
Cherri M. Pancake
Oregon State Univevsity

arallelism is an intuitive and appealing concept. Consider a com-
putational science or engineering problem you’ve been working

on. If executing it on a single CPU ylelds results in, say, 10 hours, why
not use 10 CPUs and get the results after just an hour?

In theory, parallelism is that simple-applying multiple CPUs to a
single problem. For the computational scientist, it overcomes some
of the constraints imposed by single-CPU computers. Besides offering
faster solutions, applications that have been parallelized-converted
into parallel programs-can solve bigger, more complex problems
whose input data or intermediate results exceed the memory capacity
of one CPU. Simulations can be run at finer resolution. Physical phe-
nomena can be modeled more realistically.

In practice, however, parallelism carries a high price tag. Parallel pro-
gramming involves a steep learning curve. It is also effort-intensive;
the programmer must t h d about the application in new ways and may
end up rewriting virtually all of the serial (single-CPU) code. What’s
more-whether “parallel” refers to a group of workstations or to a top-
of-the-line hgh-performance computing system, a parallel computer’s
runtime environment is inherently unstable and unpredictable. The
techniques for debugging and tuning the performance of serial pro-
grams do not extend easily into the parallel world. It is perfectly possi-
ble to work months on parallelizing an application, only to find that it
yields incorrect results or that it runs slower now than before.

How do you know whether or not to make the investment? The
purpose and nature of your application are the most important indi-
cators of how successful parallelization will be. Your choice of parallel
computer and plan of attack will have significant impact, too, not just
on performance but also on the level of effort required to achieve it.
This article offers practical, basic rules of thumb that can help you
predict if parallelism might be worthwhile, given your application and
the effort you want to invest. The techniques I present for estimating
likely performance gains are drawn from the experiences of hundreds
of computational scientists and engineers at national labs, universities,

18 1070-9924/96/$5.00 0 1996 IEEE IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Positive
precondition

Frequency of use

Thousands of times
between changes

Dozens of times
between changes

I
Only a few times
between changes

Execution time

Days

i
: 4-8 hours

Minutes

Resolution needs

Must significantly
increase resolution
or complexity

Want to increase
to some extent

t
t

Current resolution/
complexity already
more than needed

Figure 1. Precondition test: how much performance do you need?

and research facilities. The information is more
anecdotal than experimental, but it reflects the
very real problems that must be overcome if par-
allel programming is to yield useful benefits.

Preconditions for parallelism
Basically, your application’s purpose is a good

indicator of how much effort you’re likely to in-
vest in improving its performance. Unless you
have a burning desire to learn parallel program-
ming, your performance needs should be used as
a “precondition” test. Three factors establish an
application’s performance objectives. As Figure
1 illustrates, these fall into a spectrum reflecting
what you might gain through parallelization.

First, how frequently will the application be
used before changes are needed? If the answer is
thousands of times between revisions, this is a
highly productive application that probably mer-
its significant programmer effort to improve its
performance. A program that must change fre-
quently, on the other hand, will not let you amor-
tize the time invested in those improvements.

The second factor is the time currently
needed to execute the application. Let’s assume
you now wait days to get your results. Reducing
that time to a fraction may improve your pro-
fessional productivity significantly. In contrast, if
you can measure runtime in minutes, you are
unlikely to be satisfied with the payoff in terms
of performance improvement versus effort re-
quired. Note that these are relative measures. If
your application is a real-time emergency man-

agement system, even a few seconds’ improve-
ment might be significant.

Third, to what extent are you satisfied with
the current resolution or complexity of your re-
sults? If the speed or memory capacity of serial
computers constrains you to a grid whose units
are much coarser than you want-say, repre-
senting the ocean surface in 10-degree units,
when what you really need is a granularity of 2
degrees-parallelism may be the only feasible
way to break that constraint.

According to the experiences of other scien-
tists and engineers, your needs should rate a t
least one “white” in Figure 1’s spectrum before
you even consider investing the effort to paral-
lelize your application. Conversely, even one
“black” factor should be interpreted as an indi-
cation that your performance needs probably do
not merit much parallelization effort. Further,
note that even three whites do not guarantee
that parallelism will pay off; they simply indi-
cate that you need parallelism’s potential power.
Apply the rules of thumb described in this arti-
cle to determine if the effort you must invest will
be small enough to make the whole process
worthwhile.

How your problem affects
perform an ce
The nature of the problem is the key contributor
to ultimate success or failure in parallel program-
ming. In particular, data access patterns and asso-
ciated computation indicate how easy or difficult

SUMMER 1996 19

Seismic imaging application

Figure 2. An example of perfect parallelism: seismic imaging.

Simulation Volume-rendering Time-step Animation
results image sequence

Figure 3. Example of pipeline parallelism: simulation of earth substructure.

it will be. Geoffrey Fox was the first researcher to
study how the characteristics of applications con-
strain their performance. He established that most
techmcal applications fall into one of three cate-
gories, which he called problem architectures, and
that each is suited to certain types of parallel com-
puters.’>’ Here, I extend Fox’s concept to a fourth
category, pipeline parallelism, and describe how you
can use problem archtecture to help determine
how likely you are to achieve respectable perfor-
mance-and at what cost.

Consider a seismic imaging p r ~ b l e m . ~ , ~ Data
on responses to seismic shock waves are gath-
ered at field sites, then computed to derive con-
tour plots of the subsurface geologcal structure
at each site. The computation can be a sequence
of serial jobs, each computing an image from
one input data set; or parallelism can be intro-
duced by having multiple data sets processed at
the same time, as portrayed in Figure 2 .

From the parallel programmer’s perspective,
this is the simplest problem style, referred to as
peyfect (or “job-level”) paral le lk . Fundamentally,
the calculations on each data set are wholly inde-
pendent. That is, the images could be computed
on independent machnes running copies of the
application, as long as the appropriate input data
were available to each copy. It’s easy to achieve
significant performance gains from applications
fitting this style of parallelism, so they are some-
times called “embarrassingly parallel” (but no
programmer should be embarrassed to have one).

Now suppose that the images are not com-
pletely independent; perhaps substructure re-
sponses are being simulated in a series of time
steps, as shown in Figure 3. Data from different
time steps are used to generate images showing
change over time. Data produced by the simu-
lation must be rendered in a three-dimensional
volume, then formatted for graphical display. If
this application were carried out serially, the
simulator’s output data sets would serve as input
to the volume-rendering program, whose out-
put would in turn serve as input to the format-
ting application. Parallelism can be introduced
by overlapping processing, so that volume ren-
dering begins as soon as the first time step’s data
are available. Then, while the simulator pro-
duces the third data set, volume rendering pro-
ceeds on the second data set, and the first is for-
matted and displayed.

This model is called pipeline parallelimz, since
data are effectively “piped” from one computa-
tional stage to another. The key is that results
are passed just one way through the pipe (that
is, the simulation of the next time step does not
require information from the volume-rendering
or formatting stages). Start-up is delayed ini-
tially as data become available a t each stage, so
overall performance gains will depend on the
relative number of time steps to be processed
once all points along the pipe are active. Pipeline
parallelism also introduces potential problems.
If the stages are not all computationally equiva-

20 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

lent, faster stages will overtake the slower ones,
finishing sooner. One solution is to execute
computationally intensive stages on faster
CPUs, but balancing the work precisely can be
quite difficult. Either way, the programmer must
accommodate a possibly unequal work load with
tests to check when input data are ready and to
ensure that buffer or disk space can hold output
data. For this reason, pipeline parallelism is not
as simple as perfect parallelism.

In many applications, results cannot be con-
strained to a one-way flow among processing
stages. Consider, for example, an atmospheric
dynamics p r ~ b l e m . ~ . ~ The data represent a 3D
model of the atmosphere, where an occurrence
in one region influences areas above and below
the disturbance, and perhaps to a lesser extent,
those on either side. Over time, the effects prop-
agate to an ever-larger area extending in all di-
rections; even the disturbance’s source may ex-
perience reverberations or other movements
from neighboring regions. If this application
were executed serially, calculations would be
performed across all the data to obtain some in-
termediate atmospheric state, then a new itera-
tion would begin. Parallelism is introduced with
multiple CPUs participating in one iteration,
each applying the calculations to a data subset
(see Figure 4). Each iteration is completed
across all data before the next iteration begins.

This is called fully synchronous parallelism,
meaning that-at least conceptually-each cal-
culation is applied synchronously (or simultane-
ously) to all data. The key here is that future
computations or decisions depend on the results
of all preceding data calculations. Usually, there
aren’t enough CPUs to apply a calculation to all
data at the same time, so each CPU actually it-
erates through a subset. If the subsets are not
homogeneous, the computational intensity will
vary on different CPUs. For example, a distur-
bance in the uppermost stratum starts by modi-
fylng data representing the upper layers, while
lower layers are unaffected. This spatial varia-
tion means that if each CPU applies calculations

Initial atmospheric partitions
I I

t + +
Atmospheric modeling application -

Resulting partitions

Figure 4. Example of fully synchronous parallelism: simulation of at-
mospheric dynamics.

to a subset representing a horizontal stratum,
only one or two CPUs actually perform inten-
sive work at this point. Meanwhile, synchronic-
ity demands that the other CPUs cannot pro-
ceed to the next set of calculations, so they must
wait until the busy ones catch up.

Alternatively, if CPUs apply calculations to ver-
tical regions, computational work may be uni-
formly distributed at this point in the program,
but this will be offset at later points when com-
putation varies along the horizontal dimension
instead. Consequently, fully synchronous paral-
lelism requires more programmer effort than
pipeline parallelism to achieve good performance.

The fourth style of parallelism is illustrated
by a related application, which models the dif-
fusion of contaminants through groundwater
(Figure 5) . Initially, only the groundwater parti-
tions close to the contamination source are af-
fected, but over time the contaminants spread,
building up irregular areas of concentration.
The amount of computation depends on the
amount of contaminant and the geophysical
structure, so it varies dramatically from one par-
tition (and time step) to another. In a serial pro-
gram, this means that time step length will be
irregular and perhaps unpredictable. Parallelism
is introduced by dividing the work among mul-
tiple CPUs at each time step. During early time
steps, each CPU may apply calculations to just a

water partitions water partitions water partitions

Figure 5. Example of loosely synchronous parallelism: contaminant flow through groundwater,

SUMMER 1996 21

few partitions, and the computation’s duration
may be brief because concentrations are low;
later, as concentrations build up and progres-
sively affect more partitions, a single CPU may
perform many more computations on many
more partitions at each step.

This exemplifies loosely synchronous parallelism.
When each time step ends, CPUs that have fin-
ished their work must wait for the others to com-
plete before sharing intermediate results and go-
ing on to the next time step. Thus, i h s style’s key
characteristic is that the CPUs each do parts of
the problem, exchanging information intermit-
tently. Loosely synchronous parallelism, com-
bining the difficulties of pipeline and fully syn-
chronous parallelism, is the most difficult to
program. The need to exchange information
among CPUs (here, at time-step boundaries) re-
quires tests so that one CPU can determine
when the others’ data are ready and can avoid
overwriting values not yet used. These CPUs ef-
fectively proceed at their own rates between
those exchanges. With loosely synchronous par-
allelism, it’s difficult to distribute computational
work evenly among the CPUs, since the work
load now varies both temporally and spatially.

Analyzing your problem’s architecture may
seem like an unnecessary exercise, but it will
help you decide if parallelism is worth it. First,
consider how your application uses data. Clas-
sify your application as perfect, pipeline, fully
synchronous, or loosely synchronous paral-
lelism. (The case studies on pages 23-25 present
examples of how this is done.) Then determine
how the computational characteristics will in-
fluence effort-to-parallelize by applymg the fol-
lowing rules of thumb:

(1) If your application fits the model of perfect
parallelism, the parallelization task is rela-
tively straightforward and likely to achieve
respectable performance.

(2) If your application is an example of pipeline
parallelism, you have to do more work; if
you can’t balance the computational inten-
sity, it may not prove worthwhile.

(3) If your application is fully synchronous, a
significant amount of effort is required and
payoff may be minimal; the decision to par-
allelize should be based on how uniform
computational intensity is likely to be.

(4) A loosely synchronous application is the
most difficult to parallelize, and probably is
not worthwhile unless the points of CPU
interaction are very infrequent.

Note that you may need to analyze how com-
putation (as well as data) is dispersed over the
lifetime of an execution. This information may
be useful even if you decide not to parallelize,
since it provides valuable insight into serial per-
formance. For our purposes, a general under-
standing of problem architecture is essential for
determining if your application is likely to per-
form well on the type(s) of parallel computer
available to you.

blow your machine affects
Performance
Generally, a parallel computer is any collection
of processing elements connected by some type
of communication network. (Here, the process-
ing elements are referred to as CPUs for sim-
plicity, but they involve memory as well.) Also
known as multicomputers, such systems en-
compass a range of sizes and prices, from a
group of workstations attached to the same
LAN to an expensive, high-performance ma-
chne with hundreds or thousands of CPUs con-
nected by ultra high speed switches. Clearly,
CPU speed, capacity, and communication
medium constrain the performance of any par-
allel application. But from the programmer’s

perspective, the way in which - multiple CPUs are controlled
Control model Single instruction, Multiple instruction, and share information may

have even more impact, influ-
encing not just the ultimate
performance results but also
the level of effort needed to

Figure 6 shows a basic “fam-
Single program, Multiple program, ily tree” for parallel computer

multiple data multiple data
Programming model (SPMD) (MPMD) architectures. The conrrol model

dictates how many different in-
Figure 6. ”Genealogy” of parallel computing systems. (continued on p . 26)

multiple data (SIMD) multiple data (MIMD)

h
Memory model Shared-memory Symmetric Distributed-memory

multiprocessor (SMP) - - - - - -<7
_ _ - - - _ _ - - parallelize an application.

,,‘ _ _ - - ... ,:----
J-

22 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

I / '*Lw, 1, I 1 U LI A-", 1 "* 1WWN L. *w""",rum

Applying the Rules of Thumb: Three Case Studies

The text describes precondition tests and 16 rules of
thumb to help you decide whether parallelization is likely to
pay off. The example presented here is based on a volume
renderer application developed at the Cornell Theory Cen-
ter as part of the Global Basins Research Network collabora-
tion. A serial version of the volume renderer was written by
Daniel Kartsch and Catherine Devine. It was parallelized by
Hugh Caffey, first for the IBM ES 3090-600 (a shared-mem-
ory multiprocessor) and later for networks of IBM RS-6000
workstations (using the PVM message-passing library).

where each time step generates a large array
(approximately 500 Kbytes) of 3D data. To analyze the
processes being simulated, it's necessary to convert the 3D
data array to a 2D image that can be displayed on the com-
puter screen. The final result is a series of those images, one
per time step, that can be studied one a t a time or
displayed as an animated sequence.

Case Study 1
Parallelization is being considered because users want to

run the simulation for thousands of time steps. This isn't prac-
tical with the current version, since it would take too long to
get results (almost 150 hours of computer time would be
needed for each 1,000 steps). Since the image rendering
takes place in a separate processing phase, an increase in time
steps would also mean that temporary storage of the data ar-
rays could occupy a gigabyte or more of disk space.

Step 1: Preconditions
Although the simulation is not executed on a daily basis,

it's a stable application and likely to be used hundreds to
thousands of times between modifications. It requires hours
of computer time even for a relatively short simulation (1 5
hours for 100 time steps). Because of the performance
constraints, scientists have been unable to get the number of
steps they really wanted. In terms of the precondition tests,
then, this application scores very high (light gray for
frequency, white for execution time, white for resolution
needs).

Consider a time-step simulation of geophysical processes,

Step 2: Problem architecture
The application encompasses two phases, each with

somewhat different data access and computational interre-
lationships. During the simulation itself, each time step
evolves from the predecessor step and cannot be treated as
independent. The rendering phase, on the other hand,
processes each data array in totally independent fashion to
generate the images.

One way to view the problem's architecture, then, is to
consider the phases independently. The rendering phase is

embarrassingly parallel; it's fairly easy to imagine replacing
the single copy of the rendering program with 50 concur-
rent copies, each working on one data array and producing
one image. The simulation phase is much more
constrained, fitting the loosely synchronous model. At each
time step, the grid data representing the geophysical struc-
ture must be accessed multiple times, and computation
varies according to the structural characteristics a t each grid
point; moreover, the data a t each step depend on the
results of the previous step.

However, it's just as easy to think of this problem as a
pipeline situation. The simulation delivers a data array to
the renderer, then proceeds to calculate the next time step
while the first one is being converted to an image. Since the
data always flow from simulation to renderer, there really is
no need to accumulate all the data arrays from all the time
steps before starting to generate images. (Note that view-
ing the application in a slightly different way can help elimi-
nate the data storage problem associated with thousands of
time steps; this underscores the importance of taking some
time to think about your application, since it ultimately can
have significant impact on performance.)

Once problem architecture is established, we can apply
the first four rules of thumb to understand something
about how much effort parallelization is likely to require.
According to rule 2, balancing the computational intensity
between the two phases could be problematical but is likely
to be the critical issue.

Step 3: &lachine
Mapping the problem to the appropriate machine style is

relatively straightforward using the next four rules of thumb.
According to rule 6, the application will probably perform
best on a shared-memory machine. Since the working stor-
age requirements are significant for both the simulation and
rendering phases, an SMP is probably not appropriate; it is
unlikely that either phase can fit on a single node. The same
rule of thumb indicates that a distributed-memory system
might also be acceptable. (Note that we can rule out SIMD.
If that were the only machine available, we would likely dis-
continue the analysis at this point.)

Step 4: Language
As rule of thumb 9 points out, language options are likely

to be limited. Since both phases of the application are
currently implemented in Fortran, and since we intend to use
a shared-memory multiprocessor, parallelization will be
accomplished using Fortran plus compiler directives to con-
trol accesses to shared memory variables (the data arrays
produced by the simulation and consumed by the renderer).

(continued on p . 24)

SUMMER 1996 23

(continued from p. 23)

Step 5: Perfonnarice espcctations

The next step is to time the baseline version of the appli-
cation (rule i 0). Timing calls are inserted at the beginning
and end of each phase (simulation and rendering). Since in-
put/output activities will require serial execution, we also
gather timings on the l/O portions of each phase. The mea-
surements reveal a total of 554 seconds: 4 for initial input,
307 to perfcrm the time-step calculations, 11 to store the
data array, 9 more to reread the array a! the start of the ren-
dering phase, 205 for rendering calculat.ions, and 18 Tor
writing out the display image.

To calculate the parallel content for rule 11, we consider
the portions that could be pdrallelized, comparing their du-
ration with that of the overall code. It is important to analyze
how behavior mir;ht change in the parallel version. In this
case, the writing and subsequent reading of the data array
will be eiiminaied once the application is converted to
pipeline form. Consequently, we eliminate their timirigs from
the total, yielding a somewhat reduced whole-code time:

512
534

= - = 0.959

For rule 12, we consider the impact of producing a full se-
quence of 1,800 time steps. Only the simulation's first step
requires that data be input to initialize the arrays; remaining
steps will use data already available in memory or calculated
by the preceding step. This i s the only major chmge, since
the rendering phase must reinitialize i ts arrays for each im-
age processed. We adjust the parallel content equation by
e!iminating the 4 seconds For data input, since it will be neg-
ligible for long sinwlations:

57 2
530

paralleicmient = ~ = 0.966

Rules 13-1 5 remind u s of the fragility of those estimates,
but do not raise any warning flags. Because oclr target is a
shared-memory system, rule 16 can be ignored.

Results
The rules of thumb indicate that our problem lends itself

to parallelism, is likely to bc relatively straightforward and
to yield reasonable performance on a shared-memory sys-
tem, and has a sufficiently high parallel content to make the
effort worthwhile.

The application on which this example is based was, in
fact, paralielized for a shared-memory multicomputer. As in-
dicated by the text's discussion of machine architectures,
the major programming hurdle in parallelizing this applica-
Lion was the addition or locking mechanisms to protect the

shared data arrays. In particular, since the second phase exe-
c ' .-,.,< .I.., . i .,: I.... . '!A.,t+. I !i!:,ti the first, the renderer had to be prevented

generated by the simuiator. However, the effffort required to
parallelize the application was minimal since an efficient,
well-debugged baseline serial version was already available.

The resulting performance was 307 seconds per time
step (the t i n e required for th2 s/ower simulation phase),
plus 4 seconds for the initial sitnulation input and 223 sec-
onds to render the final step after all simulations were com-
plete. For executions involving 1,800 time steps, the total
was approxinately 156 hours--as compared with the 267
hours that a serial version would have required.

f r . .n3 I n : r y 'I," : L~ . :tad an input array before it had been fully

Case Study 2

petus for reexamining the simulation phase, which was
proving to be the performance bottieneck. Improvements
in the serial version resulted in a significantly reduced exe-
cution time, to .I 87 seconds per simulated time step. This
had a moderate effect on overall performance (now 11 6
hours for 1,800 time steps), but it also shifted the
performance bottleneck to the rendering phase.

Can this phase be improved by parallelization? Also,
since the job load on the shared-memory system has
become very hea$gy, it might be desirable 10 offload as
much work as possible to a cluster or workstations
connected by a local area network.

The success of the first parallelization helped provide irn-

Step I.: Preconditions
These tests yieid the same results as before (although it is

now possible to senerate long simulations, they still require
days or weeks of computing time).

Step 2 : Problem , 3 rc h' Itectui-e

phase. The image is constructed iising a technique known
35 ray casting with trilinear interpolation.' Imaginary rays
are fired from a hypothetical viewpoint through the data ar-
ray Along each ray, a search is performed to find values
within the array that correspond to value thresholds that
have been defined by the user and associated with particu-
lar colors. Values within threshold ranges are transformed to
produce graphical effects (color, transparency, reflectancy).

The important characteristic of this application is that the
rays are compLitationally independent and coilld theoreti-
cally be calculated simultaneously. However, the number of
calculations performed along each ray varies. If a ray finds
no values within the range of interest, no calculations what-
ever are needed. If values are detected, Ihe number of cal-
culations to be performed depends on whether this is the
first value within a particular color range, whether other
colors have already been detected, and several other factors

This time, we consider the structure of just the rendering

24 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

related to shading and highlighting algorithms.

style of parallelism. According to rules 1-4, this application
will be difficult to parallelize and requires that the points of
CPU interaction be infrequent. Since interaction will be re-
quired only at the beginning and end of each ray search,
we hope performance gains are possible.

Overall, these characteristics reveal a loosely synchronous

Step 3: Machine
Using rules 5-8, we find that shared-memory is again

preferable, but that distributed-memory systems-like the
workstation cluster-might work as long as there are many
computations between CPU interactions.

Step 4: Language
Like many workstation clusters, ours is limited in terms of

the languages and libraries supported. Given the fact that
the existing application is in Fortran, we choose to use PVM
message passing to implement the parallelism.

Step 5: Performance expectations
Timing the baseline version of the rendering phase

reveals that 223 seconds are being used: 6 for setup and
initialization of arrays, 199 for ray-casting calculations, and
18 for generating the output file:

199
223

parallelcontent = - = 0.893

Since each image is computationally independent of all
others, there will be no noticeable effects when the
problem size increases. Rules 10-1 5 warn that this applica-
tion is only marginally appropriate for parallelization.

equivalent of our workstation cluster. According to our sys-
tem support staff, the peak CPU speed of each workstation
is approximately 1 10 Mflops/sec, with latency and
bandwidth about 2,000 microseconds and 2 Mbytes/sec,
respectively. This yields a message equivalent of
approximately 275,000 flops. Unless a very large number of
calculations can be performed between CPU interactions,
we are unlikely to achieve respectable performance.

This time, we apply rule 16 to estimate the message

Results
This time, the rules of thumb provide much less positive

indication for parallelization. In the real-world case,
however, the programmer already had some experience in
parallelizing other applications and wanted to see how
much performance could be gained through message pass-
ing on a workstation cluster. The major programming hur-
dle was how to minimize CPU interactions. Given the
extremely high message equivalent, the programmer had
to be creative in handling the division of rays among CPUs.
Considerable time and effort were spent debugging and

tuning the parallel code. The resulting performance was 71
seconds per image, a significant improvement over the pre-
vious time of 223.

Case Study 3

independent of the simulation itself, it could be used for
rendering other types of images as well. The decision was
made to see just how much performance could be exacted
from the renderer through parallelism.

The precondition tests yield slightly weaker results than
the previous analyses. Since the renderer is no longer tied to
the simulation, average time-to-results is somewhat faster.

In reanalyzing the problem architecture for the rendering
phase, we find that there is an inner producer-consumer re-
lationship: The ray-casting (now carried out in parallel)
modifies the data array, which is then passed to a plotting
routine to convert the computed colors to RGB values suit-
able for display on a computer screen. As in the first case
study, the one-way flow of data shows this to be a pipeline
model. The same rules of thumb are applied, with the same
results as before. A shared-memory system is again
indicated by preference, but our distributed-memory
system might work, given sufficient computations between
CPU interactions. We choose to continue using PVM mes-
sage passing for implementation.

This time, the entire rendering phase consumes only 71
seconds: 6 for setup and initialization, 47 for ray-casting
calculations, 13 for plotting, and 5 for writing the output
file. The target for parallelization efforts is very significantly
reduced:

parallelcontent = - = 0.18

The message equivalent is unchanged. Although there is
measurable room for improvement, it's far below the
threshold indicated by rules 10-1 6.

Since the rendering phase had been maintained

13
71

Results

not warranted. Since the intent of the real-world case was
to push the limits of performance, the programmer
proceeded anyway. By pipelining the ray-casting and plot-
ting calculations, it was actually possible to reduce execu-
tion time by a few seconds per image; however, the
amount of effort required was substantial. Even for an expe-
rienced programmer, the investment was inordinate for
such a small gain in performance.

Clearly, the rules of thumb indicate that parallelization is

Reference
1. M. Levoy, "Display of Surfaces from Volume Data," /E€€

Computer Graphics &Applications, Vol. 8, No. 3, May 1988,
pp. 29-37.

SUMMER 1996 25

(continuedfrom p . 22)
structions can execute simultaneously. The terms
SLMD (single instruction, multiple data) and
MIMD (multiple instruction, multiple data) date
from parallel computing’s early days’; both are
still in evidence although no longer the only dis-
t i n p s h n g feature of parallel computers. Mmory
model indicates how many CPUs can directly ac-
cess a given memory location. All CPUs access a
single memory in shared-memory computers,
whereas distributed-memory computers use a
separate memory for each CPU. Memory is
shared among small groups of CPUs in symmet-
ric multiprocessor (SMP) computers but when
groups are clustered to form larger systems, each
group’s memory remains isolated. The pnp-am-
ming model refers to restrictions on the number
of executables (object images) that can participate
in a parallel execution. In the multiple-program,
multiple-data model, the programmer creates a
separate executable for each CPU; for the single-
program, multiple-data model, all instructions to
be carried out by all the CPUs are combined into
a single executable. Programming models are dis-
cussed in more detail in a later section.

The interaction of control model and mem-
ory model results in four classes of parallel com-
puter architecture: SIMD, shared-memory, dis-
tributed-memory, and SMP. Each of these is
described individually below; Table I provides
a summary of that information.

SIMD multicomputers
On a SIMD multicomputer, sometimes called

a processor array, all CPUs execute the same in-

struction in lockstep fashion-examples are
MasPar’s MP-2 and Thinlung Machines’ Con-
nection Machine. Figure 7a illustrates the gen-
eral concept: a single control unit tracks the cur-
rent instruction, which the CPUs apply
simultaneously to different operands.

The control unit is the programmer’s key to
both the benefits and the costs of parallelization.
SIMD machines are relatively easy to program
and use memory efficiently. Whenever the pro-
gram uses Fortran90-style array operations or
makes calls to the array functions library, the
compiler automatically generates parallel code.
The main programming hurdle is to cast basic
calculations as array operations. If your applica-
tion doesn’t fit the fully synchronous model, it
will be difficult or impossible to parallelize it for
a SIMD architecture.

Acheving good performance can be quite dif-
ficult, even if the application apparently fits the
model. When an instruction involves arrays as
operands (as in Figure 7a), the control unit ap-
pears to cause all CPUs to execute the instruc-
tion on the appropriate element pairs in one
step. In actuality, however, few operations in-
volve arrays whose dimensions exactly match the
number of CPUs. Most instructions require that
the CPUs iterate through groups of elements.
If the number of elements isn’t an integral mul-
tiple of the number of CPUs, the “extra” CPUs
will effectively lose cycles whle the last elements
are processed.

Other performance problems are tied to lost,
or wasted, CPU effort. When an operation
is conditional (for example, dividing vector a

26 lEEE COMPUTATIONAL SCIENCE & ENGINEERING

Control unit

X(l) = A(l) + B(l) X(2) = A(2) + B(2) X(N) = A(N) + B(N) I
CPU N ... CPU 1 CPU 2

(a)

CPU 1 CPU 2 ... CPU N
(b)

Switch(es) or network
I I I

Distributed
memories

(one uer CPU) . .
X = A(2) I t B(2) = SUM(A) 1 I B(2)=B(8)+8(13) I

CPU 1 CPU 2 ... CPU N
(c)

Switch(es) or network

...

Node1 Node2
(4

Figure 7. Comparison of parallel computing architectures: (a) SIMD multicomputer; (b) shared-
memory MlMD multicomputer; (c) distributed-memory MlMD multicomputer; (d) cluster of symmetric
multiprocessors (SMPs).

by vector b only where the element of b is
nonzero), all CPUs actually perform the opera-
tion; the results are simply discarded from any
CPU where the condition proves false. The
worst case occurs for a scalar operation (such as
the addition of two floating-point numbers),
since all CPUs redundantly perform the opera-
tion even though only one copy of the result
is needed. The condition represents a serial
bottleneck, since the machine’s hundreds or
thousands of CPUs are effectively reduced to
a single CPU. Just a few of these can counteract
all the performance gains realized by array
operations.

Shared-memory multicomputers
Unlike SIMD machines, MIMDs give each

CPU its own control unit. At any moment dur-
ing execution, different CPUs may execute dif-

ferent instructions. This lets CPUs perform cal-
culations at different rates, but it also means that
the programmer cannot necessarily assume any-
thing about the relative order in which a given
instruction is executed on two different CPUs.

On a shared-memory multicomputer, the
CPUs interact by accessing memory locations
in a single, shared memory, exemplified by tra-
ditional supercomputers such as Cray Y/MPs
and Fujitsu VPs. They tend to be the fastest,
largest, and most expensive form of parallel
computers. Although more difficult to program
than SIMD machines, shared-memory multi-
computers offer a more natural fit with a much
larger range of applications.

As shown in Figure 7b, each CPU executes its
own instruction, applied to operands stored in
the shared memory. Rather than specifylng ar-
ray operations-though these may become more

SUMMER 1996 27

common as Fortran90 parallel compilers become
generally available-the programmer uses com-
piler directives on computationally intensive
loops. The process is similar to preparing pro-
grams for vector processing and will be familiar

The balance between

to some computational scientists
and engneers. The basic idea is
to take advantage of program
loops that perform a large num-
ber of calculations (typically ap-
plymg the same calcu-
lations to multiple elements of
arrays). A parallel compiler con-
verts the loop into a collection
of loops that will be performed
by multiple CPUs, each apply-
ing the calculations to a subset
of the data. At execution time,
each CPU proceeds through its

instructions, accessing shared-memory locations
without knowledge of other CPUs’ activities.

Shared-memory accesses can be a potential
source of race conditions, where program results
are sensitive to specific memory access ordering
-in effect, it’s a race to see which CPU arrives
first. Figure 7b shows one example of this, where
two CPUs each attempt to modify the current
value of B(2); the final value will depend on the
relative order of the two store operations. Since
relative timing can vary from subtle changes in
the runtime environment, a program with a race
condition may appear to work normally for ex-
tended periods, then suddenly “blow up” or pro-
duce inconsistent results6 A major part of the
programmer’s time is likely to be spent identi-
fying potential races and safeguarding shared
data through a locking mechanism that excludes
other CPUs from access when a data value is be-
ing modified. Frequent locking adversely affects
performance as CPUs are forced to wait their
access turn, so the trick is to provide just the
right amount of protection.

Shared-data protection is not the only area re-
quiring programmer effort. As with vector com-
puting, the performance of shared-memory par-
allelism largely depends both on the size and
intensity of computational loops7 and on the com-
piler’s analysis capabilities. The programmer may
have to restructure loops to help the compiler rec-
ognize potential parallel code. For some applica-
tions, it is impossible to restructure calculations
enough to achieve good performance. This is par-
ticularly true of fully synchronous problems like
the atmospheric dynamics example, where data
accesses are sporadic and hghly interdependent.

Distributed-memory multicomputers
On distributed-memory multicomputers, too,

each CPU executes its own instruction stream,
but as the name implies, each CPU has a private
memory. Most current hgh-performance paral-
lel machnes have distributed memory: examples
are Cray T3D, IBM SP-2, Intel Paragon, and
Meiko CS-2. Based on workstation microproces-
sor technology, these systems are versatile and
cost-effective. Their major disadvantage is their
inherent difficulty in efficiently using resources.

(Confusion results from some distributed-
memory machines that are marketed as quasi-
shared-memory. The Kendall Square Research
machines, for example, used software layers to
make the distributed memories look like a single
memory, while Cray’s T3D has a shared-mem-
ory-style compiler so that programs can be writ-
ten as if for just one memory. In practice, per-
formance depends largely on how well the
programmer understands the functioning of
multiple memories. Still other machines use
special hardware letting small groups of CPUs
share memory locations; see the subsection on
symmetric mu1 tiprocessors .)

Figure 7c illustrates how distributed memo-
ries operate. To interact or share information,
the CPUs send each other messages, typically
over high-speed switches. As shown, the vector
a referenced by one CPU is not in the same lo-
cation as that referenced by other CPUs. If data
are read-only, they can be copied into all the
CPUs’ memories and accessed quickly, with no
need to lock out other CPUs. When there is no
particular need to share, arrays can be split up
and stored across multiple memories so that, for
example, each CPU’s vector a actually repre-
sents one column of a large array.

To share data, however, the program must ex-
plicitly send them back and forth among the
CPUs. This leads to potential race conditions,
since it takes time to propagate one CPU’s up-
dates to the copies stored a t other CPUs. Dis-
tributed-memory systems are also prone to live-
lock, where a CPU waits for data that never
arrive, or deadlock, where two or more CPUs
are stuck waiting for each other. Compilers can
analyze a program to detect all possible locations
where races, livelock, or deadlock might occur,
but they do so conservatively, typically estimat-
ing a hundred or more “potential” problems for
every real error. Distributed-memory programs
tend to be harder to debug and test than SIMD
or shared-memory programs.*

In terms of performance, the balance between

28 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

CPU speed and communication speed is criti-
cal (for reasons elaborated later). Current tech-
nology results in relatively fast CPUs being
coupled with relatively slow communications.
(Note that the same model applies to work-
station clusters, which essentially are distrib-
uted-memory multicomputers with ultra-slow
communications.) The key to obtaining perfor-
mance is thus the programmer’s ability both to
minimize communication, in terms of interac-
tion points and the data transferred at each in-
teraction, and to time them so that the CPUs
are kept busy. For a perfectly parallel applica-
tion, this may be trivial. But pipeline and loosely
synchronous applications will achieve re-
spectable performance only if there are rela-
tively little data to exchange and/or relatively
long time periods in which to effect the ex-
changes. Fully synchronous applications are en-
tirely unsuited to this type of system.

SMPs and SMP clusters
So-called symmetric multiprocessor machines

recently joined the parallel computing market-
place. They also use workstation microproces-
sor technology, but couple several CPUs (typi-
cally four or eight) with a shared memory. The
word “symmetric” refers to the fact that each
CPU can retrieve data stored at a given mem-
ory location in the same amount of time. SMPs
resemble shared-memory multicomputers, but
are slower and less expensive, with less CPU
power. Examples include SGI’s Powerchallenge
and Sun’s Sparcserver product lines.

It is also possible to cluster SMPs into larger
groups with correspondingly more CPU power,
as shown in Figure 7d. The resulting configu-
ration behaves much like a distributed-memory
multicomputer, except that each node has mul-
tiple CPUs sharing a common memory (Con-
vex’s Exemplar best illustrates this, since the
cluster is connected by a high-performance
switch; there also are a growing number of SGI
and Sun clusters).

To date, the major performance successes
have been scored by programmers who treat
SMPs as a collection of distinct, small-scale
shared-memory systems. With the exception of
the Exemplar, the performance of the networks
and switches connecting the SMPs has been dis-
appointing. Parallelism involving even moder-
ate numbers of CPUs tends to be bounded in
performance by communication speed (typically
comparable to that of a workstation cluster).
When assessing an application’s likely perfor-

mance, an SMP cluster should be treated as a
shared-memory multicomputer if your entire
application can fit on one SMP node, or as a dis-
tributed-memory multicomputer if it requires
CPUs distributed across the cluster.

Matching problem to machine
In general, then, each type of parallel com-

puter is appropriate for applications with cer-
tain characteristics. If an inappropriate match is
made, the programmer will certainly be forced
to expend excessive effort, with possibly disap-
pointing performance results. The following
rules of thumb summarize the interaction be-
tween application model and machine type:

(5) A perfectly parallel application will proba-
bly perform reasonably well on any MIMD
architecture, but may be difficult to adapt to
a SIMD multicomputer.

(6) A pipeline-style application will probably
perform best on a shared-memory machine
or clustered SMP (where a given stage fits
on a single SMP), although it should be
adaptable to a distributed-memory system
as well, as long as the communication net-
work is fast enough to pipe the data sets
from one stage to the next.

(7) A fully synchronous application will per-
form best on a SIMD multicomputer, if you
can exploit array operations. If the compu-
tations are relatively independent, you
might achieve respectable performance on
a shared-memory system (or clustered SMP
if a small number of CPUs is sufficient). Any
other match is probably unrealistic.

(8) A loosely synchronous application will per-
form best on a shared-memory system (or
clustered SMP if a small number of CPUs
is sufficient). If there are many compu-
tations between CPU interactions (see
“Setting realistic expectations”), you can
probably achieve good performance on a
distributed-memory system as well.

How your language affects
performance
The programming language you use will obvi-
ously affect the effort required to parallelize
your application. What’s more, extreme varia-
tion in compiler capabilities and runtime sup-
port environments means that the language will
also constrain the performance you can hope to
attain. The type of programming model, shown

SUMMER 1996 29

as the lowest level in machine genealogy in Fig-
ure 6, is often a key indicator of both effort and
performance.

With a SPMD model, each CPU will execute
the same object code. On a SIMD multicom-
puter, exactly the same instructions will be exe-
cuted in lockstep synchrony. On MIMD sys-
tems, the CPUs have individual copies of the
program and proceed through it at differing
rates, perhaps executing entirely different in-
struction sequences (for example, subject to If
conditions). Either way, the programmer has
only one program to track, which can be an ad-
vantage for debugging. There may well be a
performance cost, particularly on MIMD sys-
tems. All data and instructions to be accessed by
any CPU effectively must be accessible to all
CPUs, increasing the memory required and of-
ten degrading memory access time as well.

In contrast, the MPMD model lets each CPU
have a distinct executable. (Note that since this
conflicts with basic S M D computing concepts,
the model applies only to MIMD machines).
Many experienced parallel programmers prefer

MPMD for two reasons. First, it utilizes mem-
ory space more efficiently. Code space require-
ments are reduced for pipeline and loosely syn-
chronous applications, where CPUs typically
execute totally different code. Data space can
also be reduced for programs with large arrays,
since the programmer can subdivide them in
portions accessible to just those CPUs that re-
ally need them. Second, the programmer can
split the functionality of different computational
stages into separate programs, to be developed
and debugged independently or reused as com-
ponents of other programs. But it becomes
harder to deal with some types of errors and per-
formance problems, as it’s difficult for program-
mers to conceptualize how the activities of inde-
pendent CPUs might influence one another.

Strictly speaking, “programming model” is a
feature of programming languages, rather than
parallel computers. Many machines described
here, however, impose the SPMD model on the
programmer because their operating system and
tools view a parallel program as a single entity,
and cannot report information on multiple exe-

30 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

cutables. While it may be possible to run multi-
ple executables in MPMD fashion on a pre-
dominantly SPMD system, the operating sys-
tem and tools will consider them a collection of
unrelated programs. The programmer may have
to forego many aspects of system support, in-
cluding consolidated I/O, use of debuggers, and
access to program-wide timing information.

Table 2 lists the parallel languages and li-
braries available (see the literature9>” for sur-
veys of language features). The programmer
rarely has much real choice, however. Except for
the libraries, all languages enforce a particular
programming model. Most are also limited to
particular machine types (and perhaps manufac-
turers). Message-passing libraries are the most
broadly available, having been ported across all
the MIMD architectures. This means that mes-
sage-passing applications are the most portable;
on the other hand, the programmer essentially
sacrifices compiler error detection capabilities
and may inhibit compiler optimizations.”

Once you determine your application and ma-
chine, you will probably be limited to just a cou-
ple of parallel languageflibrary choices. This will
be further constrained by such factors as your
expertise in Fortran versus C, access to col-
leagues who have used the parallel language, the
ability to call other scientific or math library
routines you need, and the availability of pub-
lic-domain languages on your particular system
(for example, PVM, MPI, p4, pC++, Data Par-
allel C, Fortran M).4

The rule of thumb that applies to language se-
lection, then, is quite simple:

(9) With few exceptions, you don’t pick the lan-
guage; it picks you.

Setting realistic expectations
Computer scientists may find parallel program-
ming to be interesting in itself, but that’s not the
objective of most scientists and enpeers. As Boe-
ing’s Ken Neves said, “Nobody wants parallelism.
What we want is performance”.12 If applying SO
CPUs to a task doesn’t yield results much sooner
than a single CPU, the computing resource is
used inefficiently. Even more important, the fact
that an application can execute across SO CPUs
means that someone has expended time and en-
ergy parallelizing it. Failure to attain reasonable
performance with a reasonable level of effort
wastes human productivity, too.

To avoid that kind of failure, assess the appli-

cation’s potential before deciding about paral-
lelization. This assumes that your problem lends
itself to parallelism, that your machine offers a
reasonably good fit to that problem, and that
you know what language will be used. It also
presupposes that you have an existing serial pro-
gram that already implements your application;
I will refer to this as the “baseline.” Strict devo-
tees of parallel programming
claim that a new parallel pro- * gram should be- built from
scratch, but this is unrealistic
for most users. (Surveys of ex-
perienced parallel programmers

With few

show that 59 percent modify or
compose programs from exist-
ing code; the 31 percent who
start from scratch are typically
computer scientists and applied
mathematicians8) Moreover, a
solid baseline program provides
a built-in mechanism for check-
ing the validity of the parallel program’s results
(does it yield the same results as the serial code
for all inputs?), as well as a basis for measuring
performance improvements (how much faster is
version X than the baseline?).

However, a sloppily implemented baseline
must first be cleaned up if it 1s to provide realis-
tic estimates of future performance. Although
this may involve a significant amount of work
(for example, restructuring Common blocks if a
large application redefines them at many
points), the investment is guaranteed to pay off,
since it will improve the serial version’s main-
tainability-and perhaps its performance-even
if you decide not to parallelize. If you do pro-
ceed, a clear, robust code will be essential to pro-
duce a reliable parallel implementation.

Performance estimates are based on timings
of the baseline program. Insert calls to the sys-
tem library to obtain wall-clock readings just be-
fore and after the portion(s) of the application
with potential for parallelism (based on infor-
mation in the preceding sections); collectively,
these represent the potentiadly parallel code. In
addition, insert timing calls as the program’s first
and last statements, so that you can also deter-
mine whole code time. Figure 8 shows where tim-
ing calls would be placed to measure a simple
simulation program. Exclude the input and out-
put phases from the potentially parallel portion,
since they represent serial bottlenecks (U0 can-
not be performed in parallel on most machines).
Identify other major operations that must be ex-

you don’t pick
the language;
it picks you.

SUMMER 1996 31

Wallclo

I
91 Potentially parallel portion I

1

Figure 8. Timing the baseline program to estimate likely parallel petformance: whole-code versus
potentially parallel timings. Each large dot represents a call to a timing routine.

ecuted serially (such as global summations) and The goal of parallelism, clearly, is to reduce
exclude them, too. the whole code-dme so that results are produced

faster. Equally clearly, performance gains can
only be made by reducing the time spent in the
potentially parallel portion, since this is the only
area where multiple CPUs can really be applied.
Ideally, the entire simulation portion of the ex-
ample could execute in parallel.

The timing results obtained by executing the
baseline program make it possible to calculate
the program’s parallel content, p , defined as a pro-
portion:

potentially parallel time 90
xhole code time 93

= - = 0.9677

Ths inhcates that 96.8 percent of the code is
potentially paratlelizable, while only 3.2 percent is
necessarily serial content. To understand the im-
pact of those figures, Amdahl’s law (see the box
on t h ~ s page) is applied to calculate the theoreti-
cal speedup as a function of the parallel content
@) and the number of CPUs that will be used (Nj:

theoretical speedup

.0323 + (.9677/N)

Figure 9a shows how this theoretical speedup
changes for increasing numbers of N. It is com-
pared with idealspeedup, which reflects the ideal
that applying N CPUs to a program should
cause it to complete N times faster. Obviously,
between ideal and theoretical speedup there is
a gap that widens as Nincreases. The gap size is
solely a function of the program’s serial content.
Ths suggests that for every program, it will not
be worthwhile to go beyond some number of
CPUs. As Table 3 shows, even applying an infi-
nite number of CPUs to the example will
achieve at most a 30-times speedup.

Note that the curves may change as the prob-

32 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Table 3. Theoretical speedup, assuming a parallel
content of 96.77 percent.

lem size increases (for example, when the time
steps in the simulation double). If increasing
problem size is essentially equivalent to increas-
ing the amount of parallelizable computation,
the potential parallel content will increase. This,
in turn, will improve the curve for theoretical
speedup, diminishing the gap from ideal
speedup. However, if increasing problem size
also increases the length of the serial bottlenecks,
the gap may widen. You should consider how
much size variation is likely for your application,
and estimate its effect on theoretical speedup.

Unfortunately, theoretical speedup is rarely
achieved by a parallel application. There will ac-
tually be an obsemed speedup curve that exhibits a
widening gap from theoretical speedup (Figure
9b), reflecting the external overhead’s effect on
total execution time. This overhead comes from
two sources, both essentially beyond the pro-
grammer’s control: the additional CPU cycles
expended in simply managing parallelism, and
delays, or wasted time, spent waiting for I/O,
communications among CPUs, and competition
from the operating system or other users. Theo-
retical speedup does not consider these factors.

Another lack of precision in theoretical
speedup is that it assumes perfect concurrency.
Parallel code run on five CPUs will speed up
five times only if all CPUs simultaneously
(a) start the parallel portion, (b) perform all co-
ordination activities (such as exchanging data),
and (c) complete their calculations. Combined,
this is perfect concurrency, shown in Figure loa.
It assumes that computational intensity is com-
pletely homogeneous, which may be almost true
for dense linear algebra, but certainly won’t be
for sparse or irregular problems. It also assumes

Q

U a, a,
Q (I)

Idea‘ speeduY lo 9 4
Theoretical speedup
for p = 0.9677

Parallel content = 96.8%

Serial content = 3.2%

1 2 3 4 5 6 7 8 9 10
Number of processors (4

Ideal speeduy Theoretical speedup

1 2 3 4 5 6 7 8 9 10

(b) Number of processors

Figure 9. Estimating parallel performance: (a) theoretical speedup
differs from ideal speedup as a function of the program‘s serial con-
tent; (b) observed speedup will fall well below theoretical speedup,
due to environmental factors and imperfect concurrency.

that the CPUs are identical and have identical
access to all limiting resources, such as memory
and the communication network.

What actually happens is imperfect concurrency
(Figure lob), because CPUs find it necessary to
wait for access to each other or to resources. Some
factors responsible for poor concurrency are
within the programmer’s control, but some aren’t:

+ Uneven computational intensity across CPUs:
This can be improved by careful program-
ming, but the nature of the application itself
may be causing the problem.

+ CPU.. waitingfor infomation controlled by other
CPUs (such as shared variables or messages):
Experienced parallel programmers spend

SUMMER 1996 33

CPU 1

CPUs start CPUs coordinate
at same instant at same instant
(4

CPUs complete
at same instant

First CPU
starts

(b)

Last CPU
completes

Figure IO. Concurrency: (a) perfect concurrency, where all CPUs be-
gin, interact, and complete at the same time; (b) slight variations in
timing affect concurrency and cause the program to fall short of
theoretical speedup.

most of their efforts ensuring that data are
“produced early, consumed late” to minimize
this wait, but some applications simply require
excessive interaction.

+ Vagaries of the runtime environment (such as
competition from other users, system inter-
rupts, 1/0 delays, or network “hiccups”): The
average user can do little, other than schedule
off-hour program runs.

Concurrency worsens as the number of CPU
interaction points increases relative to the
amount of computation performed, which gives
rise to program granularity. A coarse-grained pro-
gram requires many computations between each
point of CPU interaction, while a fine-grained
one performs proportionately few computations.
Consider, for example, a loop or subroutine con-
taining many instructions. If the CPUs execut-
ing it reference and modify values scattered
through a single matrix, the program will be
fine-grained, because the CPUs must be notified
whenever another CPU updates a value. If each
CPU applies the operations to a different ma-
trix, the code will be coarse-grained. As the num-
ber of instructions shrinks-or the need to share
updated values increases-the granularity be-
comes finer.

On a shared-memory computer, it is difficult

to calculate a priori the minimum granularity to
achieve acceptable performance. For distrib-
uted-memory computers (including networks of
workstations and, to a lesser extent, clustered
SMPs), however, you can get a crude approxi-
mation based on its published CPU speed and
communication properties. Most hardware ven-
dors publicize two measures of message-passing
performance. Latenly is the time, typically mea-
sured in microseconds, spent initiating a mes-
sage transmksion. Bandwidth is the speed, typi-
cally in Mbytes per second, at which message
data are transmitted. Essentially, latency repre-
sents the fixed overhead of a message commu-
nication; the same cost is incurred to set up any
message, regardless of its length. Bandwidth
represents the variable overhead, because the
cost incurred to transmit a message is a function
of message length. Nominally, then, the cost of
sending a message can be described as

message size
bandwidth

message time = latency +

The real “cost” of sending a message, how-
ever, is the number of CPU cycles wasted as a
program waits to sendheceive a message. Quite
simply, a CPU that is spending even a few cy-
cles idling, rather than doing useful computa-
tion, will not show good performance. By con-
sidering what each communication is actually
costing in terms of lost CPU power, you can
predict the granularity level necessary to achieve
reasonable performance on a specific parallel
computer. A message-eguiv~lent’~ measures the
approximate number of floating-point opera-
tions that could be executed in the time needed
to send one message 1,024 bytes long:

message equivalent =

CPU speed * [latency + (1K / bandwidth)]

where CPUspeed is the so-called peak speed of a
single CPU in Mflops, latency is assumed to be
in microseconds, and bandwidth in Mbytes per
second. (Peak CPU speed is an unrealistic mea-
sure but serves as a useful basis for calculating
this crude approximation of needed granularity.)

Table 4 shows the values calculated for five
current parallel computers. It is clear that sys-
tem A (actually a set of Ethernet-connected
workstations) will require an extremely coarse-
grained program if the CPUs are to do anything
more useful than wait for communications. In
contrast, system C (a parallel computer highly

34 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Table 4. ”Message-equivalent” approximations calculated for five existing parallel coimputers, indicating
how many floating-point operations should occur between CPU interactions for good performance.

tuned for fast communications) would tolerate
almost a hundred times as many points of com-
munication. System B (a so-called general-pur-
pose parallel computer) falls between the two.
Systems D (an SMP) and E (a cluster of those
SMPs connected by a high-speed switch) show
just how much impact the communication speed
really has.

Note that none of these systems would really
tolerate a medium- or fine-grained program.
Good performance requires that computation
exceed the message-equivalent on a regular ba-
sis, so each CPU would need to perform tens (or
hundreds or millions) of thousands of operations
between interaction points to attain good per-
formance.

What is the impact of all these factors on pro-
grammer effort? They should be viewed as
“warning signals” that alert you to potential
problems you are unlikely to overcome, regard-
less of the effort you are willing to invest. More
rules of thumb:

(10) Timings measured on a baseline (serial)
version of your application provide a solid
starting point for estimating potential pay-
offs and reliability.

(1 1) The debilitating impact of serial content on
theoretical speedup means that you prob-
ably shouldn’t consider parallelizing a pro-
gram with parallel content less than 95 per-
cent, unless you’re already experienced in
parallel programming, or unless you will be
able to replace a significant portion of the
serial version with parallel algorithms that
have been proven to be good performers.

(12) Apply your knowledge of the program to
estimate how varying problem size will af-
fect the theoretical speedup curve.

(13) Theoretical speedup is only an upper
bound on what is possible; the attained per-
formance will almost certainly be much
lower.

(14) Although you can improve concurrency to
some extent, it will largely depend on the
application itself and the average load on
the computer.

(1 S) A coarse-grained program will perform rel-
atively well on any parallel machine; a
medium- or fine-grained one will probably
be respectable only on a SIMD multicom-
puter.

(16) To understand the granularity require-
ments of a distributed-memory computer,
calculate its message equivalent. To be
worth parallelizing, your program proba-
bly needs to perform rnany thousands of
floating-point operations between each
CPU interaction point.

The three case studies presen.ted on pages 23-25
show how applylng these 16 rules of thumb can
affect your final decision.

ow much performance can you really ex- H pect to get? Consider an analogy with the
physical world14: I can’t ride my bicycle faster
than 40 miles per hour, so that is its peak per-
formance. However, my average speed will de-
pend on environmental conditions, such as my
current fitness level, road condition and steep-
ness, amount of traffic, and weather conditions.
Some of these are under my control, but most
are not. Consequently, my sustained perfor-
mance is typically 15 miles per hour.

Wild claims about parallel performance
abound, typically emanating from the marketing
departments of computer manufacturers. Such
claims are hard even for experienced parallel
programmers to interpret; they often mislead
newcomers into unrealistic notions of perfor-
mance.” A fanciful example might be that X
Corporation’s HypoMetaStellar is a 400-
gigaflops machine. The quoted figure will be ag-
gregate peak performance (that is, the peak CPU

SUMMER 1996 35

speed times the number of CPUs) and is almost
worthless in estimating application performance.
The claim may also be substantiated by bench-
mark results proving the HypoMetaStellar is 10
times faster than any supercomputer, but that too
is essentially meaningless for the parallel pro-
grammer. What counts is the fraction of peak
performance regularly sustained by your appli-
cation. For most applications, that fraction will
probably be only 10-20 percent of peak perfor-
mance. After all, even highly m e d parallel pro-
grams rarely achieve more than 20 percent.

Consider what you
hope to gain, and how
much time or ~ ~ a l i t y

that gain will buy you.

Various other parallel perfor-
mance metrics are also cited to
“prove” that a parallel machine
will guarantee your application
good performance. As SahniL6
demonstrates, however, the
only reliable performance met-
ric is the parallel runtime for
your particular application.
That clearly cannot be known
in advance. In particular, it can-
not be predicted accurately us-
ing statistics from any other ap-
plication, no matter how similar

it is in purpose or structure.
Is parallel performance achievable? Ab-

solutely. But it is not easily achieved, nor can it
be achieved for every problem. Even more dis-
turbingly, it may require an enormous invest-
ment of human effort. Achieved performance
depends on five interdependent factors:

+ the degree of parallelism inherent in the ap-
plication;

+ the parallel computer architecture on which
that application executes;

+ how well the language and runtime system ex-
ploit that architecture;

+ how effectively the program code exploits the
language, runtime system, and architecture;
and

+ the runtime environment at the time of exe-
cution.

Inherent parallelism should be considered a
precondition for even entertaining the idea of
parallelization. Recall that an application’s par-
allel content constrains even its theoretical per-
formance. If there’s more than a tiny fraction of
serial content, parallelism almost certainly will
not be worthwhile. Moreover, changing the al-
gorithm to reduce the application’s serial con-
tent will have more impact than whatever effort

you are willing to invest in tuning. The parallel
arclvtecture and runtime environment are prob-
ably out of your control, unless you have access
to a wide range of parallel computing platforms.
The efficiency of the language and runtime sys-
tem is definitely beyond any programmer’s con-
trol. That leaves the efficiency of your program,
which essentially boils down to how much ef-
fort you’re willing to invest in learning and ap-
plying parallel slulls.

Is parallelism for you? Consider what you
hope to gain-quicker access to results, ability
to handle larger problems, finer resolution, or
increased complexity. Think about how much
that gain will buy you in time or quality, and
what it’s worth to you. Balance those considera-
tions against the propensity your application ap-
pears to have for parallelism. Factor in the ex-
tent to which you think performance should pay
off your programming efforts. Then take tim-
ings on a cleaned-up version of your serial base-
line and use them to estimate the best perfor-
mance that could be obtained through
parallelization. Assuming there are no counter-
indications (such as a mismatch between your
problem architecture and the type of machine
available to you), parallelism will probably pay
off if your upper-bound estimate on future per-
formance is at least five to ten times bigger than
what would be minimally worthwhile. Then fac-
tor in the extent to which you think perfor-
mance should pay off your programming efforts.

Theoretically, any problem can be pro-
grammed in any language for execution on any
parallel computer. Realistically, recognize that
if a problem does not lend itself to parallelism,
or if it doesn’t match your computer’s capabili-
ties, parallelization simply won’t be worth the
effort. +
Acknowledgments
These guidelines could not have been awived at without
the hundreds of experienced parallel programmers who
collaborated in my surveys and imterviews at computa-
tional science and engineering sites across the US, con-
ducted on behnlf of Intel Supercomputer Systems Divi-
sion, IBM Corp., Convex Computeer Corp., and the
Parallel Tools Consoniuw, 1989-1994. Special thanks to
Hugh Caffey lfomzerly at BioNumerik Phamaceuticals
and now at Hewlett-Packard), and Rubin Landau (De-
pamnent of Physics, Oregon State Universicy) for their
help in fomulating and reviewing the rmles ofthumb.

Ref e re n ces
1. G. Fox, “Parallel Problem Architectures and

36 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Their Implications for Portable Parallel Software
Systems,” Tech. Report CRPC-TR91120, Cen-
ter for Research on Parallel Computation, Rice
Univ., Houston, Texas, Feb. 1991.
G.C. Fox et al., Solving Problems on Concurrent
Processors, Prentice-Hall, Englewood Cliffs, NJ.,
1988.
G.C. Fox, R.D. Williams, and P.C. Messina, Par-
allel Computing Works!, Morgan Kaufmann, San
Francisco, 1994.
I.T. Foster, Designing and Building Parallel Pro-
grams: Concepts and Tools for Parallel Sojiware En-
gineering, Addison-Wesley, Reading, Mass., 1995.
MJ. Flynn, “Some Computer Organizations and
Their Effectiveness,” IEEE Trans. Computers, Vol.
C-21, 1972, pp. 28-33.

6. J.R. McGraw and T.S. Axelrod, “Exploiting Mul-
tiprocessors: Issues and Options,” in P n y “ z i n g
Parallel Processors, R.G. Babb, ed., Addison-Wes-
ley, Reading, Mass., 1988, pp. 7-26.

7. J.M. Levesque and J.W. Williamson, A Guidebook
to Fortran on Supercomputers, Academic Press, San
Diego, Calif., 1989.

8. C.M. Pancake and C. Cook, “What Users Need
in Parallel Tool Support: Survey Results and
Analysis,” Proc. Scalable High Performance Com-

16. S. Sahni and V. Thanvantri, “Performance Met-
rics: Keeping the Focus on Runtime,” IEEE Par-
allel 6 Distributed Technology, Vol. 4, No. 1, Spring
1996, pp. 43-56.

Chervi M. Pancake is a profissoor of computer science
and an Intelfaculty fellow at Oregon State University.
She is also an advisor to the high-pe$omance comput-
ing industry on human factors engineering for parallel
computers, developing survey instruments and user-
oriented testing techniques t o identih usability prob-
lems. An area editorfor HPCfor both Computer and
Communications of the ACM, Pancake is also a
member o f the review board of the National High-
Pe$obrmance Computing Sofcware Exchange and di-
rector of the Northwest Alliance for Computational Sci-
ence and Engineering (an NSF’ Metacenter Regional
Alliance). She also chairs the Parallel Tools Consortium,
a collaborative efoyt thatjoins academic, industry, and
federal organizations t o develop portable sofCWare tools
that respond directly t o user needs.

Readers can reach Pancake at the Department of
Computer Science, Dearbom Hall 303, Oregon State
University, Corvallis, OR 97331; e-mail,
pancake@cs. orst. edu.

Vol. 81, NO. 2, 1993, pp. 288-304.
10. A. Karp and R.G. Babb 11, “A Comparison of 12

Parallel Fortran Dialects,” Computer, Vol. 5 , No.
5, 1988, pp. 52-66.

11. C.M. Pancake and D. Bergmark, “DO Parallel
Languages Respond to the Needs of Scientific
Researchers?” Computer, Vol. 23, No. 12, 1990,

12. H.D. Simon, “Are Highly Parallel Systems Ready
for Prime Time,” Int’l J . Supercomputer Applica-
tions, Vol. 4, No. 1, 1990, pp. 88-94.

13. C.M. Pancake and H.M. Caffey, “Message-Pass-
ing Programming for Scientists and Engineers,”
Tutorial Notes, Supercomputing ’94, IEEE CS
Press, Los Alamitos, Calif., Nov. 1994.

14. J. Yan and C.M. Pancake, “Methodologies and
Tools for Tuning Parallel Programs: From The-
ory to Practice,” Tutorial Notes, Scalable High
Perfbmance Computing Con$, IEEE CS Press, Los
Alamitos, Calif., May 1994.

15. C.R. Cook, C.M. Pancake, and R. Walpole, “Are
Expectations for Parallelism Too High? A Survey
of Potential Parallel Users,” Proc. Supercomputing
’94, IEEE CS Press, Los Alamitos, Calif., Nov.

pp. 13-23.

1994, pp. 126-133.

Contains summaries from
discussions on software tools for parallel computer
systems that explore the current situation, outline
research issues, and discuss technology transition
remedies. The text lets you learn from others’ needs
and frustrations in building and using tools on parallel
systems. The book covers three major research themes:
tools for task and data parallel languages, techniques
for real-time adaptive system control, and optimization
of heterogeneous metacomputing applications.

4 16 pages. May 1 996. Hardcover. /SEN 0-8 186-74 12- 1 .
Catalog # BP074 12 - $35.00 Members / $42.00 List

1 ‘

I’ ‘1

SUMMER 1996

