
XE

THE PARALLEL
UNIVERSEIssue 11

September 2012

 10 Feature Highlights for Accelerated Performance
by James Reinders

DownloaD the free CoDeBook now

Boost performance and accuracy
This downloadable CodeBook provides “how-to” guidance and a comprehensive
resource toolkit to help you efficiently produce fast, scalable, reliable applications
throughout the development lifecycle.

look for guidance and techniques for C++ and fortran developers:

©2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

tools and techniques across
the development lifecycle

features for accelerated performance

technical guides, white papers,
articles, and blogs

and much more

http://makebettercode.com/2013

Contents
letter from the editor
Putting Intel® Parallel Studio Xe 2013 to work
for the “new normal,” By James ReIndeRs 4

Intel® Parallel Studio Xe 2013:
10 feature highlights for accelerated Performance,
By James ReIndeRs 6
Get up to speed fast on the components and new feature sets in the Intel® Parallel studio
Xe 2013 suite—and consider the potential for your applications.

Using Intel® Software Development
tools to analyze hMMer, By WalTeR shands 8
explore techniques for developing applications like HMMeR for the latest generation of
multicore processors—from thread and memory error checking to performance and
code optimization.

Pointer Checker: easily Catch out-of-Bounds
Memory access, By KITTuR Ganesh 20
Pointer Checker is designed to catch any out-of-bounds memory accesses before memory
corruption occurs. Find out how to use Pointer Checker effectively, and to balance the
trade-offs of security and runtime.

new Parallel Programming features in
Intel® (Visual) fortran Composer Xe,
By sTeve lIonel 22
this overview of two new features, Do ConCURRent and coarrays, brings insight into
achieving excellent parallelism results with Fortran.

Using the Intel® Math kernel library and Intel® Compiler
to obtain run-to-run numerical reproducible results,
By Todd RosenquIsT and shane sToRy 26
How do you balance demands for accelerated performance with reproducible results and runtime
consistency? these techniques can help you generate reproducible results within applications under
a manageable set of constraints.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Cilk, VTune, VPro, Xeon and Xeon Phi are trademarks
of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com/

James reinders explores the
development capabilities of
the mature parallelism tool suite,
Intel® Parallel studio Xe 2013.

the Parallel UnIVerSe

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

leTTeR FRom The edIToR

has parallelism changed everything or nothing?
on one hand, parallelism is everywhere and parallel programming is the
“new normal.” on the other hand, writing, debugging, and tuning an
application remains our work to do as programmers. Did we just raise
the bar to create the new normal? Perhaps. We expect more from our
programming and, in turn, we need more from our tools.

At Intel, we have invested heavily to support this new normal with
a wealth of new capabilities in the latest edition of Intel® Parallel
studio Xe.

the launch of Intel® Parallel studio Xe 2013 updates a mature
toolset for application development with support we need for the
new normal—spanning many aspects of software development.

In this issue, we look at some of the top new features and
capabilities of the Intel Parallel studio Xe 2013 product. In the 10
Feature Highlights article, we highlight efforts which are significant
new capabilities in their own right. each could have a whole issue
dedicated to it filled with interesting examples and tales on how
they work.

We’ve selected three to dive into in this issue beyond the information
in the 10 Feature Highlights article. one covers “Pointer Checker,”
and one discusses Fortran capabilities. Another article covers a new
run-to-run (and processor-to-processor) numerical reproducible results
capability. this capability helps deal with the inherently non-associative
nature of floating point numeric representations with a new unequaled
set of options in the latest Intel Parallel studio Xe.

We also have a real-world usage case covered in Using Intel®
software Development tools to Analyze HMMeR. this study makes
use of event-based sampling analysis in Intel® Vtune™ Amplifier XE and
the optimization features of the Intel® Composer Xe compiler to build
and analyze hmmsearch and hmmbuild, components of sPeCint*.

I think you’ll find this issue full of exciting new capabilities. Maybe
the end result is a “new normal”—but it is an exciting new place to be.

James reinders
director of Parallel Programming evangelism at Intel Corporation. James is a
co-author of a new book Structured Parallel Programming from Morgan Kaufmann,
2012. his other books include Intel® Threading Building Blocks: Outfitting C++ for
Multicore Processor Parallelism, available in English, Japanese, Chinese, and Korean.

PUttIng Intel® Parallel StUDIo Xe
2013 to work for the “new norMal”

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com
https://swdevtoolsmag.makebettercode.com
http://parallelbook.com/
http://threadingbuildingblocks.org/ http://
http://threadingbuildingblocks.org/ http://

Intel® Parallel studio Xe 2013 not only delivers the latest optimizations
and new processor support, but it also includes a number of highly
innovative features that are likely to surprise and delight you.

the suite plugs seamlessly into Microsoft Visual studio* and the
GnU toolchain, thereby preserving investments in your development
environment of choice.

With Intel Parallel studio Xe 2013, accelerated application
performance is often just a recompilation away. Rebuild with the
latest compilers and link in the latest libraries to benefit from
the latest processors.

I have chosen 10 features to highlight from this powerful
Intel tool suite.

Intel® Parallel Studio Xe 2013:
10 Feature Highlights for Accelerated Performance

1. Processor Support Updated to Include the latest
Intel® Processors
new support includes AVX2, tsX, and FMA3. this extends our
support to both the newly released 3rd Generation Intel® Core™
vPro™ processor (codenamed Ivy Bridge) microarchitecture, as well
as the forthcoming Haswell microarchitecture. this enables you
to take advantage of the latest performance enhancements in the
newest Intel® products, while preserving compatibility with prior
Intel and compatible processors.

2. Support for Intel® Many Integrated Core (Intel® MIC)
architecture
Used for more than a year on prototype and preproduction systems,
support for Intel® MIC architecture is now available in our products.
No additional new tools are needed for the first Intel® Xeon Phi™
coprocessor (codenamed Knights Corner). Instead, we have
integrated this support in tools you already know and use. the
power of these familiar tools is now available to help generate,
debug, and optimize code for the Intel® MIC architecture.

3. advanced numerical reproducibility Capabilities
the most praised new feature by beta testers. An innovative new
“Conditional numerical Reproducibility” capability offers unique
controls over nonassociative floating-point operations, allowing
run-to-run and processor-to-processor reproducibility options—
often with very low performance penalties. Increased options for
floating-point arithmetic reproducibility with Intel® Math Kernel
Library, special Intel support in openMP*, and new capabilities in
Intel® threading Building Blocks open up new possibilities.

4. Additional Profiling Data and Easier to Use
Intel® VTune™ Amplifier XE offers new and powerful bandwidth
and memory access analysis to reduce time spent puzzling over
cryptic performance data.

5. Pointer Checker
A new compiler-based diagnostic tool allows you to find code that
accesses memory addresses beyond the allocated addresses.
This helps with security hardening and finding difficult memory
corruption issues.

6. new threading assistant: Intel® advisor Xe
Intel® Advisor Xe assists in producing scalable, maintainable C, C++,
C#, and Fortran code. Simplifies adding parallelism to threaded
or unthreaded applications, and allows you to evaluate alternatives
before investing in implementation.

7. fortran Standards Support
Intel® Fortran supports widely used features of the Fortran 2003
standard and key parts of the 2008 standard, including coarrays. As
a leader, Intel is committed to supporting Fortran with our products.
of course, we maintain a rich backward compatibility with decades
of Fortran support including VAX Fortran*, Compaq Visual Fortran*,
Fortran 95, Fortran 90, Fortran 77, and Fortran 66, as well as library
support for BLAs, LAPACK, scaLAPACK, sparse solvers, fast Fourier
transforms, vector math, and more.

8. C++ Performance guide
everyone can appreciate the new C++ Performance Guide, featuring
a quick five-step process for increasing performance.

9. C and C++ Standards Support
outstanding support for C and C++ are now accompanied by leading
support for many of the new C++11 and C11 features. We also
maintain our extensive support for prior standards including C99,
and industry-leading support for Ieee 754-2008 Decimal
Floating-Point Arithmetic.

10. find and eliminate errors with Intel® Inspector Xe
Intel® Inspector XE provides an efficient way to increase your
application reliability to ensure performance in C, C++, C#, and
Fortran. the new heap growth analysis feature offers an important
new way to find memory leaks.

by James Reinders, Director of Parallel Programming Evangelism

DownloaD a free
30-Day eValUatIon

the Parallel UnIVerSe

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/sw-tools-eval
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Intel® Parallel Studio Xe 2013:
10 Feature Highlights for Accelerated Performance

The power of this suite stems from
four key components:
1. optimized C++ and fortran Compilers and libraries:

Intel® Composer Xe is a highly optimizing performance-oriented
developer tool that includes Intel® C++ and Fortran compilers, and
threading, math, multimedia, and signal processing performance
libraries. Intel® Cilk™ Plus, Intel® threading Building Blocks, and
openMP* support provide parallelism models to make it easier to
take advantage of today’s and tomorrow’s high-performance
computing systems. Industry-leading Intel® Math Kernel Library
and Intel® Integrated Performance Primitives include a wealth of
routines to improve performance and reduce development time.

2. Innovative threading assistant for linux* and windows*:
Intel® Advisor Xe is a threading assistant for C, C++, C#, and Fortran
developers. It helps find regions with the greatest performance
potential from parallelism and highlights critical synchronization
issues. With Advisor Xe, you can evaluate alternatives before
investing in implementation, estimate the speed-up, identify
correctness issues and select the options with the best return
on investment. the “magic” here is in the ability to evaluate
approaches before committing to coding and debugging. this is
a remarkable tool when considering how to add parallelism
into your code.

3. optimize Serial and Parallel Performance: Intel® Vtune™
Amplifier XE is the premier performance and thread profiler to
tune application performance. Use it to profile C, C++, C#, Fortran,
assembly code, and Java code, and receive rich performance data for
hotspots, threading, locks and waits, DirectX*, bandwidth, and more.

4. Deliver More reliable applications: Intel® Inspector Xe 2013
is an easy-to-use memory and threading error detector for serial and
parallel applications on Windows* and Linux*. static analysis for
C, C++, and Fortran developers is included in Intel® studio Xe products.
the ability to pinpoint active and latent problems before shipping
an application to customers is strongly supported by this acclaimed
and unique Intel capability. o

teChnICal SPeCIfICatIonS at a glanCe

Processor support Validated for use with multiple generations
of Intel and compatible processors
including, but not limited to: Intel® Xeon®
processors, Intel® Core™ processors, and
Intel® Xeon Phi™ coprocessors.

operating systems Windows* and Linux*. Compiler and
library components are also available as
Apple os* X add-ons for Apple’s XCode*
development environment.

development Tools
and environments

Compatible with compilers from vendors
that follow platform standards (e.g.,
Microsoft, GnU, Intel). Can be integrated
with GnU toolchain*, Microsoft Visual
studio* 2008, and 2010, and next-
generation tools.

Programming
languages

extensive support for C, C++ and Fortran
development. Additional support included
for programs that also include Java or
.net languages such as C#.

support All product updates, Intel® Premier
support services, and Intel® support Forums
are included for one year. Intel Premier
Support gives you access to confidential
support, technical notes, application notes,
and the latest documentation.

Community Join the Intel® support Forums community
to learn, contribute, or just browse:
http://software.intel.com/en-us/forums

system
Requirements

For details on hardware and software
requirements:
www.intel.com/software/products/
systemrequirements/

to learn More, VISIt
Intel Parallel StUDIo Xe

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/forums
http://www.intel.com/software/products/systemrequirements/
http://www.intel.com/software/products/systemrequirements/
http://intel.ly/parallel-studio-xe

the Parallel UnIVerSe

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Using Intel® software
Development tools to
analyze hMMer

this paper will highlight the features of Intel® Parallel studio Xe 2013 by using them to build
and analyze HMMeR (http://hmmer.janelia.org/). HMMeR is a set of applications, which includes

two, hmmsearch and hmmbuild, which are components of sPeCint. We make use of event-
based sampling analysis in Intel® Vtune™ Amplifier XE to find out which code paths, context

switches, or threading inactivity cause performance problems in hmmsearch. And, we’ll utilize
the code optimization features of the Intel® Composer Xe compiler to improve the performance

of hmmsearch on Intel® Xeon® e5 processors. In addition, we will show you how to use
Intel® Inspector Xe to locate memory and threading errors introduced into hmmsearch.

by Walter Shands,
Software Development
Engineer

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

“To achieve more significant
performance gains, the
problem of serialization of
the application due to the
file read has to be solved.“

gcc -std=gnu99 -O3 -fomit-frame-pointer -ma-
lign-double -fstrict-aliasing –pthread –msse2

icc -O3 -ansi_alias -pthread

hmmsearch is used to search a protein sequence database
for homologs of protein sequences using profiles called hidden Markov
models. globins4.hmm contains the profiles and uniprot_trembl.fasta
 is a 10 GB sequence database.

hmmsearch is available in an MPI version, but we restricted our
experiments to the non-MPI flavor. We ran hmmsearch on a computer
with an 8-core Intel® Xeon® e5-2680 hyperthreaded processor at 2.7
GHz with 23.4 GB of memory. We ran the application using GCC and
the Intel® C compiler, in both cases using the settings provided by the
configure script. The initial GCC default switches were:

the application requires support for the sse2 instruction set at a
minimum to support an algorithm optimized using intrinsics oriented
toward sse2.

The default Intel® compiler flags were:

./hmmsearch globins4.hmm ../../
uniprot_trembl.fasta

A challenge in porting applications from one compiler to another
is making sure that there is support for the compiler options you use
to build your application. the Intel C compiler supports many of the
options that are valid on other compilers you may be using, such as
GCC. The compiler generates object files that are compatible with
GCC-generated object files, so you can compile part of your application
using the Intel compiler and the rest using GCC.

the -fomit-frame-pointer option is set when you specify
option -O1, -O2, or -O3 when using the Intel C compiler (so there is
no need to include it). the -malign-double option aligns double,
long- double, and long-long types for better performance for systems
based on IA-32 architecture and is available in the Intel C compiler.

We started the application with this command line:

the next step is to locate the hotspots in the application using Intel
VTune Amplifier XE. This profiler tool uses low overhead techniques
to quickly find multicore performance bottlenecks, without needing to
know the processor architecture or assembly code. note that we do
not need to add code to the application to collect data.

To view source code lines of hmmsearch in VTune Amplifier XE, we
need to include symbols in the release build—so we add the –g flag.
We added the –fno-inline-functions flag as well; this allows
us to see all of the code in question in the VTune Amplifier XE
source view.

the Vtune Analyzer Xe hotspots analysis shows where most of the
CPU activity is occurring in the application and the amount of CPU
activity on the threads over time. (figure 1)

The VTune Amplifier XE hotspots view tells us that the function
consuming the most CPU time is p7_MSVFilter, and double-clicking on
the function name displays the sse intrinsics calls used in optimizing
the performance of the function. the assembly view shows us that the
Intel compiler utilized vector instructions, but is not taking advantage
of the 256-bit registers or AVX instructions on the Intel Xeon processor.
(figure 2)

It’s possible that we could compile the original C code for p7_
MsVFilter with the Intel compiler and help the compiler vectorize the
function for the instruction set available on the target machine, so
that the function is not limited to using 128 bit registers.

the thread timeline view shows that there is not much CPU time
used in the worker threads, but a large amount is used in one thread.
this turns out to be the thread that is reading the sequence
database file. (figure 3)

the Parallel UnIVerSe

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

figure 1

figure 2

figure 3

Sign up for future issues | Share with a friend

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

figure 4

figure 5

the application creates a number of threads equal to the number of HW threads on the
machine plus one, which in the case of a hyperthreaded machine is equal to the number of
hyperthreads plus one. In this case, there are 17 threads running. If we use the hmmsearch
–cpu 4 flag to limit the threads to five threads, VTune Amplifier XE shows that the application
scales well—unlike the situation with 17 threads. (figure 4)

evidence of this is the 67.418-second runtime with 17 threads, which is worse than the
62.561-second runtime with four threads.

We can see that the top thread is the one reading the data file by filtering the results
by thread in the five-thread hotspot display. (figure 5)

the Parallel UnIVerSe

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.12

http://software.intel.com/en-us/articles/optimization-notice

figure 6

figure 7

figure 8

figure 9

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

If we use the VTune Amplifier XE Locks
and Waits feature on the run with 17 threads
it shows us a large number of transitions,
indicated by yellow lines from the thread
reading the sequence database file to
worker threads. (figure 6)

hmmsearch uses a producer consumer
model. this is where a producer thread (labeled
thread (0xa0) in the graphic) puts data to be
processed on a queue that worker threads
(labeled pipline_thread in the graphic) remove
when the producer thread signals them with
a broadcast message, resulting in a thread
transition from the producer thread to the
worker thread.

By zooming in, we can see that the amount
of thread running time (dark green) is less
than thread waiting time (light green),
indicating lost time to do productive work.
(figure 7)

Compare this with a zoom-in on the
thread view for hmmsearch using only four
threads. note that thread transitions from
the thread reading the data file, the top
thread, typically result in productive work
to the worker thread. (figure 8)

However, when using 17 threads in
hmmsearch, many thread transitions do not
result in work being done. (figure 9)

Zooming in even closer on the 17 thread
case, we can see these thread transitions are
the result of a pthread_cond_broadcast call
that tells the worker threads that a block of
data is ready on the work queue to be
processed. only one thread at time can grab
the block of data—so the
other threads must wait again. (figure 10)

When only five threads are used, only
about two threads are waiting to get a block
of data to process, and only one thread
goes unsatisfied. (figure 11)

All of this indicates that with more than
four threads, the hmmsearch pipeline threads
become starved for data. In other words, the
thread reading the data file cannot provide data
fast enough to keep up with computation in
the worker threads.

From our analysis using VTune Amplifier
Xe, we know that the most time-consuming
code is the MsV algorithm, which has
been optimized with SSE intrinisics in p7_
MSVFilter in the file msvfilter.c. The
intrinsic-optimized code also contains some
optimizations over and above vectorization,
so it will be faster.

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

figure 10

to see if the Intel compiler can effectively vectorize the nonintrinsic
optimized code, we compiled the application to use the unoptimized C
code in the function p7_GMSV in the file generic_msv.c. VTune Amplifier
Xe again shows that the MsV algorithm is the hotspot. (figure 12)

 VTune Amplifier XE also shows that the most time-consuming
part of the MsV algorithm is a single loop that is not taking advantage
of AVX instructions or YMM registers on the Intel Xeon processor.
(figure 13)

the runtime of hmmsearch using this code is about four minutes
and 30 seconds.

CPU time: 4137.39u 5.02s
01:09:02.41 Elapsed: 00:04:30.08

 If we use the –opt-report flag for the Intel compiler, it will tell us
what inlining, loop, memory, vectorization, and parallelization
optimizations have been done for each function. For the p7GMsV
function, it tells us the loop was not vectorized.

By restructuring the code, we can enable the compiler to vectorize
the loop and generate code that takes advantage of Intel Xeon
architecture. the optimization report from the compiler indicates that
the two loops resulting from the restructuring were vectorized:

In addition, the VTune Amplifier XE assembly view shows that AVX
instructions are being used along with the larger YMM registers.
(figure 14)

the resulting runtime of the application is close to half of the
original runtime.

generic_msv.c(88:7-88:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

generic_msv.c(108:7-108:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

CPU time: 2207.74u 4.96s
00:36:52.69 Elapsed: 00:02:28.16

We can use Intel Inspector Xe to check hmmsearch for threading and
memory errors. It gives detailed insight into application memory
and threading behavior to improve application reliability, and its
powerful thread checker and debugger make it easier to find latent
errors on the executed code path. Intel Inspector XE also finds
intermittent and nondeterministic errors, even if the error-causing
timing scenario does not happen.

generic_msv.c(80:7-80:7):VEC:p7_GMSV: loop
was not vectorized: existence of vector
dependence

the Parallel UnIVerSe

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.14

http://software.intel.com/en-us/articles/optimization-notice

figure 11

figure 12

figure 13

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

“The Intel® C compiler
and libraries create
faster code, Intel®
vTune™ Amplifier XE
finds bottlenecks,
and Intel® Inspector XE
pinpoints memory
and threading errors
before they happen.
all this is of critical
importance when
developing applications
like hmmeR.“

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

figure 14

figure 15

figure 16

Intel Inspector XE finds memory leaks,
corruption, and inconsistent memory API
usage, as well as data races, deadlocks, and
memory accesses between threads.

As with Intel VTune Amplifier XE, we don’t
need to create a special build or add code to
the application to collect data.

Because there is significant overhead in
detecting memory and threading bugs, we
launch hmmsearch using a smaller sequence
database file, as well as an application
option that reduces the number of threads.

When we run Intel Inspector Xe in the
Detect Memory Problems mode, a few
uninitialized memory accesses are exposed.
(figure 15)

 Right-clicking on a line in the Detect
Memory Problems pane brings up a
description of an uninitialized memory
access problem: (figure 16)

 Intel Inspector Xe running in Locate
Deadlocks and Data Races mode did not
detect any issues. (figure 17)

 In order to increase application
performance, we can take advantage of
Intel® Cilk™ Plus in the Intel compiler. Cilk Plus
is an extension to C and C++ that offers a
quick, easy, and reliable way to improve
the performance of programs on multicore
processors. It is an open standard and will
soon be available in GCC 4.7. Cilk Plus, included
in the Intel® C/C++ compiler, allows you to
improve performance by adding parallelism to
new or existing C or C++ programs using only
three keywords: cilk_for, cilk_
spawn, and cilk_sync.

the Parallel UnIVerSe

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.16

http://software.intel.com/en-us/articles/optimization-notice

figure 17

figure 18

figure 19

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

We use Cilk Plus to replace the code
that manages threads, mutexes, condition
variables, and the work queue with the added
benefit of better scheduling. However, we
must still synchronize threads on the data
file read, which results in serializing a portion
of the application.

In the Intel VTune Amplifier XE Hotspots
graphic of an hmmsearch run, you can see
that because of the synchronization resulting
from mutexes around the code reading the
sequence database file, the CPUs are not
fully utilized. But the Cilk Plus implementation
has a shorter runtime at 58.272 seconds
compared to the original runtime of 67.418
seconds. (figure 18)

If we run a VTune Amplifier XE locks and
waits analysis we can see that there are still
many thread transitions. (figure 19)

If we zoom into the thread pane in the locks
and waits analysis, we see that the thread
transitions are between worker threads, and
that they involve the mutex that protects the
file read, which is now carried out by each
worker thread. (figure 20)

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

figure 20

figure 21

one of the other powerful features of Cilk
Plus is the C/C++ language extension for
array notations. This Intel-specific language
extension provides data parallel array nota-
tions, which enable compiler parallelization and
vectorization with less reliance on alias and
dependence analysis.

To achieve more significant performance
gains, the problem of serialization of the
application due to the file read has to be
solved. Reading the data into memory prior
to computation is not realistic when using
the uniprot_trembl.fasta data file, because
we would exceed memory capacity on our
machine, although if enough memory was
available it would speed up subsequent
computations using the same data.

Further performance gains can be achieved
by taking advantage of Intel compiler
options. since the Intel compiler default
instruction set is sse2 and the target

machine is Intel Xeon, it would be a good idea
to take advantage of AVX instructions and
larger register size by using the –xhost
switch that will generate an instruction set
up to the highest level supported on the
compilation host.

Another important compiler option is –
ipo, which enables interprocedural optimi-
zation between files. This is also called multi-
file interprocedural optimization (multifile
IPo) or whole program optimization (WPo).
When you specify this option, the compiler
performs inline function expansion for calls to
functions defined in separate files.

For help on finding out what to do to help
the Intel compiler vectorize or parallelize
loops we can use the –guide flag, which
provides a report without producing objects
or executables. the guided auto-parallelization
feature of the Intel compiler is a tool that
offers selective advice, resulting in better

esl_vectorops.c(161):
remark #30536: (LOOP) Add
-fargument-noalias option
for better type-based
disambiguation analysis by
the compiler, if appropriate
(the option will apply for
the entire compilation).
This will improve
optimizations such as
vectorization for the loop
at line 161.

performance of serially coded applications.
the advice typically falls under three broad
categories: source code modification, use of
pragmas, and addition of compiler options.

Here is one of the suggestions after using
the option in hmmsearch:

the Parallel UnIVerSe

18 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.18

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

What do space exploration, oil and natural gas exploration, Holly-
wood movies, and military operations have in common? Modeling,
simulation, exploration, storyboarding, and reconnaissance are
some of the phrases that come to mind. they are intended to
reduce the cost of wrong choices, failures, and missteps, and help
projects succeed and be more productive.

Software parallelization likewise can also benefit from parallelism
reconnaissance in which code is evaluated for suitability for
parallelization. Until now, there have been limited tools support to
do this. However, Intel® Advisor Xe 2013 changes this and helps
the world of parallelization leapfrog forward. Intel® Advisor Xe
is the newest component of the Intel® Parallel studio Xe suite
of products.

software parallelization is potentially destabilizing to code, risky,
expensive, and complex. Current trial and error approaches are not
productive and there is considerable risk of dead ends. embark-
ing on code parallelization based on measured data (for example,
hotspots) is perhaps better, but is likewise mostly a hit or miss.
Code may or may not scale well. stability issues due to incorrect
parallelization also may lurk and surface long after the code is
productized, and become costly to fix.

learn how Intel® advisor Xe can help improve
parallelization productivity.
By raVI VeMUrI

msvfilter.c(106): remark #30525: (PAR)
Insert a “#pragma loop count min(1024)”
statement right before the loop at line
106 to parallelize the loop. [VERIFY]
Make sure that the loop has a minimum
of 1024 iterations.

Adding the –parallel switch allows the Intel compiler to
detect simply structured loops that may be executed in parallel, and
automatically generates multithreaded code for them. If you use
guided auto-parallelization options along with –parallel, the
compiler may suggest advice on further parallelizing opportunities in
your application:

Intel® Advisor XE is built to help you find where to add
parallelism to your code. Use it to discover the parallel performance
(scalability) and code/data sharing issues (correctness) of
possible parallel code regions. It lets you model several different
regions within your program at once for parallel scalability and
correctness. the results help you make judicious choices about
which regions of code to not parallelize (to avoid dead ends), and
which regions of code to actually parallelize to reap the multicore
performance benefits.

Using this methodology helps you fix data sharing issues before
they happen. even as you prepare the code for parallelization
by fixing the correctness issues, you can continue to use your
existing test frameworks to validate your program—as it remains
functionally unchanged and correct.

Use of Intel® Advisor Xe in your parallelization efforts is very
likely to reduce risk and increase the reward. Moreover, the tool
empowers everyone in the software organization with the skill
to productively parallelize, instead of the current situation where
just the architects and senior engineers have this capability.

You can see how exciting the potential is for your applications.
Please explore the product in greater detail at the Intel® advisor
XE product page, and let us know what you think. o

We can also use the VTune Amplifier XE hardware event counter
collection to get insight into bottlenecks in application code affecting
performance. VTune Amplifier XE highlights collected data indicative
of performance problems that should be investigated. Here is one
example of an hmmsearch run. (figure 21)

Conclusion
Intel® software Development tools help you boost application
performance and increase the code quality, security, and reliability
needed by high performance computing and enterprise applications.
the Intel C compiler and libraries create faster code, Intel Vtune
Amplifier XE finds bottlenecks, and Intel Inspector XE pinpoints memory
and threading errors before they happen. All this is of critical importance
when developing applications like HMMeR for the latest generation
of multicore processors. o

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/author/ravi/
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe

Although C/C++ pointers have well-defined semantics,
many applications could still make out-of-bounds memory accesses
which can go undetected, risking data corruption and increasing
vulnerability to malicious attacks. the Pointer Checker provides full
checking of all memory accesses through pointers. A pointer-checked
enabled application will therefore catch out-of-bounds memory
accesses before memory corruption occurs.

With the advent of multicore processors, there is a need to program
for data and thread parallelism where data is frequently created,
stored, shared, and accessed in memory through pointers. the C and
C++ languages define good semantics for memory access through
pointers, but they also permit the use of these pointers without any
restrictions. this provides no built-in protection against accessing or
writing most user data in memory. this means you can perform any
number of arbitrary operations on the pointers—resulting in severe
unforeseen errors in the program whose effects often appear random
due to unintentional modification of data—causing out-of-bounds
(ooB) memory accesses which may often go undetected.

Although pointers have well-defined lower and upper bounds,
languages (and therefore the compilers) typically don’t enforce bounds
checking due to performance and speed concerns. this paves way
for potential buffer overflows and overruns in various parts of the
application code—causing data corruption, erratic program behavior,
breach of system security, etc.—and is the basis for many software
vulnerabilities to malicious attacks.

the launch of Intel® Parallel Studio Xe 2013 brings a key
new feature: the Pointer Checker, which performs bounds
checking—providing full checking of all memory accesses
through pointers—and identifies any out-of-bounds access
in Pointer Checker-enabled code. this article presents a
comprehensive overview and usage model of Pointer Checker, enabling
you to quickly get started using this key debugging feature on
your critical applications.

PoInteR CHeCKeR:

This article introduces a powerful new feature called Pointer Checker,
which precisely and easily isolates elusive bugs in programs. Found in the
Intel® C++ Composer XE 2013 product, its integration into the compiler adds
powerful functionality in a way that slides seamlessly into build systems.
Clever implementation and powerful error reporting provide precise information
about latent program defects. We are excited that during beta testing of
this new feature, customers reported that this tool found numerous defects.

by Kittur Ganesh, Technical Consulting Engineer

easily Catch out-of-Bounds
Memory accesses

the Parallel UnIVerSe

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

overview
the Pointer Checker is a key feature of Intel Parallel studio Xe 2013.
The main functionality of Pointer Checker is to find buffer overflows
or overruns occurring in applications developed in high-level C and C++
languages on Windows* or Linux* operating systems. A buffer over-
flow or a buffer overrun is an anomaly where a program, while writing
data to a buffer, overruns the buffer’s boundary and overwrites
adjacent memory. this is a special case of violation of memory safety.
For example, consider an array as the buffer as shown in the short
code snippet in figure 1.

char *buf = (char *)malloc(5);
for (int i=0; i<=5;i++) {
 buf[i] = ‘A’ + i;
}

figure 1

minimize frustration and
maximize tuning effort with
amdahl's law
By Shannon CePeDa

I recently had a question from a customer who had introduced
a successful optimization to a hot function in his application,
but did not see as much improvement in the overall
application as he expected. this is a fairly common occurrence
in the iterative process of performance tuning. Usually it
happens for one of two reasons.

1. Introducing an improvement in one area resulted
in inefficiencies somewhere else. This is par for
the course with performance tuning, and part of
the reason why the process is iterative. It can be
hard to anticipate whether a code change you are
making in one function will decrease performance
somewhere else down the road, and so landing in
this situation from time to time is unavoidable.
Although you may not be able to always prevent it,
using good documentation practices and a tool like
Intel® VTune™ Amplifier XE to quantify performance
changes can help you see when it is happening…

visit go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating multicore
Power into application Performance.

See the reSt of Shannon’S Blog:

BLOG
highlights

A buffer overflow occurs when you try to put more items in the
array than what the array can hold. It occurs generally from writing or
a store operation. on the other hand, a buffer overrun occurs when
you are iterating over the buffer and keep reading past the end of the
array. It generally occurs from reading or a load operation. Additionally,
simple coding errors are often very hard to locate and rectify. For
example, pointers are invariably masked by casting to a void pointer
and then recasting to other pointers, making it very difficult to identify
the cause of errors in the application. As mentioned earlier, since a
pointer has a well-defined lower and upper bound, Pointer Checker
performs bounds checking for all memory accesses through pointers—
ensuring that a pointer is within bounds before its use for either a
read or a write operation.

the Pointer Checker feature can be enabled via compile time switches.
When you build your application with the Pointer Checker-enabled
option, it will identify and report out all out-of-bounds memory accesses
occurring in the application, including subscripted array accesses. In
addition, the Pointer Checker can also detect dangling pointers, meaning
pointers that point to memory that has been freed. When you build
your application with the dangling pointer detection-enabled option,
using a dangling pointer in an indirect access will also cause the
Pointer Checker to report out an out-of-bounds error. Another useful
feature that Pointer Checker offers is to check bounds for arrays
without dimensions, which is especially important since applications
are integrated with many different modules developed by different
developers who often extern shared data.

Sign up for future issues | Share with a friend

See fUll artICle

the Parallel UnIVerSe

http://software.intel.com/en-us/blogs/author/shannon-cepeda/
http://software.intel.com/en-us/blogs/author/shannon-cepeda/
http://software.intel.com/en-us/blogs/author/shannon-cepeda/
http://software.intel.com/en-us/blogs/author/shannon-cepeda/
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2012/04/05/minimize-frustration-and-maximize-tuning-effort-with-amdahls-law/
https://swdevtoolsmag.makebettercode.com
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf

 new Parallel Programming Features in

Intel® (Visual) fortran
 Composer Xe

by Steve Lionel,
Developer Products Division

the Parallel UnIVerSe

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Fortran programmers have been doing parallel processing for
many years using methods outside the Fortran standard such as
auto-parallelization, openMP*, and MPI. Fortran 2008, approved as an
international standard in late 2010, brought parallel programming
into the language for the first time with not one, but two language
features. (of course, you can’t be parallel with just one.)

this article provides a brief overview of these two new features,
Do ConCURRent and coarrays. the former is pretty easy to get
one’s head around; the latter is not.

do ConCuRRenT
Back in the early 1990s, an attempt was made at extending the
Fortran 90 language for high performance computing and parallel
processing. Called High Performance Fortran or HPF, it attempted
to build on Fortran 90’s array syntax in a way that permitted
array operations to be done in parallel. HPF introduced the FoRALL
and WHeRe constructs, PURe procedures with no side effects,
and a number of intrinsic procedures for operations such as scatter/
gather. While HPF was not widely adopted, some pieces of it were
incorporated into the Fortran 95 standard, approved in 1997.

of the various HPF features that persisted, none was perhaps more
misunderstood than FoRALL. Here’s an example of a FoRALL construct:

REAL :: A(10, 10), B(10, 10) = 1.0
…
FORALL (I = 1:10, J = 1:10, B(I, J) /= 0)
A(I, J) = REAL(I + J + 2)
B(I, J) = A(I, J) + B(I, J) * REAL(I * J)
END FORALL

the parenthesized list after the FoRALL keyword is called the
forall-header. It has one or more forall-triplets that specify the range
of values taken on by the index-name. In this example we have two
forall index names, I and J, which are each specified to take values
from 1 to 10. The increment, if not specified by the third element in
the triplet, is 1, just as in Fortran 90 array notation. the last part is the
mask expression that determines the conditions under which the
FoRALL construct body (the two assignments) is executed.

Many Fortran programmers looked at FoRALL and saw a loop, or in
this case, two nested loops, perhaps with an IF at the top that skips
to the next iteration, if the expression is false. But FoRALL is not a
loop construct, it is a “masked array assignment.” If you try to think of
this as a loop, you might expect each iteration to execute both
assignments, and that these could be done in parallel. But that’s not
how FORALL was defined. Instead, the first assignment is executed
completely, across all combinations of all the index names, filtered by
the mask. then, the second assignment is executed completely, again
across all combinations and filtered by the mask. Inside a FORALL
construct, an assignment statement may reference functions if they
are PURe, but the only statement types allowed in a FoRALL are
assignment statements, WHeRe constructs, or other FoRALLs.

FoRALL was a noble experiment, but the rules were too restrictive
to be amenable to doing the assignments in parallel and it did not
meet the needs of the Fortran community. so, Fortran 2008 brings
what I call “FoRALL Done Right”: Do ConCURRent.

A Do ConCURRent construct looks like a blend of traditional Do
and FoRALL. In fact, the beginning of a Do ConCURRent uses the
FoRALL header syntax. For example:

DO CONCURRENT (I=1:N)
T = A(I) + B(I)
C(I) = T + SQRT(T)
END DO

Sign up for future issues | Share with a friend

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

As with FoRALL, the mask is optional. If present, it reduces
the set of active combinations of the index names to those
where the mask expression is true. Unlike FoRALL, each range
of a Do ConCURRent is an iteration and is executed
independently for all the active index combinations.

there are some restrictions on what you can have in a Do
ConCURRent. For example, you can’t RetURn or Go to out
of the construct, and you can’t reference a variable that is
defined or made to be undefined by another iteration. You can
even do I/o in a Do ConCURRent, so long as a record written
by one iteration is not read by another. As with FoRALL, any
procedure called from within the construct must be PURe
(which guarantees that it has no side effects). note that it is
the programmer’s responsibility to ensure that there are no
dependencies between loop iterations—the compiler is not
required to check these for you.

Do ConCURRent is supported as of Intel® [Visual] Fortran
Composer Xe 2011 and the compiler will attempt to execute
the construct in parallel if you have enabled auto-parallelization
(/Qparallel or -parallel). However, there is no guarantee that any
particular Do ConCURRent will be run in parallel, and, of
course, the order in which the iterations run is unpredictable.
As a side effect, use of Do ConCURRent can also help with
automatic vectorization, as you are guaranteeing that there
are no loop-carried dependencies.

Coarrays
If you are an MPI programmer, you know the basic drill: collect
some data, call MPI_SEND to send it to a copy of your program
running on another “node,” and then use MPI_RECV to get
results back. (This is a simplification, of course.) Wouldn’t it be
nice to be able to “reach out and touch” the other copies of
your program using normal Fortran syntax, and not have to
worry about adding calls to move data around?

Coarray Fortran, first proposed in the 1990s as an extension
of Fortran 90 called F- - (F minus minus), provides simple syntax
for adding parallelism to a Fortran program. (the syntax is
simple, though the definition and implementation is not.) It was
implemented by Cray for itst3e and X1 supercomputers in the
early 2000s, and was added, in a modified and somewhat
reduced form, into the Fortran 2008 standard. Intel released
the first full implementation of Fortran 2008's coarrays for
mainstream computers in the Intel (Visual) Composer Xe 2011
release for Linux* and Windows.*

the fundamental concepts of Coarray Fortran are these:

 > Image: Multiple copies of your application run in
parallel; each is called an image.

 > Coarray: Variables become coarrays when they are
given the CoDIMensIon attribute. somewhat
confusingly, scalars can also be coarrays – the
standard defines a coarray as any entity with a
non-zero corank, and these can be scalars or arrays.
Codimensions (and coindices) are denoted with
square brackets [].

Coarrays are split up across all the images of your application,
so that a portion of each coarray resides in the local memory of an
individual image. this property is associated with the Partitioned
Global Address space (PGAs) parallel programming concept. Here,
coarrays exist in a shared “address space,” but image-specific
segments are individually addressable. Let’s look at a simple example.

We will declare an array A with dimension 10x20 and with one
codimension:

real, dimension(10,20), codimension[*] :: A

integer, codimension[4,2:6,3:*] :: B

It helps if you think of codimensions as additional dimensions, and
indeed the Fortran standard limits the sum of the number of
dimensions and codimensions to fifteen. (Intel® Fortran supports 31
as an extension.) the last upper cobound in the codimension must
be *; at runtime this takes on the value of the number of images.
If when run there are eight images, the cobounds of A are 1:8.

As with dimensions, you can have multiple codimensions with lower
and upper bounds, and as with dimensions, only the last one may have
* as an upper bound. so we might have:

When you reference a coarray, you can do so with or without
the coindices, which are enclosed in square brackets. If no coindices
are present, you are referencing your image’s piece of the coarray. If
the coindices are present, you are specifying the coindex of the image
you want.

now, at this point you might be asking what happens if there aren’t
enough images to fill up the coindices, just as you would with a regular
array that’s an error. Unlike a regular array, the “shape” of a coarray may
be ragged. Using the B example above, 20 images are needed to fill in
each “layer” of the coarray. If there are, say, 39 images, there is a
coindex [3,6,4], but not [4,6,4]. (Remember that Fortran does things in
column-major order where the left subscript varies the fastest.)

Intrinsic procedures are provided to allow you to find the number of
images, index of your own image, and the cobounds of any coarray.

What makes coarrays so nice is that they are integrated thoroughly
into the Fortran language. You can use a coarray in most places where
a regular variable is allowed, such as:

 > expressions and assignments
 > Arguments to procedure calls
 > I/o statements

this makes a program using coarrays look clean. For example, consider
a Jacobian solver that breaks up the problem into blocks of data. Most
of the calculation involves an image’s local block, but at the edges of
each block it needs to consider values from “halo cells,” those on the
edge of adjacent image’s chunks. Here’s what such code might look
like using coarrays: (figure 1)

the Parallel UnIVerSe

24 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

With Intel® [Visual] Fortran Composer Xe you get coarray support in
a “shared memory” mode, running on a single system. to build a coarray
program just add the –coarray (or /Qcoarray) compiler option and then
run the executable as normal. No special configuration is required. To
add support for a “distributed memory” model across a cluster requires
that you also have a license for Intel® Cluster studio (in addition to
having a cluster.) Yes, this applies to Windows clusters too. (support
for distributed-memory coarray applications on WIndows was added in
Update 6 of Intel® Visual Fortran Composer Xe 2011).

For further reading about Fortran 2008, including coarrays and Do
ConCURRent, you can refer to the following documents from the
Fortran standards committee:

“With Intel® [Visual] Fortran Composer XE you get coarray
support in a “shared memory” mode, running on a single
system. To build a coarray program just add the –coarray
(or /qcoarray) compiler option and then run the executable
as normal. No special configuration is required.“

Fortran defines additional coarray behaviors that ease programming.
For example:

 > You can have ALLoCAtABLe coarrays (and in fact this is
the most common usage), where every allocation is a
synchronization point, to make sure that all images have
allocated their coarrays consistently and completely.

 > All images can do I/o. normally, each has its own set of
unit numbers, but the language says that “standard
output” (unit 6) is preconnected on all images. While an
implementation is not required to “merge the streams,”
Intel Fortran does, so all standard output writes
get displayed on the console where the image is run.
“standard input” (unit 5) is preconnected on image
1 only.

 > every image has an implicit synchronization point at its
start and again at its end.

the language provides several methods of synchronization among
images. the sYnC ALL statement causes all images to wait until all
of them have executed that sYnC ALL the same number of times.
sYnC MeMoRY makes sure that all memory updates have completed
before continuing. sYnC IMAGes is like sYnC ALL, but you restrict
the synchronization to a specified set of images.

There are also locks, declared using the LOCK_TYPE defined in
intrinsic module ISO_FORTRAN_ENV, and LOCK and UNLOCK opera-
tions on these. Lastly, there is the ability to do atomic (uninterrupted)
reads and writes of integer and logical variables through the ATOMIC_
DEFINE and ATOMIC_REF intrinsic procedures (these last are newly
supported as of Intel® Fortran Composer Xe 2013).

my_subgrid(0, 1:my_M) = my_subgrid(my_N, 1:my_M)[my_north_P,me_Q]
my_subgrid(my_N+1, 1:my_M) = my_subgrid(1, 1:my_M)[my_south_P,me_Q]

my_subgrid(1:my_N, my_M+1) = my_subgrid(1:my_N, 1)[me_P, my_east_Q]
my_subgrid(1:my_N, 0) = my_subgrid(1:my_N, my_M)[me_P, my_west_Q]

figure 1

Sign up for future issues | Share with a friend

CoarrayS In the neXt
fortran StanDarD

the new featUreS of
fortran 2008

fortran 2008 StanDarD

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf
http://j3-fortran.org/doc/standing/links/007.pdf

by Todd Rosenquist, Technical Consulting Engineer, Intel® Math Kernal Library
and Shane Story, Manager of Intel® MKL Technical Strategy

Intel® Software toolS reProDUCIBIlIty ControlS

Intel® mKl 11.0
mkl_cbwr_set()
mKl_CBWR (environment variable)

Intel® Composer XE 2013
-fp-model or /fp
KmP_deTeRmInIsTIC_ReduCTIon=yes

Using the Intel® Math kernel library
(Intel® Mkl) and Intel® Compilers
to obtain run-to-run numerical
reproducible results

Floating-point applications from hollywood to Wall street have long faced the challenge of providing
both great performance and exactly the same results from run to run, or in other words, reproducible
results. While the main factor causing a lack of reproducible results is the non-associativity of most
floating point operations, there are other contributing factors such as runtime, selectable optimized
code paths, non-deterministic threading and parallelism, array alignment, and even the underlying
hardware floating-point control settings.
 In this article for Intel® software tool users and programmers, we outline how to use the Intel® Math
Kernel library (Intel® mKl) and Intel® compiler features to balance performance with the reproducible
results applications require. These new reproducibility controls in Intel® Parallel Studio XE 2013 help
make consistent results from run to run possible:

the Parallel UnIVerSe

26 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

“Floating-point applications
from hollywood to Wall
street have long faced the
challenge of providing
both great performance and
exactly the same results
from run to run, or in other
words, reproducible results.“

after many years of seeing software performance
increase with processor clock speed, the last half-decade has seen
the flattening of clock rates and the increasing availability of multicore
systems. With each successive generation of microprocessors,
improvement in software performance requires the use of newly
added instructions to exploit the capabilities of the processor, as well
as threaded algorithms designed to leverage the growing number of
computational cores. to keep up with these changes, many developers
turn to software tools. optimizing compilers exploit opportunities for
instruction and data-level parallelism and can automatically thread
computationally intensive portions of a program. software libraries
provide tools to thread your code or allow you to extract parallelism
automatically through calls to highly optimized, threaded functions.
Many software programmers have adopted and use these high perfor-
mance tools to extract greater levels of performance. In doing so, the
likelihood of generating inconsistent results from run to run has grown.

Let’s consider two scenarios. Artists in animation studios work every
day with advanced modeling tools that allow them to move their
actors through a virtual world. these modeling tools include physics
engines that can simulate the real-world behavior of clothes, hair, or
fluids, and therefore will naturally use floating-point models similar to
those used in science and engineering applications. While accuracy
and precision may not always be the first concern, especially in early
stages of the process, getting the same results can be of the utmost
importance. If a cloak follows a slightly different trajectory each time
the artist runs through a multi-second sequence, the artist has lost
some control over the creative process. Which trajectory will be used
when the scene goes through further rendering and post-processing
steps? the problem would be compounded by the fact that a single
scene may have many such models that may interact to produce
completely unpredictable results.

A second scenario involves mathematicians on Wall street who
develop algorithms for various applications from options pricing to
risk analysis. In this field, getting results quickly means money—and
sometimes a lot of money. the “quants” who develop these algorithms
are faced with a balancing act between getting the answer quickly
and the simulation time required to provide the most reliable answer.
An increase in the performance of an algorithm can mean a decision
sooner or a better decision in the same amount of time—a win in
either case. However, optimized floating-point calculations that are a
part of these models can often introduce rounding error. this means
that if an earlier decision must be revisited and the model run again, it
is possible that the result might be slightly different. the uncertainty
can result in questions or issues later that programmers would prefer
to avoid.

these are just two of many scenarios1 encountered over the last
few years by users of Intel MKL. this is a popular library of highly
optimized parallel floating-point math functions that has been
successfully used by customers in many application areas for over
15 years. For application programmers who demand reproducible results,
there have not been any guarantees and only the limited option of
running a sequential version of the library.

so, what exactly is the reproducibility problem? the issue is rooted
in the way floating-point numbers are represented, the order in which
they are operated on by the computer, and the rounding errors that
may be introduced. It is a well-known fact that for general floating-
point numbers represented in an Ieee single or double precision
format2, the mathematical associative property does not in general
hold.3 In simpler terms, (a + b) + c may not equal a + (b + c).

It may help to consider a specific example. With pencil and paper, 2-63
+ 1 + -1 = 2-63. If, instead we do this same computation on a computer
using double precision floating-point numbers, we get (2-63 + 1)
+ (-1) ≈ 1 + (-1) = 0 since (2-63 + 1) rounds to 1, or possibly 2-63 + (1 + (-1))
≈ 2-63 + 0 = 2-63 through a slight modification in the order of operations.
Clearly 0 does not equal 2-63, so the order of operations not only influ-
ences how and when rounding occurs but also the final computed
result. Compilers typically refer to this ordering ambiguity as re-association.

Introducing application-level parallelism further increases the likelihood
of producing nonreproducible results. the reason is a direct carryover
from the order of operations argument just described. Whenever
work is distributed among multiple threads or processes, any change
in the order of operations within a computational dependency chain
may result in a difference not only in the intermediate results, but also
in the final computed results. Straightforward array element sum and
product reduction operations are simple examples when the array
elements have been distributed across multiple threads; partial sums
or products are computed and then combined across threads into a
single value. Any change in how the arrays are distributed, or the order
in which a thread-specific sum or product is combined with another,
may influence the final reduced sum or product. More broadly, how to
handle parallelism in a consistent and predictable way falls under the
category of deterministic parallelism.4

When you consider that a typical application may do millions of
floating-point operations, it becomes readily apparent how the order
of operations influences the final computed results.

Sign up for future issues | Share with a friend

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com

“With each successive
generation of microprocessors,
improvement in software
performance requires the use
of newly added instructions to
exploit the capabilities of the
processor, as well as threaded
algorithms designed to
leverage the growing number
of computational cores.“

Intel math Kernel library
Intel MKL 11.0 introduces Conditional numerical Reproducibility

functions to help users obtain reproducible floating-point results from
Intel MKL functions under certain conditions.5 When using these new
features, Intel MKL functions are designed to return the same floating-
point results from run to run, subject to the following limitations:

 > Input and output arrays in function calls must be aligned
on 16-, 32-, or 64-byte boundaries on systems with sse/
AVX1/AVX2 instructions support respectively.

 > Control over the number of threads must remain the same
from run to run for the results to be consistent.

the application-related factors within a single executable program
that affect the order in which floating-point operations are computed
include code path selection based on runtime processor dispatching,
data array alignment, variation in number of threads, threaded algorithms,
and internal floating-point control settings. Up until now, users were
unable to control the library’s runtime dispatching and how its functions
were internally threaded. However, they were able to manage the
number of threads, check the floating-point settings, and take steps
to align memory when it is allocated.6

Intel MKL does runtime processor dispatching in order to identify
the appropriate internal code paths to traverse for the Intel MKL
functions called by the application. the code paths chosen may differ
across a wide range of Intel® processors and IA-compatible processors,
and may provide varying levels of performance. For example, an
Intel MKL function running on an Intel® Pentium® 4 processor may run
an sse2-based code path. on a more recent Intel® Xeon® processor
supporting Intel® Advanced Vector extensions (AVX) that same
library function may dispatch to a different code path that uses AVX
instructions. this is because each unique code path has been
optimized to match the features available on the underlying processor.
this feature-based approach to optimization, by its very nature,
amplifies the reproducibility challenges already described. If any of
the internal floating-point operations are done in a different order,
or are re-associated, then the computed results may differ.

See fUll artICle

the Parallel UnIVerSe

28 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_CBWR.PDF
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

ResouRCes and sITes oF InTeResT

the mission of Go Parallel is to assist developers in
their efforts toward “translating Multicore Power into
Application Performance.” Robust and full of helpful
information, the site is a valuable clearinghouse of
multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
this content-rich collection includes Intel® software
network tV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

the Intel® Software evaluation Center
makes 30-day evaluation versions of Intel® software
Development Products available for free download.
For high performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier support account after requesting the
evaluation license, or via Intel® software network Forums.
For evaluating Intel® Parallel studio, you can access free
support through Intel® software network Forums onLY.

what if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
test drive emerging tools, collaborate with peers,
and share your thoughts via the What If blogs and
support forums.

go Parallel

Intel® Software network
“what If” experimental
Software

Step Inside the latest Software
Intel® Software
evaluation Center

the Parallel UnIVerSe

https://swdevtoolsmag.makebettercode.com
http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.go-parallel.com/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

the Parallel UnIVerSe

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

https://swdevtoolsmag.makebettercode.com/
http://software.intel.com/en-us/articles/optimization-notice

DISCoVer the
PerforManCe IMPaCt
for yoUr aPPlICatIonS

©2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Get the mature toolset with an
incomparable breadth and depth of
features for developers—and accelerate
application performance. Intel® Parallel
Studio XE combines industry-leading
compilers, performance and parallel
libraries, error checking and performance
profiling tools for C/C++ and Fortran.

www.intel.com/software/products

http://softwareadrenaline.intel.com

