
Performance Tools for Today's HPC: Are We Addressing the Right Issues?

Cherri M. Pancake
Northwest Alliance for Computational Science and Engineering

Oregon State University
pancake@nacse.org

Abstract

HPC application developers can no longer afford the luxury of programming to just one platform. The
usefulness and longevity of software now depend on portability as well as performance. This paper
examines the appropriateness of existing tools in developing and tuning applications that must be both
efficient and portable. A series of design tradeoffs have been made, with the result that today's tools are
slanted toward one goal or the other but don't respond adequately to both. These tradeoffs are explored
through a series of examples drawn from current tools. Suggestions are presented for how tools might
better support the evolving needs of HPC programmers.

The past ten years have borne witness to a remarkable evolution in high-performance computing
(HPC) architectures. As recently as 1993, the norm was still a tightly-coupled collection of
custom-built, homogeneous processors with on-board memory. Today, the system an HPC
programmer deals with is likely to be a loosely coupled or distributed aggregate of commodity
components, where individual nodes may be heterogeneous and may, in turn, include
heterogeneous processors and multiple levels of memory. Programming models, too, have
changed -- although not as much, perhaps, as they ought. Where message-passing was the single
dominant paradigm in the early 1990s, today's HPC applications are likely to combine message-
passing modules with code that uses shared-memory operations and library routines employing
low-level thread primitives.

As a result, the concept of a parallel application exhibiting good performance characteristics has
become almost an oxymoron. A decade ago, HPC programming was a difficult task [10],
requiring a great deal of human effort and a healthy dose of insight in order to achieve
efficiency rates on the order of 20-50%. The achievable percentage has dropped steadily over
recent years [8], and on today's machines is more likely to be 2-5%. Yet performance remains a
key goal for most HPC application developers [9], and it is interesting to speculate just how bad
efficiency might be if programmers were not making efforts to achieve it.

A second result of the evolutionary path of HPC systems is that code portability has become of
critical importance. Programming for a single platform is no longer practical. The typical
hardware lifespan is often less than the software development cycle, meaning that a program
may never actually run on the machine where it was developed. For a variety of sociopolitical
reasons, there is also an increasing need to run parallel applications at multiple sites or across
computational grids, where different system configurations and perhaps very different
architectures are in use. Similarly, there is increasing pressure on HPC developers to extend the
useful lifetime of software by re-using components from previous applications and by linking
applications to form complex aggregates (e.g., linking hydrologic and atmospheric models to
study global cycles of carbon dioxide). Code portability is clearly important in addressing all of
these issues.



The need for portability affects the application development process in profound ways. The
programmer must now deal with multiple target machines and as users point out, these targets
change constantly [2]. It is not just a matter of adjusting the application to new machine
architectures. Each revision of the application development environment (i.e., each new release
of the operating system, compiler, system libraries, etc.) can expose new bugs or
incompatibilities, even when the application itself has not been altered. Since these revisions
tend to be very frequent in HPC environments, a portable code must constantly be re-tested and
re-evaluated -- in effect, it is always under revision [2, 8].

The situation has been complicated by the emergence of heterogeneous applications. In some
cases, it is perfectly natural for an application to span multiple platforms, since components may
have very different computational requirements (e.g., a computational model that receives input
from a signal-processing stream and channels output to a volume-rendering component). In
others, variations in the availability of distributed computing resources -- due to differences in
peak-hour schedules, institutional priorities, etc. -- have precipitated an interest in exploiting
other groups' resources by means of computational grids.

Platform variability applies to other aspects of the program development environment as well. It
is no longer the case that programmers log directly into a target HPC machine. Typically, the
user accesses a desktop system, which in turn communicates with the HPC machine or,
increasingly, an intermediate host machine. The user may never interact directly with the target
system at all. Instead, he or she may develop and test code on other systems and later submit the
application in the form of batch jobs that will be scheduled for execution on the target. New
possibilities for error or incompatibility may be introduced at each level; the user might not even
be aware of the differences from one level to the next.

Given this context, what should performance tools do to facilitate the application developer's
task? This paper outlines four key characteristics of today's HPC applications and discusses the
extent to which performance tools support or hinder them. It will be seen that a series of design
tradeoffs have been made, with the result that tools are slanted toward efficiency or portability,
but don't respond adequately to both. In each case, suggestions are presented for how tool
support might be improved to better meet the evolving needs of HPC programmers.

Supporting Code Portability

Perhaps the most obvious characteristic of current HPC applications is that they need to run on
many different computing platforms, some of which may be heterogeneous and/or
distributed. This is the essence of the code portability problem: the need to execute correctly
despite variation in the underlying architecture, operating system, or software libraries.

There is no doubt that this challenges the capabilities of performance tools. They are responsible
for acquiring and analyzing data from hardware and software counters, event logs, and other
run-time sources. In the absence of standards for what data are to be collected, or how they are
to be represented, tools are limited in their ability to generalize results across different
machines. Unfortunately, tool developers have made the tradeoff that although a given tool may
run on multiple HPC platforms, support for code portability is incomplete. There are two
aspects to this problem.

First, it is the tool back-end that has been re-targeted, not the front-end. Tools suck as Vampir



[6], DEEP [1], and Jumpshot [15] have all been implemented for the most common target HPC
hosts. With one exception, however, their front-ends must execute on UNIX workstations. (In
fact, many tools interfaces are not even tested rigorously across the full range of UNIX and
LINUX variants.) This does not respond to the exigencies of most user sites, where Windows
and Macintosh desktop systems are also commonplace. Given the widespread availability of
Web browsers with plug-in capabilities, the problem can be solved, but to date only Jumpshot
[15] has attempted to do so.

Second, current tools are not capable of running across multiple platforms. This means that
even if a tool has been ported to different architectures or operating environments, it is not
possible to apply the tool to analyze the performance of a heterogeneous application -- even
when the heterogeneity is restricted to platforms from a single vendor. At best, the performance
of heterogeneous components must be analyzed on an individual basis. For computational grid
applications, which may be assigned to arbitrary computers at each execution, no tools are
currently available.

To summarize, tools may support portability by being available for more than one target
platform, but they do not yet accommodate variability in display (desktop) platforms, nor do
they support applications that execute across multiple target platforms.

Supporting Performance Variability

Frese and Peterkin [2] proposed a rule-of-thumb for estimating how long a portable code will
continue functioning: until the new processor boards are installed or the parallel environment
changes or the shared library changes or the next system upgrade or the next system
reconfiguration or the next reboot or the system load changes. While their list is somewhat
tongue-in-cheek, they are accurate in pointing out that portable code tends to expose
performance quirks. Even a small change in the operating environment may result in
performance degradation, if not failure, or a portable program. The dilemma for the
programmer, as they point out, is that "correcting for platform-specific quirks lessens
portability."

Current tools provide few mechanisms for addressing this problem. Most provide ordered lists
of "top" resource-using subprocedures; Figure 1 shows an example where routines have been
ordered to reflect how much CPU time each uses. This is not necessarily the best way to identify
where performance improvement efforts should be concentrated, however, since the simple
consumption of CPU or other resources does not mean that there is a corresponding potential for
improvement.



Figure 1. Tau [5] displays; upper right ranks the top CPU-consuming routines.

The problem is that while current tools present summaries of the raw performance data gathered
during program execution, they do little or no analysis of those data. What is needed are more
sophisticated analysis capabilities that can provide some indication of where user efforts are
most likely to pay off. Two recent research efforts demonstrate the type of analysis that is
possible given current data-collecting mechanisms.

S-check [12] applies classic sensitivity analysis techniques from statistics to predict how
improvements in one part of a program will affect overall performance. The tool then orders the
code units, not according to their resource consumption, but by their potential contribution to
improvement. Moreover, the authors demonstrate that when this technique is applied to
executions on different platforms, the results can be compared to identify where changes will
benefit both performances.



Figure 2. S-check [12] ranks code according to how much impact
improvements will have on overall performance.

Merlin [4] also attempts to help the user identify the most promising approach, but in a very
different way. Raw performance data is analyzed to identify performance symptoms. Using a
database that encapsulates the knowledge gained by experienced performance analysts, the
symptoms are then combined and mapped to diagnoses, which in turn are mapped to suggested
solutions. The user is presented with the symptom (e.g., "poor speedup"), a list of likely
diagnoses (e.g., "spreading overhead of this loop is too high"), descriptions of those diagnoses,
and list of the program tuning steps (loop fusion, interchange, etc.) an expert would try.

These two research efforts exemplify what tools should be doing in order to help users cope
with performance variability problems. Rather than simply presenting data summaries -- which
is as far as current tools go -- a tool should be able to indicate where user efforts will yield the
most impact, and perhaps even point the user to the remedial steps needed.

Supporting Code Complexity

A third characteristic with significant impact on tool usability is the fact that portable
applications are typically complex, involving a collection of semi-independent components.
Consider the example given by Frese and Peterkin [2], which is comparable to many others
identified in our field studies of HPC programmers [10]. The magneto-hydrodynamics code they



described is comprised of "a few tens of thousands of source lines and a few tens of include
files." There are a few hundred subroutines, each stored in a separate source file that is
dependent on some of the include files. A handful of customized component libraries are also
used. The application is written partly in Fortran and partly in C.

This type of structure poses several problems for current tools, even apart from the issue of
multiple source languages. Existing performance tools do not support very large-scale or
complex source structures, balking not only at large numbers of source files, but sometimes
even at multiple source code directories. As a result, users are often forced to analyze and tune
their program components in isolation from one another. Even when the tool can accommodate
the entire application, results are presented using displays that simply do not scale well to the
massive quantities of data produced during execution. Figure 3 shows how quickly a display
becomes cluttered. This screendump from AIMS [14] portrays the messaging activity of just 16
processors in a very short-running application. AIMS handles longer timelines and more
processors by adding scrollbars to the window. Note that such a mechanism does not really
assist the user in dealing with largescale data, however, since only a portion of the display can
be viewed at a time.

Figure 3. Typical timeline display, showing message exchanges
and computational phases for 16 processors [14].

The display presented in Figure 4 is from xprofiler [3], whose thumbnail sketch assists the user
to maintain a sense of context while navigating through portions of a potentially large image.
While this is an improvement on simple scrollbars, it is still subject to the basic problem of
failing to accommodate complexity. Users must still move through very large volumes of
detailed information.



Figure 4. Xprofiler’s [3] thumbnail display assists scrolling,
but the main display is still too cluttered for good comprehension.

A related approach is taken by Jumpshot [15], which augments its timeline displays with a
"preview" (see Figure 5) that indicates which portion of the execution trace is currently being
displayed. In this case, the display also summarizes some of the data from the timeline (the
frequency with which events occurred). Thus, the user can move backward and forward through
time to portions of execution that exhibited particularly high or low event frequencies.



Figure 5. Jumpshot [15] provides a "preview" that facilitates
navigation through long timeline displays.

Another problem associated with complex applications is how to correlate program behavior
back to the source code where it occurred. Several tools support this by allowing the user to
click on an object in one of the graphical displays and view the associated source code. DEEP
[1] takes this a step further by providing a "whole program" view, shown in Figure 5. In this
pixelized view of source modules, colored lines represent each line of source code, with the
color indicating an abstracted performance characteristic (e.g., "Good," "OK?," "Caution,"
"Bad"). Our own studies of parallel programmers have indicated that this type of representation
is highly intuitive; users were able to identify program errors very quickly using similar
pixelized displays [7].



Figure 6. DEEP's [1] source code abstraction offers an intuitive way
to compare the behavior of different program units.

In general, performance tools have not been successful in addressing the issue of application
complexity. They may make it possible to exclude some of the large quantities of data from a
display through basic filtering operations. There are no mechanisms, however, for aggregating
groups of related events or measurements into higher-level units. For example, tools with
timeline displays (see Figures 3 and 5), should allow the user to combine sequences or nestings
of states into coarser aggregates during display. This would relieve the user from having to
manually sift through long streams of events and assimilate them to identify meaningful
patterns.

Current tools are also lacking in basic search capabilities. It should be possible to search through
large displays, for the occurrence of specific clusters of events ("a multicast that went to just
processors 0-4"), threshold values ("CPU utilization dropped below 20%"), or compound
conditions ("state A occupied more than 10 ms and involved more than 3 processors"). These
are the types of activities that users currently perform manually in order to make sense of
performance data. To do so using existing tools, the user must make manual notes and/or
capture partial screen images for subsequent comparison.

Supporting Suite-Based Performance Analysis

Today's applications also suffer from the characteristic that portable applications require that
testing regimes be much more comprehensive than those of programs targeted to single
platforms. The reasons for this stem from the instability of HPC operating environments. As
discussed in the introductory section, even minor changes in a hardware or software platform
can cause performance bugs or incompatibilities to surface in an HPC application. For portable
applications, those changes increase with each platform supported -- and if the application is
heterogeneous, the increase is multiplicative.

The developers of these codes report that they are constantly in a cycle of re-testing and re-
evaluating program performance [2, 9]. At each code revision, or each time one of the platforms
changes, a new "suite" of program executions is run. The outcome must then be cross-analyzed
with comparable suites from other versions and platforms. The process is similar to regression



testing, except that it is not just the results of the program runs that must be compared, but also
their performance.

Unfortunately, no HPC performance tool is capable of presenting data from more than one
program execution at a time. This means that in order to apply tools to suite-based performance
analysis, the user must invoke multiple copies of the tool, each applied to a different program
run, and attempt to manipulate the copies in synchronized fashion in order to make
comparisons.

To meet the needs of today's applications, tools should be able to compare and cross-analyze
multiple executions. Visual displays could then indicate where performance differed and by how
much, allowing the user to identify the effects of program modifications or platform changes.
Consider, for example, the way that the Guard debugger [13] allows users to compare the data
values computed during two different executions of the same program. Figure 7 illustrates a
simple display of differences; white pixels denote elements whose values differ. A series of
display filters are available to accommodate precision differences, allow the specification of
boundary thresholds, etc. This type of mechanism would make it possible to ignore some
performance differences (say, variations in message length due to a longer, platform-specific
message header) while making any other variation in message length obvious.

Figure 7. Tools need mechanisms to compare two sets of performance data,
much as the Guard debugger [13] compares array contents from two program executions.

Given the potential complexity of suite-based analysis, it is unlikely that any single performance
tool will be flexible enough to meet all needs. To leverage the availability of other data analysis
tools, performance tools should be capable of exporting their data in a format that can be input



to spreadsheets, databases, statistical packages, etc. Although this is a very simple extension, to
date only one research tool has actually implemented it [11].

Across the board, current tools are missing the opportunity to address the needs associated with
testing portable codes. Their failure to provide even the most rudimentary support for suite-
based performance analysis is a handicap that severely limits tool usefulness.

Conclusions

Current performance tools have made a series of tradeoffs that appear to be based on the
assumption that applications are relatively stable and can be tuned on a per-platform basis. This
is simply not true of today's HPC applications. Programmers are still concerned with
performance, but the ability to run on or across multiple platforms is at least as important. They
are unwilling to change their codes to enhance performance when those changes impede
portability.

Because of increasing demands for portability, the nature of performance tuning activities is
shifting. Suite-based performance analysis, which uses regression testing methods to determine
the impact of improvements across collections of platforms, is becoming the norm. At the same
time, applications are growing in complexity, quickly exceeding the scaling capabilities of
performance tools. Heterogeneous applications, which are also beyond the scope of current
tools, are increasing in popularity and likely to continue doing so.

The crux of the problem is that tools are not addressing the real challenges for today's HPC
users:

• Portability at multiple levels: tools must accommodate a variety of desktop display
platforms, as well as applications that execute across multiple target platforms.

• Performance variability: tools must be able to indicate where user efforts will yield the
most impact.

• Code complexity: tools must provide mechanisms for aggregating groups of events or
measurements into higher-level units, and for searching through performance data more
flexibly.

• Suite-based performance analysis: tools must be capable of analyzing -- or at least
differencing -- data from more than one program execution at a time.

The gap between tool support and user needs appears to be widening rather than narrowing,
forcing HPC programmers to expend time and effort on tasks that could be automated. The
challenge for performance tool developers is to focus more attention on the "right" issues --
those that are of most concern to their users.

Acknowledgements

Support for the user studies to identify the requirements associated with code portability was
provided by the Programming Environments and Tools (PET) program of the U.S. Department
of Defense's HPC Modernization Initiative, through the NAVO Major Shared Resource Center
(www.navo.hpc.mil). Additional support was provided by the National Partnership for



Advanced Computational Infrastructure (www.npaci.edu), which is funded by the National
Science Foundation.

References

[1] Brode, Brian Q. and Chris R. Warber. "DEEP: A Development Environment for Parallel
Programs," Proc. International Parallel Processing Symposium, 1998, pp. 588-592.

[2] Frese, Michael H. and Robert E. Peterkin, Jr. "A User/Developer’s Perspective on Portability of
High Performance Codes," presentation at Parallel Tools Consortium Annual Meeting, April
1999. Available online at http://www.ptools.org.

[3] IBM Corporation, IBM AIX Parallel Environment: Operation and Use, IBM Corporation
publication SH26-7231, 1996.

[4] Kim, Seon Wook, Insung Park and Rudolf Eigenmann. "A Performance Advisory Tool for
Novice Programmers in Parallel Computing," Proc. Workshop on Languages and Compilers
for Parallel Computing, 2000.

[5] Malony, A. and S. Shendra. "Performance Technology for Complex Parallel and Distributed
Systems." In Distributed and Parallel Systems from Concepts to Applications, ed. G. Kotsis
and P. Kacsuk. Kluwer, Norwell MA, 2000, pp. 37-46.

[6] Pallas GmdH, "VAMPIR -- Visualization and Analysis of MPI Resources," Pallas GmdH
publication available online at http://www.pallas.de/pages/vampir.htm, 1998.

[7] Pancake, Cherri M. "Applying Human Factors to the Design of Performance Tools,"
Proceedings of Euro-Par 1999, 1999, pp. 440-457.

[8] Pancake, Cherri M. "Is Parallelism for You? Rules-of-Thumb for Computational Scientists and
Engineers," Computational Science & Engineering, Vol. 3, No. 2, 1996, pp. 18-37.

[9] Pancake, Cherri M. Unpublished interview notes from field studies conducted with HPC
programmers on behalf of the Parallel Tools Consortium, Intel, IBM, Convex Computer
Corp., and Dept. of Defense HPC Modernization Initiative, 1995-2000.

[10] Pancake, Cherri M. "Software Support for Parallel Computing: Where Are We Headed?"
Communications of the ACM, Vol. 34, No. 11, 1991, pp. 52-64.

[11] Park, Insung et al.. "Parallel Programming and Performance Evaluation with the URSA Tool
Family," International Journal of Parallel Programming, Vol. 26, No. 5, 1998, pp. 541-561.

[12] Snelick, Robert. "S-Check: A Tool for Tuning Parallel Programs," Proc. 11th International
Parallel Processing Symposium, 1997, pp. 107-112.

[13] Sosic, Rok and David Abramson. "Guard: A Relative Debugger," Software - Practice and
Experience, 1997, 27 (2): 185-206.

[14] Yan, J., S. Sarukhai and P. Mehra. "Performance Measurement, Visualization and Modeling of
Parallel and Distributed Programs Using the AIMS Toolkit," Software - Practice and
Experience, 1995, 25 (4): 429-461.



[15] Zaki, Omer, et al.. "Toward Scalable Performance Visualization with Jumpshot," International
Journal of High Performance Computing Applications, Vol. 13, No. 3, 1999, pp. 277-288.


