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Parallel Languages, Language Extensions, and Application Frameworks 
Back in the days of nonstandard programming languages and immature compilers, parallel computing as we 
know it today was still far over the horizon. It was still a niche topic, so practitioners were content with language 
extensions and libraries to express parallelism (e.g., OpenMP*, Intel® Threading Building Blocks, MPI*, pthreads*). 
Programming language design and parallel programming models were separate problems, so they continued 
along distinct research tracks for many years. These tracks would occasionally cross with varying degrees of 
success (e.g., High-Performance Fortran*, Unified Parallel C*), and there were frequent debates about whether the 
memory models of popular languages even allowed parallelism to be implemented safely. However, much was 
learned during this time of debate and experimentation.

Today, parallel computing is so ubiquitous that we’re beginning to see parallelism become a standard part of 
mainstream programming languages. This issue’s feature article, Parallel STL: Boosting Performance of C++ STL 
Code, gives an overview of the Parallel Standard Template Library in the upcoming C++ standard (C++17) and 
provides code samples illustrating its use.

Though it’s not a parallel language in and of itself, we’re still celebrating 20 years of OpenMP, the gold standard 
for portable, vendor-neutral parallel programming directives. In the last issue of The Parallel Universe, Michael 
Klemm (the current CEO of the OpenMP Architecture Review Board) gave an overview of the newest OpenMP 
features. In this issue, industry insider Rob Farber gives a retrospective look at OpenMP’s development and its 
modern usage in Happy 20th Birthday, OpenMP.

I rely on R for certain tasks but I won’t lie to you, it’s not my favorite programming language. I would never have 
thought to use R for high-performance computing (HPC) but Drew Schmidt from the University of Tennessee 
Knoxville makes the case for using this popular statistics language in HPC with R: The Basics. Drew’s article is 
helping to make an R believer out of me.

3The Parallel Universe

Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a long-time high-performance and parallel 
computing practitioner and has published numerous articles on parallel programming. He was editor/coauthor of 
“Developing Multithreaded Applications: A Platform Consistent Approach” and was program manager of the Intel/
Microsoft Universal Parallel Computing Research Centers. 

LETTER FROM THE EDITOR
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New Software for Machine Learning
There’s no denying that machine learning, and its perhaps-more-glamorous nephew, deep learning, are 
consuming a lot of computing cycles these days. Intel continues to add solutions to its already robust machine 
learning portfolio. The latest offering, BigDL, is designed to facilitate deep learning within big data environments. 
BigDL: Optimized Deep Learning on Apache Spark* will help you get started using this new framework. 
Solving Real-World Machine Learning Problems with the Intel® Data Analytics Acceleration Library walks 
through classification and clustering using this library. Two problems taken from the Kaggle predictive modeling 
and analytics platform are used to illustrate, and comparisons to Python* and R alternatives are shown.

Coming Attractions
Future issues of The Parallel Universe will contain articles on a wide range of topics. Stay tuned for articles on 
the Julia* programming language, working with containers in HPC, fast data compression for cloud and IoT 
applications, Intel® Cluster Checker, and much more.

Henry A. Gabb 
April 2017
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Vladimir Polin, Application Engineer, and Mikhail Dvorskiy, Senior Software Development 
Engineer, Intel Corporation

Parallel STl: BooSTing Performance 
of c++ STl code
C++ and the Evolution Toward Parallelism

Computing systems have evolved rapidly from single-threaded SISD architectures to modern 
multi- and many-core SIMD architectures, which are used in various fields and form factors. C++ 
is a general-purpose, performance-oriented language widely used on these modern systems. 
However, until recently, it didn’t provide any standardized instruments to fully utilize these 
modern systems. Even the latest version of C++ has limited features to extract parallelism. 
Over time, vendors invented a variety of specifications, techniques, and software to support 
parallelism1 (Figure 1). The upcoming version of the C++ standard (C++17) introduces Parallel 
STL, which makes it possible to transform existing, sequential C++ code to parallel in order to 
take advantage of hardware capabilities like threading and vectorization.
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1   Landscape of parallelism in C++

Enter Parallel STL
Parallel STL extends the C++ Standard Template Library with the execution policy argument. 
An execution policy is a C++ class used as a unique type to disambiguate function overloading 
for STL algorithms. For convenience, the C++ library also defines an object of each class that 
can be used as the policy argument. Policies can be used with well-known algorithms (e.g., 
transform, for_each, copy_if), as well as new algorithms (e.g., reduce, transform_reduce, variations 
of scan [prefix sum]). Support for parallel execution policies was developed over several years 
as the Technical Specification for C++ Extensions for Parallelism (Parallelism TS). Now it’s been 
adopted as the standard and included in the current C++17 standard draft (document n464022). 
Support for vectorization policies has been proposed for the second version of the Parallelism TS 
(documents p007533 and p007644). Overall, these documents describe five different execution 
policies (Figure 2):

 • The class sequenced_policy (seq) requires that an algorithm’s execution may not be 
parallelized.2

 • The class parallel_policy (par) indicates that an algorithm’s execution may be parallelized.2 Any 
user-specified functions invoked during the execution should not contain data races. 

 • The class parallel_unsequenced_policy (par_unseq) suggests that execution may be 
parallelized and vectorized.2
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 • The class unsequenced_policy (unseq) is a proposal in Parallelism TS v24 of an execution policy 
to indicate that an algorithm’s execution may be vectorized but not parallelized. This policy requires that 
all functions provided are SIMD safe.

 • The class vector_policy (vec) is a proposal4 of an execution policy type to indicate that an 
execution may be vectorized in a way that preserves forward dependency between elements.

2   Execution policies for the C++ Standard Template Library

Figure 2 shows relations between these execution policies. The higher a policy is in the lattice, the 
more execution freedom it allows—but also, the more requirements it puts on the user code. An 
implementation of Parallel STL is allowed to substitute an execution policy with a more restrictive 
one that is lower in the lattice. 
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Become a member › 
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Simplified equivalents of the STL and Parallel STL algorithms can be written as follows:

#include <execution>
#include <algorithm>

void increment_seq( float *in, float *out, int N ) {
    using namespace std;
    transform( in, in + N, out, []( float f ) {
        return f+1;
    });
}

void increment_unseq( float *in, float *out, int N ) {
    using namespace std;
    using namespace std::execution; 
    transform( unseq, in, in + N, out, []( float f ) {
        return f+1;
    });
}

void increment_par( float *in, float *out, int N ) {
    using namespace std;
    using namespace std::execution; 
    transform( par, in, in + N, out, []( float f ) {
        return f+1;
    });
}

Where

std::transform( in, in + N, out, foo );

would be as simple as the following loop

for (x = in; x < in+N; ++x) *(out+(x-in)) = foo(x);

and

std::transform( unseq, in, in + N, out, foo );

would be as simple as the following loop (our implementation uses #pragma omp simd on the 
innermost level; other Parallel STL implementations might use different approaches to implement 
unseq policy)

https://swdevtoolsmag.makebettercode.com/
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#pragma omp simd
for (x = in; x < in+N; ++x) *(out+(x-in)) = foo(x);

and

std::transform( par, in, in + N, out);

would be as simple as the following parallel loop

tbb::parallel_for (in, in+N, [=] (x) {
 *(out+(x-in)) = foo(x);
});

Overview of Parallel STL Implementation  
in Intel® Parallel Studio XE 2018 Beta
The Parallel STL implementation is a part of Intel® Parallel Studio XE 2018 Beta. It offers 
efficient support for both parallel and vectorized execution of algorithms on Intel® processors. 
Under the hood, it uses an available implementation of the C++ standard library for sequential 
execution, Intel® Threading Building Blocks (Intel® TBB) for parallelism with par and par_unseq 
execution policies, and OpenMP* vectorization for unseq and par_unseq policies. 

The Parallel STL implementation in Intel Parallel Studio XE 2018 beta is prerelease code, which 
may not be fully functional and which Intel may substantially modify in future versions.

After installing Parallel STL, you need to set up the environment following the instructions in 
the “Getting Started with Parallel STL” document provided in the package. The document also 
contains the up-to-date list of algorithms that have parallel and vector implementations. For all 
other algorithms, execution policies are accepted but fall back to sequential implementation. We 
plan to enable parallelism in more algorithms in future releases based on feedback and demand. 

To achieve best results with Parallel STL, we recommend using Intel® C++ Compiler 2018. 
Other compilers can also be used, provided they support C++11. For vectorization policies to 
be effective, the compiler should also support OpenMP 4.0 SIMD constructs. Use of parallel 
execution policies requires Intel TBB.
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Follow these steps to add Parallel STL to your application:
1. Add #include “pstl/execution” line to your code. Then add one or more of the following lines, 

depending on the algorithms you intend to use:

a. #include “pstl/algorithm”

b. #include “pstl/numeric”

c. #include “pstl/memory”

Note that “pstl” should be used as part of the header name. This is done intentionally to avoid 
conflicts with the C++ standard library header files. 

2. When using algorithms and execution policies, specify the namespaces std and std::execution, 
respectively.

3. Compile the code as C++11 or later. Use a proper compiler option to enable OpenMP vectorization; e.g., 
for the Intel® C++ Compiler, use -qopenmp-simd (/Qopenmp-simd for Windows*).

4. To get good performance, specify the target platform. For the Intel C++ Compiler, some of the relevant 
options are -xHOST, -xCORE-AVX2, -xMIC-AVX512 for Linux* or /QxHOST, /QxCOREAVX2,  
/QxMIC-AVX512 for Windows.

5. Link with Intel TBB, if required. On Windows, it is done automatically; on other platforms, add -ltbb to 
the linker options.

Intel Parallel Studio XE 2018 beta contains the gamma correction example that can be used to try 
Parallel STL.

Efficient Vectorization, Parallelization, and Composability  
using Parallel STL
In theory, Parallel STL was invented as a highly intuitive way for C++ developers to program a 
parallel random-access machine (PRAM). Let’s consider several ways the theory correlates with 
the best practices of parallelizing loop hierarchies, such as the “vectorize innermost, parallelize 
outermost” (VIPO) approach.5 (Take into account that we are using prerelease software, so 
results can be different in further versions of the software.) Consider the classic example of 
image gamma correction (or simply gamma)—a nonlinear operation used to encode and decode 
the luminance of each image pixel. Note that we have to disable compiler auto-vectorization 
for sequential cases to show the difference between sequential and unsequenced execution. 
(Otherwise, this difference can be seen only with compilers that do not support automatic 
vectorization but do support OpenMP-based vectorization.)

https://swdevtoolsmag.makebettercode.com/
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Here is a simple serial implementation:

#include <algorithm>
void ApplyGamma(Image& rows, float g) {
    using namespace std;
    for_each(rows.begin(), rows.end(), [g](Row &r) {
        transform(r.cbegin(), r.cend(), r.begin(),
            [g](float v) {
            return pow(v, g);
        });
    });
}

The function ApplyGamma gets an image passed by reference as a set of rows and uses 
std::for_each to iterate over them. The lambda function called for each row iterates over the 
pixels in the row with std::transform to modify the luminance of each pixel.

As described previously, Parallel STL provides parallelized and vectorized versions of the 
for_each and transform algorithms enabled with the execution policies. In other words, an 
execution policy passed as the first argument into a standard algorithm leads to execution of the 
parallelized and/or vectorized version of the algorithm.

Returning to the example above, you may notice that all calculations are in the lambda function 
called from the transform algorithm. So, let’s try killing two birds with one stone and rewrite 
the example using the par_unseq policy as follows:

void ApplyGamma(Image& rows, float g) {

    using namespace std::execution;
    std::for_each(rows.begin(),rows.end(), [g](Row &r) {
        // Inner parallelization and vectorization
        std::transform(par_unseq, r.cbegin(), r.cend(), r.begin(),
            [g](float v) {
            return pow(v, g);
        });
    });
}

https://swdevtoolsmag.makebettercode.com/
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3   Inner parallelization and vectorization

Surprisingly, the miracle has not happened (Figure 3). Performance with par_unseq is worse 
than serial execution. So this is a great example of how not to use Parallel STL. If you profile the 
code with tools like Intel® VTune™ Amplifier XE, you might see a lot of cache misses caused by 
threads on different cores writing to the same cache lines, as well as high thread synchronization 
and scheduling overhead. [Editor’s note: This is known as false sharing. For more information, see 
“Avoiding and Identifying False Sharing Among Threads.”]

As we noticed before, Parallel STL helps us to express the middle and innermost level parallel 
patterns. The middle level means parallelization with system threads; the innermost level means 
vectorization with SIMD. In general, to get the best speedup, estimate execution time for an 
algorithm and compare it with parallelization and vectorization overheads. We recommend that 
serial execution time be at least two times more than the overheads on each parallelization level. 
Additionally:

 • Parallelize at the outermost level; seek the maximum amount of work to execute in parallel.

 • If that provides sufficient parallelism, stop. Don’t oversubscribe. Otherwise, parallelize an additional  
inner level.

 • Make sure the algorithm is cache efficient.

 • Try to vectorize the innermost level. Ensure minimal control flow divergence and memory access 
uniformity.

 • Find more recommendations.5

These recommendations suggest that specifying the parallel and vector policies on different levels 
may provide better performance, i.e.,
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void ApplyGamma(Image& rows, float g) {
    using namespace std::execution;
    // Outer parallelization
    std::for_each(par, rows.begin(), rows.end(), [g](Row &r) {
        // Inner vectorization
        std::transform(unseq, r.cbegin(), r.cend(), r.begin(),
            [g](float v) {
            return pow(v, g);
        });
    });
}

4   Outer parallelization and inner vectorization

We now have efficient parallel processing for one image (Figure 4), but real applications typically 
process multiple images or apply several corrections at once (Figure 5). The parallelism at that 
higher level might not work well using the standard algorithms. In this case, we can use Intel TBB 
with Parallel STL in a composable way.

https://swdevtoolsmag.makebettercode.com/
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5   Composability cases

Composability means you can express the topmost parallelism with Intel TBB parallel constructs 
(e.g., flow graph, pipeline) or tasks, and call Parallel STL algorithms at inner levels—all without 
worrying about oversubscribing your system, i.e.,

void Function() {
    Image img1, img2;
    // Prepare img1 and img2
    tbb::parallel_invoke(
        [&img1] { img1.ApplyGamma(gamma1); },
        [&img2] { img2.ApplyGamma(gamma2); }
    );
}

https://swdevtoolsmag.makebettercode.com/
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6   Composability between Intel® TBB and Parallel STL

As shown in Figure 6, processing two images simultaneously with Intel TBB doesn’t reduce 
the performance—and even increases it a bit. This indicates that the expressing of inner and 
innermost parallelism fully utilizes the CPU cores. 

Now let’s consider the situation where we have a larger set of images to process and more CPU 
cores available.

tbb::parallel_for(images.begin(), images.end(), 
[](image* img) {applyGamma(img->rows(), 1.1);}
);

SC16 brought into sharp focus the powerful impact HPC is having on everything from life sciences 
and research to machine learning. Software-defined infrastructure, visualization, analytics, simulation, 
and DNA sequencing were just some of the use cases demonstrated in the Intel Corporation booth 
this year in the HPC Life Sciences Experience. Read the Demo Guide and follow the videos through a 
journey explaining how Intel HPC technologies, encapsulated in the Intel® Scalable System Framework 
(Intel® SSF), are helping to fuel a revolution in cancer cures with innovations that break down barriers 
in supercomputing! 

Supercomputing 2016 HPC Server Demos
BY MIKE P. (INTEL)  > 

Blog HigHligHTS

Read more
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7   Composability between Intel® TBB and Parallel STL

As shown in Figure 7, processing a set of images simultaneously with Intel TBB (parallel_for) 
drastically increases speedup. Indeed, have a look at the first bar where we iterate sequentially 
through the images, and each image is processed by the inner and innermost parallelism 
patterns. Adding just the topmost level of parallelism (parallel_for) without the inner 
parallelism (par) significantly improves performance, but this is not enough to fully utilize all 
of the CPU core. The third bar shows that expressing all levels of parallelism increases the 
performance drastically. This illustrates the great composability between Intel TBB and our 
Parallel STL implementation.

Summary 
Parallel STL is a significant step in the evolution of C++ toward parallel execution, making it easily 
applied to STL algorithms during code modernization and the development of new applications. 
It adds to C++ vectorization and parallelization capabilities without resorting to nonstandard 
or proprietary extensions, and its execution policies provide control over the use of these 
capabilities while abstracting hardware details. Parallel STL lets developers focus on expressing 
the parallelism in their applications without worrying about the low-level details of managing 
that parallelism. In addition to efficient, high-performing implementations of the most commonly 
used high-level parallel algorithms, the Parallel STL implementation in Intel Parallel Studio XE 
2018 showcases the great composability with Intel Threading Building Blocks parallel patterns. 
However, Parallel STL is not a silver bullet. It must be used wisely. To achieve great performance, 
follow best-known practices when modernizing your code.5
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Learn More
Here’s where to find recent Parallel STL and Intel TBB versions and additional information:

 • Intel TBB official site
 • Intel TBB open source site
 • Intel TBB documentation

Your feedback is important and there are several ways to provide it:
 • Intel TBB Forum
 • Intel TBB developers’ mail group
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Smart camera and connected car developers can now deliver fast and efficient video processing in 
media applications with the Intel® Media SDK for Embedded Linux*. This opens the door for optimizing 
video streaming to and from smart camera usages across a host of devices: drones, phones, robotics, 
videocams, cars, players and editors, and more.

Just released, the Intel® Media SDK for Embedded Linux supports the latest Intel Atom®, Pentium®, 
and Celeron® processors as well as Yocto Project* (a comprehensive embedded Linux development 
environment). Together, this SDK along with Intel® processor-based platforms bring real-time computing 
in digital surveillance and new in-vehicle experiences.

Just Released! Intel® Media SDK for Embedded Linux*
BY JEFFERY M. (INTEL)  > 

Blog HigHligHTS

Read more
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Rob Farber, Global Technology Consultant, TechEnablement

HaPPy 20TH BirTHday, oPenmP*
Making Parallel Programming Accessible to C/C++ and Fortran Programmers— 
and Providing a Software Path to Exascale Computation

In October 1997, the OpenMP* Architecture Review Board (ARB) published the v1.0 version of 
the OpenMP Fortran specification, with the C/C++ specification following nearly a year later. At 
that time, the fastest supercomputer in the world, ASCI Red, was based on computational nodes 
containing two 200 MHz Intel® Pentium® Pro processors. (Yes, leadership-class supercomputing at 
that time considered a single-core 200 MHz Intel Pentium processor to be fast.) Built at a cost of 
USD 46 million (roughly USD 68 million in today’s dollars), ASCI Red was the first supercomputer 
to deliver a trillion floating-point operations per second on the TOP500 LINPACK benchmark. It 
was also the first supercomputer to consume a megawatt of power—foretelling a trend to come. 
In contrast, a modern dual-socket Intel® Xeon® processor v4 family is positively a steal, in terms of 
both teraflop computing capability and power consumption.

Dr. Thomas Sterling, director of the Center for Research in Extreme Scale Technologies, 
observes, “OpenMP has provided a vision of single-system programming and execution that 
emphasizes simplicity and uniformity. It challenges producers of system software to address 
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asynchrony, latency, and overhead of control while encouraging future hardware system 
designers to achieve user productivity and performance portability in the era of exascale. The 
last two decades have seen remarkable accomplishment that will lead the next 20 years of 
scalable computing.”

OpenMP: A Forward-Thinking, Developer-Motivated Effort
The OpenMP initiative was motivated by the developer community. There was increasing interest 
during that time for a standard that programmers could reliably use to move code between 
different parallel, shared-memory platforms. 

Before OpenMP, programmers had to explicitly use a threading model such as pthreads, or 
a distributed framework such as MPI, to create parallel codes. (The first MPI standard was 
completed in 1994.) The convenience of simply adding an OpenMP pragma to exploit parallelism 
in a shared-memory model was revolutionary in its convenience. But, at that time, thread-
based computing models were of limited interest, since clusters of single-threaded processors 
dominated the high-performance computing world. It was possible on some hardware platforms 
to purchase extra plug-in CPUs that could provide hardware-based multithreaded performance. 
But, generally, threads were considered more of a software trick to emulate asynchronous 
behavior using OS time slices rather than a route to scalable parallel performance. At that time, 
the thread debate centered more on the use of heavyweight threads (e.g., processes created with 
fork/join) rather than lightweight threads that shared memory. Hardware parallelism inside a 
node was limited to dual- or quad-core processor systems, so OpenMP scaling was a nonissue.

Thus, the 1997 OpenMP specification was very forward thinking, since distributed-memory MPI 
computing was “the” route to parallelism. Basically, it was cheaper and easier to connect lots 
of machines via a network. In a world where Dennard scaling laws applied, faster application 
performance could be achieved by either adding MPI nodes or purchasing machines containing a 
higher–clock rate processor that could run serial software faster. Thus, the big advances around 
that time came from using commodity off-the-shelf (COTS) hardware to build clusters, which 
dominated the parallel computing world (Figure 1). For example, the original 1998 Beowulf 
how-to explains that, “Beowulf is a technology of clustering computers to form a parallel, virtual 
supercomputer,” which “behaves more like a single machine rather than many workstations.” 
There really was no mass scientific or commercial demand for multicore processors—hence, 
multithreaded parallel computing was more a very interesting HPC project than a mainstream 
programming model. The brief, massively parallel single instruction, multiple data (SIMD) 
interlude shown in Figure 1 was short-lived and basically disappeared with the demise of 
Thinking Machines Corporation, the company that manufactured the SIMD architecture CM-2 
supercomputer and later the CM-5 MIMD (multiple instruction, multiple data) massively parallel 
processor (MPP) supercomputer. The SGI Challenge is an example of an SMP (shared-memory 
multiprocessor in this context) from that era.
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1    Percentage of system architectures per year in the TOP 500 (source: top500.org) (Constellations are clusters of large 
SMP systems)

OpenMP Moves into the Spotlight: Dennard Scaling Breaks  
and the Rise of Multicore
Between 2005 and 2007, it became clear that Dennard scaling had broken down and we started 
to see the first modern multicore processors. Since it was no longer possible to achieve significant 
performance increases by boosting the clock rate, manufacturers had to start adding processor 
cores to generate significant performance increases (and a reason to upgrade). This broke the 
comfortable status quo where codes would automatically run faster on the next generation 
of hardware due to clock rate increases. As a result, people started to seriously investigate 
using thread-based computing as a means to increase application performance. Even so, 
most applications exploited parallelism by simply running one serial MPI rank per core on the 
multiprocessor.

In the 2007 to 2008 timeframe, multicore processors began to dominate the performance 
landscape as illustrated by Figure 2, a performance share graph from the TOP500 organization. 
You can clearly see that the trend since then has been toward increasing core counts.
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2   Trend toward increasing core counts to get performance in the TOP500 (source: top500.org)

Code Modernization with OpenMP
Increasing core counts benefited both OpenMP and MPI programs through greater parallelism. 
But the phoenix-like rise of vector parallelism, coupled with higher-core-count processors, has 
really turned OpenMP into a first-class citizen. 
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Many legacy applications utilized the one MPI rank per processor core because parallelism 
was the path to performance on COTS hardware when they were written. This is not to say 
that vectorization was not utilized―especially in HPC codes―but rather to highlight that small 
vector widths in the processors used for COTS clusters bounded the performance benefits. Also, 
programming the vector units was difficult. As a result, many programmers continued to rely on 
increased MPI parallelism to achieve higher application performance. Any benefits of vectorized 
loops in the code that ran inside each MPI rank were a nice additional benefit.

A resurgence in SIMD and data parallel programming, starting around 2006, showed that 
rewriting legacy codes to exploit hardware thread parallelism could deliver significant 
performance increases across a wide variety of applications and computational domains. 

This trend accelerated as it was realized that power efficiency was a key stumbling block on the 
road to petascale―and eventually exascale―computers. The Green500 list debuted in 2007, 
marking the end of the “performance at any cost” era in large-scale computing.

OpenMP was suddenly well positioned to exploit the focus on energy-efficient computing and 
data parallelism. Succinctly, CPUs are general-purpose MIMD devices that can run SIMD codes 
efficiently. Even better, SIMD codes map very nicely onto hardware vector units. Meanwhile, 
MIMD-based task parallelism was simply a loop construct away.

To increase both performance and power efficiency, ever-wider vector instructions have been 
added to the x86 ISA (instruction set architecture). Similar efforts are underway for other ISAs. 
Succinctly, hardware vector units consume relatively small amounts of space on the silicon of 
the chip, yet they can deliver very power-efficient floating-point performance. As a result, the 
floating-point capability of general-purpose processors increased dramatically and the era of 
high-core-count (or many-core) vector parallel processors was born. Examples include the many-
core Intel Xeon and Intel® Xeon Phi™ processors.

Code modernization became a buzzword as people realized that programming one MPI rank per 
core was an inefficient model because it didn’t fully exploit the performance benefits of SIMD, 
data parallel, and vector programming. Making efficient use of the AVX-512 vector instructions 
on the latest generation of hardware, for example, can increase application performance by 8x 
for double-precision codes and by 16x for single-precision codes. Many programming projects 
have switched, or are in the process of switching, to a combined OpenMP/MPI hybrid model to 
fully exploit the benefits of both MPI and OpenMP. The resulting performance increase can be the 
product of the number of cores and vector performance as shown in Figure 3. In fact, the latest 
Intel Xeon Phi processors have two AVX-512 vector units per core.
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3    The highest performance is in the top right quadrant where programmers exploit both vector and parallel hardware 

(Image courtesy of Morgan Kaufmann, imprint of Elsevier, all rights reserved)

OpenMP: State of the Art
The OpenMP standard recognized the importance of SIMD programming and the SIMD clause 
was added to the OpenMP 4.0 standard in October of 2013. Additional clauses were added 
to the OpenMP 4.0 specification so that the offload mode programming of coprocessors and 
accelerators like GPUs is also now supported. OpenMP continues to grow and adapt to the 
changing hardware landscape. 

OpenMP for the Exascale Era
As we look to an exascale future, power consumption is king. The trend for exascale computing 
architectures is to link power-efficient serial cores with parallel hardware―essentially, a hardware 
instantiation of Amdahl’s Law. NERSC notes that the latest Cori supercomputer represents 
the first time users will run on a leadership-class supercomputer where their programs will run 
slower if they don’t do anything to the code. Such is the inescapable consequence of increased 
power efficiency, since power-efficient serial cores for exascale supercomputers simply require 
more time to run sequential code. This trend will likely spill over to the data center, where power 
consumption is crucial to the bottom line and profits, yet it is expected that 5G will increase data 
volumes by up to 1,000x (source: Forbes).
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Happily, OpenMP is now a tried-and-true veteran that gives us performance while still meeting 
the original design goal of a standard that programmers can reliably use to move code between 
different parallel, shared-memory platforms. Performance plus portability: what a lovely 
combination.

Rob Farber is a global technology consultant and author with an extensive background in HPC. 
He is an active advocate for portable parallel performant programming.  
Reach him at info@techenablement.com.

geT STarTed WiTH oPenmP*  
To eXecUTe aPPlicaTionS in Parallel ›
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Oleg Kremnyov, Technical Intern; Ivan Kuzmin, Software Engineering Manager; and Gennady Fedorov, 
Software Technical Consulting Engineer; Intel Corporation

Solving real-World macHine learning 
ProBlemS WiTH inTel® daTa analyTicS 
acceleraTion liBrary

Machine learning plays an important and growing role in the fields of statistics, data mining, 
and artificial intelligence. With the rapid growth of data, there are good reasons to believe that 
learning from data will become even more pervasive—and a necessary ingredient for future 
business growth. At the same time, choosing the right algorithms and libraries to solve a given 
problem depends on many factors, including: 

 • Class of problem (e.g., classification, regression)

 • Input data

 • Required performance

 • Prediction accuracy 

 • Model interpretability 

This creates barriers for the wider adoption of machine learning, which requires varied skill sets. 
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In this article, we will talk about criteria you can use to select correct algorithms based on two 
real-world machine learning problems that were taken from the well-known Kaggle platform 
used for predictive modeling and from analytics competitions where data miners compete to 
produce the best models. We’ll use libraries that implement the algorithms from: 

 • Scikit-learn*, the most popular library among Python* data scientists,

 • R, the language of data analytics and statistical computing, and

 • Intel® Data Analytics Acceleration Library (Intel® DAAL), a performance library that provides 
optimized building blocks for data analysis and machine learning on Intel® platforms. 

Real-world machine learning usually has high CPU and memory requirements, which makes 
Intel® Xeon Phi™ processors an ideal platform. Intel DAAL provides a quick way of building 
machine learning applications optimized for Intel® Xeon® and Intel Xeon Phi processors. We will 
demonstrate how to use KNN (K-nearest neighbors), boosting, and support vector machines 
(SVM) with Intel DAAL on two real-world machine learning problems, both from Kaggle: Leaf 
Classification and Titanic: Machine Learning from Disaster and compare results with the same 
algorithms from scikit-learn and R. 

Why Kaggle?
Kaggle is a platform for predictive modeling and analytics competitions in which companies and 
researchers post their data, and statisticians and data miners from all over the world compete to 
produce the best models.1 As of May 2016, Kaggle had more than 536,000 registered users, or 
“Kagglers.” Spanning 194 countries, the community is one of the largest and most diverse in the 
world. Kaggle has run over 200 data science competitions since it was founded. 

The goal of each competition is to produce the best model for a given real-world problem. The 
model is often evaluated by analyzing its prediction accuracy on a test data set. You can evaluate 
your model in an instance by submitting your prediction on a test data set and seeing your result 
on a leaderboard. 

We will evaluate the models, produced by different algorithms and libraries, to see how they 
perform in Kaggle competitions.

Leaf Classification
There are nearly half a million species of plants in the world. Classifying species has been 
historically problematic, often resulting in duplicate identifications. This Kaggle challenge is to 
accurately identify 99 species of plants using leaf images and extracted features (e.g., shape, 
margin, and texture) to train a classifier. The training data contains 990 leaf images, and the test 
data contains 594 images (Figure 1). Three sets of features are also provided per image: a shape 
contiguous descriptor, an interior texture histogram, and a fine-scale margin histogram (Figure 2). 
For each feature, a 64-attribute vector is given per leaf sample.
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1   Leaf image

2   Features overview

One approach is to apply a list of machine learning algorithms to the training data, evaluate their 
accuracy on validation data, and find optimal algorithms and hyperparameters. Scikit-learn, the 
most popular machine learning library among Python data scientists, provides a wide range of 
algorithms. In the Kaggle kernel, we analyzed the prediction accuracy of 10 algorithms. The 
linear discriminant analysis and KNN algorithms proved to be the best on validation data (see the 
Kaggle kernel for detailed results).

Here is the linear discriminant analysis in Python (scikit-learn):

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis()
clf.fit(X_train, y_train)
test_predictions = favorite_clf.predict(X_test)
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Speed up your workflows and application performance  
with Intel® Distribution for Python*, powered by Anaconda*. 

Download it today free as a community-supported version,  
or test it out as part of a 30-day trial of Intel® Parallel Studio XE.

Download ›

UnleaSH 

on yoUr daTa 

For more complete information about compiler optimizations, see our Optimization Notice.  
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.  
*Other names and brands may be claimed as the property of others. 
© Intel Corporation

faSTer PyTHon*

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-distribution-for-python/try-buy?utm_campaign=cmd_13241-1&utm_source=pum28&utm_medium=pdf&utm_content=python_ad_cta
https://software.intel.com/en-us/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

30The Parallel Universe

And KNN in Python (scikit-learn):

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(k=4)
clf.fit(X_train, y_train)
test_predictions = favorite_clf.predict(X_test)

In R, you can also apply linear discriminant analysis and KNN.

library (MASS)
r <- lda(formula = Species ~ ., data = train)
plda = predict(object = r, newdata = test)
test_predictions = plda$class

KNN in R:

library(class)
test_predictions = knn(X_train, X_test, y_train, k=4)

Intel DAAL provides a scalable version of KNN2 that uses the KD-tree algorithm and low-level 
optimizations to make it extremely fast on Intel® architectures while also providing better accuracy.

KNN training stage in Python (Intel DAAL):

from daal.algorithms.kdtree_knn_classification import training, prediction
from daal.algorithms import classifier, kdtree_knn_classification
trainAlg = kdtree_knn_classification.training.Batch()
trainAlg.input.set(classifier.training.data, X_train)
trainAlg.input.set(classifier.training.labels, y_train)
trainAlg.parameter.k = 4
trainingResult = trainAlg.compute()

KNN prediction stage in Python (Intel DAAL):

predictAlg = kdtree_knn_classification.prediction.Batch()
predictAlg.input.setTable(classifier.prediction.data, X_test)
predictAlg.input.setModel(classifier.prediction.model, 
↳ trainingResult.get(classifier.training.model))
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)
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Figures 3 and 4 show performance comparison graphs. For details on system configurations 
used for benchmarking, see Configurations and Tools Used at the end of this article.

3   Intel® DAAL speedup relative to scikit-learn

4   Intel® DAAL speedup relative to R

Figure 5 shows accuracy comparison graphs:
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5   Accuracy comparison, KNN

It is possible to improve KNN accuracy if we apply it to data with fewer dimensions. According 
to statistical decision theory, if we know the conditional (discrete) distribution P(G|X), 
where G is a label to predict, and we use the 0-1 loss function, then we predict Ĝ(x)=Gk if 
P(Gk|X=x)=maxg∈GP(g|X=x). KNN classification assumes that P(Gk|X=x) is constant in the 
neighborhood of x. Obviously, the larger the number of dimensions, the larger the neighborhood 
of x containing k training samples. In this problem, we do not have a large number of samples, so 
settling for the neighborhood as a surrogate for conditioning will fail miserably. The convergence 
still holds, but the rate of convergence decreases as the dimension increases. See Section 2.4 to 
2.5 of The Elements of Statistical Learning3 for a more detailed explanation.

We can improve KNN accuracy by preprocessing the original data using the linear 
discriminant analysis (LDA) algorithm. In our approach, we preprocessed input data with LDA 
(nComponents=40) and trained the KNN model on the preprocessed data. 

Preprocessing with LDA (Python):

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components = 40)
X_train_reduced = lda.fit_transform(X_train, y_train)
X_test_reduced = lda.transform(X_test)
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KNN in Python (scikit-learn):

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(k=4)
clf.fit(X_train_reduced, y_train)
test_predictions = favorite_clf.predict(X_test_reduced)

Preprocessing with LDA (R):

library (MASS)
r <- lda(formula = Species ~ ., data = train)
plda = predict(object = r, newdata = train)
X_train_reduced = plda$x
plda = predict(object = r, newdata = test)
X_test_reduced = plda$x

KNN in R (class):

library (class)
test_predictions = knn(X_train_reduced, X_test_reduced, y_train, k=4)

KNN training stage in Python (Intel DAAL):

from daal.algorithms.kdtree_knn_classification import training, prediction
from daal.algorithms import classifier, kdtree_knn_classification
trainAlg = kdtree_knn_classification.training.Batch()
trainAlg.input.set(classifier.training.data, X_train_reduced)
trainAlg.input.set(classifier.training.labels, y_train_reduced)
trainAlg.parameter.k = 4
trainingResult = trainAlg.compute()

KNN prediction stage in Python (Intel DAAL):

predictAlg = kdtree_knn_classification.prediction.Batch()
predictAlg.input.setTable(classifier.prediction.data, X_test_reduced)
predictAlg.input.setModel(classifier.prediction.model, 
↳ trainingResult.get(classifier.training.model))
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)
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Figures 6, 7, and 8 show the result of applying data preprocessing. 

6   Intel® DAAL speedup relative to scikit-learn

7   Intel® DAAL speedup relative to R
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8   Accuracy comparison of KNN after preprocessing

Obviously, feature engineering plays a key role in machine learning, and good feature selection 
is critical to achieving accurate predictions. Moreover, Intel DAAL achieves the best accuracy and 
performance among the libraries tested. 

Titanic: Machine Learning from a Disaster
Another Kaggle competition is based on the sinking of the RMS Titanic, one of the most 
infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic 
sank after colliding with an iceberg, killing 1,502 out of 2,224 passengers and crew members. 
This sensational tragedy shocked the world and led to better safety regulations for ships. The 
challenge here is to analyze the different classes of passengers and crew and predict who among 
them survived the tragedy. The input data contains the features shown in Figure 9. See the data 
overview on Kaggle for details.
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9   Titanic original features overview

One approach is to preprocess the data into informative feature vectors that can be used to 
train the machine learning models. Then several classifiers on the preprocessed data should 
be tried to find out which algorithms perform best. In this Kaggle kernel, feature engineering 
is performed. The following features were constructed from the original ones (see Figure 10): 
passenger class, sex, age (transformed with feature binning), passenger fare (transformed with 
feature binning), port of embarkation, is alone (true if person has no siblings/spouse/children/
parents on Titanic), title (Mrs./Miss/Mr./Master). Then, 10 algorithms from scikit-learn were 
tested and their prediction accuracy was compared. The SVM classifier with the Gaussian kernel 
gave the best accuracy (see Kaggle kernel for detailed results). SVM parameters are obtained 
with cross-validation.

10   Titanic preprocessed features overview

SVM in Python (scikit-learn):

from sklearn.svm import SVC
clf = SVC(C = 5, gamma = 1.5)
clf.fit(X_train, y_train)
test_predictions = favorite_clf.predict(X_test)
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SVM in R:

library(e1071)
model <- svm(X_train, y_train, gamma=1.5, cost=5)
test_predictions <- predict(model, X_test)

SVM with the Gaussian kernel involves a lot of time-consuming exponential computations. In 
Intel DAAL, these computations are highly optimized for Intel architectures, enabling us to quickly 
create an SVM model. 

SVM training stage in Python (Intel DAAL):

from daal.algorithms.svm import prediction, training
from daal.algorithms import kernel_function, classifier
import daal.algorithms.kernel_function.rbf
trainAlg = svm.training.Batch()
trainAlg.input.set(classifier.training.data, X_train)
trainAlg.input.set(classifier.training.labels, y_train)
kernel = kernel_function.rbf.Batch()
kernel.parameter.sigma = 1.5
trainAlg.parameter.C = 5
trainAlg.parameter.kernel = kernel
trainAlg.parameter.cacheSize = 60000000 
trainingResult = trainAlg.compute()

SVM prediction stage in Python (Intel DAAL):

predictAlg = svm.prediction.Batch()
predictAlg.input.setTable(classifier.prediction.data, X_test)
predictAlg.input.setModel(classifier.prediction.model,  
trainingResult.get(classifier.training.model))
predictAlg.parameter.kernel = kernel
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)
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Figures 11 and 12 show performance comparison graphs.

11   Intel® DAAL speedup relative to scikit-learn

12   Intel® DAAL speedup relative to R

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

39The Parallel Universe

For more complete information about compiler optimizations, see our Optimization Notice.  
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Figure 13 shows accuracy comparison graphs:

13   SVM accuracy analysis

We see that Intel DAAL and scikit-learn produced the best accuracy and that Intel DAAL has the 
best performance.

We will now apply boosting classifiers to this classification problem. Boosting is one of the most 
powerful learning ideas introduced in the last 20 years. The idea behind boosting is to combine 
the outputs of many weak classifiers to produce a powerful committee.3 We will consider the 
following boosting algorithms: 

 • AdaBoost*

 • BrownBoost*

 • LogitBoost*

 • Gradient boosting 

Numerous resources are available4, 5, 6 with detailed explanations of these algorithms.

Python (scikit-learn), AdaBoost:

from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(n_estimators=1000)
clf.fit(X_train, y_train)
test_predictions = favorite_clf.predict(X_test)
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Python (scikit-learn), gradient boosting:

from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=1000)
clf.fit(X_train, y_train)
test_predictions = favorite_clf.predict(X_test)

Python (Intel DAAL), AdaBoost (training):

from daal.algorithms.adaboost import prediction, training
from daal.algorithms import classifier
trainAlg = training.Batch()
trainAlg.input.set(classifier.training.data, X_train)
trainAlg.input.set(classifier.training.labels, y_train)
trainAlg.parameter. maxIterations = 1000 
trainingResult = trainAlg.compute()

Python (Intel DAAL), AdaBoost (prediction):

predictAlg = prediction.Batch()  
predictAlg.input.setTable(classifier.prediction.data, X_test)
predictAlg.input.setModel(classifier.prediction.model, 
↳ trainingResult.get(classifier.training.model))
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)

Python (Intel DAAL), BrownBoost (training):

from daal.algorithms.brownboost import prediction, training
from daal.algorithms import classifier
trainAlg = training.Batch()
trainAlg.input.set(classifier.training.data, X_train)
trainAlg.input.set(classifier.training.labels, y_train)
trainAlg.parameter. maxIterations = 1000 
trainingResult = trainAlg.compute()
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Python (Intel DAAL), BrownBoost (prediction):

predictAlg = prediction.Batch()
predictAlg.input.setTable(classifier.prediction.data, X_test)
predictAlg.input.setModel(classifier.prediction.model, 
↳ trainingResult.get(classifier.training.model))
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)

Python (Intel DAAL), LogitBoost (training):

from daal.algorithms.brownboost import prediction, training
from daal.algorithms import classifier
trainAlg = training.Batch()
trainAlg.input.set(classifier.training.data, X_train)
trainAlg.input.set(classifier.training.labels, y_train)
trainAlg.parameter. maxIterations = 1000 
trainingResult = trainAlg.compute()

Python (Intel DAAL), LogitBoost (prediction):

predictAlg = prediction.Batch()
predictAlg.input.setTable(classifier.prediction.data, X_test)
predictAlg.input.setModel(classifier.prediction.model, 
↳ trainingResult.get(classifier.training.model))
predictAlg.compute()
predictionResult = predictAlg.getResult()
test_predictions = predictionResult.get(classifier.prediction.prediction)

AdaBoost R (fastAdaBoost):

library(fastAdaBoost)
model <- adaboost(Survived ~ ., train, 1000)
pred <- predict(model, newdata=test)
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LogitBoost R (caTools):

library(caTools)
model <- LogitBoost(X_train, Y_train, nIter=1000)
pred <- predict(model, X_test)

Gradient boosting R (gbm):

library(gbm)
model <- gbm(Survived ~ ., data=train, n.tree = 1000, shrinkage = 1)
predict(model, test, n.trees = 1000)

Figure 14 shows the accuracy of different boosting algorithms.

14   Boosting algorithms accuracy analysis

As we see, the BrownBoost algorithm from Intel DAAL demonstrates the best prediction accuracy.
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Solving Data Analytics Problems Using Machine Learning and Intel DAAL
Selecting an algorithm to solve machine learning problems is a nontrivial problem and requires a 
lot of thought. Libraries, like Intel DAAL or scikit-learn, provide a wide variety of machine learning 
algorithms, so the user can choose the one that best suits the user’s problem.

We demonstrate how you can use Intel DAAL to get all the power of Intel platforms to obtain 
faster model training and prediction. Our benchmarks show that Intel DAAL has a performance 
advantage over scikit-learn and R implementations while also producing more accurate models.
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A recent blog post I wrote about the ESA Schiaparelli crash triggered a discussion about testing, 
execution tools for testing, and the right mindset for testing. If you look back at what I have written in 
the past on this blog and the Wind River blog, there is a recurring theme of expanding testing beyond 
the obvious and testing what cannot be easily tested in the real world (by using simulation). In this 
two-part series of blog posts about testing theory, I will attempt to summarize my thoughts on testing, 
and share some anecdotes along the way.

The Right Mindset for Testing (Testing Theory Part 1)
BY JAKOB ENGBLOM  > 
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Configurations and Tools Used
System configurations used for benchmarking:

Intel® Xeon®:
Model name: Intel® Xeon®CPU E5-2699  

 v4 @ 2.20 GHz
Core(s) per socket: 22
Socket(s):  2
MemTotal: 256 GB

Intel® Xeon Phi™:
Model name: Intel® Xeon Phi™ Processor  

 000A @ 1.40 GHz
Core(s) per socket: 68
Socket(s): 1
RAM: 16 GB

Software tools used in this example:
 • Intel® DAAL 2017 Beta update 2
 • R version 3.3.2
 • scikit-learn version 0.19.1
 • Class package version 7.3-14
 • MASS package version 7.3-45

 • e1071 package version 1.6-8
 • fastAdaBoost package version 1.0.0
 • caTools package version 1.17.1
 • gbm package version 2.1.1

learn more aBoUT 
inTel® daTa analyTicS liBrary (inTel® daal) ›
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HPc WiTH r: THe BaSicS

Some say R is not fit for high-performance computing (HPC). Others say, “No … wait … you’re 
actually serious? R in HPC?”

However, the world is changing. Data analytics is the new hip, cool thing. And whether you see 
tangible benefits in data science, or just dollar signs, the fact is that R excels here. The HPC 
landscape is changing to better accommodate data analytics applications and users. Therefore, 
R is the natural candidate on which to focus your attention due to its overwhelming popularity. 
Fortunately, many have already taken up the call to embed R in HPC environments.

I’m making some assumptions about my audience here. I’m guessing you may not know much 
about R, but are at least curious. Maybe this curiosity is being driven by an application need, a fear 
of missing out (all the cool kids are programming in R), or maybe you have clients increasingly 
asking you about R solutions. Whatever your motivations, welcome. I’m glad to have you. I’m 
also assuming that you’re otherwise fairly well versed in HPC sorts of things. You know what a 
compiler is, and Intel® compilers are your favorites.

Drew Schmidt, Graduate Research Assistant, University of Tennessee, Knoxville
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Given these assumptions, this article will be a bit different. I want to introduce you to the basics 
and introduce some of the competing ideas in the R landscape without trying too hard to pick 
sides. Maybe it’s more exciting to talk about distributed computing with R on thousands of nodes 
and getting interactive speeds on terabytes of data―and we can do that. But given the relative 
obscurity of R in HPC circles, I feel compelled to take some time learning to crawl before we fire 
ourselves out of a cannon.

We’ll begin with a little history and some basics that everyone who picks up R and cares about 
performance ought to know. We’ll spend a little more time talking about integrating compiled 
code into R and then close off with a discussion of parallel computing. It’s a bit of a whirlwind, and 
this article won’t make you an expert on any one topic. But the hope is to give you enough to get 
you started working with R more seriously.

Background
R can trace its roots back to 1976, when John Chambers, then of Bell Labs, began working on S.  
S was originally designed as an interactive interface to a bunch of Fortran code. And, try as you 
might, you just can’t get rid of Fortran, so that’s also pretty much how R works today. R itself was 
released in the early 1990s, created by Ross Ihaka and Robert Gentleman as a free S. Strictly 
speaking, R is a dialect of the S language, which is a very snooty way of saying that there’s a lot  
of S code written in the ’80s that still runs in R.

R is a strange language. One of my favorite examples to demonstrate this is:

typeof(1)
## [1] “double”

typeof(2)
## [1] “double”

# 1:2 is the vector of numbers “1 2”
typeof(1:2)
## [1] “integer”

It sort of makes sense if you stare at it long enough. It’s pretty reasonable to assume that 1:2 
is probably going to be an index of some kind. But it’s still pretty weird. In general, : is a bit 
unpredictable. If you do “1”:”2”, then it will return the vector of ints 1 and 2. So it just does 
an ASCII conversion with chars to ints, right? Except that “A”:”B” errors. And : doesn’t always 
produce integers; you can do 1.5:2.5, for example.
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R has a very vibrant community, boasting over 10,000 contributed packages on its 
Comprehensive R Archive Network (CRAN). These packages represent everything from 
hardcore numerical computing, to cutting-edge statistics and data science methodology, to 
building an interactive data analysis website (it’s called Shiny and it’s amazing). And R’s package 
infrastructure is unparalleled as far as I’m concerned. It’s about as “it just works” a thing as you 
will ever find. So for all the Python* fans who’ve been giggling and nodding “so true” up until this 
point, now might be a good time to explain how a bunch of statisticians who you think have no 
idea what they’re doing somehow managed to create the only packaging framework that isn’t 
abject misery to use.

Now, when I said R was popular, I wasn’t kidding. In 2016, the IEEE Spectrum programming 
language rankings placed R in the number five spot, beating out C# and JavaScript*. What is 
especially interesting about this is that the rankings are of programming languages. And even the 
people who love R will tell you that it’s a terrible programming language. R is just so good for data 
analysis that people are willing to overlook all of its peculiarities to see the really beautiful gem 
hiding underneath.

Said another way, R is a bit like Jack Sparrow from the Pirates of the Caribbean films: it may be 
the worst (language) you’ve ever heard of ... but you have heard of it.

Free Improvements
American comedian W. C. Fields once said, “The laziest man I ever met put popcorn in his 
pancakes so they would turn over by themselves.” I suspect this apocryphal man Fields speaks 
of would have made a fantastic engineer. After all, why work hard when we can let others do the 
hard work for us?

In R, there are a few ways to engage in this kind of giant-shoulder-standing. First―and this should 
hardly come as any surprise―if you compile R with good compilers, you can expect to see some 
nontrivial performance gains. R is written in C, Fortran, and R, so using Intel’s icc and ifort on Intel® 
hardware is a good place to start. And, lucky you, Intel has a very nice article on how to build R 
with Intel compilers.

That is a strong first step in getting good performance out of R. But what about all that R 
code making up base R? R has had a bytecode compiler since version 2.13.0, and it compiles 
R internals for 2.14.0 and later. For code that you write, you have traditionally needed to 
go somewhat out of your way to use the bytecode compiler. However, in version 3.4.0 (due 
for release shortly at the time of this writing), R will include a JIT, making many of the old 
recommendations for using the compiler fairly moot.
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Now, it’s worth pointing out that the bytecode compiler is not nearly as nice as a real compiler. 
If your code has bad design, like unnecessarily computing something, then it’s still going to be 
there; the computation is just executed in its bytecode form. It’s also not an R-to-C translator 
or anything like that. It does best on loop-heavy code (not counting implicit loops), and (from a 
performance standpoint) tends to do next to nothing otherwise. I have seen it improve a loop 
body by the order of 10 percent, and I have seen it affect the performance by 0.01 percent. But 
hey, it doesn’t take any work on your part, so we’ll take what we can get.

These improvements are all fine and will definitely help with the runtime of your R code, but it 
won’t blow your socks off. Now, if you’re looking to buy a new pair of socks, then you can get 
really impressive performance gains by choosing good LAPACK and BLAS libraries. These are 
de facto standard numerical libraries for matrix operations, and R uses them to power its low-
level linear algebra, and most of its statistical operations. Ironically, perhaps the most important 
operation in statistics, linear regression, does not use LAPACK. Instead, it uses a highly modified 
version of LINPACK. No, not the benchmark that runs on supercomputers. I’m talking about the 
’70s predecessor to LAPACK. The reasons for this are a bit complicated, but there are reasons. So 
your fancy tuned LAPACK won’t help with linear regression, but it can still take advantage of good 
level-one BLAS.

The Intel® Software Innovator Program supports innovative, independent developers who display an 
ability to create and demonstrate forward-looking projects. Through their expertise and innovation 
with cutting-edge technology, innovators demonstrate a spirit of ingenuity, experimentation, and 
progressive thinking that inspires the greater developer community in key focus areas. The Intel 
Software Innovator Program has several technical focus areas that are broken into different branches 
of the program, and in this article, we are featuring Networking.

Intel® Networking Developer Zone

Software Defined Networking (SDN) and Network Function Virtualization (NFV) require flexibility 
in packet processing functions that in turn require software implementation of the data plane. The 
Networking program supports the developer working on enabling SDN and NFV on x86-based high 
volume servers. Intel® architecture provides a standard, reusable, shared platform for SDN/NFV that is 
easy to dynamically upgrade, maintain, and scale.

Network Software Developers – Are You Part of the Future?
BY ELIZABETH WARNER (INTEL) > 
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R ships with the so-called “reference” BLAS, which is bone-achingly slow. The above example 
notwithstanding, if you link R with good BLAS and LAPACK implementations, then you can 
expect to see significant performance improvements. And, as luck would have it, Intel has a very 
high-quality implementation in the Intel® Math Kernel Library (Intel® MKL). Microsoft offers a 
distribution of R, which, to my understanding, is R compiled with Intel compilers and shipped with 
Intel MKL. They call it Microsoft R Open*, and it is freely available. They also maintain a detailed 
collection of benchmarks demonstrating the power of Intel MKL. Or, if you prefer, you can follow 
Intel’s own documentation for linking R with Intel MKL.

And for those of you with all the newest, fanciest toys: yes, this applies to MIC accelerators as 
well. A lot of the early work on this comes from the fine folks at the Texas Advanced Computing 
Center (TACC), who have done quite a bit of experimenting with using Intel MKL Automatic 
Offload. To say that things work well is a bit of an understatement, and R users with a few Intel® 
Xeon Phi™ processors lying around should seriously consider trying this for themselves. If you 
aren’t sure where to start, Intel has also produced a very handy guide to help you with exactly 
this kind of thing.

Leveraging Compiled Code
One of the interesting revolutions happening in the R world today is the increasing use of C++ in 
R packages. Most of the credit for this belongs to Dirk Eddelbuettel and Romain Francois, who 
created the Rcpp package. Rcpp makes it significantly easier to incorporate C++ code into an R 
analysis pipeline. Yes, somehow they managed to convince a bunch of statisticians who thought 
Python was too complicated to program in C++. I’m just as amazed as you are. But however 
they managed to pull it off, we are all the beneficiaries. This means that CRAN packages are only 
getting faster and consuming less memory. And those using the Intel compilers stand to benefit 
the most from this revolution, because, as we discussed earlier: better compiler, faster code.

Now, for those who prefer vanilla C, R has a first-class C API. In fact, it’s on this foundation that 
Rcpp is built; although I think it’s fair to say that Rcpp goes to much greater lengths. But getting 
back to the C API, this is also convenient for those who can tolerate Fortran and are willing 
to write a C wrapper and don’t want to bring the C++ linker to the party. This API is mostly 
documented in the Writing R Extensions manual, which is an indispensable resource for anyone 
working with R. However, to answer some questions that arise, you may find yourself poking 
around R’s header files if you go this route.
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For the Rcpp route, you install it as you would any other R package, namely:

install.packages(“Rcpp”)

For a quick example of the power of this package, let’s take a look at the “numerical Hello World,” 
the Monte Carlo integration, to find π that you’ve seen a million times before. In R, you might write 
something like this:

mcpi <- function(n)
{
  r <- 0L
  
  for (i in 1:n){
    u <- runif(1)
    v <- runif(1)
    
    if (u*u + v*v <= 1)
      r <- r + 1L
  }
  
  return(4*r/n)
}

Now when I say “you might write,” I am again assuming you’re not that familiar with R. Probably no 
experienced R user would ever write such a thing. One could reasonably argue that it looks a bit 
like C. The best advice I could give to anyone who ever inherits an R codebase for the purposes of 
making it faster is: the more it looks like C, the worse it will run in R, but the easier it is to convert 
to C/C++. The inverse is also true, in that the less it looks like R, the harder it is to convert. A more 
natural R solution is the following vectorized gibberish:

mcpi_vec <- function(n)
{
  x <- matrix(runif(n * 2), ncol=2)
  r <- sum(rowSums(x^2) <= 1)
  
  return(4*r/n)
}
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Like in every other high-level language, the use of vectorization will improve the runtime 
performance, but also gobble up a lot more RAM. So instead, let’s forget all this R business and 
just write a version in C++:

#include <Rcpp.h>

// [[Rcpp::export]]
double mcpi_rcpp(const int n)
{
  int r = 0;
  
  for (int i=0; i<n; i++){
    double u = R::runif(0, 1);
    double v = R::runif(0, 1);
    
    if (u*u + v*v <= 1)
      r++;
  }
  
  return (double) 4.*r/n;
}

Now, except for that mysterious Rcpp::export bit, that probably looks like very readable C++. 
Well, it turns out that the mysterious bit will handle the generation of all of the “boilerplate” code. 
In R, there are no scalars (hey, I told you it was a weird language), only vectors of length 1. So, 
behind the scenes, Rcpp is actually handling this mental overhead for you and, in its wrapper, will 
create a length 1 double vector for you. As a general rule, we can play this game with integers and 
doubles, and vectors of these basic types. More complicated things involve more complications. 
But hey, that’s pretty nice, right?

To compile/link/load and generate the various boilerplates, we need only call sourceCpp() to 
make the function immediately available to R:

Rcpp::sourceCpp(file=”mcpi.cpp”)
mcpi_rcpp(10000)
## [1] 3.1456

Eagle-eyed readers may be wondering, “Isn’t ‘10000’ here a double?” And you’d be correct in 
thinking so, because it is. We could demand an integer by calling with 10000L―that’s an ordinary 
32-bit integer, mind you―but Rcpp will automatically handle type conversions for you. It’s 
actually handling the conversion exactly as the R code versions are. This has fairly obvious pros 
and cons, but it’s the approach they took, and is worth noting and being aware of.
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We can easily compare the performance of the three using the rbenchmark or microbenchmark 
packages. I happen to prefer rbenchmark, which goes something like:

library(rbenchmark)

n <- 100000
cols <- c(“test”, “replications”, “elapsed”, “relative”)
benchmark(mcpi(n), mcpi_vec(n), mcpi_rcpp(n), columns=cols)
##           test replications elapsed relative
## 1      mcpi(n)          100  49.901  214.167
## 2  mcpi_vec(n)          100   1.307    5.609
## 3 mcpi_rcpp(n)          100   0.233    1.000

And hey, that’s pretty good! Now, of course, this opens up opportunities for things like OpenMP* 
or Intel® Threading Building Blocks (Intel® TBB). But speaking of parallelism…

Parallel Programming
Since version 2.14.0, R ships with the parallel package. This allows for pretty simple task-level 
parallelism by offering two separate APIs, one using sockets, and one using the OS fork. The 
reason for the two interfaces is one part historical, in that they are derived from the older 
contributed packages, multicore and snow. But the desire to keep both is probably best explained 
by R core’s desire to support all platforms, even Windows* (which lacks fork). On a non-
Windows platform, the function of interest is mclapply(), and it’s the multicore lapply()―
so named because it applies a function and returns a list. Here R flexes some of its functional 
programming muscles:

lapply(my_data, my_function)
parallel::mclapply(my_data, my_function)

The data can be an index or convoluted list of very large, complex objects. So long as the 
supplied function can handle the inputs, it’ll work.

Now that’s one of the two officially supported interfaces. The other is more complicated and 
generally only used by Windows programmers. This creates a bit of a rift for R users. This is purely 
my own opinion, but I feel that R users don’t really like having multiple options as much as your 
regular programmer working in another language. They want one good way to do things and for 
that to be the end of the discussion. It’s to this end that (ironically) several projects have emerged 
to try to unify all of the disparate interfaces. These include the older and more established 
foreach package, as well as the newer BiocParallel from the Bioconductor project.
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You might wonder what the big deal is about having two separate interfaces. Well, in fact, there 
are many more packages that enable parallelism in R. The HPC Task View is a good resource to 
discover the many options.

If it sounds to you like most of the focus and interest has been on shared-memory parallelism, 
you’d be right. The R community in general has been a bit resistant to caring much about 
performance until relatively recently. I think this is largely because the R mind-space is still 
dominated by the statistics side of data science. Most big data problems in statistics, frankly, 
aren’t. You can still manage to get a lot done by just downsampling your data and using classical 
statistics techniques. It’s not the right tool for every job, but it certainly has its place―and if 
anything, these tools are underappreciated.

But none of that involves supercomputers, so forget that nonsense. Let’s talk about MPI. The 
Rmpi package dates all the way back to 2002. More recently, the Programming with Big Data 
in R (pbdR) project has been developing packages for doing large-scale computing with R in 
supercomputing environments. Now, full disclosure: I work on that project. As such my opinions 
on it are naturally biased. But I think we have a few interesting things to show you.

We maintain quite a few packages, and generally try to bring the best of HPC to R for data 
analysis and profiling. For the sake of brevity, let’s just focus on direct MPI programming. We’ll 
briefly compare Rmpi and our package, pbdMPI. First, and this is a big one, Rmpi can be used 
interactively, but pbdMPI cannot. This is because pbdMPI is designed to be used exclusively in 
single program, multiple data (SPMD) style, whereas Rmpi is really meant to work in a  
manager/worker style. If you’ve ever submitted a batch job on a cluster using MPI, you were 
almost certainly writing in SPMD. It’s one of those ideas that’s so intuitive, if you’ve never heard 
of it before, you’ll be surprised it even has a name. So for those coming to R from the HPC world, 
pbdMPI should feel right at home.
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Beyond the programming style, there are some serious differences between the APIs of the two 
packages. In Rmpi, you need to specify the type of the data. For example:

library(Rmpi)
mpi.allreduce(x, type=1) # int
mpi.allreduce(x, type=2) # double

Remember our type example from the beginning? In pbdMPI, we use a lot of R’s object-oriented 
facilities to try to automatically handle these and other low-level details:

library(pbdMPI)
allreduce(x)

It’s a small example but a good demonstration of our philosophy. We think the HPC community 
does great work, but we also think HPC tools are too hard to use for most people and should be 
made simpler.

For a slightly more substantive example, let’s take a quick look at parallel “Hello World.” Now, we 
mentioned that pbdMPI has to be used in batch mode. The downside is that R users have trouble 
thinking in terms of batch rather than interactive processing. The upside is that it plays well with 
all of the HPC things like resource managers and job schedulers that you already know about. Say 
we wanted to run our “Hello World” example:

library(pbdMPI)

comm.print(paste(“Hello from rank”, comm.rank(), “of”, comm.size()), all.
rank=TRUE)

finalize()

We just need to make the appropriate call to mpirun (or your system’s equivalent):

mpirun -np 2 Rscript hello_world.r
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Which gives the output you would expect:

[1] “Hello from rank 0 of 2”
[1] “Hello from rank 1 of 2”

Summary
There’s a famous saying in statistics circles, attributed to George Box: All models are wrong, but 
some are useful. Well, I posit that all programming languages are bad, but some are useful. R 
is perhaps the ultimate expression of this idea. After all, there has to be something to it if it’s 
held up for 40 years (counting S) and is currently ranked fifth among programming languages. 
And while R has a reputation for being slow, there are definitely strategies to mitigate this. Use 
a good compiler. Good BLAS and LAPACK will improve the performance of many data science 
operations. Embedding compiled kernels in your R analysis pipeline can greatly enhance 
performance. And, when in doubt, throw more cores at your problem.

Try inTel® comPilerS,  
ParT of inTel® Parallel STUdio Xe ›
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Jason Dai, Senior Principal Engineer, and Radhika Rangarajan, Technical Program Manager, Intel Corporation

Bigdl: oPTimized deeP learning  
on aPacHe SPark*
Making Deep Learning More Accessible with an Open Source,  
Distributed Deep Learning Framework 

Artificial intelligence (AI) plays a central role in today’s smart and connected world—and is 
continuously driving the need for scalable, distributed big data analytics with deep learning 
capabilities. There is also an increasing demand to conduct deep learning in the same cluster 
along with existing data processing pipelines to support feature engineering and traditional 
machine learning. To address the need for a unified platform for big data analytics and deep 
learning, Intel recently released BigDL, an open source distributed deep learning framework for 
Apache Spark*. In this article, we’ll discuss BigDL features and how to get started building models 
using BigDL.
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BigDL is implemented as a library on top of Spark (Figure 1), allowing easy scale-out computing. 
With BigDL, users can write their deep learning applications as standard Spark programs, which 
can directly run on top of existing Spark or Hadoop* clusters.

 1   BigDL implementation

Overview of BigDL
BigDL brings native support for deep learning functionalities to big data and Spark platforms by 
providing:

 • Rich, deep learning support. Modeled after Torch, BigDL provides comprehensive support for deep 
learning, including numeric computing (e.g., Tensor) and high-level neural networks. In addition, users 
can load pretrained Caffe* or Torch models into Spark programs using BigDL.

 • Extremely high performance. To achieve high performance, BigDL uses Intel® Math Kernel Library 
(Intel® MKL) and multithreaded programming in each Spark task. Consequently, it is orders of 
magnitude faster than out-of-box open source Caffe, Torch, or TensorFlow* on a single-node Intel® 
Xeon® processor (i.e., comparable with mainstream GPU).

 • Efficient scale-out. BigDL can efficiently scale out to perform data analytics at big data scale by 
leveraging Apache Spark, as well as efficient implementations of synchronous SGD and all-reduce 
communications on Spark.

Native integration with Spark is a key advantage for BigDL. Since it is built on top of Spark, it is 
easy to distribute model training, the computationally intensive part of deep learning. Rather than 
requiring the user to explicitly distribute the computation, BigDL automatically spreads the work 
across the Spark cluster.

BigDL supports Hadoop and Spark as unified data analytics platforms (for data storage, data 
processing and mining, feature engineering, classical machine learning, and deep learning) and 
makes deep learning more accessible to big data users and data scientists.

Typical BigDL use cases include: 
 • Analyzing a large amount of data using deep learning technologies, on the same big data (Hadoop 

and/or Spark) cluster where the data are stored (in, say, HDFS*, HBase*, Hive*, etc.) to eliminate a large 
volume of unnecessary data transfer between separate systems.

 • Adding deep learning functionalities (either training, fine-tuning, or prediction) to the big data (Spark) 
programs and/or workflow to reduce system complexity and the latency for end-to-end learning.

 • Leveraging existing Hadoop and/or Spark clusters to run the deep learning applications, which can 
then be dynamically shared with other workloads (e.g., ETL, data warehousing, feature engineering, 
classical machine learning, graph analytics, etc.).
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Getting Started with BigDL
BigDL provides comprehensive support for deep learning, including numeric computing 
(e.g., Tensor), high-level neural networks, as well as distributed stochastic optimizations (e.g., 
synchronous minibatch SGD and all-reduce communications on Spark). Table 1 summarizes the 
abstractions and APIs provided by BigDL.

Name Descriptions

Tensor Multidimensional array of numeric types (e.g., Int, Float, Double)

Module
Individual layers of the neural network (e.g., ReLU, Linear, SpatialConvolution, 
Sequential)

Criterion Given input and target, computing gradient per given loss function

Sample A record consisting of feature and label, each of which is a tensor

DataSet
Training, validation, and test data; one may use Transformer to perform series of 
data transformations (w/ -> operators) on DataSet

Engine
Runtime environment for the training (e.g., node#, core#, spark versus local, 
multithreading)

Optimizer
Stochastic optimizations for local or distributed training (using various OptimMethod 
such as SGD, AdaGrad)

Table 1. BigDL abstractions and APIs

A BigDL program can run either as a local Scala/Java* program or as a Spark program. [Editor’s 
Note: Python* support will be available shortly and may even be available by the time this article 
is published.] To quickly experiment with BigDL code as a local Scala/Java program using the 
interactive Scala shell (REPL), one can first type:

$ source PATH_To_BigDL/scripts/bigdl.sh
$ SPARK_HOME/bin/spark-shell --jars bigdl-0.1.0-SNAPSHOT-jar-with-dependencies.
jar
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The Scala shell will show something like:

Welcome to
    ____              __
   / __/__  ___ _____/ /__
  _\ \/ _ \/ _ `/ __/  ‘_/
 /___/ .__/\_,_/_/ /_/\_\  version 1.6.0
    /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_79)
Spark context available as sc.
scala> 

One can then experiment with the Tensor APIs in BigDL as follows:

scala> import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.Tensor

scala> Tensor[Double](2,2).fill(1.0)
res9: com.intel.analytics.bigdl.tensor.Tensor[Double] =
1.0   1.0
1.0   1.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 2x2]

One can also experiment with the Module APIs in BigDL as follows:

scala> import com.intel.analytics.bigdl.numeric.NumericFloat // import global 
float tensor numeric type
import com.intel.analytics.bigdl.numeric.NumericFloat

scala> import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn._

scala> val f = Linear(3,4) // create the module
mlp: com.intel.analytics.bigdl.nn.Linear[Float] = nn.Linear(3 -> 4)

// let’s see what f’s parameters were initialized to. (‘nn’ always inits to 
something reasonable)
scala> f.weight
res5: com.intel.analytics.bigdl.tensor.Tensor[Float] =
-0.008662592  0.543819    -0.028795477
-0.30469555   -0.3909278   -0.10871882
0.114964925   0.1411745    0.35646403
-0.16590376   -0.19962183   -0.18782845
[com.intel.analytics.bigdl.tensor.DenseTensor of size 4x3]

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

61The Parallel Universe

Building a Simple Text Classifier with BigDL
Going beyond APIs, let’s see how to build a text classifier using a simple convolutional neural 
network (CNN) model.

A BigDL program starts with import com.intel.analytics.bigdl._ and then initializes the 
engine (including the number of executor nodes, the number of physical cores on each executor, 
and whether it runs on Spark or as a local Java program):

 val sc = new SparkContext(
  Engine.init(param.nodeNum, param.coreNum, true).get
   .setAppName(“Text classification”)
   .set(“spark.akka.frameSize”, 64.toString)
   .set(“spark.task.maxFailures”, “1”))

After that, the example broadcasts the pretrained word embedding and loads the input data 
using RDD transformations (vectorizedRdd): 

 // For large dataset, you might want to get such RDD[(String, Float)] from 
HDFS
 val dataRdd = sc.parallelize(loadRawData(), param.partitionNum)
 val (word2Meta, word2Vec) = analyzeTexts(dataRdd)
 val word2MetaBC = sc.broadcast(word2Meta)
 val word2VecBC = sc.broadcast(word2Vec)
 val vectorizedRdd = dataRdd
   .map {case (text, label) => (toTokens(text, word2MetaBC.value), label)}
   .map {case (tokens, label) => (shaping(tokens, sequenceLen), label)}
   .map {case (tokens, label) => (vectorization(
    tokens, embeddingDim, word2VecBC.value), label)}

It then converts the processed data (vectorizedRdd) to an RDD of Sample, and then randomly 
splits the sample RDD (sampleRDD) into training data (trainingRDD) and validation data 
(valRDD):

 val sampleRDD = vectorizedRdd.map {case (input: Array[Array[Float]], 
                      label: Float) =>
   Sample(
    featureTensor = Tensor(input.flatten, Array(sequenceLen, embeddingDim))
     .transpose(1, 2).contiguous(),
    labelTensor = Tensor(Array(label), Array(1)))
  }

 val Array(trainingRDD, valRDD) = sampleRDD.randomSplit(
  Array(trainingSplit, 1 - trainingSplit))
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After that, the example builds the CNN model by calling buildModel:

 def buildModel(classNum: Int): Sequential[Float] = {
  val model = Sequential[Float]()
  model.add(Reshape(Array(param.embeddingDim, 1, param.maxSequenceLength)))
  model.add(SpatialConvolution(param.embeddingDim, 128, 5, 1))
  model.add(ReLU())
  model.add(SpatialMaxPooling(5, 1, 5, 1))
  model.add(SpatialConvolution(128, 128, 5, 1))
  model.add(ReLU())
  model.add(SpatialMaxPooling(5, 1, 5, 1))
  model.add(SpatialConvolution(128, 128, 5, 1))
  model.add(ReLU())
  model.add(SpatialMaxPooling(35, 1, 35, 1))
  model.add(Reshape(Array(128)))
  model.add(Linear(128, 100))
  model.add(Linear(100, classNum))
  model.add(LogSoftMax())
  model
 }

It then creates the Optimizer, passes the RDD of training data (trainingRDD) to the Optimizer 
(with specific batch size), and finally trains the model (using Adagrad as the optimization method, 
and setting relevant hyperparameters in state):

 val optimizer = Optimizer(
  model = buildModel(classNum),
  sampleRDD = trainingRDD,
  criterion = new ClassNLLCriterion[Float](),
  batchSize = param.batchSize
 )
 val state = T(“learningRate” -> 0.01, “learningRateDecay” -> 0.0002)
 optimizer
  .setState(state)
  .setOptimMethod(new Adagrad())
.setValidation(Trigger.everyEpoch, valRDD, Array(new Top1Accuracy[Float]),
        param.batchSize)
  .setEndWhen(Trigger.maxEpoch(2))
  .optimize()

Building an End-to-End Application with BigDL
With BigDL, users can build end-to-end AI applications using a single analytics pipeline based on 
Spark, including data management, feature management, feature transformations, model training 
and prediction, and results evaluation. We have worked with customers in different domains and 
developed end-to-end solutions using BigDL for fraud detection and defect detection, to name a 
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couple. Figure 2 illustrates an end-to-end image recognition and object detection pipeline built 
using BigDL on Spark, which collects and processes large volumes of images from manufacturing 
pipelines and automatically detects product defects from these images (using convolutional 
neural network models on BigDL).

2   End-to-end image recognition and object detection pipeline

Making Deep Learning Accessible
In this article, we discussed BigDL, an open source distributed deep learning framework for 
Apache Spark. BigDL makes deep learning more accessible to big data users and data scientists 
by allowing users to write their deep learning applications as standard Spark programs, and to 
run these deep learning applications directly on top of existing Spark or Hadoop clusters. As a 
result, it makes Hadoop/Spark a unified platform for data storage, data processing and mining, 
feature engineering, traditional machine learning, and deep learning workloads, which can 
provide better economy of scale, higher resource utilization, ease of use/development, and  
better TCO.

geT STarTed 
geT Bigdl from giTHUB* ›
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