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LETTER FROM THE EDITOR
James Reinders, Director of Parallel Programming Evangelism at Intel Corporation, coeditor 
of an exciting new book High Performance Programming Pearls. His other book credits include 
Multithreading for Visual Effects (2014), Intel® Xeon Phi™ Coprocessor High Performance Programming 
(2013), Structured Parallel Programming (2012), Intel® Threading Building Blocks: Outfitting C++ for 
Multicore Processor Parallelism (2007), and VTune™ Performance Analyzer Essentials (2005).

Happy Birthday, MPI
We recently passed the birthday of the Message Passage Interface (MPI) standard, which like many 
achievements in the world of computing, was borne out of the gathering of great minds. On April 29, 
1992, dozens of programmers and computer industry specialists from 40 organizations in government, 
academia, and the private sector gathered in Williamsburg, Virginia, at the Workshop on Standards for 
Message Passing in a Distributed Memory Environment. There they discussed and developed the genesis 
of what is today the widely used MPI standard for writing message-passing programs.

MPI offers parallel programmers many advantages, including practicality, portability, efficiency, and  
ease of use. The latest MPI standard, MPI-3, increases flexibility as discussed in this issue’s feature article, 
“An Introduction to MPI-3 Shared Memory Programming.” The authors share how to transform common 
MPI send/receive patterns using Shared Memory Programming, with resulting performance advantages. 

But improvements often come with trade-offs. The other articles in this issue offer ways to keep the  
MPI standard working in tandem with all other aspects of parallel programming. For example,  
floating-point operations in numerical codes may introduce differences that can increase with each 
iteration. “Intel® MPI Library Conditional Reproducibility” uses a simple example to demonstrate Intel  
MPI Library’s collective operations that can be used for reproducible results when certain required and  
reasonable conditions are met. 

High performance computing applications tend to use most of the available memory on a node, and 
estimating the memory consumption of MPI libraries can be difficult. “Intel MPI Memory Consumption” 
takes a closer look at estimating the memory consumption of the Intel MPI Library and how users can 
fine-tune their settings to reduce their memory footprint. 

The MPI standard has long offered a great foundation to build upon. In addition to the high value of coding 
to a standard you can depend on for your application, a benefit of having a widely accepted standard 
is the innovation that can occur through additions to the standard and tools support. In this edition of 
Parallel Universe, we are happy to share three examples of this value that the longstanding MPI standard 
has while continuing to evolve.

James Reinders
May 2015

3The Parallel Universe
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4The Parallel Universe

By Mikhail Brinskiy, Software Development Engineer, and Mark Lubin, Technical Consulting 
Engineer, Intel Corporation

An Introduction to MPI-3 Shared  
Memory Programming
An All-MPI Alternative to MPI/OpenMP* Programming Worth Considering

Abstract 

The Message Passing Interface (MPI) standard is a widely used programming interface for 
distributed memory systems. Hybrid parallel programming on many-core systems most often 
combines MPI with OpenMP*. This MPI/OpenMP approach uses an MPI model for communicating 
between nodes while utilizing groups of threads running on each computing node in order to 
take advantage of multicore/many-core architectures such as Intel® Xeon® processors and Intel® 
Xeon Phi™ coprocessors. 

The MPI-3 standard introduces another approach to hybrid programming that uses the new MPI 
Shared Memory (SHM) model.1 The MPI SHM model, supported by Intel® MPI Library Version 
5.0.22 enables changes to existing MPI codes incrementally in order to accelerate communication 
between processes on the shared-memory nodes.3
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5The Parallel Universe

1-D Ring: From Standard MPI Point-to-Point to MPI SHM
We approach the semantics of the MPI SHM API by modifying a well-known 1-D ring  
example, where each MPI rank can exchange MPI-1 nonblocking messages with its left 
and right neighbors.4 

We intend to run our code on multiple multicore nodes with all MPI ranks sharing memory  
on each node. The function MPI_Comm_split_type enables programmers to determine  
the maximum groups of MPI ranks that allow such memory sharing. This function has a  
powerful capability to create “islands” of processes on each node that belong to the output 
communicator shmcomm :

MPI_Irecv (&buf[0],…, prev,…, MPI_COMM_WORLD, &reqs[0]);

MPI_Irecv (&buf[1],…, next,…, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend (&rank,…, prev,…, MPI_COMM_WORLD, &reqs[2]);

MPI_Isend (&rank,…, next,…, MPI_COMM_WORLD, &reqs[3]);

      {do some work}

MPI_Waitall (4, reqs, stats);

1 Figure 1. Nearest neighbor exchange in a 1-D ring topology and corresponding MPI-1 code

MPI_Comm shmcomm;

MPI_Comm_split_type (MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,0, MPI_INFO_NULL, 
&shmcomm);

In this article, we present a tutorial on how to start using MPI SHM on multinode systems using 
Intel Xeon with Intel Xeon Phi. The article uses a 1-D ring application as an example and includes 
code snippets to describe how to transform common MPI send/receive patterns to utilize the MPI 
SHM interface. The MPI functions that are necessary for internode and intranode communications 
will be described. A modified MPPTEST benchmark has been used to illustrate performance of 
the MPI SHM model with different synchronization mechanisms on Intel Xeon and Intel Xeon Phi 
based clusters. With the help of Intel MPI Library Version 5.0.2, which implements the MPI-3 
standard, we show that the shared memory approach produces significant performance 
advantages compared to the MPI send/receive model.
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6The Parallel Universe

To execute MPI send/receive point-to-point operations between the nodes (as in the 
original example) and execute MPI SHM functions within each node, we need a mechanism 
to distinguish between ranks that fit into the same node versus ranks belonging to different 
nodes. To accomplish this, we separate MPI groups from the global communicator and 
shared memory communicator shmcomm:

Then we can map global rank numbers onto the shmcomm ranks numbers and store this 
mapping into the partners_map array (Figure 2).

MPI_Comm_group (MPI_COMM_WORLD, &world_group);

MPI_Comm_group (shmcomm, &shared_group);

MPI_Group_translate_ranks (world_group, n_partners, partners, shared_group, 
partners_map);

2 Mapping of global ranks to shmcomm ranks. If some of the neighboring ranks are residing on a different node, 
their mapping in the resulting array partners_map will be a predefined constant, MPI_UNDEFINED. 

The companion collective function then allocates MPI-3 remote memory access (RMA) type 
memory windows on each node. They are called windows because MPI restricts what part of a 
process’s memory will be made available to other processes:

MPI_Win_allocate_shared (alloc_length, 1,info, shmcomm, &mem, &win);
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7The Parallel Universe

for (j=0; j<n_partners; j++)

{

  if (partners_map[j] != MPI_UNDEFINED)

      MPI_Win_shared_query (win, partners_map[j],…, &partners_ptrs[j]);             

}

Unlike the point-to-point message-passing model, the MPI SHM interface assumes explicit use of 
synchronizations to ensure memory consistency and assumes that the changes in memory are 
visible to the other processes. In some cases, it enables higher performance at the cost of more 
complex code that each developer needs to understand and maintain. Therefore, in this article, 
we focus on the semantics of these new synchronizations and their effect on performance.

3 MPI_Win_shared_query can return different process-local addresses for the same physical memory 
on different processes 

The MPI SHM model, supported by Intel® MPI Library Version 
5.0.2, enables changes to existing MPI codes incrementally 
in order to accelerate communication between processes on 
the shared-memory nodes.

The so-called passive target MPI RMA synchronization, defined by the pair of MPI_Win_lock_
all and MPI_Win_unlock_all functions for all processes sharing an RMA window, was  
chosen as one of the most performance-efficient.5 The term “lock” here does not have the  
same connotation familiar to shared memory programmers such as with mutexes. The pair of  
MPI_Win_lock_all and MPI_Win_unlock_all simply denotes the time interval, called  
an RMA access epoch, when remote memory operations are allowed to occur. In this case,  
the MPI_Win_sync function has to be used to ensure completion of memory updates and  
MPI_Barrier to synchronize all processes on the node in time (Figure 4).

The MPI_Win_shared_query API can be used to find out the process-local addresses for 
shared memory segments using a conditional test, partners_map[j]!= MPI_UNDEFINED, 
which is true when the current rank and its communication partners reside on the same node 
and therefore share common memory. The returned memory pointers array, partners_ptrs, 
can be used for simple loads and stores, replacing costly MPI send/receive functions within the 
shared memory domain (Figure 3).
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8The Parallel Universe

Calling MPI_Win_lock for each particular neighbor is a valid approach as well, and 
sometimes it can provide performance advantages, but it requires more lines of code. 
Alternatively, one could employ the active target MPI RMA communication mode that relies on 
a pair of MPI_Win_fence operations surrounding memory updates. The MPI_Win_fence 
method is less verbose compared to lock/unlock epochs since it already includes barrier 
synchronizations, but it produced slower results in our experiments. 

With correct synchronizations in place, all processes can retrieve their neighbors’ information 
either via shared memory or using standard point-to-point communications if neighbors are 
on the different nodes (Figure 5). 

for (j=0; j<n_partners; j++){

  if (partners_map[j] != MPI_UNDEFINED)           

  {

    i0 = partners_ptrs[j][0]; //load ops from MPI SHM!

    i1 = partners_ptrs[j][1];

    i2 = partners_ptrs[j]+2; 

  

  } else { // inter-node non-blocking MPI

    MPI_Irecv (&rbuf[j],…, partners[j], 1 , MPI_COMM_WORLD, rq++);

    MPI_Isend (&rank,…, partners[j], 1 , MPI_COMM_WORLD, rq++);

  }

}

5 Halo exchanges using MPI SHM on the node and standard nonblocking MPI send/receive for internode communications

//Start passive RMA epoch

MPI_Win_lock_all (MPI_MODE_NOCHECK, win);

// write into mem array hello_world info

mem[0] = rank; 

mem[1] = numtasks;

memcpy(mem+2, name, namelen);

MPI_Win_sync (win);     // memory fence - sync node exchanges 

MPI_Barrier (shmcomm); //time barrier

4 Passive RMA synchronizations are needed for MPI SHM updates. The performance assertion MPI_MODE_NOCHECK 
hints that the epoch can begin immediately at the target. Note that on some platforms one more MPI_Win_sync would 
be needed after the MPI_Barrier to ensure memory consistency at the reader side.
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9The Parallel Universe

After completion of MPI SHM communications, we can close the access epoch using  
MPI_Win_unlock_all. The internode communications are synced with MPI_Waitall  
as usual. 

The resulting code is available for download. 

Modifying MPPTEST Halo Exchange to Include MPI SHM
To evaluate the performance of the MPI SHM available in Intel MPI Library Version 5.0.2 on 
clusters based on Intel Xeon processors and Intel Xeon Phi coprocessors, we modified the halo 
exchange algorithm from the MPPTEST benchmark6 using as a prototype the 1-D ring example. 
Although the MPPTEST halo test does not have the computational kernels present in many real 
applications, it provides an unhindered view of how different-order halo exchanges, message 
sizes, and MPI synchronizations may affect performance. 

It is known that the MPI SHM model provides performance benefits by avoiding regular  
send/receive memory copy operations, MPI stack latencies, and tag matching.7 The replacement 
of these traditional MPI mechanisms with fast intranode communications, such as memory  
copy operations, exposes in turn the effect of the remaining major contribution to overall 
intranode performance, the different available MPI SHM synchronizations briefly described in  
the last section. 

We implemented three new halo patterns for the MPPTEST suite—mpi3shm_lockall, 
mpi3shm_lock, and mpi3shm_fence—that can be used as new MPPTEST configuration 
parameters. All of them use the same MPI SHM communication scheme, but they employ 
different shared memory synchronization primitives:

• mpi3shm_lockall. This relies on MPI_Win_lock_all and MPI_Win_unlock_all to open 
and close an access epoch and relies on MPI_Barrier and MPI_Win_sync for process 
synchronization (memory and time).

• mpi3shm_lock. This is the same as mp3shm_lockall but uses separate MPI_Win_lock 
and MPI_Win_unlock calls for each neighbor in the halo exchange.

• mpi3shm_fence. A pair of successive MPI_Win_Fence calls ensures that any local stores to 
the shared memory executed between them are consistent, and thus there is no need for any 
other synchronization primitives. 

To investigate different processes topologies in halo exchanges, we introduced a new 
configuration parameter into the MPPTEST halo benchmarks: -dimension. This parameter 
instructs MPPTEST to use one of two available process decompositions, 1-D or 2-D, with the 
latter used by default. If the specified number of partners is more than enough for nearest 
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10The Parallel Universe

neighbors’ exchanges, the decomposition with deeper density is used. An example based on nine 
processes and four partners is shown in Figure 6. In the case of 1-D decomposition, the rank 4 
partners are ranks 2, 3, 5 and 6, while in the 2-D case its neighbors are ranks 1, 3, 5 and 7.

(b)(a)

0 1 42 3 5 6 7 8

0 1 2

43 5

6 7 8

6 Process decomposition: (a) 1-D with four neighbors; (b) 2-D with four neighbors 

mpirun -n 64 -machinefile hostfile ./mpptest -halo -waitall -logscale -n_avg 
1000  -npartner 8 -dimension 2

where the argument after –halo specifies the particular communication pattern for ghost cell 
exchanges (i.e., –waitall is used in the case of point-to-point messages; –logscale indicates 

In our experiments, 1-D process decompositions produced up to a 20 percent advantage  
using MPI SHM versus point-to-point communications, depending on message size.

Finally, we modified the reported timing by adjusting it to the timing for a process with the 
biggest execution time. The current MPPTEST approach reports overall timing as a timing of 
a Rank 0, which might not be representative, especially in nonperiodic cases where Rank 0 
typically has fewer neighbors than other processes. 

Evaluation Environment and Results
In our performance studies, we used the Intel® Endeavor cluster, in which each node is equipped 
with dual Intel® Xeon® E5-2697 processors, one Intel® Xeon Phi™ 7120P-C0 coprocessor, and 
one Mellanox Connectx-3 InfiniBand* adapter connected to the same socket. The cluster was 
running Red Hat 6.5 Linux* OS, Intel® MPSS 3.3.30726, and OFED* 1.5.4.1. We used Intel MPI 
Library Version 5.0.2, Intel® C++ Compiler Version 15.0.1, and the MPPTEST benchmark with the 
modifications described in the previous section. 

The following command line was used to obtain the performance data:
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11The Parallel Universe

that we want to run the powers of two message sizes tests, starting from 4 bytes up to 128KB; 
–n_avg specifies the number of iterations to be used; and –npartner determines the number 
of neighbors per process). As described in the previous section, we introduced three new 
parameters corresponding to our new benchmarks (–mpi3shm_lock, –mpi3shm_lockall 
and –mpi3shm_fence) that can be used in place of –waitall. The –dimension parameter is 
optional (the default dimension is 2); this was also described in the last section.

Figure 7 shows the results obtained on one coprocessor with 32 processes and eight partners. 
In this case, the MPI SHM feature noticeably outperforms the regular point-to-point pattern 
regardless of synchronization type (please note the logarithmic scale of the y-axis). However, 
we should note that with a relatively small amount of updates (i.e., iterations in MPPTEST) the 
synchronization overhead based on locks might become crucial. This is because we do locking 
once per test, thus its contribution to the overall time is inverse to the number of iterations. 
Another observation is that using separate locks provides better performance than locking all 
the processes. This may become especially significant when the number of node neighbors to 
exchange the data with is significantly less than the number of processes bound to the interested 
window (thus, calling MPI_Win_lock_all/MPI_Win_unlock_all may lead to unnecessary 
communication with all the processes rather than to the neighbors only). Also, we see that using 
MPI_Win_fence gives the worst result of the sync primitives selected for this comparison.

7 Different halo patterns on one coprocessor with 32 processes and eight partners

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign


Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software 
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

12The Parallel Universe

Then we analyzed how the number of neighbors in halo exchanges impacts overall performance. 
Figure 8 shows the speedup of MPI SHM with lock synchronization in comparison to the 
common MPI_Isend/MPI_Irecv approach. We see that the performance advantage of our 
approach grows with the number of processes partners. This is expected because the relative 
cost of MPI SHM synchronizations stays the same regardless of the number of partners, while the 
performance advantage of simple memory copies compared to point-to-point operations grows 
with every other exchange. With 12 partners per process, we get up to 2.6x improvement with 
small message sizes and as much as 4.9x with relatively large message sizes. 

We repeated the measurements on two Intel Xeon Phi coprocessors connected to different 
nodes. We used 64 processes, 32 per coprocessor. The results depicted in Figure 9 show lesser 
speedup than we observed on a single node. This is because some exchanges are done via 
the network, and the cost of intranode communication is just a part of the overall cost. We see 
that a personal lock-based shared memory approach is the best for almost all message sizes 

8 Speedup of MPI SHM approach compared to the point-to-point based (measured on one coprocessor with 32 processes)
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13The Parallel Universe

The speedup of the lock-based approach compared to the reference point-to-point one 
with different numbers of neighbors is shown in Figure 10. We see that with four partners, 
our approach is beneficial only above medium-sized messages. However, as it was with the 
one-node case, the performance benefit becomes more significant with a growing number of 
neighbors. With eight and 12 partners’ processes, we get up to 1.2x improvement on small 
message sizes and 1.8x on big ones. 

The preliminary studies with four and eight nodes using both Intel Xeon processors and Intel 
Xeon Phi coprocessors have shown similar results. Scaling with higher numbers of nodes and 
comparing hybrid MPI and OpenMP codes are left for future studies. 

9 Different halo patterns on two Intel® Xeon Phi™ coprocessors with 64 processes (32 per card) and eight partners

except very small messages, where the standard point-to-point scheme performs better. The 
experiments described so far have been done with default 2-D neighbors’ topology. Using 1-D 
process topology, the personal locks-based MPI SHM approach also outperforms all other 
approaches at small message sizes. Also, starting from 4KiB messages, all shared memory-bound 
patterns outperform the point-to-point based ones.
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14The Parallel Universe

Conclusion
In this article, we described the shared memory capabilities introduced in the MPI-3 standard. 
Because using this feature requires application modification, we demonstrated how to cope with 
it based on a simple 1-D ring “Hello World” example and extended it for several node runs. Using 
a modified MPPTEST benchmark, we managed to get up to 4.7x improvement over a standard 
point-to-point approach on one Intel Xeon Phi coprocessor. Moreover, we showed that the 
proposed approach may benefit halo exchanges even for multinode cases, and we obtained up 
to 1.8x improvement with two Intel Xeon Phi coprocessors.

Finally, our analysis indicates that it might be beneficial to use MPI SHM for ghost cell exchange-
based applications, especially when there are larger numbers of halo exchange neighbors. 

10 Speedup of MPI SHM approach compared to the point-to-point based ones  
(measured on two coprocessors with 64 processes)
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By Michael Steyer, Technical Consulting Engineer, Software and Services Group,  
Developer Products Division, Intel Corporation 

Introduction
High performance computing (HPC) users running numerical codes may experience cases where 
floating-point operations create slightly different results. Usually this would not be considered a 
problem, but due to the nature of such applications, differences can quickly propagate forward 
through the iterations and combine into larger differences. 

In order to address these variations, the Intel® Compiler has several switches that manipulate 
floating-point precision, while the Intel® Math Kernel Library (Intel® MKL) Conditional  
Numerical Reproducibility (CNR) feature1 provides functions for obtaining reproducible  
floating-point results. Also, deterministic reduction algorithms are available for Intel® OpenMP 
and Intel® Threading Building Blocks (Intel® TBB) runtimes. Some of the collective operations 

Intel® MPI Library  
Conditional Reproducibility
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18The Parallel Universe

of the Intel® MPI Library, however, might also lead to slight differences in their results. This 
article will address methods that can be used to gather conditionally reproducible results from 
collective operations of the Intel MPI Library. 

Motivation
Let’s have a look at a simple example with 64 MPI ranks calling an MPI_Reduce operation 
where double precision values are accumulated. 

Figure 1 shows the Fortran code that calls an MPI_Reduce operation. Each MPI rank writes a 
very small number (2^-60) to its local_value variable—except where Rank #16 (Index 15) 
writes 1.0 and Rank #17 (Index 16) writes -1.0. All local_value fields from the different ranks 
will then be accumulated to a global sum using MPI_Reduce. After the reduction operation, 
Rank 0 will write out global_sum with up to 20 digits after the decimal point.

program rep

  use mpi

  implicit none

  integer :: n_ranks,rank,errc

  real*8 :: global_sum,local_value

  call MPI_Init(errc)

  call MPI_Comm_size(MPI_COMM_WORLD, n_ranks, errc)

  call MPI_Comm_rank(MPI_COMM_WORLD, rank, errc)

  local_value = 2.0 ** -60

  if(rank.eq.15) local_value= +1.0

  if(rank.eq.16) local_value= -1.0

  call MPI_Reduce(local_value,global_sum,1,MPI_DOUBLE_PRECISION, &

         MPI_SUM,0,MPI_COMM_WORLD, errc)

  if(rank.eq.0) write(*,’(f22.20)’) global_sum

  call MPI_Finalize(errc)

end program rep

1 Fortran 90 accumulation example
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Assume we have four nodes available, in which each system has 32 processor cores. Since  
we can run our application with only two systems, let’s consider two different distributions 
schemas of MPI ranks: 

A) 64 ranks across all four nodes => 16 ranks per node
B) 64 ranks on only two nodes => 32 ranks per node

Due to its highly optimized nature, Intel MPI Library will try to leverage distributed and shared 
memory resources as efficiently as possible. Depending on the size of the run (#MPI ranks) 
and the message sizes that have to be exchanged, the library can choose among different 
algorithms available for each collective operation. Choosing the topologically aware algorithm 
for the reduce operation may result in a different order of operation for cases A and B. 

To reduce load on the cluster interconnect, the algorithm would accumulate local (per node) 
operations first and then send these results only once through the cluster network in order to 
accumulate the final result.  

A) Reduce( Reduce(#1 – #16) + Reduce(#17 – #32) + Reduce(#33 – #48) + Reduce(#49 – #64) )
B) Reduce( Reduce(#1 – #32) + Reduce(#33 – #64) )

The associative law “(a + b) + c = a + (b + c)” assumes exact computations and effectively 
unlimited precision; therefore, it does not apply when using limited precision representations. 
Since floating-point numbers are approximated by a limited number of bits representing the 
value, operations on these values will frequently introduce rounding errors. For a sequence 
of floating-point operations, the total rounding error can depend on the order in which these 
operations are executed.2

The Intel MPI Library offers algorithms to gather conditionally 
reproducible results, even when the MPI rank distribution 
environment differs from run to run.

As a result of the different order of operations in cases A and B, the final Reduce could generate 
slightly different values.

While the results could be slightly different, they are still valid according to the IEEE 754  
floating-point standard.3 Let’s break down the distribution of ranks for cases A and B from a  
pure floating-point perspective. This will provide a clearer picture of the actual problem: 

A) ( ( … + 2^-60 + (+1) ) + ( (-1) + 2^-60 + … ) + … 
B) ( ( … + 2^-60 + (+1)  +  (-1) + 2^-60 + … ) + … 
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Preparation
Before addressing Intel MPI Library reproducibility, we should make sure that all other parts of  
the application produce numerically stable results. 

For example, the OpenMP standard, as a frequently used hybrid threading extension to MPI, does  
not specify the order in which partial sums should be combined. Therefore, the outcome of a 
reduction operation in OpenMP can vary from run to run depending on the runtime parameters. 
The Intel OpenMP runtime provides the environment variable KMP_DETERMINISTIC_REDUCTION, 
which can be used to control the runtime behavior.4 Also, the Intel® TBB Library does support 
deterministic reductions using the “parallel_deterministic_reduce” function.5

Read more about using both the Intel Compiler and Intel MKL in the article “Using the Intel Math 
Kernel Library and Intel Compilers to Obtain Run-to-Run Numerical Reproducible Results.”6

$ cat ${machinefile_A}

ehk248:16

ehs146:16

ehs231:16

ehs145:16

$ cat ${machinefile_B}

ehk248:32

ehs146:32

ehs231:0

ehs145:0

$ mpiifort -fp-model strict –o ./rep.x ./rep.f90

$ export I_MPI_ADJUST_REDUCE=3

$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x

0.00000000000000000000

$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x

0.00000000000000004163

2 Getting diverse floating-point results

In case A, +1 and -1 have to be accumulated with the very small 2^-60 values. In case B, +1 and 
-1 will be eliminated since they’re calculated in the same step. 

Depending on the Intel MPI Library runtime configuration (shown in Table 1), this can result in the 
output in Figure 2.
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Reproducibility
To explicitly set the expectations, we need to differentiate the terms reproducible and repeatable. 
Furthermore, when we use the term reproducible, we always mean conditional reproducibility. 

Repeatable Provides consistent results if the application is launched under exactly the same conditions—
repeating the run on the same machine and configuration.

Reproducible
(conditional)

Provides consistent results even if the distribution of ranks differs, while the number of ranks 
(and #threads for hybrid applications) involved has to be stable. Also, the runtime including 
the microarchitecture has to be consistent.7

All Intel MPI Library operations guarantee repeatable results.

The reproducibility of Intel MPI Library operations is guaranteed under the following conditions:
1. Do not use topologically aware algorithms inside the collective reduction operations.

2. Avoid the recursive doubling algorithm for the MPI_Allreduce operation.

3. Avoid MPI_Reduce_scatter_block—as well as the MPI-3 nonblocking-collective operations.

The first condition for reproducibility can be met by explicitly setting the corresponding 
collective reduction operation algorithm using the I_MPI_ADJUST_ environment variables.  
A detailed documentation can be found in the Intel MPI Library Reference Manual8 in the 
“Collective Operation Control” chapter. The information provided in the document clearly  
states which algorithms are topologically aware and should be avoided. 

Table 1 shows the five collective operations, which use reductions, and the corresponding 
Intel MPI Library environment variables. Set these accordingly in order to leverage the 
nontopologically aware algorithms (fulfilling the first condition above):

Table 1

Collective MPI Operation Using 
Reductions

Intel MPI Collective Operation 
Control Environment

Nontopologically Aware Algorithms

MPI_Allreduce I_MPI_ADJUST_ALLREDUCE (1)a, 2 , 3 , 5 , 7 , 8, 9b

MPI_Exscan I_MPI_ADJUST_EXSCAN 1

MPI_Reduce_scatter I_MPI_ADJUST_REDUCE_SCATTER 1 , 2 , 3 , 4

MPI_Reduce I_MPI_ADJUST_REDUCE 1 , 2 , 5, 7a

MPI_Scan I_MPI_ADJUST_SCAN 1 

a  Keep in mind that while the first algorithm of MPI_Allreduce is not topologically aware, it does not guarantee conditionally 
reproducible results—see the second condition for details.

b  The Knomial algorithm (IMPI ≥ 5.0.2) provides reproducible results, only if the I_MPI_ADJUST_<COLLECTIVE-OP-NAME>_KN_RADIX 
environment is kept stable or unmodified.
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22The Parallel Universe

To see which algorithms are currently selected, set the environment variable I_MPI_DEBUG=6 
and review the output. The default algorithms for collective operations can differ, depending  
on the size of the run (#ranks) as well as the transfer message sizes. Figure 3 shows the  
debug output for the collective operations used in the simple MPI reduce application 
introduced earlier.

…

[0] MPI startup(): Reduce_scatter: 4: 0-2147483647 & 257-512

[0] MPI startup(): Reduce_scatter: 4: 0-5 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 5: 5-307 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 1: 307-1963 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 3: 1963-2380781 & 513-2147483647

[0] MPI startup(): Reduce_scatter: 4: 0-2147483647 & 513-2147483647

[0] MPI startup(): Reduce: 1: 0-2147483647 & 0-2147483647

[0] MPI startup(): Scan: 0: 0-2147483647 & 0-2147483647

[0] MPI startup(): Scatter: 1: 1-494 & 0-32

[0] MPI startup(): Scatter: 2: 495-546 & 0-32

[0] MPI startup(): Scatter: 1: 547-1117 & 0-32

[0] MPI startup(): Scatter: 3: 0-2147483647 & 0-32

[0] MPI startup(): Scatter: 1: 1-155 & 33-2147483647

…

3 Example of selected collective operations

One can see that for the MPI_Reduce collective operation, the first algorithm is being selected 
across all message sizes (0‒2147483647) and ranges of MPI ranks (0‒2147483647) by default. 
This is why it was necessary to select a different topology-aware algorithm (3) for the example 
above in order to get differing results for the MPI reduction (I_MPI_ADJUST_REDUCE=3).

The second condition can be met by avoiding the recursive doubling algorithm for the  
MPI_Allreduce operation (I_MPI_ADJUST_ALLREDUCE=1). While the order of MPI ranks  
is guaranteed to be stable, the order of operands inside each MPI rank can differ due to the 
applied optimizations. 
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23The Parallel Universe

If, however, the operation is covered by the commutative law “a + b = b + a,” even the recursive 
doubling algorithm can be used to achieve reproducible results. 

The third condition is necessary since the MPI_Reduce_scatter_block—as well as the 
new MPI-39 nonblocking-collective operations—is implemented by using topology-aware 
algorithms. These collective operations cannot be adjusted by the Intel MPI Library user (as of 
Version 5.0.2), as they are only determined at runtime based on certain operation parameters.

In Figure 4, we show how to achieve reproducible results for the simple reduction example 
used in the Motivation section of this article. Therefore, we will apply a nontopology-aware 
collective operation algorithm in the Intel MPI Library environment.

As we have seen in Figure 3, the first algorithm was already the default case. Another option 
here was not specifying any I_MPI_ADJUST_REDUCE environment at all and leaving the 
default settings intact. 

$ cat ${machinefile_A}

ehk248:16

ehs146:16

ehs231:16

ehs145:16

$ cat ${machinefile_B}

ehk248:32

ehs146:32

ehs231:0

ehs145:0

$ mpiifort -fp-model strict –o ./rep.x ./rep.f90

$ export I_MPI_ADJUST_REDUCE=1

$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x

0.00000000000000004163

$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x

0.00000000000000004163

4 Getting reproducible floating-point results

llllllllllllllllllllllllllllllllllll

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign


Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software 
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

24The Parallel Universe

Keep in mind that while the distribution of MPI ranks along the nodes changed, all other 
parameters, such as the number of ranks and the architecture used, have been kept stable. 
This is necessary, as according to the definition of conditional reproducibility, the runtime 
environment has to be the same.

Intel® Xeon Phi™ Coprocessor
When discussing conditional reproducibility for the Intel MPI Library, there is no difference 
between treatment for an Intel® Xeon® processor and an Intel® Xeon Phi™ coprocessor. 
The same considerations we discussed apply to both. This allows the user to transparently 
integrate the Intel Xeon Phi coprocessor into HPC solutions.

Remember, however, that different microarchitectures/instruction sets also come with 
different hardware-rounding support, which can lead to different results between the two 
microarchitectures. Also, as defined in the Reproducibility section of this article, the conditions 
have to be the same and, therefore, the number of threads and MPI ranks have to be stable.

Summary
In this article, we have shown several methods to enable the Intel MPI Library to use 
algorithms that guarantee deterministic reductions for the different collective MPI operations. 

We also demonstrated the impact of such algorithms, using a simple example of an MPI 
reduce operation moving from a repeatable to a conditionally reproducible outcome. This has 
been achieved without any need to modify the application’s source code. 

The Intel MPI Library offers algorithms to gather conditionally reproducible results, even when 
the MPI rank distribution environment differs from run to run. It is important to understand 
that all other parameters, like the number of ranks or the microarchitecture, have to be 
equal from run to run. This is necessary in order to fulfill the requirements for conditionally 
reproducible results.
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Tuning Tips for Compute Offload to Intel® Processor Graphics
BY ANOOP MADHUSOODHANAN PRABHA  » 

Below are some tuning tips, which will help the programmer tune his kernel to get better performance 
from processor graphics:

• Offloaded loop nests must have enough iterations for all hardware threads available on Processor 
Graphics. Using perfectly nested parallel _Cilk_for loops allows parallelization in the dimensions of the 
parallel loop nest.

• Pragmas and code restructuring can be employed to get offloaded code vectorized.

• Using __restrict and __assume_aligned keywords may help vectorization too.

• Using the pin clause of the offload pragma will eliminate data copying to/from the GPU.

• Scalar memory accesses are much less efficient than vector accesses. Using Intel® Cilk™ Plus array 
notation for memory accesses may help vectorize computation. A single memory access can handle 
up to 128 bytes. Gather/scatter operations of 4-byte elements are quite efficient, but with 2-byte 
elements are slower.  Gather/scatter operations may result from array sections with non-unit strides.
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Try Intel® Threading Building Blocks (Intel® TBB) >   
Available in these software tool suites:
Intel® Parallel Studio XE >
Intel® System Studio >
Intel® Integrated Native Developer Experience (Intel® INDE) >

5.  A. Katranov, “Deterministic Reduction: A New Community Preview Feature in Intel® 
Threading Building Blocks,” 2012.

6.  T. Rosenquist and S. Story, “Using the Intel Math Kernel Library and Intel Compilers  
to Obtain Run-to-Run Numerical Reproducible Results,”  
Intel® Parallel Universe Magazine, 2012.

7.  Even if the target application is compiled for one single vector instruction set such 
as AVX, running it on different microarchitectures such as Sandy Bridge or Haswell 
might trigger libraries to utilize different vector instruction sets based on the available 
microarchitecture. See “Consistency of Floating-Point Results using the Intel® Compiler”3 
for more information.

8.  Intel® MPI Library—Documentation, Intel Corporation, 2015. 

9.  “MPI: A Message-Passing Interface Standard—Version 3.0,” Message-Passing Interface 
Forum, 2012. 
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Introduction
High performance computing (HPC) applications tend to consume most of the available system 
memory on a node; therefore, it is useful to deal with the limited memory resources on a 
cluster thoughtfully. However, in order to provide the maximum amount of dedicated memory 
to an application, other memory-consuming parts on a cluster must be taken into account. In 
particular, the operating system and libraries that are used need to be understood. As the memory 
consumption of the message passage interface (MPI) library grows with the job size, along with  
the number of MPI ranks, estimating the memory footprint becomes rather complex. 

This article will serve as an orientation about the estimated memory consumption for the  
Intel® MPI Library, using different fabrics. (The authors cannot offer a byte-accurate prediction 
model because actual memory consumption depends on the operating system environment.) This 
article will also help users fine-tune the Intel MPI Library settings for a reduced memory footprint. 

By Dmitry Durnov, Senior Software Engineer, and Michael Steyer, Technical Consulting Engineer,  
Software and Services Group, Intel Corporation Developer Products Division

Intel® MPI Memory Consumption
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The Memory of a Library
Memory consumption analysis is a complex task, as there are many sources that may influence 
the memory footprint. Even though it is possible to predict how much virtual memory will 
be allocated, the amount of physical memory used will depend on the characteristics of the 
application that is utilizing the library and the operating system configuration. 

The memory-consuming parts of the Intel MPI Library can be split into two categories: parts that 
scale with the number of MPI processes involved, and parts that have a fixed memory footprint. 
The largest fraction of memory comes from needs that scale consumption with the job size.

Intel® Math Kernel Library (Intel® MKL) 11.3 Beta, released April 2015, offers the inspector-executor API for 
Sparse BLAS (SpMV 2). This API divides operations into two steps. During an initial analysis stage, the API 
inspects the matrix sparsity pattern and applies matrix structure changes. In subsequent routine calls, this 
information is reused in order to improve performance. 

This inspector-executor API supports key Sparse BLAS operations for iterative sparse solvers, and covers 
all the functionality available in the classic Sparse BLAS implementation available in Intel MKL:

• Sparse matrix-vector multiplication

• Sparse matrix-matrix multiplication with sparse or dense result

• Triangular system solution

• Sparse matrix addition

Intel® Math Kernel Library Inspector-Executor Sparse  
BLAS Routines
BY ZHANG Z » 
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Read more
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There are several reasons the prediction for a library’s memory consumption depends on the 
platform (operating system and architecture). One factor is the operating system’s choice of page 
sizes. The page size will influence the alignment and size of buffers that are used for sending  
and receiving messages among different MPI processes. Another factor is use-diverse 
middleware. Some middleware libraries are used at a very low level and are therefore part of  
the memory consumers that scale with job size. Different versions of such libraries may have 
different buffer sizes for each connection. This can also lead to a varying memory footprint for 
the Intel MPI Library. 

To best address these challenges of the memory-consumption prediction, this article will focus 
on the worst-case scenario: an all-to-all connection. In this scenario, each MPI rank has an active 
connection to every other MPI rank, and therefore n^2 active connections overall. Furthermore, 
the message sizes have been set close to the maximum internal MPI eager buffers, while the 
memory footprint of larger message transfers will be reflected by the application. This way, 
almost all allocated memory will be used. If a buffer in virtual memory is not filled completely,  
it might not require an equal amount of physical memory in a machine. 

All the graphs in this article focus on the worst-case Intel MPI Library memory consumption  
per rank. The amount of memory consumed per node will therefore depend on the number 
of ranks being used on each node. Each graph includes a dotted line indicating the memory 
consumption of 64GB per node, as an orientation for a system with 28 MPI ranks per node,  
such as a Haswell EP. The memory consumption estimates are based on the internals of Intel®  
MPI Library Version 5.0.3.048. 

Please note that in real-life applications that do not need all-to-all connection patterns, the Intel 
MPI memory footprint will be much smaller. Therefore, the estimations provided in this article 
can be considered worst-case assumptions. In most applications, the dynamic connections 
establishment logic of the Intel MPI Library, which is present in almost all transport methods 
supported, will hold only a minimal number of necessary connections per rank.
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Intel® MPI Fabrics and Memory
The Intel MPI Library supports the following low-level transport mechanisms:

 > Shared Memory (SHM). Used for intra-node message transport. It provides several configurations  
for memory consumption/latency trade-offs and supports architecture-specific optimizations for the 
latest processors.

 > Direct Access Programming Library (DAPL) (Reliable Connection [RC] and User Datagram [UD]). 
Based on the User Direct Access Programming Library (uDAPL). uDAPL provides a high level of  
flexibility for the hardware utilization of different vendors. Vendor- and technology-specific features  
are transparent to the uDAPL level.

 > OFA. This transport layer is based on the direct usage of IB-verbs RC.

 > Tag Matching Interface (TMI). Based on the Performance Scaled Messaging (PSM) API, which is  
the main API for Intel® True Scale Fabric hardware.

 > TCP. Based on TCP sockets and also applicable to solutions such as IPoIB.

Additionally, the Intel MPI Library supports combinations of these fabrics, which can be used to 
separate a fabric for intra- as well as inter-node communication. 

Simplify HPC Cluster and 
Parallel Programming

All-New Spring 2015 Intel® Software 
Tools Technical Webinars
Get ready to take your code to the next level! The Spring 
2015 series of Intel® software tools technical webinars is 
happening now. Learn more about data-driven threading, 
vectorization, and more in these hour-long webinars.

Register now, or watch archived versions.
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DAPL RC (top) vs. DAPL UD (bottom)1
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When it comes to Intel MPI Library memory consumption, however, these fabrics behave very 
differently. Due to the nature of DAPL RC, where each rank holds a QP (Queue Pair) buffer and 
transport buffers for each other rank (n), the per-rank memory consumption for DAPL RC grows 
linearly to the number of MPI ranks (n * number of buffers per connection). DAPL UD, in contrast, 
performs better at scale, while it only utilizes one QP as well as one common pool of buffers for 
all ranks (n * buffer pool size). Figure 1 illustrates the differences between DAPL RC and DAPL UD.

The use of connectionless communication in DAPL UD also has disadvantages, such as the lack of 
RDMA support (although it is available in DAPL UD + DAPL RC mixed mode). Also, the potentially 
longer delay in transfers, due to the segmentation and reassembly of each message, can be a 
disadvantage. However, the large memory savings, compared to DAPL RC, show its performance 
benefits on a large scale of MPI ranks. 

Figure 2 shows the Intel MPI Library’s memory consumption difference between DAPL RC and 
DAPL UD in the all-to-all connections scenario. Please keep in mind that these estimations are 
unlikely due to the worst-case representation. Therefore, these numbers can be considered an 
upper limit rather than an exact memory consumption model of the Intel MPI Library. 
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For our validations, we forced the MPI_Alltoall operation and utilized the pairwise  
exchange algorithm in order to get the highest memory footprint by setting the  
I_MPI_ADJUST_ALLTOALL environment to “3.”

Memory consumption of DAPL RC vs. DAPL UD (lower is better)2

TMI is an API used by Intel MPI Library to get benefits from low-level transports, which provide 
their own messages matching logic. The main technology currently used below TMI is PSM, 
available on Intel® True Scale Fabric and other adapters of the Intel® Omni-Path Architecture 
family. This technology bypasses the IB-verbs layer and has a fixed-memory footprint for 
transport buffers. The amount of memory required per connection was further reduced in the 
latest Intel MPI Library versions in order to align with PSM as a scalable fabric solution. 
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Memory consumption of DAPL UD vs. TMI (lower is better)3

Large-Scale Memory Tuning
While DAPL UD already works in a highly memory-conservative fashion, one can further tune the 
fabric for memory efficiency on large-scale MPI runs. Table 1 shows some default environment 
settings versus their tuned versions.

Table 1.  DAPL UD default vs. tuned environment variables

Environment Variable Default Value Tuned Value

I_MPI_DAPL_UD_SEND_BUFFER_NUM Runtime dependent 8208

I_MPI_DAPL_UD_RECV_BUFFER_NUM Runtime dependent 8208

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE 256 8704

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE Runtime dependent 8704

I_MPI_DAPL_UD_RNDV_EP_NUM 4 2
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These environment settings set the number of internal DAPL UD buffers to a fixed value, 
while the default size of DAPL UD buffer pools scales along with the number of MPI ranks. 
At the same time, the tuning parameters fix the memory required for lower-level QP-related 
buffers. The impact of these settings is especially interesting for large-scale MPI runs, as one 
can see in Figure 3.

Memory consumption DAPL UD default vs. DAPL UD tuned (lower is better)4
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Summary
In this article, we have shown the worst-case memory-consumption of the Intel MPI 
Library on different fabrics. This information can serve the user as an upper-bound 
memory-consumption estimation despite not being a byte-accurate prediction. With this 
information, users will be able to determine how much memory will be left at a certain scale 
for their HPC applications. 

Users with Mellanox interconnects on their cluster should focus on the DAPL UD fabric 
to reduce the Intel MPI memory footprint for large-scale runs. While this article did not 
consider the memory consumption using the OFA fabric, it would still provide a good 
memory scalability and end up somewhere in between DAPL RC and DAPL UD for memory.

Users also can further reduce the memory consumption of the DAPL UD fabric by 
modifying the Intel MPI internal buffer structure. The best memory-consumption scalability 
of the Intel MPI Library can be observed using the TMI fabric on Intel True Scale Fabric and 
future Intel Omni-Path interconnects. 

Try the Intel MPI Library 
Download now for a 30-day evaluation >

Also available as part of Intel® Parallel Studio XE Cluster Edition >
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