a structured, deterministic-by-default framework. It also provides powerful runtime generic
programming mechanisms, yet can be used with existing compilers. In particular, it has been
verified to work with the Intel, Microsoft*, and gcc C++ compilers. Intel ArBB is currently in Beta,
and feedback is appreciated; it can be downloaded today from http://intel.com/go/ArBB for
either Windows or Linux.

Is Intel ArBB a language or a library? Yes—both at the same time. Intel ArBB is the answer
to the following question: How can parallelism mechanisms in modern processor hardware,
including vector SIMD instructions, be targeted in a portable, general way within existing
programming languages? The answer is an embedded language. Intel ArBB is a language
extension implemented as an API. It has a library interface, but includes a capability for the
dynamic generation and optimization of parallelized and vectorized machine language.

Modern processors include many mechanisms for increasing performance through
parallelism: multiple cores, hyperthreading, superscalar instruction issue, pipelining, and
single-instruction, multiple data (SIMD) vector instructions. The first two—multiple cores and
hyperthreading—can be accessed through threads, although for efficiency, one may want to
use lightweight tasks that share hardware threads. Instruction-level parallelism, such as
superscalar instruction issue and pipelining, are invoked automatically by the processor, as long
as the instruction stream avoids unnecessary data dependencies. However, the last form of
parallelism, SIMD vector parallelism, can only be accessed by generating special instructions
that explicitly invoke multiple operations at once: SIMD instructions. SIMD instructions perform
the same operation on multiple components of a vector at once, so they are sometimes also
called SIMD vector instructions.

SIMD vector instructions are very powerful, and they are becoming more powerful
over time. In current processors that support streaming SIMD extensions (SSE), four single-
precision floating point instructions can be executed with a single SSE SIMD instruction.
In next-generation AVX processors, the width of the SIMD instructions will double, so eight
such operations can be executed at once. In the Intel® Many Integrated Core (MIC) architecture,
the width doubles again, so 16 such operations can be executed at once.

Figure 1. Practical
testing and performance
expectation

Intel® Parallel Building Blocks (Intel® PBB) is a set of comprehensive parallel
development models that supports multiple approaches to parallelism.

THE PARALLEL UNIVERSE

http://intel.com/go/ArBB
http://swdevtoolsmag.makebettercode.com

The theoretical peak floating-point performance of a processor is
represented by the product of the number of cores, the width of
the vector units, and the clock rate. While the clock rate is no longer
scaling significantly, the number of cores and the SIMD vector width of
each core continue to scale. Vectorization, that is, expressing compu-
tations using SIMD vector instructions, is essential to attain the peak
performance of modern processors.

However, there are two problems. First, using SIMD vector units
requires use of specific machine-language vector instructions.
Second, different processors have different SIMD vector instruction
extensions. The SSE, AVX, and MIC vector instructions are all different.
While AVX machines can execute SSE instructions, this will not access
the full performance potential of AVX processors. This latter issue
is not so critical since current compiler technology does permit the
generation of multiple code paths in a single binary. For example,
when using the Intel® C++ Compiler, a single-source program can be
compiled for both SSE and AVX machines, and the resulting program
will use AVX code when possible. However, when using static
compilers, developers still need to know in advance which set
of processors they wish to target, and the problem remains:
how is efficient vectorized code to be generated?

The traditional approach to supporting instruction set extensions
is to modify the compiler to emit the new instructions, and then
to recompile programs as necessary. However, for SIMD vector
instructions this is not so easy. It is very difficult for a compiler
to automatically identify serial structures in a program that can
be mapped to SIMD vector instructions. It can be done sometimes,
but it is better for the programmer to explictly indicate which
operations in the program should use SIMD vector operations
and how. This requires new constructs in the programming
language that can be easily and reliably vectorized. Unfortunately,
there is as yet no widely accepted machine-independent standard
for specifying vectorization in C and C++.

Intel® Parallel Building Blocks (Intel® PBB) actually includes three
separate strategies for accessing vector operations in a portable
manner. The first strategy, which should not be overlooked, is to use
a fixed-function library: Intel® Math Kernel Library (Intel® MKL) and Intel®
Integrated Performance Primitives (Intel® IPP) include many mathemat-
ical operations that have already been vectorized. If the operation you
need is part of these optimized libraries, that is often the best
solution. If not, and you have to code the algorithm yourself, there
are two other strategies available. First, you could use Intel® Cilk Plus,
an extension to C and C++ that includes a notation to specify explicit
vector operations on arrays. This notation is an extension to C/C++
available in the Intel C/C++ Compiler. The second general-purpose
mechanism is Intel ArBB.

Intel ArBB is an embedded language, implemented as a C++ API,
that in theory works with any ISO-standard C++ Compiler. It uses
standard C++ mechanisms for its syntax, declaring types for
collections of data and overloading operators so that operations
can be expressed over those collections. In other words, it looks like
a typical matrix-vector math library. However, there is a difference.
In an ordinary library, the C/C++ Compiler generates the code statically.
ArBB machine code is generated by the library itself, dynamically.

ArBB is very simple to use; we’ve provided a few examples below.
To set the stage, however, we first need to discuss some basics. The
ArBB C++ API defines both types and operations. Types include scalar
types for floating point numbers, integers, and Booleans, as well as
types for representing collections of these types and user-defined
types based on them. The ArBB scalar types are used in place of the
ordinary C++ types for floats and integers, and have names like f32
(for single-precision float), i32 (for signed 32-bit integers), and so
forth. Using an ArBB scalar type indicates to ArBB that the corre-
sponding machine language for operations on this type should be
generated dynamically by ArBB and not statically by C++. There are
also types to manage large collections of data. The simplest of these
is called dense<T,D> and represents a contiguously stored (dense)
multidimensional array with element type T and dimensionality D.
The dimensionality is optional and defaults to 1. The element type
T can be any ArBB scalar type or structures or classes with ArBB
scalar types as elements.

“Intel® Parallel Building Blocks
(Intel® PBB) actually
includes three separate
strategies for accessing
vector operations in
a portable manner. ”

THE PARALLEL UNIVERSE

26 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

There are two basic ways to specify parallel computations in ArBB:
as sequences of operations over entire collections (vector mode), or
as functions replicated over every element of a collection (elemental
mode). Vector mode is the simplest: arithmetic operations on collec-
tions apply in parallel to the corresponding members of the collections.
This works even if the element type is user-defined and the user
has overloaded the operator themselves. For example, suppose we
have four dense<f32> collections called A, B, C and D, all of the same
size. Then the following expression will operate in parallel on all the
elements of these collections:

BLOG
highlights

 READ THE REST OF JAMES’ POST:

Visit Go-Parallel.com

Browse other blogs exploring a range of related
subjects at Go Parallel: Translating Multicore

Power into Application Performance.

Intel® Cilk™ Plus Specification and
Runtime ABI Published for Free
Download Now
JAMES REINDERS, DIRECTOR OF SOFTWARE
DEVELOPMENT PRODUCTS

A Cilk Plus specification without an implementation
would be noise. That is why we released a serious
implementation first, followed shortly by a specification.
Serious evaluation, production usage, and feedback
are all possible as a result.

On November 2, we published the specification for the
language and the runtime ABI for Intel Cilk Plus on cilk.com.
This is an important step as we encourage adoption of these
important capabilities in all compilers. We are in the early
stages of discussions with others on how to best do this,
and all agree that publishing a specification is a very important
next step for the success of Cilk Plus.

We know that promoting a specification without an implemen-
tation would be a poor way to promote a language. Having
an implementation that allows serious evaluation is a must.
That is why we chose the order we did: implementation first,
followed shortly by a specification.

We have full support for Cilk Plus in Intel’s released compil-
ers on Windows and Linux. These compilers and specifications
build upon people, expertise, and technology acquired
from Cilk Arts last year.

A += (B/C) * D;

Note that in general when a collection appears on both the left and
right side of an expression, ArBB generates a result “as if” all the
inputs were read before any outputs are written. In practice, we have
to put this expression inside a function and invoke it with a call
operation. However, any sequence of parallel vector operations
can be inside such a function:

void
doit(dense<f32>& A, dense<f32> B,
dense<f32> C, dense<f32> D)
{
 A += (B/C) * D;
}
 ...
call(doit)(A,B,C,D);

The way call actually works is that it calls the function to do it precisely
once and observes (rather than actually performs) the sequence of
ArBB type constructions, operations, and destructions generated by this
function. It records this sequence, compiles it into optimized machine
language, executes it (in parallel), and then caches it. The next time the
same function is called, call does not invoke the C++ function again; it
will just retrieve the internally generated machine code from its cache.
For simple uses of Intel ArBB this is exactly what you want. In more
advanced use cases, however, you may want to generate different
versions of the operation from the same C++ function. For example,
you can parameterize the sequence of Intel ArBB operations by ordinary
C++ variables and control flow, and you can use this to generate vari-
ants of a computation. Managing this powerful mechanism for generic
programming is enabled by another Intel ArBB type called a closure.
A closure is an object that represents a captured Intel ArBB function;
it is conceptually similar to a lambda function, but is dynamically gener-
ated. The return type of call is actually an appropriately typed closure.
Another function, capture, is also available. It is similar to call in that it
creates a closure, but it does not cache it, so it can be called repeatedly
on the same C++ function to generate variants. Again, for simple uses
of Intel ArBB explicit use of closures is not necessary, and you can just
think of call as a straightforward function invocation.

THE PARALLEL UNIVERSE

http://software.intel.com/en-us/blogs/author/james-reinders
http://software.intel.com/en-us/blogs/author/james-reinders
http://software.intel.com/en-us/articles/intel-cilk-plus/
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
http://swdevtoolsmag.makebettercode.com

You can also write “elemental” functions over scalar Intel ArBB types:

void
kernel(f32& a, f32 b, f32 c, f32 d)
{
 a += (b/c)*d;
}

You can invoke elemental functions from inside a call by using the
map operation. A map operation replicates the function over every
element of the input containers.

void
doit(dense<f32>& A, dense<f32>
B, dense<f32> C, dense<f32> D)
{
 map(kernel)(A, B, C, D);
}
call(doit)(A,B,C,D);

It is also possible, from inside an elemental function, to access
neighboring elements of the input. This makes it very easy to write
stencil operations, such as convolutions. You can also pass in either
an entire container or a single element to every argument of the map.
Single-element arguments are replicated to match the size and shape
of any containers used as arguments. For example, suppose we
use the following:

void
doit(dense<f32>& A, f32 b, f32 c,
dense<f32> D)
{
 map(kernel)(A, b, c, D);
}
call(doit)(A,b,c,D);

with the same kernel function, but with the types of b and c matching
the corresponding function argument exactly; in this case, f32. There
will still be as many parallel instances of the kernel as there are
elements in the collections A and D, but every instance will get a
copy of the same value of b and c. In summary, call arguments need
to match exactly, but map functions are polymorphic and any
argument can either be a single element or a collection.

In addition to using these two basic patterns to express parallel
operations, users of ArBB also have access to several collective
operations that act on or take an entire container as an input. These
operations can shift the contents of containers around, take cumula-
tive sums (prefix scans), perform sets of reads and writes (known as
scatters and gathers), discard elements and pack the remainder into
a contiguous sequence (known as pack; the inverse is unpack), or
simply combine all elements into a single element. Combination of all
the elements of a container into a single element is called a reduction.
For example, the following computes the dot product (sum of pairwise
products) of two containers A and B:

f32 A_dot_B = add_reduce(A * B);

Elemental functions can also use control flow. During the process
described above, ordinary C++ control flow is actually executed only
when the function is ”captured.“ This is incredibly useful for generic
programming in order to specify variants, and to reduce the overhead
of modularity and configuration. However, in order for control flow
to be visible to ArBB and be compiled into the vector machine
code generated by it, special macros need to be used to express
 “embeddable“ control flow.

THE PARALLEL UNIVERSE

28 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

This is best shown by an example. The following program computes
the Mandelbrot set, the famous fractal found by counting the number
of iterations required for a complex quadtratic to diverge from a given
starting point. Plotting this number of iterations over a region of the
complex plane results in the above image. Figure 1.

An elemental function to compute a single pixel of this image is
given by the following ArBB code:

int max_count = MAX_COUNT;
void mandel(i32& d, std::complex<f32> c) {
 i32 i;
 std::complex<f32> z = 0.0f;
 _for (i = 0, i < max_count, i++) {
 _if (abs(z) >= 2.0f) {
 _break;
 } _end_if;
 z = z*z + c;
 } _end_for;
 d = i;
}

There are a few interesting things to note about this example.
First, complex numbers can be expressed simply by using the
std::complex type with an ArBB element type. This also works for
user-defined types and, as mentioned above, for operator overloading
on user types; such operator overloads even work for vector opera-
tions applied to collections of user types. Second, this function refers
to a non-local C++ variable, max_count. In theory, we might want to
capture this function with different values of this variable. This can

be done with closures. If we use call, we will capture and “freeze” the
value of this variable the first time we invoke this function. If we use
capture, we can change the value and capture different versions and
use closure objects to manage them. Finally, note that ArBB control
flow has a few differences from C++ control flow: it uses a leading
underscore, but also has closing keywords (such as _end_for) and the
arguments to _for are separated by commas, not semicolons.

To actually get useful work done, we have to get data in and out
of ArBB collections. This can be done in a variety of ways. ArBB actu-
ally supports an efficient STL-friendly interface based on iterators for
sophisticated applications. However, the simplest way to get data in
and out of ArBB is to simply associate an ArBB collection with a C++
array using bind, as follows. Note that we also have to use a helper call
function “doit” to invoke the elemental function inside a map.

void
doit(dense<i32,2>& D,
dense<std::complex<f32>,2> P)
{
 map(mandel)(D,P);
}
dense<std::complex<f32>,2> pos;
bind(pos, c_pos, cols, rows)
dense<i32,2> dest;
bind(dest, c_dest, cols, rows)
call(doit)(dest, pos);

This article has presented a brief introduction to Intel Array Building
Blocks. This system provides a portable mechanism for sophisticated
and efficient data-parallel computation. In order to target vector
instructions, while being processor and compiler independent, Intel
ArBB includes a capability for dynamic code generation. This capability
allows Intel ArBB to avoid the overhead of C++ in many cases, since
the ArBB code generation is separate from that of the “host language,”
C++. Intel ArBB is a sophisticated and powerful system that provides
access to a simple means to express efficient data parallel computa-
tions, and also supports unique and powerful mechanisms for generic,
modular programming.

If you are interested in learning more about Intel ArBB or experi-
menting with it (again, it is currently in Beta, and feedback is appreci-
ated) go to http://intel.com/go/ArBB.o

Figure 1

THE PARALLEL UNIVERSE

http://intel.com/go/ArBB
http://swdevtoolsmag.makebettercode.com

The Intel® Math Kernel Library (Intel® MKL) provides
software developers optimized and automatically parallelized math-
ematical library routines. Our routines are thread-safe and are appli-
cable to many engineering, science, financial, and other applications.
In this article, we provide an overview of the techniques Intel MKL
uses to achieve the highest level of parallelism, as well as the hooks
and knobs useful for getting the most from these threaded hotspots.

Intel MKL has a number of domains useful to developers who
create applications for desktops, servers, and clusters. This includes
industry standards like the Basic Linear Algebra Subroutines (BLAS)
and the latest version of the Linear Algebra PACKage (LAPACK), as
well as Fast Fourier Transforms (FFTs), Vector Math and Statistics
Libraries (VML, VSL), a direct sparse solver (PARDISO), and sparse
BLAS. To help lower the barrier to programming distributed memory
architectures (clusters), Intel MKL includes ScaLAPACK, Parallel BLAS,
and Cluster FFTs. Intel MKL is available on the latest versions of Linux,
Windows, and Mac OS X. We have tuned code for Intel and AMD*
hardware, including both IA-32 and Intel® 64 architectures.

The primary advantage of Intel MKL is that it makes the highest
performance levels easily accessible to software developers. Within
the software, we do automated dispatching to amortize the value
of the underlying hardware features. This means users calling an
industry-standard subroutine like DGEMM from the BLAS get perfor-
mance improvements on different systems without having

to re-link their applications. Intel MKL simply detects the hardware and
dispatches code optimized for that processor, requiring no effort on
behalf of the user. For example, the same application when linked with
Intel MKL should run optimally on Intel® Core™2 Duo and Intel® Core™i7
processors because kernels optimized for both processors are already
built in and dispatched during runtime.

Multicore machines are the latest trend in computing, offering
high degrees of parallelism. While the potential for even higher
performance is a natural side effect of an increased number of cores,
the challenge of extracting that performance (and parallelism) falls
squarely on the shoulders of the software developer. A library such
as Intel MKL, where we have threaded most of the commonly used
routines, is a simple and effective means of obtaining that parallelism.

Threading within Intel MKL is based on the industry standard
OpenMP* specification. We thread in several of our domains: the direct
sparse solver, LAPACK, BLAS, Sparse BLAS, VML, FFTs, and Cluster
FFTs. For industry-standard components like LAPACK and the BLAS,
our tuning goes beyond what one can find in the public domain.
For example, in LAPACK we have added threading to some of the
computational linear equation routines, orthogonal factorizations,
singular value decompositions, and eigenproblems. In all cases,
Intel MKL is thread-safe, so simultaneous execution of routines
from multiple threads works correctly.

with the Intel® Math Kernel Library (Intel® MKL)

By Greg Henry, Intel® MKL Architect
Shane Story, Engineering Manager, Intel Corporation

Automatic
Parallelism

THE PARALLEL UNIVERSE

30 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Users can set Intel MKL-specific variables such as MKL_NUM_
THREADS to specify the number of OpenMP* threads so as not to
interfere with a user’s other OpenMP* routines and environment
variables. Intel MKL checks the Intel MKL-specific variables first;
however, we are constrained by the underlying OpenMP environment.
If neither the Intel MKL routines nor the OpenMP routines/variables are
set, the underlying OpenMP default system will take precedence.
If a developer builds an application for their own customers and wants
control over the OpenMP environment (as opposed to allowing their
users to experiment with environment variables), they can call Intel
MKL threading service functions. Our threading service functions take
precedence over our environment variables. Intel MKL works with
the Intel® Compiler’s OpenMP* libraries, in addition to those of
Microsoft and GNU.

Developers can control the number of threads not only on a Intel
MKL-wide level, but also on a domain-specific level with the MKL_
DOMAIN_NUM_THREADS environment variable or its corresponding
service function, mkl_domain_set_num_threads(). For instance, if one
wants all of Intel MKL to use two threads and the BLAS instead to use
four, a user can set the variable with “MKL_ALL=2, MKL_BLAS=4.”
All environment variables are read only once in the course of a run.
To change the behavior in the middle of a run requires calls to the
service functions.

For developers building applications using a different threading
model other than OpenMP, such as Intel® Cilk™ Plus Runtime Library,
Intel® Thread Building Blocks, or pthreads in Linux, we suggest
threading with the user’s method of choice at the highest level,
and either linking in the sequential Intel MKL, or setting MKL_NUM_
THREADS to “one” in the threaded version.

This usage model works well because threading is most effective
when applied at the highest possible level—as it is in the current Intel

Web Bibliography:
[BLAS] http://www.netlib.org/blas/index.html
[LAPACK] http://www.netlib.org/lapack/index.html
[MKL] http://software.intel.com/en-us/intel-mkl/
[MPI] http://www.mcs.anl.gov/research/projects/mpi/
[MPI] http://www.intel.com/go/mpi
[OPENMP] www.openmp.org
[SCALAPACK] http://www.netlib.org/scalapack/index.html

MKL. For example, the original design and current public implementa-
tion of LAPACK depends on parallelism within the underlying BLAS
routines. We found we could obtain better performance when we
did threading at the LAPACK-level and called sequential BLAS, rather
than relying on threading only in the BLAS. The critical observation is
that the advantage of threading at a higher level increases with the
number of threads. If we take the LAPACK routine DGETRF (double
precision general matrix factorization via Gaussian elimination with
partial row pivoting), fix a large matrix size on a manycore machine,
and test the gap between threading just at the BLAS level versus the
LAPACK routine level, the performance advantage increases as the
number of threads increase.

Additionally, there are times when it is useful to take advantage
of multiple levels and styles of parallelism, such as in a distributed
memory cluster running MPI (Message Passing Interface) between the
nodes. The Intel MKL benchmark MP LINPACK (which solves a cluster
problem similar to DGETRF) uses hybrid MPI-OpenMP* parallelism for
even greater performance. This is analogous to our previous state-
ment regarding threading at the highest level. While running one MPI
process per core is the most basic mechanism for parallelism on a
cluster, running fewer MPI processes and putting OpenMP* calls into
the code raises the threading level higher in the application and
should yield performance gains.

Intel MKL depends on the underlying OpenMP* software to deter-
mine the number of threads. When the presence of MPI is detected
and MPI has not been initialized for multithreading, Intel MKL will
default to one thread. Likewise when called from inside an OpenMP
parallel region, the default will be to one thread. If OpenMP gives us
more threads than the number of physical cores (which might happen
when HT is enabled), we will scale down the number of threads to
match the number of physical cores. But there are times when our
default choice may not be optimal, because of other aspects of the
application we cannot detect. A user can set MKL_DYNAMIC to FALSE
(its default is TRUE) or call mkl_set_dynamic() to try to override the
number of threads we think will run optimally. Note that FFTs require
both a setup and an execute stage, and the number of threads should
be the same for both.

By taking advantage of the automatic parallelism Intel MKL provides,
applications can get higher performance on modern multicore archi-
tectures. o

THE PARALLEL UNIVERSE

http://software.intel.com/en-us/intel-mkl/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.intel.com/go/mpi
http://swdevtoolsmag.makebettercode.com

As Intel® Architecture evolves, cluster software users
are going to have to make their next investments in systems that
employ greater amounts of parallelism.To support those investments,
software developers will have to make changes to their software that
can significantly impact performance. The changes usually involve
many years of work and can lead to the implementation of mixed
mode parallelism. In a small number of cases, the changes can be
relatively minor. In either case, our experience indicates that the
changes are not obvious.

We suggest the high-level features of the Intel® Cluster
Toolkit Compiler Edition meet the above challenge, particularly,
the new features in Intel® MPI 4.0 and the benefits of the Intel®
Trace Analyzer and Collector.

In this article, we will see how real-world developers are applying
Intel Trace Analyzer and Collector to find issues that would be unde-
tectable with print statements and timer, correct those issues, and
then deliver scaling performance with Intel® MPI 4.0 that is 30 to 50
percent higher than previously achieved (e.g., LSTC dyna is scaling
past 1,500 cores; fluent is eclipsing 3,000 cores). Finally, we will
suggest that a knowledgeable developer can deliver effective results
in months that would take years to deliver with traditional tools.

Let’s start by looking at how the application of the Intel Cluster
Toolkit Compiler Edition 4.0 can be applied to real problems that
happen to developers when they use the same software on new
systems or apply the software to larger data sets.

We will show how Intel Trace Analyzer and Collector can be
used to diagnose issues when previously estimated speedups are
not achieved, and ensure that the quality of results is maintained
when mixed mode parallelism is implemented to enable handling
of larger data sets.

When Print
Statements
and Timer Are
Not Enough:

I just spent the money and the application runs slower

Frequently, software users will come to a software ISV and ask
what the effect of a new Intel® multicore architecture will be on
workloads. An ISV’s user asked this question and got a very favorable
estimate (yellow dash line in Figure 1). After having paid the money
and installed the new Intel® 64 system, they saw the results (red line
in Figure 1).

By Don Gunning,
Nick Meng, and Paul Besl

Making the Parallelism Investment More Effective

32 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

source /opt/intel/itac/8.0.1.001/bin/itacvars.sh
export LD_PRELOAD=/opt/intel/itac/8.0.1.001/slib/libVT.so
8p run
runexec small_model.pre -np 8 --mpi-options -trace --machines-file $PBS_NODEFILE
#256p run
runexec large_model.pre -np 256 --mpi-options -trace --machines-file $PBS_NODEFILE

0 2.5k 5k 7.5k 10k 15k 20k

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1.0

.5

0.0El
ap

se
d

ti
m

e
(h

ou
rs

)

Problem size (elements)

real timing on
new system

estimation on
new system

real timing on
existing system

Figure 1. Practical testing and performance expectation

Needless to say, there were some issues and diagnosis
was necessary.

With Intel Trace Analyzer and Collector, the diagnosis
was straightforward. Basically, you add “–trace” to your
MPI command line or “–mpi-options –trace” in your run
script file. Here is the run command with ITAC tool.

We tested two test cases with the Intel Trace Analyzer

and Collector tool: a small test case with eight cores and
a large test case with 256 cores. After we got STF trace
files, we collected statistical data with the analyzer tool.
Figures 2 and 3 show the statistical data collected from
the small test case in graph mode. In Figure 2, we can
see the communication from P0 to P1-P7 is hot, and P0 to
P1 is the hottest (see the outlined area).

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Figure 2. Total MPI collective function time in each MPI process generated by Intel® Trace
Analyzer and Collector Tool. (Red indicates hot [busiest]; blue, cool [not so busy].)

Figure 3. Total time of MPI collective function in each MPI process generated by Intel® Trace
Analyzer and Collector. (Red indicates hot; blue, cool.)

MPI BCAST

MPI BCAST

THE PARALLEL UNIVERSE

34 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-support-resources/
http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-support-resources/

In Figure 3, you can see MPI_Bcast is the hottest func-
tion in the test case (see the outlined area). We also did
deep performance investigation with a large test case
on 256 cores. Figures 4, 5, 6, and 7 show the same
phenomena in the large test case.

Figure 4 displays the percentage of functions in
pie mode: the blue area indicates computing cost of

applications; the red area indicates the cost of MPI
communications. You can see that the master MPI process
pie is almost blue, and all slave MPI process pies are almost
red. It means that there is a very serious load imbalance
issue here. After we look at Figures 6 and 7, we find the
serious load imbalance is from the MPI_BCAST function.
Figures 6 and 7 show the activities of MPI functions and

Figure 4. Load balance of large test case in pie mode on 256 cores generated by Intel® Trace
Analyzer and Collector. (Red indicates MPI code percent execution time; blue indicates applica-
tion percent execution time.)

Figure 5. Profile data of large test case and total time of MPI collective function in each MPI
process generated by Intel® Trace Analyzer and Collector.

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Figure 6.The activities of functions from 0 to 60 seconds generated by Intel® Trace Analyzer
and Collector.

Figure 7. The activities of functions from 21.136 to 21.176 seconds generated by Intel® Trace
Analyzer and Collector. (Red indicates MPI code; blue indicates application code. The horizontal
axis represents time. The vertical axis represents separate MPI processes/ranks.)

THE PARALLEL UNIVERSE

36 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

application functions. The red area indicates MPI function activity;
the blue area indicates the application function activity. Obviously,
the large test case spent a lot time on MPI functions which is
extremely abnormal.

 In Figure 4, we noticed the master MPI process (pie in upper left
corner) is blue and all slave MPI processes are almost red. Meanwhile,
Figures 5, 6, and 7 indicate that the load imbalance issue is clearly
from a MPI _BCAST function. This means that the default (algorithm)
setting of the MPI_BCAST function is not appropriate for this case.
We need to select the right algorithm. We did some tests with a small
cases and discovered the best setting for MPI_BCAST in this case:
I_MPI_ADJUST_BCAST=4.

In this situation, the root cause of an unexpected problem was
found quickly and the solution was easily implemented in large part
due to the Intel Trace Analyzer and Collector’s graphical data mining
capability and the ISV developers’ knowledge of the software. Finally,
the user got reasonable performance on the new Intel 64 platform.

Now we will look at a more complex challenge.

Solving challenge tasks with
mixed mode parallelism

Livermore Software Technology Corporation (LSTC) is continuously
being challenged by users to deliver results faster on ever-increasing
data set sizes. Further, in many cases the results must be consistent.
LSTC offers shared and distributed memory versions of their software,
with the distributed memory version offering better scalability than
the shared memory version. The shared memory version uses OpenMP.
The distributed memory version uses MPI.

We will now illustrate how the Intel Trace Analyzer and Collector
was applied to LSTC DYNA to enable handling of significantly larger
data sets on Intel® multicore architecture.

The challenge

LSTC supplies LS-DYNA, a general-purpose transient dynamic finite
element program capable of simulating complex real-world problems.
In very simple terms, LSTC sells crash simulation software that is used
in manufacturing: automobile design, aerospace, consumer products,
and bioengineering. To improve solution accuracy, the problem size is
continually increasing with a non-trivial increase in computer time
(e.g., solving a 10 million element problem can take 43 hours on
a given cluster).

The challenge LSTC was faced with is the need for numerical
consistency combined with limited network bandwidth, fixed node
memory, and limited memory bandwidth which prevented LSTC users
from scaling beyond a certain node count as problem size increased.
This can significantly increase runtimes.

BLOG
highlights

Condition Variable Support in
Intel® Threading Building Blocks

WOOYOUNG KIM

One feature present in the proposed C++ standard
specification (i.e., N3092) threading support library, which
we began supporting since Intel® Threading Building Blocks
(Intel® TBB) 3.0, is condition variable. As the C++1x proposal
approaches the final approval, we expect using threads in con-
junction with condition variables will become more popular.

For example, Microsoft has already been supporting condition
variables natively since Windows* Vista. Until Intel® TBB 3.0,
Intel TBB used to provide only half of it (cf., std::thread – it
used to be called tbb::tbb_thread). The following code example
shows how to use the Intel TBB condition variable. For a
Concise introduction to condition variables, see here or here.

#include “tbb/compat/condition_variable” using namespace std;
condition_variable my_condition;
tbb::mutex my_mtx;
bool present = false;

void producer() {
 unique_lock<tbb::mutex> ul(my_mtx);
 present = true;
 my_condition.notify_one();
}
void consumer() {
 while(!present) {
 unique_lock<tbb::mutex> ul(my_mtx);
 my_condition.wait(ul);

 }

} REVisit Go-Parallel.com

 READ THE REST OF WOOYOUNG’S POST:

Visit Go-Parallel.com

Browse other blogs exploring a range of related
subjects at Go Parallel: Translating Multicore

Power into Application Performance.

THE PARALLEL UNIVERSE

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.cs.mtu.edu/~shene/NSF-3/e-Book/MONITOR/CV.html
http://en.wikipedia.org/wiki/Monitor_%28synchronization%29#Condition_variables
http://software.intel.com/en-us/blogs/2010/10/01/condition-variable-support-in-intel-threading-building-blocks
http://swdevtoolsmag.makebettercode.com

Figure 9. Profile data of a customer model on 32 nodes generated by Intel® Trace Analyzer and Collector.

Figure 8. Profile data of a customer model on four nodes generated by Intel® Trace Analyzer and Collector.

THE PARALLEL UNIVERSE

38 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

The solution
LSTC was able to combine the shared memory version of LS DYNA
with the MPP DYNA to obtain HYBRID LS-DYNA. This combined
parallelism version did the following:

Maintained the numerically consistent results feature
required by the user

 > Once OpenMP* code and MPI code are combined into one code,
we can take advantage of consistent features in the OpenMP
code under certain conditions. As a result, customers get higher
quality and numerically consistent results during the design cycle.

Increased the scalability of LS-DYNA and the
effectiveness of Intel multicore node architecture

 > As a result of reducing the overhead cost of MPI functions,
customers can efficiently run their production model with more
cores on Intel multicore node architecture. Especially for implicit
solver users, they can take all cores and get maximum performance
with fixed memory space and restricted I/O performance.

Figure10 illustrates some of the performance increases that the Intel
Cluster Tools helped to achieve.

The search for a solution

With a large complex problem, LSTC in collaboration with Intel, applied
Intel® Cluster Tools to introduce hybrid scaling. The following illustrates
how Intel Trace Analyzer and Collector was used to discover issues
that print statements and timer would never show. The main point
is that these methods were applied on over a hundred routines and
enabled solution discovery in months rather than years.

MPP DYNA performance

As the number of MPI processes increases, so does the number of
sub-domains and communication costs. This can cause load imbal-
ances and high communication overhead. Ultimately, it resulted in
poor parallel efficiency.

 Intel Trace Analyzer and Collector was used to quickly and
efficiently pinpoint this aspect of the problem. Figures 8 and 9
show that MPI collective functions are performing well on four node
configuration, but becoming a performance inhibitor on a
32-node configuration.

As these screens demonstrate, what’s needed is to combine
OpenMP within one node (which engages all cores there), together
with MPI cross nodes. We can reduce the number of MPI processes
as much as possible. Then, we can reduce the overhead of MPI
functions. This procedure was performed on over 100 routines
to assess the change.

Figure 10. LSTC standard implicit model benchmark CYL1E6.

Cluster
Configuration

Intel® Xeon® 7560
1 node/w 32 core

Intel® Xeon® 5560 Cluster
8 nodes, 8 cores per node; Total: 64 cores

MPP (MPI) version elapsed
time 44013s 18521s

Hybrid MPI and OpenMP
version elapsed time 7047s 5541s

Speed Up 6.25 3.34

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Figure 11. Profile data of the 1M model on 128 nodes generated by Intel® Trace Analyzer and Collector.

Figure 12. Load balance of the 1M model in pie mode on 128 nodes generated by Intel® Trace
Analyzer and Collector.

MPI_BCAST

Application
functions

Other MPI
functions

MPI_RECV

THE PARALLEL UNIVERSE

40 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Horrible Load Imbalance Issue

Solving problems with ITAC during development
During code development, we selected a one million model as a verification test case. The
model is tested with HYBRID LS-DYNA using Intel® MPI 4.0 library. During the verification test, we
encountered a serious performance issue. We quickly reproduced the performance issue with Intel
Trace Analyzer and Collector 8.0.1 library. Figures 11, 12, and 13 show the root cause.

 As you can see, the blue area in each pie indicates the percentage of application function
computing cost, the green area in each pie indicates the percentage of MPI_RECV function
computing cost, and the yellow area in each pie indicates the percentage of MPI_BCAST function
computing cost. We found root cause (serious load imbalance issue) quickly and easily with the
Intel Trace Analyzer and Collector. The serious load imbalance issue is from MPI_RECV function.
The issue was fixed quickly. Finally, the target performance was achieved.

Conclusion
We believe and have shown that the Intel cluster tools can significantly reduce the time and
effort to achieve performance increases from years to months. Further, the tools can help when
performance is not what is expected.

Finally, we have worked to reduce the learning curve so that experienced parallelism enablers
and knowledgeable application developers can quickly gain the additional insights that the cluster
tools provide. o

Figure 13. Load balance of the 1M model in pie mode on 128 nodes generated by Intel® Trace Analyzer and Collector.

THE PARALLEL UNIVERSE

http://swdevtoolsmag.makebettercode.com

Subscribe today: The Parallel Universe is a free quarterly magazine.
Sign up for future issue alerts and share the magazine with friends at
http://bit.ly/ParallelUniverseMag.

42 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

New from the makers of
Intel® VTune™ Performance Analyzer
and Intel® Visual Fortran Compiler

INTEL® PARALLEL STUDIO XE

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

The ultimate all-in-one performance toolkit
The integrated suite helps high-performance computing and enterprise developers boost performance, reliability, and security. Squeeze the
most out of applications that never have enough performance, including simulation, video rendering, seismic analysis, and medical imaging.

Advanced compilers
and libraries

Intel® Composer XE

Advanced memory, threading,
and security analyzer

Intel® Inspector XE

Rock your code. Rock your world.
Get a free 30-day trial of Intel Parallel Studio XE today at http://software.intel.com/en-us/articles/intel-parallel-studio-xe/.

Achieve enhanced
developer productivity
Intel® Parallel Studio XE 2011
combines ease-of-use innovations
with advanced functionality for high
performance, scalability, and code
robustness on both Linux
and Windows.

Advanced
performance profiler

Intel® VTune™ Amplifier XE

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

TAKE PERFORMANCE
TO THE

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

INTRODUCING INTEL® PARALLEL STUDIO XE
From one-person start-ups to enterprises with thousands of developers working on a single application,
Intel® Parallel Studio XE 2011 extends industry-leading development tools for unprecedented application
performance and reliability.

Rock your code. Rock your world.
Get a free 30-day trial of Intel Parallel Studio XE today at http://software.intel.com/en-us/articles/intel-parallel-studio-xe/.

Advanced compilers
and libraries

Intel® Composer XE

Advanced memory,
threading, and security
analyzer

Intel® Inspector XE

Advanced
performance profiler

Intel® VTune™ Amplifier XE

EXTREME.

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

	Sign up and Share Long 1:
	Page 3: Off
	Page 25:

	Sign up and Share 1:
	Page 5: Off
	Page 7:
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 27:
	Page 29:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:

	Intel Software Network Forums 13:
	Intel Software Products Knowledge Base 14:

